Properties

Label 1184.2.g.e.961.2
Level $1184$
Weight $2$
Character 1184.961
Analytic conductor $9.454$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1184,2,Mod(961,1184)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1184, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1184.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.45428759932\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.0.3356224.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 16x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.2
Root \(2.11491i\) of defining polynomial
Character \(\chi\) \(=\) 1184.961
Dual form 1184.2.g.e.961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.47283 q^{3} +2.75698i q^{5} +1.58774 q^{7} +3.11491 q^{9} -6.11491 q^{11} -0.885092i q^{13} -6.81756i q^{15} +4.94567i q^{17} +2.94567i q^{19} -3.92622 q^{21} +2.16924i q^{23} -2.60095 q^{25} -0.284147 q^{27} +0.885092i q^{29} -7.47283i q^{31} +15.1212 q^{33} +4.37737i q^{35} +(-4.87189 - 3.64207i) q^{37} +2.18869i q^{39} +1.18869 q^{41} -6.45963i q^{43} +8.58774i q^{45} -3.92622 q^{47} -4.47908 q^{49} -12.2298i q^{51} +7.81756 q^{53} -16.8587i q^{55} -7.28415i q^{57} -5.66152i q^{59} -0.418502i q^{61} +4.94567 q^{63} +2.44018 q^{65} -8.27094 q^{67} -5.36417i q^{69} -5.12811 q^{71} -10.0062 q^{73} +6.43171 q^{75} -9.70889 q^{77} +10.7764i q^{79} -8.64207 q^{81} +2.15604 q^{83} -13.6351 q^{85} -2.18869i q^{87} -17.1755i q^{89} -1.40530i q^{91} +18.4791i q^{93} -8.12115 q^{95} -18.5808i q^{97} -19.0474 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 14 q^{7} + 6 q^{9} - 24 q^{11} - 18 q^{21} - 32 q^{25} + 2 q^{27} + 22 q^{33} - 2 q^{37} - 18 q^{47} + 40 q^{49} - 2 q^{53} + 8 q^{63} - 20 q^{65} - 6 q^{67} - 58 q^{71} - 4 q^{73} + 46 q^{75}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1184\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(705\) \(741\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.47283 −1.42769 −0.713846 0.700303i \(-0.753048\pi\)
−0.713846 + 0.700303i \(0.753048\pi\)
\(4\) 0 0
\(5\) 2.75698i 1.23296i 0.787371 + 0.616480i \(0.211442\pi\)
−0.787371 + 0.616480i \(0.788558\pi\)
\(6\) 0 0
\(7\) 1.58774 0.600110 0.300055 0.953922i \(-0.402995\pi\)
0.300055 + 0.953922i \(0.402995\pi\)
\(8\) 0 0
\(9\) 3.11491 1.03830
\(10\) 0 0
\(11\) −6.11491 −1.84371 −0.921857 0.387530i \(-0.873328\pi\)
−0.921857 + 0.387530i \(0.873328\pi\)
\(12\) 0 0
\(13\) 0.885092i 0.245480i −0.992439 0.122740i \(-0.960832\pi\)
0.992439 0.122740i \(-0.0391682\pi\)
\(14\) 0 0
\(15\) 6.81756i 1.76029i
\(16\) 0 0
\(17\) 4.94567i 1.19950i 0.800187 + 0.599750i \(0.204733\pi\)
−0.800187 + 0.599750i \(0.795267\pi\)
\(18\) 0 0
\(19\) 2.94567i 0.675783i 0.941185 + 0.337891i \(0.109714\pi\)
−0.941185 + 0.337891i \(0.890286\pi\)
\(20\) 0 0
\(21\) −3.92622 −0.856772
\(22\) 0 0
\(23\) 2.16924i 0.452318i 0.974090 + 0.226159i \(0.0726169\pi\)
−0.974090 + 0.226159i \(0.927383\pi\)
\(24\) 0 0
\(25\) −2.60095 −0.520189
\(26\) 0 0
\(27\) −0.284147 −0.0546842
\(28\) 0 0
\(29\) 0.885092i 0.164358i 0.996618 + 0.0821788i \(0.0261878\pi\)
−0.996618 + 0.0821788i \(0.973812\pi\)
\(30\) 0 0
\(31\) 7.47283i 1.34216i −0.741385 0.671080i \(-0.765831\pi\)
0.741385 0.671080i \(-0.234169\pi\)
\(32\) 0 0
\(33\) 15.1212 2.63225
\(34\) 0 0
\(35\) 4.37737i 0.739911i
\(36\) 0 0
\(37\) −4.87189 3.64207i −0.800934 0.598753i
\(38\) 0 0
\(39\) 2.18869i 0.350470i
\(40\) 0 0
\(41\) 1.18869 0.185642 0.0928208 0.995683i \(-0.470412\pi\)
0.0928208 + 0.995683i \(0.470412\pi\)
\(42\) 0 0
\(43\) 6.45963i 0.985084i −0.870289 0.492542i \(-0.836068\pi\)
0.870289 0.492542i \(-0.163932\pi\)
\(44\) 0 0
\(45\) 8.58774i 1.28018i
\(46\) 0 0
\(47\) −3.92622 −0.572698 −0.286349 0.958125i \(-0.592442\pi\)
−0.286349 + 0.958125i \(0.592442\pi\)
\(48\) 0 0
\(49\) −4.47908 −0.639868
\(50\) 0 0
\(51\) 12.2298i 1.71252i
\(52\) 0 0
\(53\) 7.81756 1.07382 0.536912 0.843638i \(-0.319591\pi\)
0.536912 + 0.843638i \(0.319591\pi\)
\(54\) 0 0
\(55\) 16.8587i 2.27322i
\(56\) 0 0
\(57\) 7.28415i 0.964809i
\(58\) 0 0
\(59\) 5.66152i 0.737067i −0.929614 0.368534i \(-0.879860\pi\)
0.929614 0.368534i \(-0.120140\pi\)
\(60\) 0 0
\(61\) 0.418502i 0.0535837i −0.999641 0.0267918i \(-0.991471\pi\)
0.999641 0.0267918i \(-0.00852912\pi\)
\(62\) 0 0
\(63\) 4.94567 0.623096
\(64\) 0 0
\(65\) 2.44018 0.302667
