Properties

Label 120.2.k.b.61.1
Level $120$
Weight $2$
Character 120.61
Analytic conductor $0.958$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,2,Mod(61,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 120.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.958204824255\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 61.1
Root \(-0.671462 + 1.24464i\) of defining polynomial
Character \(\chi\) \(=\) 120.61
Dual form 120.2.k.b.61.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.671462 - 1.24464i) q^{2} +1.00000i q^{3} +(-1.09828 + 1.67146i) q^{4} +1.00000i q^{5} +(1.24464 - 0.671462i) q^{6} +4.68585 q^{7} +(2.81783 + 0.244644i) q^{8} -1.00000 q^{9} +(1.24464 - 0.671462i) q^{10} -2.29273i q^{11} +(-1.67146 - 1.09828i) q^{12} +4.97858i q^{13} +(-3.14637 - 5.83221i) q^{14} -1.00000 q^{15} +(-1.58757 - 3.67146i) q^{16} -2.97858 q^{17} +(0.671462 + 1.24464i) q^{18} -2.68585i q^{19} +(-1.67146 - 1.09828i) q^{20} +4.68585i q^{21} +(-2.85363 + 1.53948i) q^{22} +2.68585 q^{23} +(-0.244644 + 2.81783i) q^{24} -1.00000 q^{25} +(6.19656 - 3.34292i) q^{26} -1.00000i q^{27} +(-5.14637 + 7.83221i) q^{28} -2.00000i q^{29} +(0.671462 + 1.24464i) q^{30} -6.97858 q^{31} +(-3.50367 + 4.44120i) q^{32} +2.29273 q^{33} +(2.00000 + 3.70727i) q^{34} +4.68585i q^{35} +(1.09828 - 1.67146i) q^{36} -4.39312i q^{37} +(-3.34292 + 1.80344i) q^{38} -4.97858 q^{39} +(-0.244644 + 2.81783i) q^{40} -11.3717 q^{41} +(5.83221 - 3.14637i) q^{42} -9.37169i q^{43} +(3.83221 + 2.51806i) q^{44} -1.00000i q^{45} +(-1.80344 - 3.34292i) q^{46} +7.27131 q^{47} +(3.67146 - 1.58757i) q^{48} +14.9572 q^{49} +(0.671462 + 1.24464i) q^{50} -2.97858i q^{51} +(-8.32150 - 5.46787i) q^{52} +2.00000i q^{53} +(-1.24464 + 0.671462i) q^{54} +2.29273 q^{55} +(13.2039 + 1.14637i) q^{56} +2.68585 q^{57} +(-2.48929 + 1.34292i) q^{58} -1.70727i q^{59} +(1.09828 - 1.67146i) q^{60} -4.58546i q^{61} +(4.68585 + 8.68585i) q^{62} -4.68585 q^{63} +(7.88030 + 1.37873i) q^{64} -4.97858 q^{65} +(-1.53948 - 2.85363i) q^{66} -4.00000i q^{67} +(3.27131 - 4.97858i) q^{68} +2.68585i q^{69} +(5.83221 - 3.14637i) q^{70} +0.585462 q^{71} +(-2.81783 - 0.244644i) q^{72} -6.00000 q^{73} +(-5.46787 + 2.94981i) q^{74} -1.00000i q^{75} +(4.48929 + 2.94981i) q^{76} -10.7434i q^{77} +(3.34292 + 6.19656i) q^{78} +1.02142 q^{79} +(3.67146 - 1.58757i) q^{80} +1.00000 q^{81} +(7.63565 + 14.1537i) q^{82} +13.3717i q^{83} +(-7.83221 - 5.14637i) q^{84} -2.97858i q^{85} +(-11.6644 + 6.29273i) q^{86} +2.00000 q^{87} +(0.560904 - 6.46052i) q^{88} +3.37169 q^{89} +(-1.24464 + 0.671462i) q^{90} +23.3288i q^{91} +(-2.94981 + 4.48929i) q^{92} -6.97858i q^{93} +(-4.88240 - 9.05019i) q^{94} +2.68585 q^{95} +(-4.44120 - 3.50367i) q^{96} -3.95715 q^{97} +(-10.0432 - 18.6163i) q^{98} +2.29273i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 2 q^{4} + 4 q^{7} + 8 q^{8} - 6 q^{9} - 4 q^{12} - 16 q^{14} - 6 q^{15} + 10 q^{16} + 12 q^{17} - 2 q^{18} - 4 q^{20} - 20 q^{22} - 8 q^{23} + 6 q^{24} - 6 q^{25} + 28 q^{26} - 28 q^{28}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.671462 1.24464i −0.474795 0.880096i
