Properties

Label 2368.2.g.l.961.5
Level 23682368
Weight 22
Character 2368.961
Analytic conductor 18.90918.909
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2368,2,Mod(961,2368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2368.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2368=2637 2368 = 2^{6} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2368.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 18.908575198618.9085751986
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.3356224.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6+8x4+16x2+1 x^{6} + 8x^{4} + 16x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 1184)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 961.5
Root 2.11491i2.11491i of defining polynomial
Character χ\chi == 2368.961
Dual form 2368.2.g.l.961.6

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.47283q32.75698iq5+1.58774q7+3.11491q9+6.11491q11+0.885092iq136.81756iq15+4.94567iq172.94567iq19+3.92622q21+2.16924iq232.60095q25+0.284147q270.885092iq297.47283iq31+15.1212q334.37737iq35+(4.87189+3.64207i)q37+2.18869iq39+1.18869q41+6.45963iq438.58774iq453.92622q474.47908q49+12.2298iq517.81756q5316.8587iq557.28415iq57+5.66152iq59+0.418502iq61+4.94567q63+2.44018q65+8.27094q67+5.36417iq695.12811q7110.0062q736.43171q75+9.70889q77+10.7764iq798.64207q812.15604q83+13.6351q852.18869iq8717.1755iq89+1.40530iq9118.4791iq938.12115q9518.5808iq97+19.0474q99+O(q100)q+2.47283 q^{3} -2.75698i q^{5} +1.58774 q^{7} +3.11491 q^{9} +6.11491 q^{11} +0.885092i q^{13} -6.81756i q^{15} +4.94567i q^{17} -2.94567i q^{19} +3.92622 q^{21} +2.16924i q^{23} -2.60095 q^{25} +0.284147 q^{27} -0.885092i q^{29} -7.47283i q^{31} +15.1212 q^{33} -4.37737i q^{35} +(4.87189 + 3.64207i) q^{37} +2.18869i q^{39} +1.18869 q^{41} +6.45963i q^{43} -8.58774i q^{45} -3.92622 q^{47} -4.47908 q^{49} +12.2298i q^{51} -7.81756 q^{53} -16.8587i q^{55} -7.28415i q^{57} +5.66152i q^{59} +0.418502i q^{61} +4.94567 q^{63} +2.44018 q^{65} +8.27094 q^{67} +5.36417i q^{69} -5.12811 q^{71} -10.0062 q^{73} -6.43171 q^{75} +9.70889 q^{77} +10.7764i q^{79} -8.64207 q^{81} -2.15604 q^{83} +13.6351 q^{85} -2.18869i q^{87} -17.1755i q^{89} +1.40530i q^{91} -18.4791i q^{93} -8.12115 q^{95} -18.5808i q^{97} +19.0474 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+4q314q7+6q9+24q11+18q2132q252q27+22q33+2q3718q47+40q49+2q53+8q6320q65+6q6758q714q7346q75++40q99+O(q100) 6 q + 4 q^{3} - 14 q^{7} + 6 q^{9} + 24 q^{11} + 18 q^{21} - 32 q^{25} - 2 q^{27} + 22 q^{33} + 2 q^{37} - 18 q^{47} + 40 q^{49} + 2 q^{53} + 8 q^{63} - 20 q^{65} + 6 q^{67} - 58 q^{71} - 4 q^{73} - 46 q^{75}+ \cdots + 40 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2368Z)×\left(\mathbb{Z}/2368\mathbb{Z}\right)^\times.

nn 705705 14071407 19251925
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 2.47283 1.42769 0.713846 0.700303i 0.246952π-0.246952\pi
0.713846 + 0.700303i 0.246952π0.246952\pi
44 0 0
55 2.75698i 1.23296i −0.787371 0.616480i 0.788558π-0.788558\pi
0.787371 0.616480i 0.211442π-0.211442\pi
66 0 0
77 1.58774 0.600110 0.300055 0.953922i 0.402995π-0.402995\pi
0.300055 + 0.953922i 0.402995π0.402995\pi
88 0 0
99 3.11491 1.03830
1010 0 0
1111 6.11491 1.84371 0.921857 0.387530i 0.126672π-0.126672\pi
0.921857 + 0.387530i 0.126672π0.126672\pi
1212 0 0
1313 0.885092i 0.245480i 0.992439 + 0.122740i 0.0391682π0.0391682\pi
−0.992439 + 0.122740i 0.960832π0.960832\pi
1414 0 0
1515 6.81756i 1.76029i
1616 0 0
1717 4.94567i 1.19950i 0.800187 + 0.599750i 0.204733π0.204733\pi
−0.800187 + 0.599750i 0.795267π0.795267\pi
1818 0 0
1919 2.94567i 0.675783i −0.941185 0.337891i 0.890286π-0.890286\pi
0.941185 0.337891i 0.109714π-0.109714\pi
2020 0 0
2121 3.92622 0.856772
2222 0 0
2323 2.16924i 0.452318i 0.974090 + 0.226159i 0.0726169π0.0726169\pi
−0.974090 + 0.226159i 0.927383π0.927383\pi
2424 0 0
2525 −2.60095 −0.520189
2626 0 0
2727 0.284147 0.0546842
2828 0 0
2929 0.885092i 0.164358i −0.996618 0.0821788i 0.973812π-0.973812\pi
0.996618 0.0821788i 0.0261878π-0.0261878\pi
3030 0 0
3131 7.47283i 1.34216i −0.741385 0.671080i 0.765831π-0.765831\pi
0.741385 0.671080i 0.234169π-0.234169\pi
3232 0 0
3333 15.1212 2.63225
3434 0 0
3535 4.37737i 0.739911i
3636 0 0
3737 4.87189 + 3.64207i 0.800934 + 0.598753i
3838 0 0
3939 2.18869i 0.350470i
4040 0 0
4141 1.18869 0.185642 0.0928208 0.995683i 0.470412π-0.470412\pi
0.0928208 + 0.995683i 0.470412π0.470412\pi
4242 0 0
4343 6.45963i 0.985084i 0.870289 + 0.492542i 0.163932π0.163932\pi