\(66\) 0 0
\(67\) −8.27094 −1.01046 −0.505228 0.862986i \(-0.668592\pi\)
−0.505228 + 0.862986i \(0.668592\pi\)
\(68\) 0 0
\(69\) 5.36417i 0.645770i
\(70\) 0 0
\(71\) −5.12811 −0.608595 −0.304297 0.952577i \(-0.598422\pi\)
−0.304297 + 0.952577i \(0.598422\pi\)
\(72\) 0 0
\(73\) −10.0062 −1.17114 −0.585571 0.810621i \(-0.699130\pi\)
−0.585571 + 0.810621i \(0.699130\pi\)
\(74\) 0 0
\(75\) 6.43171 0.742669
\(76\) 0 0
\(77\) −9.70889 −1.10643
\(78\) 0 0
\(79\) 10.7764i 1.21244i 0.795296 + 0.606221i \(0.207315\pi\)
−0.795296 + 0.606221i \(0.792685\pi\)
\(80\) 0 0
\(81\) −8.64207 −0.960230
\(82\) 0 0
\(83\) 2.15604 0.236656 0.118328 0.992975i \(-0.462247\pi\)
0.118328 + 0.992975i \(0.462247\pi\)
\(84\) 0 0
\(85\) −13.6351 −1.47894
\(86\) 0 0
\(87\) 2.18869i 0.234652i
\(88\) 0 0
\(89\) 17.1755i 1.82060i −0.413952 0.910299i \(-0.635852\pi\)
0.413952 0.910299i \(-0.364148\pi\)
\(90\) 0 0
\(91\) 1.40530i 0.147315i
\(92\) 0 0
\(93\) 18.4791i 1.91619i
\(94\) 0 0
\(95\) −8.12115 −0.833212
\(96\) 0 0
\(97\) 18.5808i 1.88659i −0.331952 0.943296i \(-0.607707\pi\)
0.331952 0.943296i \(-0.392293\pi\)
\(98\) 0 0
\(99\) −19.0474 −1.91433
\(100\) 0 0
\(101\) −5.81756 −0.578869 −0.289434 0.957198i \(-0.593467\pi\)
−0.289434 + 0.957198i \(0.593467\pi\)
\(102\) 0 0
\(103\) 7.32528i 0.721781i −0.932608 0.360890i \(-0.882473\pi\)
0.932608 0.360890i \(-0.117527\pi\)
\(104\) 0 0
\(105\) 10.8245i 1.05636i
\(106\) 0 0
\(107\) −0.316798 −0.0306260 −0.0153130 0.999883i \(-0.504874\pi\)
−0.0153130 + 0.999883i \(0.504874\pi\)
\(108\) 0 0
\(109\) 17.1755i 1.64511i −0.568683 0.822556i \(-0.692547\pi\)
0.568683 0.822556i \(-0.307453\pi\)
\(110\) 0 0
\(111\) 12.0474 + 9.00624i 1.14349 + 0.854835i
\(112\) 0 0
\(113\) 8.68945i 0.817434i −0.912661 0.408717i \(-0.865976\pi\)
0.912661 0.408717i \(-0.134024\pi\)
\(114\) 0 0
\(115\) −5.98055 −0.557689
\(116\) 0 0
\(117\) 2.75698i 0.254883i
\(118\) 0 0
\(119\) 7.85244i 0.719832i
\(120\) 0 0
\(121\) 26.3921 2.39928
\(122\) 0 0
\(123\) −2.93942 −0.265039
\(124\) 0 0
\(125\) 6.61415i 0.591587i
\(126\) 0 0
\(127\) −18.7632 −1.66497 −0.832483 0.554050i \(-0.813082\pi\)
−0.832483 + 0.554050i \(0.813082\pi\)
\(128\) 0 0
\(129\) 15.9736i 1.40640i
\(130\) 0 0
\(131\) 19.2577i 1.68256i 0.540602 + 0.841278i \(0.318196\pi\)
−0.540602 + 0.841278i \(0.681804\pi\)
\(132\) 0 0
\(133\) 4.67696i 0.405544i
\(134\) 0 0
\(135\) 0.783389i 0.0674234i
\(136\) 0 0
\(137\) −0.297351 −0.0254044 −0.0127022 0.999919i \(-0.504043\pi\)
−0.0127022 + 0.999919i \(0.504043\pi\)
\(138\) 0 0
\(139\) 19.4659 1.65107 0.825537 0.564348i \(-0.190872\pi\)
0.825537 + 0.564348i \(0.190872\pi\)
\(140\) 0 0
\(141\) 9.70889 0.817636
\(142\) 0 0
\(143\) 5.41226i 0.452596i
\(144\) 0 0
\(145\) −2.44018 −0.202646
\(146\) 0 0
\(147\) 11.0760 0.913534
\(148\) 0 0
\(149\) −19.5613 −1.60253 −0.801263 0.598312i \(-0.795838\pi\)
−0.801263 + 0.598312i \(0.795838\pi\)
\(150\) 0 0
\(151\) 12.7981 1.04150 0.520748 0.853711i \(-0.325653\pi\)
0.520748 + 0.853711i \(0.325653\pi\)
\(152\) 0 0
\(153\) 15.4053i 1.24544i
\(154\) 0 0
\(155\) 20.6025 1.65483
\(156\) 0 0
\(157\) 11.3315 0.904354 0.452177 0.891928i \(-0.350648\pi\)
0.452177 + 0.891928i \(0.350648\pi\)
\(158\) 0 0
\(159\) −19.3315 −1.53309
\(160\) 0 0
\(161\) 3.44419i 0.271440i
\(162\) 0 0
\(163\) 8.12115i 0.636098i 0.948074 + 0.318049i \(0.103028\pi\)
−0.948074 + 0.318049i \(0.896972\pi\)
\(164\) 0 0
\(165\) 41.6887i 3.24546i
\(166\) 0 0
\(167\) 14.8781i 1.15130i −0.817695 0.575652i \(-0.804748\pi\)
0.817695 0.575652i \(-0.195252\pi\)
\(168\) 0 0
\(169\) 12.2166 0.939739
\(170\) 0 0
\(171\) 9.17548i 0.701667i
\(172\) 0 0
\(173\) 14.9108 1.13365 0.566823 0.823840i \(-0.308172\pi\)
0.566823 + 0.823840i \(0.308172\pi\)
\(174\) 0 0
\(175\) −4.12963 −0.312171
\(176\) 0 0
\(177\) 14.0000i 1.05230i
\(178\) 0 0
\(179\) 8.68945i 0.649480i −0.945803 0.324740i \(-0.894723\pi\)
0.945803 0.324740i \(-0.105277\pi\)
\(180\) 0 0
\(181\) −16.6421 −1.23700 −0.618498 0.785787i \(-0.712258\pi\)
−0.618498 + 0.785787i \(0.712258\pi\)
\(182\) 0 0
\(183\) 1.03489i 0.0765009i
\(184\) 0 0
\(185\) 10.0411 13.4317i 0.738238 0.987519i
\(186\) 0 0
\(187\) 30.2423i 2.21154i
\(188\) 0 0
\(189\) −0.451152 −0.0328165
\(190\) 0 0
\(191\) 20.9993i 1.51945i 0.650242 + 0.759727i \(0.274668\pi\)
−0.650242 + 0.759727i \(0.725332\pi\)