\(3\) 1.00000i 0.577350i
\(4\) −1.09828 + 1.67146i −0.549139 + 0.835731i
\(5\) 1.00000i 0.447214i
\(6\) 1.24464 0.671462i 0.508124 0.274123i
\(7\) 4.68585 1.77108 0.885542 0.464560i \(-0.153787\pi\)
0.885542 + 0.464560i \(0.153787\pi\)
\(8\) 2.81783 + 0.244644i 0.996252 + 0.0864948i
\(9\) −1.00000 −0.333333
\(10\) 1.24464 0.671462i 0.393591 0.212335i
\(11\) 2.29273i 0.691284i −0.938366 0.345642i \(-0.887661\pi\)
0.938366 0.345642i \(-0.112339\pi\)
\(12\) −1.67146 1.09828i −0.482509 0.317046i
\(13\) 4.97858i 1.38081i 0.723424 + 0.690404i \(0.242567\pi\)
−0.723424 + 0.690404i \(0.757433\pi\)
\(14\) −3.14637 5.83221i −0.840902 1.55872i
\(15\) −1.00000 −0.258199
\(16\) −1.58757 3.67146i −0.396892 0.917865i
\(17\) −2.97858 −0.722411 −0.361206 0.932486i \(-0.617635\pi\)
−0.361206 + 0.932486i \(0.617635\pi\)
\(18\) 0.671462 + 1.24464i 0.158265 + 0.293365i
\(19\) 2.68585i 0.616175i −0.951358 0.308088i \(-0.900311\pi\)
0.951358 0.308088i \(-0.0996890\pi\)
\(20\) −1.67146 1.09828i −0.373750 0.245583i
\(21\) 4.68585i 1.02254i
\(22\) −2.85363 + 1.53948i −0.608397 + 0.328218i
\(23\) 2.68585 0.560038 0.280019 0.959995i \(-0.409659\pi\)
0.280019 + 0.959995i \(0.409659\pi\)
\(24\) −0.244644 + 2.81783i −0.0499378 + 0.575187i
\(25\) −1.00000 −0.200000
\(26\) 6.19656 3.34292i 1.21524 0.655601i
\(27\) 1.00000i 0.192450i
\(28\) −5.14637 + 7.83221i −0.972572 + 1.48015i
\(29\) 2.00000i 0.371391i −0.982607 0.185695i \(-0.940546\pi\)
0.982607 0.185695i \(-0.0594537\pi\)
\(30\) 0.671462 + 1.24464i 0.122592 + 0.227240i
\(31\) −6.97858 −1.25339 −0.626695 0.779265i \(-0.715593\pi\)
−0.626695 + 0.779265i \(0.715593\pi\)
\(32\) −3.50367 + 4.44120i −0.619368 + 0.785101i
\(33\) 2.29273 0.399113
\(34\) 2.00000 + 3.70727i 0.342997 + 0.635791i
\(35\) 4.68585i 0.792053i
\(36\) 1.09828 1.67146i 0.183046 0.278577i
\(37\) 4.39312i 0.722224i −0.932523 0.361112i \(-0.882397\pi\)
0.932523 0.361112i \(-0.117603\pi\)
\(38\) −3.34292 + 1.80344i −0.542294 + 0.292557i
\(39\) −4.97858 −0.797210
\(40\) −0.244644 + 2.81783i −0.0386817 + 0.445538i
\(41\) −11.3717 −1.77596 −0.887980 0.459882i \(-0.847892\pi\)
−0.887980 + 0.459882i \(0.847892\pi\)
\(42\) 5.83221 3.14637i 0.899930 0.485495i
\(43\) 9.37169i 1.42917i −0.699549 0.714585i \(-0.746616\pi\)
0.699549 0.714585i \(-0.253384\pi\)
\(44\) 3.83221 + 2.51806i 0.577728 + 0.379611i
\(45\) 1.00000i 0.149071i