−0.870289 + 0.492542i 0.836068π0.836068\pi
4444 0 0
4545 8.58774i 1.28018i
4646 0 0
4747 −3.92622 −0.572698 −0.286349 0.958125i 0.592442π-0.592442\pi
−0.286349 + 0.958125i 0.592442π0.592442\pi
4848 0 0
4949 −4.47908 −0.639868
5050 0 0
5151 12.2298i 1.71252i
5252 0 0
5353 −7.81756 −1.07382 −0.536912 0.843638i 0.680409π-0.680409\pi
−0.536912 + 0.843638i 0.680409π0.680409\pi
5454 0 0
5555 16.8587i 2.27322i
5656 0 0
5757 7.28415i 0.964809i
5858 0 0
5959 5.66152i 0.737067i 0.929614 + 0.368534i 0.120140π0.120140\pi
−0.929614 + 0.368534i 0.879860π0.879860\pi
6060 0 0
6161 0.418502i 0.0535837i 0.999641 + 0.0267918i 0.00852912π0.00852912\pi
−0.999641 + 0.0267918i 0.991471π0.991471\pi
6262 0 0
6363 4.94567 0.623096
6464 0 0
6565 2.44018 0.302667
6666 0 0
6767 8.27094 1.01046 0.505228 0.862986i 0.331408π-0.331408\pi
0.505228 + 0.862986i 0.331408π0.331408\pi
6868 0 0
6969 5.36417i 0.645770i
7070 0 0
7171 −5.12811 −0.608595 −0.304297 0.952577i 0.598422π-0.598422\pi
−0.304297 + 0.952577i 0.598422π0.598422\pi
7272 0 0
7373 −10.0062 −1.17114 −0.585571 0.810621i 0.699130π-0.699130\pi
−0.585571 + 0.810621i 0.699130π0.699130\pi
7474 0 0
7575 −6.43171 −0.742669
7676 0 0
7777 9.70889 1.10643
7878 0 0
7979 10.7764i 1.21244i 0.795296 + 0.606221i 0.207315π0.207315\pi
−0.795296 + 0.606221i 0.792685π0.792685\pi
8080 0 0
8181 −8.64207 −0.960230
8282 0 0
8383 −2.15604 −0.236656 −0.118328 0.992975i 0.537753π-0.537753\pi
−0.118328 + 0.992975i 0.537753π0.537753\pi
8484 0 0
8585 13.6351 1.47894
8686 0 0
8787 2.18869i 0.234652i
8888 0 0
8989 17.1755i 1.82060i −0.413952 0.910299i 0.635852π-0.635852\pi
0.413952 0.910299i 0.364148π-0.364148\pi
9090 0 0
9191 1.40530i 0.147315i
9292 0 0
9393 18.4791i 1.91619i
9494 0 0
9595 −8.12115 −0.833212
9696 0 0
9797 18.5808i 1.88659i −0.331952 0.943296i 0.607707π-0.607707\pi
0.331952 0.943296i 0.392293π-0.392293\pi
9898 0 0
9999 19.0474 1.91433
100100 0 0
101101 5.81756 0.578869 0.289434 0.957198i 0.406533π-0.406533\pi
0.289434 + 0.957198i 0.406533π0.406533\pi
102102 0 0
103103 7.32528i 0.721781i −0.932608 0.360890i 0.882473π-0.882473\pi
0.932608 0.360890i 0.117527π-0.117527\pi
104104 0 0
105105 10.8245i 1.05636i
106106 0 0
107107 0.316798 0.0306260 0.0153130 0.999883i 0.495126π-0.495126\pi
0.0153130 + 0.999883i 0.495126π0.495126\pi
108108 0 0
109109 17.1755i 1.64511i 0.568683 + 0.822556i 0.307453π0.307453\pi
−0.568683 + 0.822556i 0.692547π0.692547\pi
110110 0 0
111111 12.0474 + 9.00624i 1.14349 + 0.854835i
112112 0 0
113113 8.68945i 0.817434i −0.912661 0.408717i 0.865976π-0.865976\pi
0.912661 0.408717i 0.134024π-0.134024\pi
114114 0 0
115115 5.98055 0.557689
116116 0 0
117117 2.75698i 0.254883i
118118 0 0
119119 7.85244i 0.719832i
120120 0 0
121121 26.3921 2.39928
122122 0 0
123123 2.93942 0.265039
124124 0 0
125125 6.61415i 0.591587i
126126 0 0
127127 −18.7632 −1.66497 −0.832483 0.554050i 0.813082π-0.813082\pi
−0.832483 + 0.554050i 0.813082π0.813082\pi
128128 0 0
129129 15.9736i 1.40640i
130130 0 0
131131 19.2577i 1.68256i −0.540602 0.841278i 0.681804π-0.681804\pi
0.540602 0.841278i 0.318196π-0.318196\pi
132132 0 0
133133 4.67696i 0.405544i
134134 0 0
135135 0.783389i 0.0674234i
136136 0 0
137137 −0.297351 −0.0254044 −0.0127022 0.999919i 0.504043π-0.504043\pi
−0.0127022 + 0.999919i 0.504043π0.504043\pi
138138 0 0
139139 −19.4659 −1.65107 −0.825537 0.564348i 0.809128π-0.809128\pi
−0.825537 + 0.564348i 0.809128π0.809128\pi
140140 0 0
141141 −9.70889 −0.817636
142142 0 0
143143 5.41226i 0.452596i
144144 0 0
145145 −2.44018 −0.202646
146146 0 0
147147 −11.0760 −0.913534
148148 0 0
149149 19.5613 1.60253 0.801263 0.598312i 0.204162π-0.204162\pi
0.801263 + 0.598312i 0.204162π0.204162\pi
150150 0 0
151151 12.7981 1.04150 0.520748 0.853711i 0.325653π-0.325653\pi
0.520748 + 0.853711i 0.325653π0.325653\pi
152152 0 0
153153 15.4053i 1.24544i
154154 0 0
155155 −20.6025 −1.65483
156156 0 0
157157 −11.3315 −0.904354 −0.452177 0.891928i 0.649352π-0.649352\pi
−0.452177 + 0.891928i 0.649352π0.649352\pi
158158 0 0
159159 −19.3315 −1.53309
160160 0 0
161161 3.44419i 0.271440i
162162 0 0
163163 8.12115i 0.636098i −0.948074 0.318049i 0.896972π-0.896972\pi
0.948074 0.318049i 0.103028π-0.103028\pi
164164 0 0
165165 41.6887i 3.24546i
166166 0 0
167167 14.8781i 1.15130i −0.817695 0.575652i 0.804748π-0.804748\pi
0.817695 0.575652i 0.195252π-0.195252\pi
168168 0 0
169169 12.2166 0.939739
170170 0 0
171171 9.17548i 0.701667i
172172 0 0
173173 −14.9108 −1.13365 −0.566823 0.823840i 0.691828π-0.691828\pi