\(192\) 0 0
\(193\) 19.7827i 1.42399i 0.702186 + 0.711994i \(0.252208\pi\)
−0.702186 + 0.711994i \(0.747792\pi\)
\(194\) 0 0
\(195\) −6.03417 −0.432116
\(196\) 0 0
\(197\) −14.3859 −1.02495 −0.512475 0.858702i \(-0.671271\pi\)
−0.512475 + 0.858702i \(0.671271\pi\)
\(198\) 0 0
\(199\) 19.6351i 1.39190i 0.718092 + 0.695948i \(0.245016\pi\)
−0.718092 + 0.695948i \(0.754984\pi\)
\(200\) 0 0
\(201\) 20.4527 1.44262
\(202\) 0 0
\(203\) 1.40530i 0.0986326i
\(204\) 0 0
\(205\) 3.27719i 0.228889i
\(206\) 0 0
\(207\) 6.75698i 0.469643i
\(208\) 0 0
\(209\) 18.0125i 1.24595i
\(210\) 0 0
\(211\) 0.600945 0.0413708 0.0206854 0.999786i \(-0.493415\pi\)
0.0206854 + 0.999786i \(0.493415\pi\)
\(212\) 0 0
\(213\) 12.6810 0.868886
\(214\) 0 0
\(215\) 17.8091 1.21457
\(216\) 0 0
\(217\) 11.8649i 0.805444i
\(218\) 0 0
\(219\) 24.7438 1.67203
\(220\) 0 0
\(221\) 4.37737 0.294454
\(222\) 0 0
\(223\) −19.3315 −1.29453 −0.647267 0.762263i \(-0.724088\pi\)
−0.647267 + 0.762263i \(0.724088\pi\)
\(224\) 0 0
\(225\) −8.10170 −0.540114
\(226\) 0 0
\(227\) 3.20189i 0.212517i −0.994339 0.106258i \(-0.966113\pi\)
0.994339 0.106258i \(-0.0338871\pi\)
\(228\) 0 0
\(229\) 13.3579 0.882717 0.441358 0.897331i \(-0.354497\pi\)
0.441358 + 0.897331i \(0.354497\pi\)
\(230\) 0 0
\(231\) 24.0085 1.57964
\(232\) 0 0
\(233\) −11.4923 −0.752884 −0.376442 0.926440i \(-0.622853\pi\)
−0.376442 + 0.926440i \(0.622853\pi\)
\(234\) 0 0
\(235\) 10.8245i 0.706114i
\(236\) 0 0
\(237\) 26.6483i 1.73099i
\(238\) 0 0
\(239\) 23.5676i 1.52446i 0.647306 + 0.762230i \(0.275895\pi\)
−0.647306 + 0.762230i \(0.724105\pi\)
\(240\) 0 0
\(241\) 25.8649i 1.66611i 0.553193 + 0.833053i \(0.313409\pi\)
−0.553193 + 0.833053i \(0.686591\pi\)
\(242\) 0 0
\(243\) 22.2229 1.42560
\(244\) 0 0
\(245\) 12.3487i 0.788931i
\(246\) 0 0
\(247\) 2.60719 0.165891
\(248\) 0 0
\(249\) −5.33152 −0.337871
\(250\) 0 0
\(251\) 3.66152i 0.231113i −0.993301 0.115557i \(-0.963135\pi\)
0.993301 0.115557i \(-0.0368652\pi\)
\(252\) 0 0
\(253\) 13.2647i 0.833945i
\(254\) 0 0
\(255\) 33.7174 2.11146
\(256\) 0 0
\(257\) 2.33848i 0.145870i 0.997337 + 0.0729352i \(0.0232366\pi\)
−0.997337 + 0.0729352i \(0.976763\pi\)
\(258\) 0 0
\(259\) −7.73530 5.78267i −0.480648 0.359318i
\(260\) 0 0
\(261\) 2.75698i 0.170653i
\(262\) 0 0
\(263\) −15.2229 −0.938681 −0.469341 0.883017i \(-0.655508\pi\)
−0.469341 + 0.883017i \(0.655508\pi\)
\(264\) 0 0
\(265\) 21.5529i 1.32398i
\(266\) 0 0
\(267\) 42.4721i 2.59925i
\(268\) 0 0
\(269\) −17.6615 −1.07684 −0.538421 0.842676i \(-0.680979\pi\)
−0.538421 + 0.842676i \(0.680979\pi\)
\(270\) 0 0
\(271\) −11.4791 −0.697304 −0.348652 0.937252i \(-0.613361\pi\)
−0.348652 + 0.937252i \(0.613361\pi\)
\(272\) 0 0
\(273\) 3.47507i 0.210321i
\(274\) 0 0
\(275\) 15.9045 0.959080
\(276\) 0 0
\(277\) 12.6483i 0.759964i −0.924994 0.379982i \(-0.875930\pi\)
0.924994 0.379982i \(-0.124070\pi\)
\(278\) 0 0
\(279\) 23.2772i 1.39357i
\(280\) 0 0
\(281\) 11.0279i 0.657871i −0.944352 0.328935i \(-0.893310\pi\)
0.944352 0.328935i \(-0.106690\pi\)
\(282\) 0 0
\(283\) 11.6351i 0.691636i −0.938302 0.345818i \(-0.887602\pi\)
0.938302 0.345818i \(-0.112398\pi\)
\(284\) 0 0
\(285\) 20.0823 1.18957
\(286\) 0 0
\(287\) 1.88733 0.111405
\(288\) 0 0
\(289\) −7.45963 −0.438802
\(290\) 0 0
\(291\) 45.9472i 2.69347i
\(292\) 0 0
\(293\) −4.86341 −0.284124 −0.142062 0.989858i \(-0.545373\pi\)
−0.142062 + 0.989858i \(0.545373\pi\)
\(294\) 0 0
\(295\) 15.6087 0.908774
\(296\) 0 0
\(297\) 1.73753 0.100822
\(298\) 0 0
\(299\) 1.91998 0.111035
\(300\) 0 0
\(301\) 10.2562i 0.591159i
\(302\) 0 0
\(303\) 14.3859 0.826446
\(304\) 0 0
\(305\) 1.15380 0.0660665
\(306\) 0 0
\(307\) −8.55509 −0.488265 −0.244132 0.969742i \(-0.578503\pi\)
−0.244132 + 0.969742i \(0.578503\pi\)
\(308\) 0 0
\(309\) 18.1142i 1.03048i
\(310\) 0 0
\(311\) 7.93942i 0.450203i 0.974335 + 0.225102i \(0.0722714\pi\)
−0.974335 + 0.225102i \(0.927729\pi\)
\(312\) 0 0
\(313\) 19.2144i 1.08606i 0.839713 + 0.543030i \(0.182723\pi\)
−0.839713 + 0.543030i \(0.817277\pi\)
\(314\) 0 0
\(315\) 13.6351i 0.768252i
\(316\) 0 0
\(317\) 4.90677 0.275592 0.137796 0.990461i \(-0.455998\pi\)
0.137796 + 0.990461i \(0.455998\pi\)
\(318\) 0 0
\(319\) 5.41226i 0.303028i
\(320\) 0 0
\(321\) 0.783389 0.0437245
\(322\) 0 0
\(323\) −14.5683 −0.810602
\(324\) 0 0
