Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [119,2,Mod(8,119)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(119, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("119.8");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 119 = 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 119.k (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.950219784053\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.1 | −1.18907 | + | 1.18907i | −0.875473 | + | 2.11358i | − | 0.827752i | 3.95772 | + | 1.63934i | −1.47219 | − | 3.55418i | −0.923880 | + | 0.382683i | −1.39388 | − | 1.39388i | −1.57944 | − | 1.57944i | −6.65527 | + | 2.75670i | |
8.2 | −0.906953 | + | 0.906953i | 0.388298 | − | 0.937435i | 0.354874i | 1.29163 | + | 0.535011i | 0.498041 | + | 1.20238i | 0.923880 | − | 0.382683i | −2.13576 | − | 2.13576i | 1.39331 | + | 1.39331i | −1.65668 | + | 0.686219i | ||
8.3 | −0.686718 | + | 0.686718i | −0.839618 | + | 2.02702i | 1.05684i | −2.58346 | − | 1.07010i | −0.815409 | − | 1.96857i | 0.923880 | − | 0.382683i | −2.09919 | − | 2.09919i | −1.28252 | − | 1.28252i | 2.50897 | − | 1.03925i | ||
8.4 | −0.0228885 | + | 0.0228885i | 1.02310 | − | 2.46998i | 1.99895i | 1.90867 | + | 0.790598i | 0.0331169 | + | 0.0799512i | −0.923880 | + | 0.382683i | −0.0915300 | − | 0.0915300i | −2.93273 | − | 2.93273i | −0.0617823 | + | 0.0255910i | ||
8.5 | 0.315329 | − | 0.315329i | −0.558583 | + | 1.34854i | 1.80113i | −0.410302 | − | 0.169953i | 0.249096 | + | 0.601371i | −0.923880 | + | 0.382683i | 1.19861 | + | 1.19861i | 0.614779 | + | 0.614779i | −0.182971 | + | 0.0757892i | ||
8.6 | 0.881269 | − | 0.881269i | 0.818760 | − | 1.97666i | 0.446731i | −2.87188 | − | 1.18957i | −1.02042 | − | 2.46352i | 0.923880 | − | 0.382683i | 2.15623 | + | 2.15623i | −1.11550 | − | 1.11550i | −3.57923 | + | 1.48257i | ||
8.7 | 1.41951 | − | 1.41951i | −1.29872 | + | 3.13538i | − | 2.03001i | 1.17530 | + | 0.486825i | 2.60716 | + | 6.29424i | 0.923880 | − | 0.382683i | −0.0426034 | − | 0.0426034i | −6.02263 | − | 6.02263i | 2.35940 | − | 0.977296i | |
8.8 | 1.60373 | − | 1.60373i | −0.0719773 | + | 0.173769i | − | 3.14391i | −1.05347 | − | 0.436361i | 0.163246 | + | 0.394110i | −0.923880 | + | 0.382683i | −1.83452 | − | 1.83452i | 2.09631 | + | 2.09631i | −2.38928 | + | 0.989674i | |
15.1 | −1.18907 | − | 1.18907i | −0.875473 | − | 2.11358i | 0.827752i | 3.95772 | − | 1.63934i | −1.47219 | + | 3.55418i | −0.923880 | − | 0.382683i | −1.39388 | + | 1.39388i | −1.57944 | + | 1.57944i | −6.65527 | − | 2.75670i | ||
15.2 | −0.906953 | − | 0.906953i | 0.388298 | + | 0.937435i | − | 0.354874i | 1.29163 | − | 0.535011i | 0.498041 | − | 1.20238i | 0.923880 | + | 0.382683i | −2.13576 | + | 2.13576i | 1.39331 | − | 1.39331i | −1.65668 | − | 0.686219i | |
15.3 | −0.686718 | − | 0.686718i | −0.839618 | − | 2.02702i | − | 1.05684i | −2.58346 | + | 1.07010i | −0.815409 | + | 1.96857i | 0.923880 | + | 0.382683i | −2.09919 | + | 2.09919i | −1.28252 | + | 1.28252i | 2.50897 | + | 1.03925i | |