−0.566823 + 0.823840i 0.691828π0.691828\pi
174174 0 0
175175 −4.12963 −0.312171
176176 0 0
177177 14.0000i 1.05230i
178178 0 0
179179 8.68945i 0.649480i 0.945803 + 0.324740i 0.105277π0.105277\pi
−0.945803 + 0.324740i 0.894723π0.894723\pi
180180 0 0
181181 16.6421 1.23700 0.618498 0.785787i 0.287742π-0.287742\pi
0.618498 + 0.785787i 0.287742π0.287742\pi
182182 0 0
183183 1.03489i 0.0765009i
184184 0 0
185185 10.0411 13.4317i 0.738238 0.987519i
186186 0 0
187187 30.2423i 2.21154i
188188 0 0
189189 0.451152 0.0328165
190190 0 0
191191 20.9993i 1.51945i 0.650242 + 0.759727i 0.274668π0.274668\pi
−0.650242 + 0.759727i 0.725332π0.725332\pi
192192 0 0
193193 19.7827i 1.42399i 0.702186 + 0.711994i 0.252208π0.252208\pi
−0.702186 + 0.711994i 0.747792π0.747792\pi
194194 0 0
195195 6.03417 0.432116
196196 0 0
197197 14.3859 1.02495 0.512475 0.858702i 0.328729π-0.328729\pi
0.512475 + 0.858702i 0.328729π0.328729\pi
198198 0 0
199199 19.6351i 1.39190i 0.718092 + 0.695948i 0.245016π0.245016\pi
−0.718092 + 0.695948i 0.754984π0.754984\pi
200200 0 0
201201 20.4527 1.44262
202202 0 0
203203 1.40530i 0.0986326i
204204 0 0
205205 3.27719i 0.228889i
206206 0 0
207207 6.75698i 0.469643i
208208 0 0
209209 18.0125i 1.24595i
210210 0 0
211211 −0.600945 −0.0413708 −0.0206854 0.999786i 0.506585π-0.506585\pi
−0.0206854 + 0.999786i 0.506585π0.506585\pi
212212 0 0
213213 −12.6810 −0.868886
214214 0 0
215215 17.8091 1.21457
216216 0 0
217217 11.8649i 0.805444i
218218 0 0
219219 −24.7438 −1.67203
220220 0 0
221221 −4.37737 −0.294454
222222 0 0
223223 −19.3315 −1.29453 −0.647267 0.762263i 0.724088π-0.724088\pi
−0.647267 + 0.762263i 0.724088π0.724088\pi
224224 0 0
225225 −8.10170 −0.540114
226226 0 0
227227 3.20189i 0.212517i 0.994339 + 0.106258i 0.0338871π0.0338871\pi
−0.994339 + 0.106258i 0.966113π0.966113\pi
228228 0 0
229229 −13.3579 −0.882717 −0.441358 0.897331i 0.645503π-0.645503\pi
−0.441358 + 0.897331i 0.645503π0.645503\pi
230230 0 0
231231 24.0085 1.57964
232232 0 0
233233 −11.4923 −0.752884 −0.376442 0.926440i 0.622853π-0.622853\pi
−0.376442 + 0.926440i 0.622853π0.622853\pi
234234 0 0
235235 10.8245i 0.706114i
236236 0 0
237237 26.6483i 1.73099i
238238 0 0
239239 23.5676i 1.52446i 0.647306 + 0.762230i 0.275895π0.275895\pi
−0.647306 + 0.762230i 0.724105π0.724105\pi
240240 0 0
241241 25.8649i 1.66611i 0.553193 + 0.833053i 0.313409π0.313409\pi
−0.553193 + 0.833053i 0.686591π0.686591\pi
242242 0 0
243243 −22.2229 −1.42560
244244 0 0
245245 12.3487i 0.788931i
246246 0 0
247247 2.60719 0.165891
248248 0 0
249249 −5.33152 −0.337871
250250 0 0
251251 3.66152i 0.231113i 0.993301 + 0.115557i 0.0368652π0.0368652\pi
−0.993301 + 0.115557i 0.963135π0.963135\pi
252252 0 0
253253 13.2647i 0.833945i
254254 0 0
255255 33.7174 2.11146
256256 0 0
257257 2.33848i 0.145870i 0.997337 + 0.0729352i 0.0232366π0.0232366\pi
−0.997337 + 0.0729352i 0.976763π0.976763\pi
258258 0 0
259259 7.73530 + 5.78267i 0.480648 + 0.359318i
260260 0 0
261261 2.75698i 0.170653i
262262 0 0
263263 −15.2229 −0.938681 −0.469341 0.883017i 0.655508π-0.655508\pi
−0.469341 + 0.883017i 0.655508π0.655508\pi
264264 0 0
265265 21.5529i 1.32398i
266266 0 0
267267 42.4721i 2.59925i
268268 0 0
269269 17.6615 1.07684 0.538421 0.842676i 0.319021π-0.319021\pi
0.538421 + 0.842676i 0.319021π0.319021\pi
270270 0 0
271271 −11.4791 −0.697304 −0.348652 0.937252i 0.613361π-0.613361\pi
−0.348652 + 0.937252i 0.613361π0.613361\pi
272272 0 0
273273 3.47507i 0.210321i
274274 0 0
275275 −15.9045 −0.959080
276276 0 0
277277 12.6483i 0.759964i 0.924994 + 0.379982i 0.124070π0.124070\pi
−0.924994 + 0.379982i 0.875930π0.875930\pi
278278 0 0
279279 23.2772i 1.39357i
280280 0 0
281281 11.0279i 0.657871i −0.944352 0.328935i 0.893310π-0.893310\pi
0.944352 0.328935i 0.106690π-0.106690\pi
282282 0 0
283283 11.6351i 0.691636i 0.938302 + 0.345818i 0.112398π0.112398\pi
−0.938302 + 0.345818i 0.887602π0.887602\pi
284284 0 0
285285 −20.0823 −1.18957
286286 0 0
287287 1.88733 0.111405
288288 0 0
289289 −7.45963 −0.438802
290290 0 0
291291 45.9472i 2.69347i
292292 0 0
293293 4.86341 0.284124 0.142062 0.989858i 0.454627π-0.454627\pi
0.142062 + 0.989858i 0.454627π0.454627\pi
294294 0 0
295295 15.6087 0.908774
296296 0 0
297297 1.73753 0.100822
298298 0 0
299299 −1.91998 −0.111035
300300 0 0
301301 10.2562i 0.591159i
302302 0 0
303303 14.3859 0.826446
304304 0 0
305305 1.15380 0.0660665
306306 0 0
307307 8.55509 0.488265 0.244132 0.969742i 0.421497π-0.421497\pi
0.244132 + 0.969742i 0.421497π0.421497\pi