\(46\) −1.80344 3.34292i −0.265903 0.492887i
\(47\) 7.27131 1.06063 0.530315 0.847801i \(-0.322074\pi\)
0.530315 + 0.847801i \(0.322074\pi\)
\(48\) 3.67146 1.58757i 0.529930 0.229146i
\(49\) 14.9572 2.13674
\(50\) 0.671462 + 1.24464i 0.0949590 + 0.176019i
\(51\) 2.97858i 0.417084i
\(52\) −8.32150 5.46787i −1.15398 0.758257i
\(53\) 2.00000i 0.274721i 0.990521 + 0.137361i \(0.0438619\pi\)
−0.990521 + 0.137361i \(0.956138\pi\)
\(54\) −1.24464 + 0.671462i −0.169375 + 0.0913743i
\(55\) 2.29273 0.309152
\(56\) 13.2039 + 1.14637i 1.76445 + 0.153190i
\(57\) 2.68585 0.355749
\(58\) −2.48929 + 1.34292i −0.326860 + 0.176334i
\(59\) 1.70727i 0.222267i −0.993805 0.111134i \(-0.964552\pi\)
0.993805 0.111134i \(-0.0354482\pi\)
\(60\) 1.09828 1.67146i 0.141787 0.215785i
\(61\) 4.58546i 0.587108i −0.955942 0.293554i \(-0.905162\pi\)
0.955942 0.293554i \(-0.0948381\pi\)
\(62\) 4.68585 + 8.68585i 0.595103 + 1.10310i
\(63\) −4.68585 −0.590361
\(64\) 7.88030 + 1.37873i 0.985037 + 0.172341i
\(65\) −4.97858 −0.617516
\(66\) −1.53948 2.85363i −0.189497 0.351258i
\(67\) 4.00000i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 3.27131 4.97858i 0.396704 0.603741i
\(69\) 2.68585i 0.323338i
\(70\) 5.83221 3.14637i 0.697083 0.376063i
\(71\) 0.585462 0.0694816 0.0347408 0.999396i \(-0.488939\pi\)
0.0347408 + 0.999396i \(0.488939\pi\)
\(72\) −2.81783 0.244644i −0.332084 0.0288316i
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) −5.46787 + 2.94981i −0.635626 + 0.342908i
\(75\) 1.00000i 0.115470i
\(76\) 4.48929 + 2.94981i 0.514957 + 0.338366i
\(77\) 10.7434i 1.22432i
\(78\) 3.34292 + 6.19656i 0.378512 + 0.701622i
\(79\) 1.02142 0.114919 0.0574595 0.998348i \(-0.481700\pi\)
0.0574595 + 0.998348i \(0.481700\pi\)
\(80\) 3.67146 1.58757i 0.410482 0.177495i
\(81\) 1.00000 0.111111
\(82\) 7.63565 + 14.1537i 0.843217 + 1.56302i
\(83\) 13.3717i 1.46773i 0.679293 + 0.733867i \(0.262286\pi\)
−0.679293 + 0.733867i \(0.737714\pi\)
\(84\) −7.83221 5.14637i −0.854564 0.561515i
\(85\) 2.97858i 0.323072i
\(86\) −11.6644 + 6.29273i −1.25781 + 0.678563i
\(87\) 2.00000 0.214423
\(88\) 0.560904 6.46052i 0.0597925 0.688694i
\(89\) 3.37169 0.357399 0.178699 0.983904i \(-0.442811\pi\)
0.178699 + 0.983904i \(0.442811\pi\)
\(90\) −1.24464 + 0.671462i −0.131197 + 0.0707783i
\(91\) 23.3288i 2.44553i
\(92\) −2.94981 + 4.48929i −0.307539 + 0.468041i
\(93\) 6.97858i 0.723645i
\(94\) −4.88240 9.05019i −0.503581 0.933456i
\(95\) 2.68585 0.275562
\(96\) −4.44120 3.50367i −0.453278 0.357592i
\(97\) −3.95715 −0.401788 −0.200894 0.979613i \(-0.564385\pi\)
−0.200894 + 0.979613i \(0.564385\pi\)
\(98\) −10.0432 18.6163i −1.01451 1.88053i
\(99\) 2.29273i 0.230428i
\(100\) 1.09828 1.67146i 0.109828 0.167146i
