Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1176,2,Mod(881,1176)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1176, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1176.881");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1176.k (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.39040727770\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
881.1 | 0 | −1.72171 | − | 0.188994i | 0 | 4.01535 | 0 | 0 | 0 | 2.92856 | + | 0.650785i | 0 | ||||||||||||||
881.2 | 0 | −1.72171 | + | 0.188994i | 0 | 4.01535 | 0 | 0 | 0 | 2.92856 | − | 0.650785i | 0 | ||||||||||||||
881.3 | 0 | −1.71558 | − | 0.238292i | 0 | −1.32383 | 0 | 0 | 0 | 2.88643 | + | 0.817619i | 0 | ||||||||||||||
881.4 | 0 | −1.71558 | + | 0.238292i | 0 | −1.32383 | 0 | 0 | 0 | 2.88643 | − | 0.817619i | 0 | ||||||||||||||
881.5 | 0 | −1.48931 | − | 0.884275i | 0 | −0.992103 | 0 | 0 | 0 | 1.43612 | + | 2.63393i | 0 | ||||||||||||||
881.6 | 0 | −1.48931 | + | 0.884275i | 0 | −0.992103 | 0 | 0 | 0 | 1.43612 | − | 2.63393i | 0 | ||||||||||||||
881.7 | 0 | −0.698115 | − | 1.58513i | 0 | 0.489061 | 0 | 0 | 0 | −2.02527 | + | 2.21321i | 0 | ||||||||||||||
881.8 | 0 | −0.698115 | + | 1.58513i | 0 | 0.489061 | 0 | 0 | 0 | −2.02527 | − | 2.21321i | 0 | ||||||||||||||
881.9 | 0 | −0.615077 | − | 1.61916i | 0 | 1.31193 | 0 | 0 | 0 | −2.24336 | + | 1.99182i | 0 | ||||||||||||||
881.10 | 0 | −0.615077 | + | 1.61916i | 0 | 1.31193 | 0 | 0 | 0 | −2.24336 | − | 1.99182i | 0 | ||||||||||||||
881.11 | 0 | −0.0935860 | − | 1.72952i | 0 | −3.34363 | 0 | 0 | 0 | −2.98248 | + | 0.323718i | 0 | ||||||||||||||
881.12 | 0 | −0.0935860 | + | 1.72952i | 0 | −3.34363 | 0 | 0 | 0 | −2.98248 | − | 0.323718i | 0 | ||||||||||||||
881.13 | 0 | 0.0935860 | − | 1.72952i | 0 | 3.34363 | 0 | 0 | 0 | −2.98248 | − | 0.323718i | 0 | ||||||||||||||
881.14 | 0 | 0.0935860 | + | 1.72952i | 0 | 3.34363 | 0 | 0 | 0 | −2.98248 | + | 0.323718i | 0 | ||||||||||||||
881.15 | 0 | 0.615077 | − | 1.61916i | 0 | −1.31193 | 0 | 0 | 0 | −2.24336 | − | 1.99182i | 0 | ||||||||||||||
881.16 | 0 | 0.615077 | + | 1.61916i | 0 | −1.31193 | 0 | 0 | 0 | −2.24336 | + | 1.99182i | 0 | ||||||||||||||
881.17 | 0 | 0.698115 | − | 1.58513i | 0 | −0.489061 | 0 | 0 | 0 | −2.02527 | − | 2.21321i | 0 | ||||||||||||||
881.18 | 0 | 0.698115 | + | 1.58513i | 0 | −0.489061 | 0 | 0 | 0 | −2.02527 | + | 2.21321i | 0 | ||||||||||||||
881.19 | 0 | 1.48931 | − | 0.884275i | 0 | 0.992103 | 0 | 0 | 0 | 1.43612 | − | 2.63393i | 0 | ||||||||||||||
881.20 | 0 | 1.48931 | + | 0.884275i | 0 | 0.992103 | 0 | 0 | 0 | 1.43612 | + | 2.63393i | 0 | ||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1176.2.k.b | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 1176.2.k.b | ✓ | 24 |
4.b | odd | 2 | 1 | 2352.2.k.j | 24 | ||
7.b | odd | 2 | 1 | inner | 1176.2.k.b | ✓ | 24 |
7.c | even | 3 | 2 | 1176.2.u.c | 48 | ||
7.d | odd | 6 | 2 | 1176.2.u.c | 48 | ||
12.b | even | 2 | 1 | 2352.2.k.j | 24 | ||
21.c | even | 2 | 1 | inner | 1176.2.k.b | ✓ | 24 |
21.g | even | 6 | 2 | 1176.2.u.c | 48 | ||
21.h | odd | 6 | 2 | 1176.2.u.c | 48 | ||
28.d | even | 2 | 1 | 2352.2.k.j | 24 | ||
84.h | odd | 2 | 1 | 2352.2.k.j | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1176.2.k.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
1176.2.k.b | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
1176.2.k.b | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
1176.2.k.b | ✓ | 24 | 21.c | even | 2 | 1 | inner |
1176.2.u.c | 48 | 7.c | even | 3 | 2 | ||
1176.2.u.c | 48 | 7.d | odd | 6 | 2 | ||
1176.2.u.c | 48 | 21.g | even | 6 | 2 | ||
1176.2.u.c | 48 | 21.h | odd | 6 | 2 | ||
2352.2.k.j | 24 | 4.b | odd | 2 | 1 | ||
2352.2.k.j | 24 | 12.b | even | 2 | 1 | ||
2352.2.k.j | 24 | 28.d | even | 2 | 1 | ||
2352.2.k.j | 24 | 84.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{12} - 32T_{5}^{10} + 316T_{5}^{8} - 1056T_{5}^{6} + 1476T_{5}^{4} - 832T_{5}^{2} + 128 \)
acting on \(S_{2}^{\mathrm{new}}(1176, [\chi])\).