308308 0 0
309309 18.1142i 1.03048i
310310 0 0
311311 7.93942i 0.450203i 0.974335 + 0.225102i 0.0722714π0.0722714\pi
−0.974335 + 0.225102i 0.927729π0.927729\pi
312312 0 0
313313 19.2144i 1.08606i 0.839713 + 0.543030i 0.182723π0.182723\pi
−0.839713 + 0.543030i 0.817277π0.817277\pi
314314 0 0
315315 13.6351i 0.768252i
316316 0 0
317317 −4.90677 −0.275592 −0.137796 0.990461i 0.544002π-0.544002\pi
−0.137796 + 0.990461i 0.544002π0.544002\pi
318318 0 0
319319 5.41226i 0.303028i
320320 0 0
321321 0.783389 0.0437245
322322 0 0
323323 14.5683 0.810602
324324 0 0
325325 2.30208i 0.127696i
326326 0 0
327327 42.4721i 2.34871i
328328 0 0
329329 −6.23382 −0.343682
330330 0 0
331331 6.26871i 0.344559i 0.985048 + 0.172280i 0.0551133π0.0551133\pi
−0.985048 + 0.172280i 0.944887π0.944887\pi
332332 0 0
333333 15.1755 + 11.3447i 0.831611 + 0.621687i
334334 0 0
335335 22.8028i 1.24585i
336336 0 0
337337 −30.4659 −1.65958 −0.829791 0.558074i 0.811540π-0.811540\pi
−0.829791 + 0.558074i 0.811540π0.811540\pi
338338 0 0
339339 21.4876i 1.16704i
340340 0 0
341341 45.6957i 2.47456i
342342 0 0
343343 −18.2258 −0.984101
344344 0 0
345345 14.7889 0.796208
346346 0 0
347347 29.8649i 1.60323i −0.597838 0.801617i 0.703974π-0.703974\pi
0.597838 0.801617i 0.296026π-0.296026\pi
348348 0 0
349349 27.3789 1.46556 0.732779 0.680466i 0.238223π-0.238223\pi
0.732779 + 0.680466i 0.238223π0.238223\pi
350350 0 0
351351 0.251497i 0.0134239i
352352 0 0
353353 23.2577i 1.23788i −0.785436 0.618942i 0.787561π-0.787561\pi
0.785436 0.618942i 0.212439π-0.212439\pi
354354 0 0
355355 14.1381i 0.750373i
356356 0 0
357357 19.4178i 1.02770i
358358 0 0
359359 16.7243 0.882676 0.441338 0.897341i 0.354504π-0.354504\pi
0.441338 + 0.897341i 0.354504π0.354504\pi
360360 0 0
361361 10.3230 0.543318
362362 0 0
363363 65.2633 3.42543
364364 0 0
365365 27.5870i 1.44397i
366366 0 0
367367 −15.2019 −0.793532 −0.396766 0.917920i 0.629868π-0.629868\pi
−0.396766 + 0.917920i 0.629868π0.629868\pi
368368 0 0
369369 3.70265 0.192752
370370 0 0
371371 −12.4123 −0.644412
372372 0 0
373373 −4.42474 −0.229105 −0.114552 0.993417i 0.536543π-0.536543\pi
−0.114552 + 0.993417i 0.536543π0.536543\pi
374374 0 0
375375 16.3557i 0.844604i
376376 0 0
377377 0.783389 0.0403466
378378 0 0
379379 −5.01472 −0.257589 −0.128794 0.991671i 0.541111π-0.541111\pi
−0.128794 + 0.991671i 0.541111π0.541111\pi
380380 0 0
381381 −46.3983 −2.37706
382382 0 0
383383 23.4876i 1.20016i −0.799941 0.600079i 0.795136π-0.795136\pi
0.799941 0.600079i 0.204864π-0.204864\pi
384384 0 0
385385 26.7672i 1.36418i
386386 0 0
387387 20.1212i 1.02282i
388388 0 0
389389 1.15380i 0.0585001i −0.999572 0.0292500i 0.990688π-0.990688\pi
0.999572 0.0292500i 0.00931190π-0.00931190\pi
390390 0 0
391391 −10.7283 −0.542555
392392 0 0
393393 47.6212i 2.40217i
394394 0 0
395395 29.7104 1.49489
396396 0 0
397397 7.00696 0.351669 0.175835 0.984420i 0.443738π-0.443738\pi
0.175835 + 0.984420i 0.443738π0.443738\pi
398398 0 0
399399 11.5653i 0.578991i
400400 0 0
401401 29.6087i 1.47859i 0.673383 + 0.739294i 0.264841π0.264841\pi
−0.673383 + 0.739294i 0.735159π0.735159\pi
402402 0 0
403403 6.61415 0.329474
404404 0 0
405405 23.8260i 1.18393i
406406 0 0
407407 29.7911 + 22.2709i 1.47669 + 1.10393i
408408 0 0
409409 9.52645i 0.471053i −0.971868 0.235526i 0.924319π-0.924319\pi
0.971868 0.235526i 0.0756814π-0.0756814\pi
410410 0 0
411411 −0.735300 −0.0362697
412412 0 0
413413 8.98903i 0.442321i
414414 0 0
415415 5.94415i 0.291787i
416416 0 0
417417 −48.1359 −2.35722
418418 0 0
419419 −25.4310 −1.24239 −0.621193 0.783658i 0.713352π-0.713352\pi
−0.621193 + 0.783658i 0.713352π0.713352\pi
420420 0 0
421421 4.69417i 0.228780i −0.993436 0.114390i 0.963509π-0.963509\pi
0.993436 0.114390i 0.0364913π-0.0364913\pi
422422 0 0
423423 −12.2298 −0.594634
424424 0 0
425425 12.8634i 0.623967i
426426 0 0
427427 0.664473i 0.0321561i
428428 0 0
429429 13.3836i 0.646167i
430430 0 0
431431 7.85244i 0.378239i −0.981954 0.189119i 0.939437π-0.939437\pi
0.981954 0.189119i 0.0605633π-0.0605633\pi
432432 0 0
433433 −19.2709 −0.926102 −0.463051 0.886332i 0.653245π-0.653245\pi
−0.463051 + 0.886332i 0.653245π0.653245\pi
434434 0 0
435435 −6.03417 −0.289316
436436 0 0
437437 6.38986 0.305668
438438 0 0
439439 4.58998i 0.219068i −0.993983 0.109534i 0.965064π-0.965064\pi
0.993983 0.109534i 0.0349358π-0.0349358\pi
440440 0 0
441441 −13.9519 −0.664377
442442 0 0
443443 −17.1428 −0.814481 −0.407240 0.913321i 0.633509π-0.633509\pi
−0.407240 + 0.913321i 0.633509π0.633509\pi