15.4 | −0.0228885 | − | 0.0228885i | 1.02310 | + | 2.46998i | − | 1.99895i | 1.90867 | − | 0.790598i | 0.0331169 | − | 0.0799512i | −0.923880 | − | 0.382683i | −0.0915300 | + | 0.0915300i | −2.93273 | + | 2.93273i | −0.0617823 | − | 0.0255910i | |
15.5 | 0.315329 | + | 0.315329i | −0.558583 | − | 1.34854i | − | 1.80113i | −0.410302 | + | 0.169953i | 0.249096 | − | 0.601371i | −0.923880 | − | 0.382683i | 1.19861 | − | 1.19861i | 0.614779 | − | 0.614779i | −0.182971 | − | 0.0757892i | |
15.6 | 0.881269 | + | 0.881269i | 0.818760 | + | 1.97666i | − | 0.446731i | −2.87188 | + | 1.18957i | −1.02042 | + | 2.46352i | 0.923880 | + | 0.382683i | 2.15623 | − | 2.15623i | −1.11550 | + | 1.11550i | −3.57923 | − | 1.48257i | |
15.7 | 1.41951 | + | 1.41951i | −1.29872 | − | 3.13538i | 2.03001i | 1.17530 | − | 0.486825i | 2.60716 | − | 6.29424i | 0.923880 | + | 0.382683i | −0.0426034 | + | 0.0426034i | −6.02263 | + | 6.02263i | 2.35940 | + | 0.977296i | ||
15.8 | 1.60373 | + | 1.60373i | −0.0719773 | − | 0.173769i | 3.14391i | −1.05347 | + | 0.436361i | 0.163246 | − | 0.394110i | −0.923880 | − | 0.382683i | −1.83452 | + | 1.83452i | 2.09631 | − | 2.09631i | −2.38928 | − | 0.989674i | ||
36.1 | −1.92629 | − | 1.92629i | 2.29131 | − | 0.949092i | 5.42117i | −0.942466 | − | 2.27531i | −6.24195 | − | 2.58550i | 0.382683 | − | 0.923880i | 6.59016 | − | 6.59016i | 2.22801 | − | 2.22801i | −2.56745 | + | 6.19837i | ||
36.2 | −1.61205 | − | 1.61205i | −0.183371 | + | 0.0759548i | 3.19742i | 1.49140 | + | 3.60057i | 0.418046 | + | 0.173160i | −0.382683 | + | 0.923880i | 1.93030 | − | 1.93030i | −2.09346 | + | 2.09346i | 3.40008 | − | 8.20852i | ||
36.3 | −1.26441 | − | 1.26441i | −1.09343 | + | 0.452913i | 1.19747i | −0.942787 | − | 2.27609i | 1.95521 | + | 0.809875i | −0.382683 | + | 0.923880i | −1.01472 | + | 1.01472i | −1.13087 | + | 1.13087i | −1.68584 | + | 4.06999i | ||
36.4 | −0.570914 | − | 0.570914i | 1.90914 | − | 0.790793i | − | 1.34811i | 0.917613 | + | 2.21531i | −1.54143 | − | 0.638482i | 0.382683 | − | 0.923880i | −1.91149 | + | 1.91149i | 0.898153 | − | 0.898153i | 0.740876 | − | 1.78863i | |
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 119.2.k.a | ✓ | 32 |
7.b | odd | 2 | 1 | 833.2.l.c | 32 | ||
7.c | even | 3 | 2 | 833.2.v.c | 64 | ||
7.d | odd | 6 | 2 | 833.2.v.e | 64 | ||
17.d | even | 8 | 1 | inner | 119.2.k.a | ✓ | 32 |
17.e | odd | 16 | 1 | 2023.2.a.q | 16 | ||
17.e | odd | 16 | 1 | 2023.2.a.r | 16 | ||
119.l | odd | 8 | 1 | 833.2.l.c | 32 | ||
119.q | even | 24 | 2 | 833.2.v.c | 64 | ||
119.r | odd | 24 | 2 | 833.2.v.e | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
119.2.k.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
119.2.k.a | ✓ | 32 | 17.d | even | 8 | 1 | inner |
833.2.l.c | 32 | 7.b | odd | 2 | 1 | ||
833.2.l.c | 32 | 119.l | odd | 8 | 1 | ||
833.2.v.c | 64 | 7.c | even | 3 | 2 | ||
833.2.v.c | 64 | 119.q | even | 24 | 2 | ||
833.2.v.e | 64 | 7.d | odd | 6 | 2 | ||
833.2.v.e | 64 | 119.r | odd | 24 | 2 | ||
2023.2.a.q | 16 | 17.e | odd | 16 | 1 | ||
2023.2.a.r | 16 | 17.e | odd | 16 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(119, [\chi])\).