\(101\) 2.00000i 0.199007i 0.995037 + 0.0995037i \(0.0317255\pi\)
−0.995037 + 0.0995037i \(0.968274\pi\)
\(102\) −3.70727 + 2.00000i −0.367074 + 0.198030i
\(103\) −14.6430 −1.44282 −0.721409 0.692509i \(-0.756505\pi\)
−0.721409 + 0.692509i \(0.756505\pi\)
\(104\) −1.21798 + 14.0288i −0.119433 + 1.37563i
\(105\) −4.68585 −0.457292
\(106\) 2.48929 1.34292i 0.241781 0.130436i
\(107\) 11.3288i 1.09520i 0.836740 + 0.547600i \(0.184459\pi\)
−0.836740 + 0.547600i \(0.815541\pi\)
\(108\) 1.67146 + 1.09828i 0.160836 + 0.105682i
\(109\) 9.37169i 0.897645i 0.893621 + 0.448823i \(0.148157\pi\)
−0.893621 + 0.448823i \(0.851843\pi\)
\(110\) −1.53948 2.85363i −0.146784 0.272083i
\(111\) 4.39312 0.416976
\(112\) −7.43910 17.2039i −0.702929 1.62562i
\(113\) 19.7648 1.85932 0.929658 0.368423i \(-0.120102\pi\)
0.929658 + 0.368423i \(0.120102\pi\)
\(114\) −1.80344 3.34292i −0.168908 0.313093i
\(115\) 2.68585i 0.250456i
\(116\) 3.34292 + 2.19656i 0.310383 + 0.203945i
\(117\) 4.97858i 0.460270i
\(118\) −2.12494 + 1.14637i −0.195617 + 0.105531i
\(119\) −13.9572 −1.27945
\(120\) −2.81783 0.244644i −0.257231 0.0223329i
\(121\) 5.74338 0.522126
\(122\) −5.70727 + 3.07896i −0.516712 + 0.278756i
\(123\) 11.3717i 1.02535i
\(124\) 7.66442 11.6644i 0.688286 1.04750i
\(125\) 1.00000i 0.0894427i
\(126\) 3.14637 + 5.83221i 0.280301 + 0.519575i
\(127\) 6.64300 0.589471 0.294735 0.955579i \(-0.404768\pi\)
0.294735 + 0.955579i \(0.404768\pi\)
\(128\) −3.57529 10.7339i −0.316014 0.948755i
\(129\) 9.37169 0.825132
\(130\) 3.34292 + 6.19656i 0.293194 + 0.543474i
\(131\) 7.07896i 0.618492i −0.950982 0.309246i \(-0.899923\pi\)
0.950982 0.309246i \(-0.100077\pi\)
\(132\) −2.51806 + 3.83221i −0.219169 + 0.333551i
\(133\) 12.5855i 1.09130i
\(134\) −4.97858 + 2.68585i −0.430084 + 0.232022i
\(135\) 1.00000 0.0860663
\(136\) −8.39312 0.728692i −0.719704 0.0624848i
\(137\) −14.9786 −1.27971 −0.639853 0.768497i \(-0.721005\pi\)
−0.639853 + 0.768497i \(0.721005\pi\)
\(138\) 3.34292 1.80344i 0.284569 0.153519i
\(139\) 4.64300i 0.393814i −0.980422 0.196907i \(-0.936910\pi\)
0.980422 0.196907i \(-0.0630897\pi\)
\(140\) −7.83221 5.14637i −0.661943 0.434947i
\(141\) 7.27131i 0.612355i
\(142\) −0.393115 0.728692i −0.0329895 0.0611505i
\(143\) 11.4145 0.954532
\(144\) 1.58757 + 3.67146i 0.132297 + 0.305955i
\(145\) 2.00000 0.166091
\(146\) 4.02877 + 7.46787i 0.333423 + 0.618045i
\(147\) 14.9572i 1.23365i
\(148\) 7.34292 + 4.82487i 0.603585 + 0.396601i
\(149\) 2.00000i 0.163846i −0.996639 0.0819232i \(-0.973894\pi\)
0.996639 0.0819232i \(-0.0261062\pi\)
\(150\) −1.24464 + 0.671462i −0.101625 + 0.0548246i
\(151\) −8.35027 −0.679535 −0.339768 0.940509i \(-0.610348\pi\)
−0.339768 + 0.940509i \(0.610348\pi\)
\(152\) 0.657077 7.56825i 0.0532960 0.613866i