444444 0 0
445445 −47.3525 −2.24472
446446 0 0
447447 48.3719 2.28791
448448 0 0
449449 2.60719i 0.123041i −0.998106 0.0615204i 0.980405π-0.980405\pi
0.998106 0.0615204i 0.0195949π-0.0195949\pi
450450 0 0
451451 7.26871 0.342270
452452 0 0
453453 31.6476 1.48693
454454 0 0
455455 3.87438 0.181634
456456 0 0
457457 28.5374i 1.33492i 0.744644 + 0.667462i 0.232619π0.232619\pi
−0.744644 + 0.667462i 0.767381π0.767381\pi
458458 0 0
459459 1.40530i 0.0655937i
460460 0 0
461461 13.2702i 0.618056i −0.951053 0.309028i 0.899996π-0.899996\pi
0.951053 0.309028i 0.100004π-0.100004\pi
462462 0 0
463463 5.46587i 0.254021i −0.991901 0.127010i 0.959462π-0.959462\pi
0.991901 0.127010i 0.0405381π-0.0405381\pi
464464 0 0
465465 −50.9465 −2.36259
466466 0 0
467467 15.6615i 0.724729i 0.932037 + 0.362364i 0.118030π0.118030\pi
−0.932037 + 0.362364i 0.881970π0.881970\pi
468468 0 0
469469 13.1321 0.606385
470470 0 0
471471 −28.0210 −1.29114
472472 0 0
473473 39.5000i 1.81621i
474474 0 0
475475 7.66152i 0.351535i
476476 0 0
477477 −24.3510 −1.11495
478478 0 0
479479 35.3572i 1.61551i 0.589517 + 0.807756i 0.299318π0.299318\pi
−0.589517 + 0.807756i 0.700682π0.700682\pi
480480 0 0
481481 −3.22357 + 4.31207i −0.146982 + 0.196614i
482482 0 0
483483 8.51691i 0.387533i
484484 0 0
485485 −51.2269 −2.32609
486486 0 0
487487 29.8216i 1.35134i −0.737202 0.675672i 0.763854π-0.763854\pi
0.737202 0.675672i 0.236146π-0.236146\pi
488488 0 0
489489 20.0823i 0.908151i
490490 0 0
491491 25.8168 1.16510 0.582549 0.812796i 0.302055π-0.302055\pi
0.582549 + 0.812796i 0.302055π0.302055\pi
492492 0 0
493493 4.37737 0.197147
494494 0 0
495495 52.5132i 2.36029i
496496 0 0
497497 −8.14211 −0.365224
498498 0 0
499499 18.2298i 0.816079i 0.912964 + 0.408039i 0.133787π0.133787\pi
−0.912964 + 0.408039i 0.866213π0.866213\pi
500500 0 0
501501 36.7911i 1.64371i
502502 0 0
503503 4.30984i 0.192166i 0.995373 + 0.0960831i 0.0306314π0.0306314\pi
−0.995373 + 0.0960831i 0.969369π0.969369\pi
504504 0 0
505505 16.0389i 0.713721i
506506 0 0
507507 30.2097 1.34166
508508 0 0
509509 34.4247 1.52585 0.762925 0.646487i 0.223763π-0.223763\pi
0.762925 + 0.646487i 0.223763π0.223763\pi
510510 0 0
511511 −15.8873 −0.702814
512512 0 0
513513 0.837003i 0.0369546i
514514 0 0
515515 −20.1956 −0.889927
516516 0 0
517517 −24.0085 −1.05589
518518 0 0
519519 −36.8719 −1.61850
520520 0 0
521521 20.8580 0.913804 0.456902 0.889517i 0.348959π-0.348959\pi
0.456902 + 0.889517i 0.348959π0.348959\pi
522522 0 0
523523 0.295116i 0.0129045i −0.999979 0.00645227i 0.997946π-0.997946\pi
0.999979 0.00645227i 0.00205384π-0.00205384\pi
524524 0 0
525525 −10.2119 −0.445683
526526 0 0
527527 36.9582 1.60992
528528 0 0
529529 18.2944 0.795409
530530 0 0
531531 17.6351i 0.765299i
532532 0 0
533533 1.05210i 0.0455714i
534534 0 0
535535 0.873406i 0.0377606i
536536 0 0
537537 21.4876i 0.927256i
538538 0 0
539539 −27.3891 −1.17973
540540 0 0
541541 15.0521i 0.647140i 0.946204 + 0.323570i 0.104883π0.104883\pi
−0.946204 + 0.323570i 0.895117π0.895117\pi
542542 0 0
543543 41.1531 1.76605
544544 0 0
545545 47.3525 2.02836
546546 0 0
547547 33.5529i 1.43462i −0.696756 0.717308i 0.745374π-0.745374\pi
0.696756 0.717308i 0.254626π-0.254626\pi
548548 0 0
549549 1.30359i 0.0556360i
550550 0 0
551551 −2.60719 −0.111070
552552 0 0
553553 17.1102i 0.727599i
554554 0 0
555555 24.8300 33.2144i 1.05398 1.40987i
556556 0 0
557557 33.5676i 1.42230i −0.703038 0.711152i 0.748174π-0.748174\pi
0.703038 0.711152i 0.251826π-0.251826\pi
558558 0 0
559559 −5.71737 −0.241819
560560 0 0
561561 74.7842i 3.15739i
562562 0 0
563563 19.7563i 0.832627i 0.909221 + 0.416314i 0.136678π0.136678\pi
−0.909221 + 0.416314i 0.863322π0.863322\pi
564564 0 0
565565 −23.9566 −1.00786
566566 0 0
567567 −13.7214 −0.576244
568568 0 0
569569 33.7827i 1.41624i 0.706090 + 0.708122i 0.250457π0.250457\pi
−0.706090 + 0.708122i 0.749543π0.749543\pi
570570 0 0
571571 −35.3223 −1.47819 −0.739097 0.673599i 0.764747π-0.764747\pi
−0.739097 + 0.673599i 0.764747π0.764747\pi
572572 0 0
573573 51.9277i 2.16931i
574574 0 0
575575 5.64207i 0.235291i
576576 0 0
577577 36.3246i 1.51221i −0.654450 0.756106i 0.727100π-0.727100\pi
0.654450 0.756106i 0.272900π-0.272900\pi
578578 0 0
579579 48.9193i 2.03302i
580580 0 0
581581 −3.42323 −0.142019
582582 0 0
583583 −47.8036 −1.97982
584584 0 0
585585 7.60095 0.314260
586586 0 0
587587 17.0015i 0.701728i 0.936426 + 0.350864i 0.114112π0.114112\pi
−0.936426 + 0.350864i 0.885888π0.885888\pi
588588 0 0