\(325\) 2.30208i 0.127696i
\(326\) 0 0
\(327\) 42.4721i 2.34871i
\(328\) 0 0
\(329\) −6.23382 −0.343682
\(330\) 0 0
\(331\) 6.26871i 0.344559i −0.985048 0.172280i \(-0.944887\pi\)
0.985048 0.172280i \(-0.0551133\pi\)
\(332\) 0 0
\(333\) −15.1755 11.3447i −0.831611 0.621687i
\(334\) 0 0
\(335\) 22.8028i 1.24585i
\(336\) 0 0
\(337\) −30.4659 −1.65958 −0.829791 0.558074i \(-0.811540\pi\)
−0.829791 + 0.558074i \(0.811540\pi\)
\(338\) 0 0
\(339\) 21.4876i 1.16704i
\(340\) 0 0
\(341\) 45.6957i 2.47456i
\(342\) 0 0
\(343\) −18.2258 −0.984101
\(344\) 0 0
\(345\) 14.7889 0.796208
\(346\) 0 0
\(347\) 29.8649i 1.60323i 0.597838 + 0.801617i \(0.296026\pi\)
−0.597838 + 0.801617i \(0.703974\pi\)
\(348\) 0 0
\(349\) −27.3789 −1.46556 −0.732779 0.680466i \(-0.761777\pi\)
−0.732779 + 0.680466i \(0.761777\pi\)
\(350\) 0 0
\(351\) 0.251497i 0.0134239i
\(352\) 0 0
\(353\) 23.2577i 1.23788i −0.785436 0.618942i \(-0.787561\pi\)
0.785436 0.618942i \(-0.212439\pi\)
\(354\) 0 0
\(355\) 14.1381i 0.750373i
\(356\) 0 0
\(357\) 19.4178i 1.02770i
\(358\) 0 0
\(359\) 16.7243 0.882676 0.441338 0.897341i \(-0.354504\pi\)
0.441338 + 0.897341i \(0.354504\pi\)
\(360\) 0 0
\(361\) 10.3230 0.543318
\(362\) 0 0
\(363\) −65.2633 −3.42543
\(364\) 0 0
\(365\) 27.5870i 1.44397i
\(366\) 0 0
\(367\) −15.2019 −0.793532 −0.396766 0.917920i \(-0.629868\pi\)
−0.396766 + 0.917920i \(0.629868\pi\)
\(368\) 0 0
\(369\) 3.70265 0.192752
\(370\) 0 0
\(371\) 12.4123 0.644412
\(372\) 0 0
\(373\) 4.42474 0.229105 0.114552 0.993417i \(-0.463457\pi\)
0.114552 + 0.993417i \(0.463457\pi\)
\(374\) 0 0
\(375\) 16.3557i 0.844604i
\(376\) 0 0
\(377\) 0.783389 0.0403466
\(378\) 0 0
\(379\) 5.01472 0.257589 0.128794 0.991671i \(-0.458889\pi\)
0.128794 + 0.991671i \(0.458889\pi\)
\(380\) 0 0
\(381\) 46.3983 2.37706
\(382\) 0 0
\(383\) 23.4876i 1.20016i −0.799941 0.600079i \(-0.795136\pi\)
0.799941 0.600079i \(-0.204864\pi\)
\(384\) 0 0
\(385\) 26.7672i 1.36418i
\(386\) 0 0
\(387\) 20.1212i 1.02282i
\(388\) 0 0
\(389\) 1.15380i 0.0585001i 0.999572 + 0.0292500i \(0.00931190\pi\)
−0.999572 + 0.0292500i \(0.990688\pi\)
\(390\) 0 0
\(391\) −10.7283 −0.542555
\(392\) 0 0
\(393\) 47.6212i 2.40217i
\(394\) 0 0
\(395\) −29.7104 −1.49489
\(396\) 0 0
\(397\) −7.00696 −0.351669 −0.175835 0.984420i \(-0.556262\pi\)
−0.175835 + 0.984420i \(0.556262\pi\)
\(398\) 0 0
\(399\) 11.5653i 0.578991i
\(400\) 0 0
\(401\) 29.6087i 1.47859i 0.673383 + 0.739294i \(0.264841\pi\)
−0.673383 + 0.739294i \(0.735159\pi\)
\(402\) 0 0
\(403\) −6.61415 −0.329474
\(404\) 0 0
\(405\) 23.8260i 1.18393i
\(406\) 0 0
\(407\) 29.7911 + 22.2709i 1.47669 + 1.10393i
\(408\) 0 0
\(409\) 9.52645i 0.471053i −0.971868 0.235526i \(-0.924319\pi\)
0.971868 0.235526i \(-0.0756814\pi\)
\(410\) 0 0
\(411\) 0.735300 0.0362697
\(412\) 0 0
\(413\) 8.98903i 0.442321i
\(414\) 0 0
\(415\) 5.94415i 0.291787i
\(416\) 0 0
\(417\) −48.1359 −2.35722
\(418\) 0 0
\(419\) 25.4310 1.24239 0.621193 0.783658i \(-0.286648\pi\)
0.621193 + 0.783658i \(0.286648\pi\)
\(420\) 0 0
\(421\) 4.69417i 0.228780i 0.993436 + 0.114390i \(0.0364913\pi\)
−0.993436 + 0.114390i \(0.963509\pi\)
\(422\) 0 0
\(423\) −12.2298 −0.594634
\(424\) 0 0
\(425\) 12.8634i 0.623967i
\(426\) 0 0
\(427\) 0.664473i 0.0321561i
\(428\) 0 0
\(429\) 13.3836i 0.646167i
\(430\) 0 0
\(431\) 7.85244i 0.378239i −0.981954 0.189119i \(-0.939437\pi\)
0.981954 0.189119i \(-0.0605633\pi\)
\(432\) 0 0
\(433\) −19.2709 −0.926102 −0.463051 0.886332i \(-0.653245\pi\)
−0.463051 + 0.886332i \(0.653245\pi\)
\(434\) 0 0
\(435\) 6.03417 0.289316
\(436\) 0 0
\(437\) −6.38986 −0.305668
\(438\) 0 0
\(439\) 4.58998i 0.219068i −0.993983 0.109534i \(-0.965064\pi\)
0.993983 0.109534i \(-0.0349358\pi\)
\(440\) 0 0
\(441\) −13.9519 −0.664377
\(442\) 0 0
\(443\) 17.1428 0.814481 0.407240 0.913321i \(-0.366491\pi\)
0.407240 + 0.913321i \(0.366491\pi\)
\(444\) 0 0
\(445\) 47.3525 2.24472
\(446\) 0 0
\(447\) 48.3719 2.28791
\(448\) 0 0
\(449\) 2.60719i 0.123041i −0.998106 0.0615204i \(-0.980405\pi\)
0.998106 0.0615204i \(-0.0195949\pi\)
\(450\) 0 0
\(451\) −7.26871 −0.342270
\(452\) 0 0
\(453\) −31.6476 −1.48693
\(454\) 0 0
\(455\) 3.87438 0.181634
\(456\) 0 0
\(457\) 28.5374i 1.33492i 0.744644 + 0.667462i \(0.232619\pi\)
−0.744644 + 0.667462i \(0.767381\pi\)
\(458\) 0 0
\(459\) 1.40530i 0.0655937i
\(460\) 0 0