\(153\) 2.97858 0.240804
\(154\) −13.3717 + 7.21377i −1.07752 + 0.581302i
\(155\) 6.97858i 0.560533i
\(156\) 5.46787 8.32150i 0.437780 0.666253i
\(157\) 22.3503i 1.78375i 0.452286 + 0.891873i \(0.350609\pi\)
−0.452286 + 0.891873i \(0.649391\pi\)
\(158\) −0.685846 1.27131i −0.0545630 0.101140i
\(159\) −2.00000 −0.158610
\(160\) −4.44120 3.50367i −0.351108 0.276990i
\(161\) 12.5855 0.991873
\(162\) −0.671462 1.24464i −0.0527550 0.0977885i
\(163\) 1.37169i 0.107439i 0.998556 + 0.0537196i \(0.0171077\pi\)
−0.998556 + 0.0537196i \(0.982892\pi\)
\(164\) 12.4893 19.0073i 0.975250 1.48422i
\(165\) 2.29273i 0.178489i
\(166\) 16.6430 8.97858i 1.29175 0.696873i
\(167\) 11.2713 0.872200 0.436100 0.899898i \(-0.356359\pi\)
0.436100 + 0.899898i \(0.356359\pi\)
\(168\) −1.14637 + 13.2039i −0.0884440 + 1.01870i
\(169\) −11.7862 −0.906633
\(170\) −3.70727 + 2.00000i −0.284335 + 0.153393i
\(171\) 2.68585i 0.205392i
\(172\) 15.6644 + 10.2927i 1.19440 + 0.784813i
\(173\) 10.7862i 0.820062i 0.912072 + 0.410031i \(0.134482\pi\)
−0.912072 + 0.410031i \(0.865518\pi\)
\(174\) −1.34292 2.48929i −0.101807 0.188712i
\(175\) −4.68585 −0.354217
\(176\) −8.41767 + 3.63986i −0.634506 + 0.274365i
\(177\) 1.70727 0.128326
\(178\) −2.26396 4.19656i −0.169691 0.314545i
\(179\) 3.66442i 0.273892i −0.990579 0.136946i \(-0.956271\pi\)
0.990579 0.136946i \(-0.0437287\pi\)
\(180\) 1.67146 + 1.09828i 0.124583 + 0.0818609i
\(181\) 6.62831i 0.492678i 0.969184 + 0.246339i \(0.0792277\pi\)
−0.969184 + 0.246339i \(0.920772\pi\)
\(182\) 29.0361 15.6644i 2.15230 1.16112i
\(183\) 4.58546 0.338967
\(184\) 7.56825 + 0.657077i 0.557939 + 0.0484404i
\(185\) 4.39312 0.322988
\(186\) −8.68585 + 4.68585i −0.636877 + 0.343583i
\(187\) 6.82908i 0.499392i
\(188\) −7.98592 + 12.1537i −0.582433 + 0.886401i
\(189\) 4.68585i 0.340845i
\(190\) −1.80344 3.34292i −0.130835 0.242521i
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) −1.37873 + 7.88030i −0.0995013 + 0.568712i
\(193\) 1.21377 0.0873690 0.0436845 0.999045i \(-0.486090\pi\)
0.0436845 + 0.999045i \(0.486090\pi\)
\(194\) 2.65708 + 4.92525i 0.190767 + 0.353612i
\(195\) 4.97858i 0.356523i
\(196\) −16.4271 + 25.0003i −1.17337 + 1.78574i
\(197\) 23.9572i 1.70688i −0.521194 0.853438i \(-0.674513\pi\)
0.521194 0.853438i \(-0.325487\pi\)
\(198\) 2.85363 1.53948i 0.202799 0.109406i
\(199\) 0.350269 0.0248299 0.0124150 0.999923i \(-0.496048\pi\)
0.0124150 + 0.999923i \(0.496048\pi\)
\(200\) −2.81783 0.244644i −0.199250 0.0172990i
\(201\) 4.00000 0.282138
\(202\) 2.48929 1.34292i 0.175146 0.0944877i
\(203\) 9.37169i 0.657764i
\(204\) 4.97858 + 3.27131i 0.348570 + 0.229037i
\(205\) 11.3717i 0.794233i
\(206\) 9.83221 + 18.2253i 0.685043 + 1.26982i