589589 −22.0125 −0.907009
590590 0 0
591591 35.5738 1.46331
592592 0 0
593593 −7.58998 −0.311683 −0.155841 0.987782i 0.549809π-0.549809\pi
−0.155841 + 0.987782i 0.549809π0.549809\pi
594594 0 0
595595 21.6490 0.887524
596596 0 0
597597 48.5544i 1.98720i
598598 0 0
599599 −6.59871 −0.269616 −0.134808 0.990872i 0.543042π-0.543042\pi
−0.134808 + 0.990872i 0.543042π0.543042\pi
600600 0 0
601601 −13.9714 −0.569904 −0.284952 0.958542i 0.591978π-0.591978\pi
−0.284952 + 0.958542i 0.591978π0.591978\pi
602602 0 0
603603 25.7632 1.04916
604604 0 0
605605 72.7625i 2.95822i
606606 0 0
607607 3.26247i 0.132419i −0.997806 0.0662097i 0.978909π-0.978909\pi
0.997806 0.0662097i 0.0210906π-0.0210906\pi
608608 0 0
609609 3.47507i 0.140817i
610610 0 0
611611 3.47507i 0.140586i
612612 0 0
613613 −39.4652 −1.59398 −0.796991 0.603991i 0.793576π-0.793576\pi
−0.796991 + 0.603991i 0.793576π0.793576\pi
614614 0 0
615615 8.10394i 0.326782i
616616 0 0
617617 −1.52717 −0.0614814 −0.0307407 0.999527i 0.509787π-0.509787\pi
−0.0307407 + 0.999527i 0.509787π0.509787\pi
618618 0 0
619619 20.6832 0.831328 0.415664 0.909518i 0.363549π-0.363549\pi
0.415664 + 0.909518i 0.363549π0.363549\pi
620620 0 0
621621 0.616384i 0.0247346i
622622 0 0
623623 27.2702i 1.09256i
624624 0 0
625625 −31.2398 −1.24959
626626 0 0
627627 44.5419i 1.77883i
628628 0 0
629629 −18.0125 + 24.0947i −0.718205 + 0.960720i
630630 0 0
631631 14.6289i 0.582366i −0.956667 0.291183i 0.905951π-0.905951\pi
0.956667 0.291183i 0.0940489π-0.0940489\pi
632632 0 0
633633 −1.48604 −0.0590647
634634 0 0
635635 51.7299i 2.05284i
636636 0 0
637637 3.96440i 0.157075i
638638 0 0
639639 −15.9736 −0.631906
640640 0 0
641641 32.6498 1.28959 0.644795 0.764355i 0.276943π-0.276943\pi
0.644795 + 0.764355i 0.276943π0.276943\pi
642642 0 0
643643 46.7019i 1.84174i 0.389865 + 0.920872i 0.372522π0.372522\pi
−0.389865 + 0.920872i 0.627478π0.627478\pi
644644 0 0
645645 44.0389 1.73403
646646 0 0
647647 41.4659i 1.63019i −0.579326 0.815096i 0.696684π-0.696684\pi
0.579326 0.815096i 0.303316π-0.303316\pi
648648 0 0
649649 34.6197i 1.35894i
650650 0 0
651651 29.3400i 1.14993i
652652 0 0
653653 39.0451i 1.52795i 0.645243 + 0.763977i 0.276756π0.276756\pi
−0.645243 + 0.763977i 0.723244π0.723244\pi
654654 0 0
655655 −53.0932 −2.07452
656656 0 0
657657 −31.1685 −1.21600
658658 0 0
659659 4.24302 0.165285 0.0826423 0.996579i 0.473664π-0.473664\pi
0.0826423 + 0.996579i 0.473664π0.473664\pi
660660 0 0
661661 24.3462i 0.946959i −0.880805 0.473479i 0.842998π-0.842998\pi
0.880805 0.473479i 0.157002π-0.157002\pi
662662 0 0
663663 −10.8245 −0.420389
664664 0 0
665665 −12.8943 −0.500019
666666 0 0
667667 1.91998 0.0743418
668668 0 0
669669 −47.8036 −1.84820
670670 0 0
671671 2.55910i 0.0987929i
672672 0 0
673673 −11.5397 −0.444821 −0.222410 0.974953i 0.571393π-0.571393\pi
−0.222410 + 0.974953i 0.571393π0.571393\pi
674674 0 0
675675 −0.739051 −0.0284461
676676 0 0
677677 19.2368 0.739329 0.369665 0.929165i 0.379473π-0.379473\pi
0.369665 + 0.929165i 0.379473π0.379473\pi
678678 0 0
679679 29.5015i 1.13216i
680680 0 0
681681 7.91774i 0.303409i
682682 0 0
683683 24.9457i 0.954519i −0.878762 0.477260i 0.841630π-0.841630\pi
0.878762 0.477260i 0.158370π-0.158370\pi
684684 0 0
685685 0.819791i 0.0313226i
686686 0 0
687687 −33.0319 −1.26025
688688 0 0
689689 6.91926i 0.263603i
690690 0 0
691691 4.67696 0.177920 0.0889600 0.996035i 0.471646π-0.471646\pi
0.0889600 + 0.996035i 0.471646π0.471646\pi
692692 0 0
693693 30.2423 1.14881
694694 0 0
695695 53.6670i 2.03571i
696696 0 0
697697 5.87885i 0.222677i
698698 0 0
699699 −28.4185 −1.07489
700700 0 0
701701 3.12187i 0.117911i −0.998261 0.0589557i 0.981223π-0.981223\pi
0.998261 0.0589557i 0.0187771π-0.0187771\pi
702702 0 0
703703 10.7283 14.3510i 0.404627 0.541257i
704704 0 0
705705 26.7672i 1.00811i
706706 0 0
707707 9.23678 0.347385
708708 0 0
709709 41.1204i 1.54431i −0.635434 0.772155i 0.719179π-0.719179\pi
0.635434 0.772155i 0.280821π-0.280821\pi
710710 0 0
711711 33.5676i 1.25888i
712712 0 0
713713 16.2104 0.607083
714714 0 0
715715 14.9215 0.558032
716716 0 0
717717 58.2787i 2.17646i
718718 0 0
719719 −40.2508 −1.50110 −0.750550 0.660813i 0.770212π-0.770212\pi
−0.750550 + 0.660813i 0.770212π0.770212\pi
720720 0 0
721721 11.6306i 0.433148i
722722 0 0
723723 63.9597i 2.37869i
724724 0 0
725725 2.30208i 0.0854970i
726726 0 0
727727 33.4589i 1.24092i 0.784237 + 0.620461i 0.213055π0.213055\pi
−0.784237 + 0.620461i 0.786945π0.786945\pi
728728 0 0
729729 −29.0272 −1.07508