\(461\) 13.2702i 0.618056i 0.951053 + 0.309028i \(0.100004\pi\)
−0.951053 + 0.309028i \(0.899996\pi\)
\(462\) 0 0
\(463\) 5.46587i 0.254021i −0.991901 0.127010i \(-0.959462\pi\)
0.991901 0.127010i \(-0.0405381\pi\)
\(464\) 0 0
\(465\) −50.9465 −2.36259
\(466\) 0 0
\(467\) 15.6615i 0.724729i −0.932037 0.362364i \(-0.881970\pi\)
0.932037 0.362364i \(-0.118030\pi\)
\(468\) 0 0
\(469\) −13.1321 −0.606385
\(470\) 0 0
\(471\) −28.0210 −1.29114
\(472\) 0 0
\(473\) 39.5000i 1.81621i
\(474\) 0 0
\(475\) 7.66152i 0.351535i
\(476\) 0 0
\(477\) 24.3510 1.11495
\(478\) 0 0
\(479\) 35.3572i 1.61551i 0.589517 + 0.807756i \(0.299318\pi\)
−0.589517 + 0.807756i \(0.700682\pi\)
\(480\) 0 0
\(481\) −3.22357 + 4.31207i −0.146982 + 0.196614i
\(482\) 0 0
\(483\) 8.51691i 0.387533i
\(484\) 0 0
\(485\) 51.2269 2.32609
\(486\) 0 0
\(487\) 29.8216i 1.35134i −0.737202 0.675672i \(-0.763854\pi\)
0.737202 0.675672i \(-0.236146\pi\)
\(488\) 0 0
\(489\) 20.0823i 0.908151i
\(490\) 0 0
\(491\) −25.8168 −1.16510 −0.582549 0.812796i \(-0.697945\pi\)
−0.582549 + 0.812796i \(0.697945\pi\)
\(492\) 0 0
\(493\) −4.37737 −0.197147
\(494\) 0 0
\(495\) 52.5132i 2.36029i
\(496\) 0 0
\(497\) −8.14211 −0.365224
\(498\) 0 0
\(499\) 18.2298i 0.816079i −0.912964 0.408039i \(-0.866213\pi\)
0.912964 0.408039i \(-0.133787\pi\)
\(500\) 0 0
\(501\) 36.7911i 1.64371i
\(502\) 0 0
\(503\) 4.30984i 0.192166i 0.995373 + 0.0960831i \(0.0306314\pi\)
−0.995373 + 0.0960831i \(0.969369\pi\)
\(504\) 0 0
\(505\) 16.0389i 0.713721i
\(506\) 0 0
\(507\) −30.2097 −1.34166
\(508\) 0 0
\(509\) −34.4247 −1.52585 −0.762925 0.646487i \(-0.776237\pi\)
−0.762925 + 0.646487i \(0.776237\pi\)
\(510\) 0 0
\(511\) −15.8873 −0.702814
\(512\) 0 0
\(513\) 0.837003i 0.0369546i
\(514\) 0 0
\(515\) 20.1956 0.889927
\(516\) 0 0
\(517\) 24.0085 1.05589
\(518\) 0 0
\(519\) −36.8719 −1.61850
\(520\) 0 0
\(521\) 20.8580 0.913804 0.456902 0.889517i \(-0.348959\pi\)
0.456902 + 0.889517i \(0.348959\pi\)
\(522\) 0 0
\(523\) 0.295116i 0.0129045i 0.999979 + 0.00645227i \(0.00205384\pi\)
−0.999979 + 0.00645227i \(0.997946\pi\)
\(524\) 0 0
\(525\) 10.2119 0.445683
\(526\) 0 0
\(527\) 36.9582 1.60992
\(528\) 0 0
\(529\) 18.2944 0.795409
\(530\) 0 0
\(531\) 17.6351i 0.765299i
\(532\) 0 0
\(533\) 1.05210i 0.0455714i
\(534\) 0 0
\(535\) 0.873406i 0.0377606i
\(536\) 0 0
\(537\) 21.4876i 0.927256i
\(538\) 0 0
\(539\) 27.3891 1.17973
\(540\) 0 0
\(541\) 15.0521i 0.647140i −0.946204 0.323570i \(-0.895117\pi\)
0.946204 0.323570i \(-0.104883\pi\)
\(542\) 0 0
\(543\) 41.1531 1.76605
\(544\) 0 0
\(545\) 47.3525 2.02836
\(546\) 0 0
\(547\) 33.5529i 1.43462i 0.696756 + 0.717308i \(0.254626\pi\)
−0.696756 + 0.717308i \(0.745374\pi\)
\(548\) 0 0
\(549\) 1.30359i 0.0556360i
\(550\) 0 0
\(551\) −2.60719 −0.111070
\(552\) 0 0
\(553\) 17.1102i 0.727599i
\(554\) 0 0
\(555\) −24.8300 + 33.2144i −1.05398 + 1.40987i
\(556\) 0 0
\(557\) 33.5676i 1.42230i 0.703038 + 0.711152i \(0.251826\pi\)
−0.703038 + 0.711152i \(0.748174\pi\)
\(558\) 0 0
\(559\) −5.71737 −0.241819
\(560\) 0 0
\(561\) 74.7842i 3.15739i
\(562\) 0 0
\(563\) 19.7563i 0.832627i −0.909221 0.416314i \(-0.863322\pi\)
0.909221 0.416314i \(-0.136678\pi\)
\(564\) 0 0
\(565\) 23.9566 1.00786
\(566\) 0 0
\(567\) −13.7214 −0.576244
\(568\) 0 0
\(569\) 33.7827i 1.41624i 0.706090 + 0.708122i \(0.250457\pi\)
−0.706090 + 0.708122i \(0.749543\pi\)
\(570\) 0 0
\(571\) 35.3223 1.47819 0.739097 0.673599i \(-0.235253\pi\)
0.739097 + 0.673599i \(0.235253\pi\)
\(572\) 0 0
\(573\) 51.9277i 2.16931i
\(574\) 0 0
\(575\) 5.64207i 0.235291i
\(576\) 0 0
\(577\) 36.3246i 1.51221i −0.654450 0.756106i \(-0.727100\pi\)
0.654450 0.756106i \(-0.272900\pi\)
\(578\) 0 0
\(579\) 48.9193i 2.03302i
\(580\) 0 0
\(581\) 3.42323 0.142019
\(582\) 0 0
\(583\) −47.8036 −1.97982
\(584\) 0 0
\(585\) 7.60095 0.314260
\(586\) 0 0
\(587\) 17.0015i 0.701728i −0.936426 0.350864i \(-0.885888\pi\)
0.936426 0.350864i \(-0.114112\pi\)
\(588\) 0 0
\(589\) 22.0125 0.907009
\(590\) 0 0
\(591\) 35.5738 1.46331
\(592\) 0 0
\(593\) −7.58998 −0.311683 −0.155841 0.987782i \(-0.549809\pi\)
−0.155841 + 0.987782i \(0.549809\pi\)
\(594\) 0 0
\(595\) −21.6490 −0.887524
\(596\) 0 0
\(597\) 48.5544i 1.98720i
\(598\) 0 0
\(599\) −6.59871 −0.269616 −0.134808 0.990872i \(-0.543042\pi\)
−0.134808 + 0.990872i \(0.543042\pi\)
\(600\) 0 0