730730 0 0
731731 −31.9472 −1.18161
732732 0 0
733733 38.6546 1.42774 0.713869 0.700279i 0.246941π-0.246941\pi
0.713869 + 0.700279i 0.246941π0.246941\pi
734734 0 0
735735 30.5364i 1.12635i
736736 0 0
737737 50.5761 1.86299
738738 0 0
739739 31.1120 1.14447 0.572236 0.820089i 0.306076π-0.306076\pi
0.572236 + 0.820089i 0.306076π0.306076\pi
740740 0 0
741741 6.44714 0.236842
742742 0 0
743743 −40.0474 −1.46920 −0.734598 0.678503i 0.762629π-0.762629\pi
−0.734598 + 0.678503i 0.762629π0.762629\pi
744744 0 0
745745 53.9302i 1.97585i
746746 0 0
747747 −6.71585 −0.245720
748748 0 0
749749 0.502993 0.0183790
750750 0 0
751751 15.9526 0.582120 0.291060 0.956705i 0.405992π-0.405992\pi
0.291060 + 0.956705i 0.405992π0.405992\pi
752752 0 0
753753 9.05433i 0.329958i
754754 0 0
755755 35.2841i 1.28412i
756756 0 0
757757 0.418502i 0.0152107i 0.999971 + 0.00760535i 0.00242088π0.00242088\pi
−0.999971 + 0.00760535i 0.997579π0.997579\pi
758758 0 0
759759 32.8014i 1.19062i
760760 0 0
761761 23.7306 0.860233 0.430116 0.902773i 0.358473π-0.358473\pi
0.430116 + 0.902773i 0.358473π0.358473\pi
762762 0 0
763763 27.2702i 0.987248i
764764 0 0
765765 42.4721 1.53558
766766 0 0
767767 −5.01097 −0.180936
768768 0 0
769769 23.8913i 0.861544i 0.902461 + 0.430772i 0.141759π0.141759\pi
−0.902461 + 0.430772i 0.858241π0.858241\pi
770770 0 0
771771 5.78267i 0.208258i
772772 0 0
773773 35.0878 1.26202 0.631010 0.775775i 0.282641π-0.282641\pi
0.631010 + 0.775775i 0.282641π0.282641\pi
774774 0 0
775775 19.4364i 0.698177i
776776 0 0
777777 19.1281 + 14.2996i 0.686217 + 0.512995i
778778 0 0
779779 3.50148i 0.125453i
780780 0 0
781781 −31.3579 −1.12207
782782 0 0
783783 0.251497i 0.00898776i
784784 0 0
785785 31.2408i 1.11503i
786786 0 0
787787 18.3983 0.655830 0.327915 0.944707i 0.393654π-0.393654\pi
0.327915 + 0.944707i 0.393654π0.393654\pi
788788 0 0
789789 −37.6436 −1.34015
790790 0 0
791791 13.7966i 0.490550i
792792 0 0
793793 −0.370413 −0.0131537
794794 0 0
795795 53.2966i 1.89024i
796796 0 0
797797 4.92846i 0.174575i −0.996183 0.0872874i 0.972180π-0.972180\pi
0.996183 0.0872874i 0.0278199π-0.0278199\pi
798798 0 0
799799 19.4178i 0.686952i
800800 0 0
801801 53.5000i 1.89033i
802802 0 0
803803 −61.1873 −2.15925
804804 0 0
805805 9.49557 0.334675
806806 0 0
807807 43.6740 1.53740
808808 0 0
809809 47.1491i 1.65767i −0.559491 0.828837i 0.689003π-0.689003\pi
0.559491 0.828837i 0.310997π-0.310997\pi
810810 0 0
811811 −12.4659 −0.437736 −0.218868 0.975754i 0.570236π-0.570236\pi
−0.218868 + 0.975754i 0.570236π0.570236\pi
812812 0 0
813813 −28.3859 −0.995535
814814 0 0
815815 −22.3899 −0.784283
816816 0 0
817817 19.0279 0.665703
818818 0 0
819819 4.37737i 0.152958i
820820 0 0
821821 36.7243 1.28169 0.640844 0.767671i 0.278585π-0.278585\pi
0.640844 + 0.767671i 0.278585π0.278585\pi
822822 0 0
823823 3.54037 0.123410 0.0617048 0.998094i 0.480346π-0.480346\pi
0.0617048 + 0.998094i 0.480346π0.480346\pi
824824 0 0
825825 −39.3293 −1.36927
826826 0 0
827827 16.4457i 0.571873i −0.958249 0.285937i 0.907695π-0.907695\pi
0.958249 0.285937i 0.0923047π-0.0923047\pi
828828 0 0
829829 44.3976i 1.54199i 0.636839 + 0.770997i 0.280241π0.280241\pi
−0.636839 + 0.770997i 0.719759π0.719759\pi
830830 0 0
831831 31.2772i 1.08499i
832832 0 0
833833 22.1520i 0.767522i
834834 0 0
835835 −41.0187 −1.41951
836836 0 0
837837 2.12339i 0.0733949i
838838 0 0
839839 −34.5544 −1.19295 −0.596475 0.802632i 0.703432π-0.703432\pi
−0.596475 + 0.802632i 0.703432π0.703432\pi
840840 0 0
841841 28.2166 0.972987
842842 0 0
843843 27.2702i 0.939236i
844844 0 0
845845 33.6810i 1.15866i
846846 0 0
847847 41.9038 1.43983
848848 0 0
849849 28.7717i 0.987442i
850850 0 0
851851 −7.90053 + 10.5683i −0.270827 + 0.362276i
852852 0 0
853853 18.9993i 0.650523i 0.945624 + 0.325262i 0.105452π0.105452\pi
−0.945624 + 0.325262i 0.894548π0.894548\pi
854854 0 0
855855 −25.2966 −0.865127
856856 0 0
857857 23.8913i 0.816112i −0.912957 0.408056i 0.866207π-0.866207\pi
0.912957 0.408056i 0.133793π-0.133793\pi
858858 0 0
859859 16.1336i 0.550473i 0.961377 + 0.275236i 0.0887561π0.0887561\pi
−0.961377 + 0.275236i 0.911244π0.911244\pi
860860 0 0
861861 4.66705 0.159053
862862 0 0
863863 −28.8370 −0.981623 −0.490812 0.871266i 0.663300π-0.663300\pi
−0.490812 + 0.871266i 0.663300π0.663300\pi
864864 0 0
865865 41.1087i 1.39774i
866866 0 0
867867 −18.4464 −0.626473
868868 0 0
869869 65.8969i 2.23540i
870870 0 0
871871 7.32055i 0.248047i
872872 0 0
873873 57.8774i 1.95885i
874874 0 0