\(601\) −13.9714 −0.569904 −0.284952 0.958542i \(-0.591978\pi\)
−0.284952 + 0.958542i \(0.591978\pi\)
\(602\) 0 0
\(603\) −25.7632 −1.04916
\(604\) 0 0
\(605\) 72.7625i 2.95822i
\(606\) 0 0
\(607\) 3.26247i 0.132419i −0.997806 0.0662097i \(-0.978909\pi\)
0.997806 0.0662097i \(-0.0210906\pi\)
\(608\) 0 0
\(609\) 3.47507i 0.140817i
\(610\) 0 0
\(611\) 3.47507i 0.140586i
\(612\) 0 0
\(613\) 39.4652 1.59398 0.796991 0.603991i \(-0.206424\pi\)
0.796991 + 0.603991i \(0.206424\pi\)
\(614\) 0 0
\(615\) 8.10394i 0.326782i
\(616\) 0 0
\(617\) −1.52717 −0.0614814 −0.0307407 0.999527i \(-0.509787\pi\)
−0.0307407 + 0.999527i \(0.509787\pi\)
\(618\) 0 0
\(619\) −20.6832 −0.831328 −0.415664 0.909518i \(-0.636451\pi\)
−0.415664 + 0.909518i \(0.636451\pi\)
\(620\) 0 0
\(621\) 0.616384i 0.0247346i
\(622\) 0 0
\(623\) 27.2702i 1.09256i
\(624\) 0 0
\(625\) −31.2398 −1.24959
\(626\) 0 0
\(627\) 44.5419i 1.77883i
\(628\) 0 0
\(629\) 18.0125 24.0947i 0.718205 0.960720i
\(630\) 0 0
\(631\) 14.6289i 0.582366i −0.956667 0.291183i \(-0.905951\pi\)
0.956667 0.291183i \(-0.0940489\pi\)
\(632\) 0 0
\(633\) −1.48604 −0.0590647
\(634\) 0 0
\(635\) 51.7299i 2.05284i
\(636\) 0 0
\(637\) 3.96440i 0.157075i
\(638\) 0 0
\(639\) −15.9736 −0.631906
\(640\) 0 0
\(641\) 32.6498 1.28959 0.644795 0.764355i \(-0.276943\pi\)
0.644795 + 0.764355i \(0.276943\pi\)
\(642\) 0 0
\(643\) 46.7019i 1.84174i −0.389865 0.920872i \(-0.627478\pi\)
0.389865 0.920872i \(-0.372522\pi\)
\(644\) 0 0
\(645\) −44.0389 −1.73403
\(646\) 0 0
\(647\) 41.4659i 1.63019i −0.579326 0.815096i \(-0.696684\pi\)
0.579326 0.815096i \(-0.303316\pi\)
\(648\) 0 0
\(649\) 34.6197i 1.35894i
\(650\) 0 0
\(651\) 29.3400i 1.14993i
\(652\) 0 0
\(653\) 39.0451i 1.52795i −0.645243 0.763977i \(-0.723244\pi\)
0.645243 0.763977i \(-0.276756\pi\)
\(654\) 0 0
\(655\) −53.0932 −2.07452
\(656\) 0 0
\(657\) −31.1685 −1.21600
\(658\) 0 0
\(659\) −4.24302 −0.165285 −0.0826423 0.996579i \(-0.526336\pi\)
−0.0826423 + 0.996579i \(0.526336\pi\)
\(660\) 0 0
\(661\) 24.3462i 0.946959i 0.880805 + 0.473479i \(0.157002\pi\)
−0.880805 + 0.473479i \(0.842998\pi\)
\(662\) 0 0
\(663\) −10.8245 −0.420389
\(664\) 0 0
\(665\) −12.8943 −0.500019
\(666\) 0 0
\(667\) −1.91998 −0.0743418
\(668\) 0 0
\(669\) 47.8036 1.84820
\(670\) 0 0
\(671\) 2.55910i 0.0987929i
\(672\) 0 0
\(673\) −11.5397 −0.444821 −0.222410 0.974953i \(-0.571393\pi\)
−0.222410 + 0.974953i \(0.571393\pi\)
\(674\) 0 0
\(675\) 0.739051 0.0284461
\(676\) 0 0
\(677\) −19.2368 −0.739329 −0.369665 0.929165i \(-0.620527\pi\)
−0.369665 + 0.929165i \(0.620527\pi\)
\(678\) 0 0
\(679\) 29.5015i 1.13216i
\(680\) 0 0
\(681\) 7.91774i 0.303409i
\(682\) 0 0
\(683\) 24.9457i 0.954519i 0.878762 + 0.477260i \(0.158370\pi\)
−0.878762 + 0.477260i \(0.841630\pi\)
\(684\) 0 0
\(685\) 0.819791i 0.0313226i
\(686\) 0 0
\(687\) −33.0319 −1.26025
\(688\) 0 0
\(689\) 6.91926i 0.263603i
\(690\) 0 0
\(691\) −4.67696 −0.177920 −0.0889600 0.996035i \(-0.528354\pi\)
−0.0889600 + 0.996035i \(0.528354\pi\)
\(692\) 0 0
\(693\) −30.2423 −1.14881
\(694\) 0 0
\(695\) 53.6670i 2.03571i
\(696\) 0 0
\(697\) 5.87885i 0.222677i
\(698\) 0 0
\(699\) 28.4185 1.07489
\(700\) 0 0
\(701\) 3.12187i 0.117911i 0.998261 + 0.0589557i \(0.0187771\pi\)
−0.998261 + 0.0589557i \(0.981223\pi\)
\(702\) 0 0
\(703\) 10.7283 14.3510i 0.404627 0.541257i
\(704\) 0 0
\(705\) 26.7672i 1.00811i
\(706\) 0 0
\(707\) −9.23678 −0.347385
\(708\) 0 0
\(709\) 41.1204i 1.54431i 0.635434 + 0.772155i \(0.280821\pi\)
−0.635434 + 0.772155i \(0.719179\pi\)
\(710\) 0 0
\(711\) 33.5676i 1.25888i
\(712\) 0 0
\(713\) 16.2104 0.607083
\(714\) 0 0
\(715\) −14.9215 −0.558032
\(716\) 0 0
\(717\) 58.2787i 2.17646i
\(718\) 0 0
\(719\) −40.2508 −1.50110 −0.750550 0.660813i \(-0.770212\pi\)
−0.750550 + 0.660813i \(0.770212\pi\)
\(720\) 0 0
\(721\) 11.6306i 0.433148i
\(722\) 0 0
\(723\) 63.9597i 2.37869i
\(724\) 0 0
\(725\) 2.30208i 0.0854970i
\(726\) 0 0
\(727\) 33.4589i 1.24092i 0.784237 + 0.620461i \(0.213055\pi\)
−0.784237 + 0.620461i \(0.786945\pi\)
\(728\) 0 0
\(729\) −29.0272 −1.07508
\(730\) 0 0
\(731\) 31.9472 1.18161
\(732\) 0 0
\(733\) −38.6546 −1.42774 −0.713869 0.700279i \(-0.753059\pi\)
−0.713869 + 0.700279i \(0.753059\pi\)
\(734\) 0 0
\(735\) 30.5364i 1.12635i
\(736\) 0 0
\(737\) 50.5761 1.86299
\(738\) 0 0
\(739\) −31.1120 −1.14447 −0.572236 0.820089i \(-0.693924\pi\)
−0.572236 + 0.820089i \(0.693924\pi\)
\(740\) 0 0
\(741\) −6.44714 −0.236842
\(742\) 0 0
\(743\) −40.0474 −1.46920 −0.734598 0.678503i \(-0.762629\pi\)
−0.734598 + 0.678503i \(0.762629\pi\)
\(744\) 0 0
\(745\) 53.9302i 1.97585i
\(746\) 0 0
\(747\) 6.71585 0.245720
\(748\) 0 0
\(749\) −0.502993 −0.0183790
\(750\) 0 0
\(751\) 15.9526 0.582120 0.291060 0.956705i \(-0.405992\pi\)
0.291060 + 0.956705i \(0.405992\pi\)
\(752\) 0 0
\(753\) 9.05433i 0.329958i
\(754\) 0 0
\(755\) 35.2841i 1.28412i
\(756\) 0 0
\(757\) 0.418502i 0.0152107i −0.999971 0.00760535i \(-0.997579\pi\)
0.999971 0.00760535i \(-0.00242088\pi\)
\(758\) 0 0
\(759\) 32.8014i 1.19062i
\(760\) 0 0
\(761\) 23.7306 0.860233 0.430116 0.902773i \(-0.358473\pi\)
0.430116 + 0.902773i \(0.358473\pi\)
\(762\) 0 0
\(763\) 27.2702i 0.987248i
\(764\) 0 0
\(765\) −42.4721 −1.53558
\(766\) 0 0
\(767\) −5.01097 −0.180936
\(768\) 0 0
\(769\) 23.8913i 0.861544i 0.902461 + 0.430772i \(0.141759\pi\)
−0.902461 + 0.430772i \(0.858241\pi\)
\(770\) 0 0
\(771\) 5.78267i 0.208258i
\(772\) 0 0
\(773\) −35.0878 −1.26202 −0.631010 0.775775i \(-0.717359\pi\)
−0.631010 + 0.775775i \(0.717359\pi\)
\(774\) 0 0
\(775\) 19.4364i 0.698177i
\(776\) 0 0
\(777\) 19.1281 + 14.2996i 0.686217 + 0.512995i
\(778\) 0 0
\(779\) 3.50148i 0.125453i
\(780\) 0 0
\(781\) 31.3579 1.12207
\(782\) 0 0
\(783\) 0.251497i 0.00898776i
\(784\) 0 0
\(785\) 31.2408i 1.11503i
\(786\) 0 0
\(787\) −18.3983 −0.655830 −0.327915 0.944707i \(-0.606346\pi\)
−0.327915 + 0.944707i \(0.606346\pi\)
\(788\) 0 0
\(789\) 37.6436 1.34015
\(790\) 0 0
\(791\) 13.7966i 0.490550i
\(792\) 0 0
\(793\) −0.370413 −0.0131537
\(794\) 0 0
\(795\) 53.2966i 1.89024i
\(796\) 0 0
\(797\) 4.92846i 0.174575i 0.996183 + 0.0872874i \(0.0278199\pi\)
−0.996183 + 0.0872874i \(0.972180\pi\)
\(798\) 0 0
\(799\) 19.4178i 0.686952i
\(800\) 0 0
\(801\) 53.5000i 1.89033i
\(802\) 0 0
\(803\) 61.1873 2.15925
\(804\) 0 0
\(805\) −9.49557 −0.334675
\(806\) 0 0
\(807\) 43.6740 1.53740
\(808\) 0 0
\(809\) 47.1491i 1.65767i −0.559491 0.828837i \(-0.689003\pi\)
0.559491 0.828837i \(-0.310997\pi\)
\(810\) 0 0
\(811\) 12.4659 0.437736 0.218868 0.975754i \(-0.429764\pi\)
0.218868 + 0.975754i \(0.429764\pi\)
\(812\) 0 0
\(813\) 28.3859 0.995535
\(814\) 0 0
\(815\) −22.3899 −0.784283
\(816\) 0 0
\(817\) 19.0279 0.665703
\(818\) 0 0
\(819\) 4.37737i 0.152958i
\(820\) 0 0
\(821\) −36.7243 −1.28169 −0.640844 0.767671i \(-0.721415\pi\)
−0.640844 + 0.767671i \(0.721415\pi\)
\(822\) 0 0
\(823\) 3.54037 0.123410 0.0617048 0.998094i \(-0.480346\pi\)
0.0617048 + 0.998094i \(0.480346\pi\)
\(824\) 0 0
\(825\) −39.3293 −1.36927
\(826\) 0 0
\(827\) 16.4457i 0.571873i 0.958249 + 0.285937i \(0.0923047\pi\)
−0.958249 + 0.285937i \(0.907695\pi\)
\(828\) 0 0
\(829\) 44.3976i 1.54199i −0.636839 0.770997i \(-0.719759\pi\)
0.636839 0.770997i \(-0.280241\pi\)
\(830\) 0 0
\(831\) 31.2772i 1.08499i
\(832\) 0 0
\(833\) 22.1520i 0.767522i
\(834\) 0 0
\(835\) 41.0187 1.41951
\(836\) 0 0
\(837\) 2.12339i 0.0733949i
\(838\) 0 0
\(839\) −34.5544 −1.19295 −0.596475 0.802632i \(-0.703432\pi\)
−0.596475 + 0.802632i \(0.703432\pi\)
\(840\) 0 0
\(841\) 28.2166 0.972987
\(842\) 0 0
\(843\) 27.2702i 0.939236i
\(844\) 0 0
\(845\) 33.6810i 1.15866i
\(846\) 0 0
\(847\) 41.9038 1.43983
\(848\) 0 0
\(849\) 28.7717i 0.987442i
\(850\) 0 0
\(851\) 7.90053 10.5683i 0.270827 0.362276i
\(852\) 0 0
\(853\) 18.9993i 0.650523i −0.945624 0.325262i \(-0.894548\pi\)
0.945624 0.325262i \(-0.105452\pi\)
\(854\) 0 0
\(855\) −25.2966 −0.865127
\(856\) 0 0
\(857\) 23.8913i 0.816112i −0.912957 0.408056i \(-0.866207\pi\)
0.912957 0.408056i \(-0.133793\pi\)
\(858\) 0 0
\(859\) 16.1336i 0.550473i −0.961377 0.275236i \(-0.911244\pi\)
0.961377 0.275236i \(-0.0887561\pi\)
\(860\) 0 0
\(861\) −4.66705 −0.159053
\(862\) 0 0
\(863\) −28.8370 −0.981623 −0.490812 0.871266i \(-0.663300\pi\)
−0.490812 + 0.871266i \(0.663300\pi\)
\(864\) 0 0
\(865\) 41.1087i 1.39774i
\(866\) 0 0
\(867\) 18.4464 0.626473
\(868\) 0 0
\(869\) 65.8969i 2.23540i
\(870\) 0 0
\(871\) 7.32055i 0.248047i
\(872\) 0 0
\(873\) 57.8774i 1.95885i
\(874\) 0 0
\(875\) 10.5016i 0.355017i
\(876\) 0 0
\(877\) −7.31055 −0.246860 −0.123430 0.992353i \(-0.539389\pi\)
−0.123430 + 0.992353i \(0.539389\pi\)
\(878\) 0 0