875875 10.5016i 0.355017i
876876 0 0
877877 7.31055 0.246860 0.123430 0.992353i 0.460611π-0.460611\pi
0.123430 + 0.992353i 0.460611π0.460611\pi
878878 0 0
879879 12.0264 0.405641
880880 0 0
881881 4.37961 0.147553 0.0737764 0.997275i 0.476495π-0.476495\pi
0.0737764 + 0.997275i 0.476495π0.476495\pi
882882 0 0
883883 5.14908i 0.173280i 0.996240 + 0.0866401i 0.0276130π0.0276130\pi
−0.996240 + 0.0866401i 0.972387π0.972387\pi
884884 0 0
885885 38.5977 1.29745
886886 0 0
887887 6.80212 0.228393 0.114196 0.993458i 0.463571π-0.463571\pi
0.114196 + 0.993458i 0.463571π0.463571\pi
888888 0 0
889889 −29.7911 −0.999163
890890 0 0
891891 −52.8455 −1.77039
892892 0 0
893893 11.5653i 0.387019i
894894 0 0
895895 23.9566 0.800782
896896 0 0
897897 −4.74779 −0.158524
898898 0 0
899899 −6.61415 −0.220594
900900 0 0
901901 38.6630i 1.28805i
902902 0 0
903903 25.3619i 0.843992i
904904 0 0
905905 45.8819i 1.52517i
906906 0 0
907907 7.34000i 0.243721i 0.992547 + 0.121860i 0.0388860π0.0388860\pi
−0.992547 + 0.121860i 0.961114π0.961114\pi
908908 0 0
909909 18.1212 0.601041
910910 0 0
911911 22.8804i 0.758060i 0.925384 + 0.379030i 0.123742π0.123742\pi
−0.925384 + 0.379030i 0.876258π0.876258\pi
912912 0 0
913913 −13.1840 −0.436325
914914 0 0
915915 2.85316 0.0943225
916916 0 0
917917 30.5763i 1.00972i
918918 0 0
919919 34.6461i 1.14287i −0.820648 0.571434i 0.806387π-0.806387\pi
0.820648 0.571434i 0.193613π-0.193613\pi
920920 0 0
921921 21.1553 0.697091
922922 0 0
923923 4.53885i 0.149398i
924924 0 0
925925 −12.6715 9.47283i −0.416637 0.311465i
926926 0 0
927927 22.8176i 0.749427i
928928 0 0
929929 −53.2166 −1.74598 −0.872990 0.487738i 0.837822π-0.837822\pi
−0.872990 + 0.487738i 0.837822π0.837822\pi
930930 0 0
931931 13.1939i 0.432412i
932932 0 0
933933 19.6329i 0.642752i
934934 0 0
935935 83.3775 2.72673
936936 0 0
937937 −41.2834 −1.34867 −0.674335 0.738425i 0.735570π-0.735570\pi
−0.674335 + 0.738425i 0.735570π0.735570\pi
938938 0 0
939939 47.5140i 1.55056i
940940 0 0
941941 30.2034 0.984603 0.492301 0.870425i 0.336156π-0.336156\pi
0.492301 + 0.870425i 0.336156π0.336156\pi
942942 0 0
943943 2.57855i 0.0839690i
944944 0 0
945945 1.24382i 0.0404614i
946946 0 0
947947 36.2857i 1.17913i −0.807723 0.589563i 0.799300π-0.799300\pi
0.807723 0.589563i 0.200700π-0.200700\pi
948948 0 0
949949 8.85645i 0.287493i
950950 0 0
951951 −12.1336 −0.393460
952952 0 0
953953 5.70666 0.184857 0.0924284 0.995719i 0.470537π-0.470537\pi
0.0924284 + 0.995719i 0.470537π0.470537\pi
954954 0 0
955955 57.8946 1.87343
956956 0 0
957957 13.3836i 0.432631i
958958 0 0
959959 −0.472117 −0.0152454
960960 0 0
961961 −24.8432 −0.801395
962962 0 0
963963 0.986796 0.0317991
964964 0 0
965965 54.5405 1.75572
966966 0 0
967967 61.0287i 1.96255i −0.192608 0.981276i 0.561695π-0.561695\pi
0.192608 0.981276i 0.438305π-0.438305\pi
968968 0 0
969969 36.0250 1.15729
970970 0 0
971971 42.6219 1.36780 0.683901 0.729575i 0.260282π-0.260282\pi
0.683901 + 0.729575i 0.260282π0.260282\pi
972972 0 0
973973 −30.9068 −0.990826
974974 0 0
975975 5.69265i 0.182311i
976976 0 0
977977 9.25774i 0.296181i 0.988974 + 0.148091i 0.0473127π0.0473127\pi
−0.988974 + 0.148091i 0.952687π0.952687\pi
978978 0 0
979979 105.026i 3.35666i
980980 0 0
981981 53.5000i 1.70812i
982982 0 0
983983 −18.3983 −0.586816 −0.293408 0.955987i 0.594789π-0.594789\pi
−0.293408 + 0.955987i 0.594789π0.594789\pi
984984 0 0
985985 39.6615i 1.26372i
986986 0 0
987987 −15.4152 −0.490672
988988 0 0
989989 −14.0125 −0.445571
990990 0 0
991991 23.4270i 0.744183i 0.928196 + 0.372091i 0.121359π0.121359\pi
−0.928196 + 0.372091i 0.878641π0.878641\pi
992992 0 0
993993 15.5015i 0.491924i
994994 0 0
995995 54.1336 1.71615
996996 0 0
997997 8.05585i 0.255131i 0.991830 + 0.127566i 0.0407164π0.0407164\pi
−0.991830 + 0.127566i 0.959284π0.959284\pi
998998 0 0
999999 1.38433 + 1.03489i 0.0437984 + 0.0327423i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2368.2.g.l.961.5 6
4.3 odd 2 2368.2.g.k.961.1 6
8.3 odd 2 1184.2.g.f.961.6 yes 6
8.5 even 2 1184.2.g.e.961.2 yes 6
37.36 even 2 inner 2368.2.g.l.961.6 6
148.147 odd 2 2368.2.g.k.961.2 6
296.147 odd 2 1184.2.g.f.961.5 yes 6
296.221 even 2 1184.2.g.e.961.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1184.2.g.e.961.1 6 296.221 even 2
1184.2.g.e.961.2 yes 6 8.5 even 2
1184.2.g.f.961.5 yes 6 296.147 odd 2
1184.2.g.f.961.6 yes 6 8.3 odd 2
2368.2.g.k.961.1 6 4.3 odd 2
2368.2.g.k.961.2 6 148.147 odd 2
2368.2.g.l.961.5 6 1.1 even 1 trivial
2368.2.g.l.961.6 6 37.36 even 2 inner