\(879\) 12.0264 0.405641
\(880\) 0 0
\(881\) 4.37961 0.147553 0.0737764 0.997275i \(-0.476495\pi\)
0.0737764 + 0.997275i \(0.476495\pi\)
\(882\) 0 0
\(883\) 5.14908i 0.173280i −0.996240 0.0866401i \(-0.972387\pi\)
0.996240 0.0866401i \(-0.0276130\pi\)
\(884\) 0 0
\(885\) −38.5977 −1.29745
\(886\) 0 0
\(887\) 6.80212 0.228393 0.114196 0.993458i \(-0.463571\pi\)
0.114196 + 0.993458i \(0.463571\pi\)
\(888\) 0 0
\(889\) −29.7911 −0.999163
\(890\) 0 0
\(891\) 52.8455 1.77039
\(892\) 0 0
\(893\) 11.5653i 0.387019i
\(894\) 0 0
\(895\) 23.9566 0.800782
\(896\) 0 0
\(897\) −4.74779 −0.158524
\(898\) 0 0
\(899\) 6.61415 0.220594
\(900\) 0 0
\(901\) 38.6630i 1.28805i
\(902\) 0 0
\(903\) 25.3619i 0.843992i
\(904\) 0 0
\(905\) 45.8819i 1.52517i
\(906\) 0 0
\(907\) 7.34000i 0.243721i −0.992547 0.121860i \(-0.961114\pi\)
0.992547 0.121860i \(-0.0388860\pi\)
\(908\) 0 0
\(909\) −18.1212 −0.601041
\(910\) 0 0
\(911\) 22.8804i 0.758060i 0.925384 + 0.379030i \(0.123742\pi\)
−0.925384 + 0.379030i \(0.876258\pi\)
\(912\) 0 0
\(913\) −13.1840 −0.436325
\(914\) 0 0
\(915\) −2.85316 −0.0943225
\(916\) 0 0
\(917\) 30.5763i 1.00972i
\(918\) 0 0
\(919\) 34.6461i 1.14287i −0.820648 0.571434i \(-0.806387\pi\)
0.820648 0.571434i \(-0.193613\pi\)
\(920\) 0 0
\(921\) 21.1553 0.697091
\(922\) 0 0
\(923\) 4.53885i 0.149398i
\(924\) 0 0
\(925\) 12.6715 + 9.47283i 0.416637 + 0.311465i
\(926\) 0 0
\(927\) 22.8176i 0.749427i
\(928\) 0 0
\(929\) −53.2166 −1.74598 −0.872990 0.487738i \(-0.837822\pi\)
−0.872990 + 0.487738i \(0.837822\pi\)
\(930\) 0 0
\(931\) 13.1939i 0.432412i
\(932\) 0 0
\(933\) 19.6329i 0.642752i
\(934\) 0 0
\(935\) 83.3775 2.72673
\(936\) 0 0
\(937\) −41.2834 −1.34867 −0.674335 0.738425i \(-0.735570\pi\)
−0.674335 + 0.738425i \(0.735570\pi\)
\(938\) 0 0
\(939\) 47.5140i 1.55056i
\(940\) 0 0
\(941\) −30.2034 −0.984603 −0.492301 0.870425i \(-0.663844\pi\)
−0.492301 + 0.870425i \(0.663844\pi\)
\(942\) 0 0
\(943\) 2.57855i 0.0839690i
\(944\) 0 0
\(945\) 1.24382i 0.0404614i
\(946\) 0 0
\(947\) 36.2857i 1.17913i 0.807723 + 0.589563i \(0.200700\pi\)
−0.807723 + 0.589563i \(0.799300\pi\)
\(948\) 0 0
\(949\) 8.85645i 0.287493i
\(950\) 0 0
\(951\) −12.1336 −0.393460
\(952\) 0 0
\(953\) 5.70666 0.184857 0.0924284 0.995719i \(-0.470537\pi\)
0.0924284 + 0.995719i \(0.470537\pi\)
\(954\) 0 0
\(955\) −57.8946 −1.87343
\(956\) 0 0
\(957\) 13.3836i 0.432631i
\(958\) 0 0
\(959\) −0.472117 −0.0152454
\(960\) 0 0
\(961\) −24.8432 −0.801395
\(962\) 0 0
\(963\) −0.986796 −0.0317991
\(964\) 0 0
\(965\) −54.5405 −1.75572
\(966\) 0 0
\(967\) 61.0287i 1.96255i −0.192608 0.981276i \(-0.561695\pi\)
0.192608 0.981276i \(-0.438305\pi\)
\(968\) 0 0
\(969\) 36.0250 1.15729
\(970\) 0 0
\(971\) −42.6219 −1.36780 −0.683901 0.729575i \(-0.739718\pi\)
−0.683901 + 0.729575i \(0.739718\pi\)
\(972\) 0 0
\(973\) 30.9068 0.990826
\(974\) 0 0
\(975\) 5.69265i 0.182311i
\(976\) 0 0
\(977\) 9.25774i 0.296181i 0.988974 + 0.148091i \(0.0473127\pi\)
−0.988974 + 0.148091i \(0.952687\pi\)
\(978\) 0 0
\(979\) 105.026i 3.35666i
\(980\) 0 0
\(981\) 53.5000i 1.70812i
\(982\) 0 0
\(983\) −18.3983 −0.586816 −0.293408 0.955987i \(-0.594789\pi\)
−0.293408 + 0.955987i \(0.594789\pi\)
\(984\) 0 0
\(985\) 39.6615i 1.26372i
\(986\) 0 0
\(987\) 15.4152 0.490672
\(988\) 0 0
\(989\) 14.0125 0.445571
\(990\) 0 0
\(991\) 23.4270i 0.744183i 0.928196 + 0.372091i \(0.121359\pi\)
−0.928196 + 0.372091i \(0.878641\pi\)
\(992\) 0 0
\(993\) 15.5015i 0.491924i
\(994\) 0 0
\(995\) −54.1336 −1.71615
\(996\) 0 0
\(997\) 8.05585i 0.255131i −0.991830 0.127566i \(-0.959284\pi\)
0.991830 0.127566i \(-0.0407164\pi\)
\(998\) 0 0
\(999\) 1.38433 + 1.03489i 0.0437984 + 0.0327423i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1184.2.g.e.961.2 yes 6
4.3 odd 2 1184.2.g.f.961.6 yes 6
8.3 odd 2 2368.2.g.k.961.1 6
8.5 even 2 2368.2.g.l.961.5 6
37.36 even 2 inner 1184.2.g.e.961.1 6
148.147 odd 2 1184.2.g.f.961.5 yes 6
296.147 odd 2 2368.2.g.k.961.2 6
296.221 even 2 2368.2.g.l.961.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1184.2.g.e.961.1 6 37.36 even 2 inner
1184.2.g.e.961.2 yes 6 1.1 even 1 trivial
1184.2.g.f.961.5 yes 6 148.147 odd 2
1184.2.g.f.961.6 yes 6 4.3 odd 2
2368.2.g.k.961.1 6 8.3 odd 2
2368.2.g.k.961.2 6 296.147 odd 2
2368.2.g.l.961.5 6 8.5 even 2
2368.2.g.l.961.6 6 296.221 even 2