\(207\) −2.68585 −0.186679
\(208\) 18.2787 7.90383i 1.26740 0.548032i
\(209\) −6.15792 −0.425952
\(210\) 3.14637 + 5.83221i 0.217120 + 0.402461i
\(211\) 14.1004i 0.970710i −0.874317 0.485355i \(-0.838690\pi\)
0.874317 0.485355i \(-0.161310\pi\)
\(212\) −3.34292 2.19656i −0.229593 0.150860i
\(213\) 0.585462i 0.0401152i
\(214\) 14.1004 7.60688i 0.963882 0.519996i
\(215\) 9.37169 0.639144
\(216\) 0.244644 2.81783i 0.0166459 0.191729i
\(217\) −32.7005 −2.21986
\(218\) 11.6644 6.29273i 0.790014 0.426198i
\(219\) 6.00000i 0.405442i
\(220\) −2.51806 + 3.83221i −0.169767 + 0.258368i
\(221\) 14.8291i 0.997512i
\(222\) −2.94981 5.46787i −0.197978 0.366979i
\(223\) −6.72869 −0.450587 −0.225293 0.974291i \(-0.572334\pi\)
−0.225293 + 0.974291i \(0.572334\pi\)
\(224\) −16.4177 + 20.8108i −1.09695 + 1.39048i
\(225\) 1.00000 0.0666667
\(226\) −13.2713 24.6002i −0.882794 1.63638i
\(227\) 9.95715i 0.660880i −0.943827 0.330440i \(-0.892803\pi\)
0.943827 0.330440i \(-0.107197\pi\)
\(228\) −2.94981 + 4.48929i −0.195356 + 0.297310i
\(229\) 11.3288i 0.748631i 0.927301 + 0.374316i \(0.122122\pi\)
−0.927301 + 0.374316i \(0.877878\pi\)
\(230\) 3.34292 1.80344i 0.220426 0.118915i
\(231\) 10.7434 0.706863
\(232\) 0.489289 5.63565i 0.0321234 0.369999i
\(233\) −18.9786 −1.24333 −0.621664 0.783284i \(-0.713543\pi\)
−0.621664 + 0.783284i \(0.713543\pi\)
\(234\) −6.19656 + 3.34292i −0.405082 + 0.218534i
\(235\) 7.27131i 0.474328i
\(236\) 2.85363 + 1.87506i 0.185756 + 0.122056i
\(237\) 1.02142i 0.0663485i
\(238\) 9.37169 + 17.3717i 0.607477 + 1.12604i
\(239\) 2.62831 0.170011 0.0850055 0.996380i \(-0.472909\pi\)
0.0850055 + 0.996380i \(0.472909\pi\)
\(240\) 1.58757 + 3.67146i 0.102477 + 0.236992i
\(241\) 10.7862 0.694802 0.347401 0.937717i \(-0.387064\pi\)
0.347401 + 0.937717i \(0.387064\pi\)
\(242\) −3.85646 7.14847i −0.247903 0.459521i
\(243\) 1.00000i 0.0641500i
\(244\) 7.66442 + 5.03612i 0.490664 + 0.322404i
\(245\) 14.9572i 0.955578i
\(246\) −14.1537 + 7.63565i −0.902408 + 0.486832i
\(247\) 13.3717 0.850820
\(248\) −19.6644 1.70727i −1.24869 0.108412i
\(249\) −13.3717 −0.847397
\(250\) −1.24464 + 0.671462i −0.0787182 + 0.0424670i
\(251\) 30.9933i 1.95628i −0.207952 0.978139i \(-0.566680\pi\)
0.207952 0.978139i \(-0.433320\pi\)
\(252\) 5.14637 7.83221i 0.324191 0.493383i
\(253\) 6.15792i 0.387145i
\(254\) −4.46052 8.26817i −0.279878 0.518791i
\(255\) 2.97858 0.186526
\(256\) −10.9593 + 11.6574i −0.684954 + 0.728587i
\(257\) 20.9357 1.30594 0.652968 0.757386i \(-0.273524\pi\)
0.652968 + 0.757386i \(0.273524\pi\)
\(258\) −6.29273 11.6644i −0.391768 0.726195i
\(259\) 20.5855i 1.27912i
\(260\) 5.46787 8.32150i 0.339103 0.516078i
\(261\) 2.00000i 0.123797i
\(262\) −8.81079 + 4.75325i −0.544332 + 0.293657i
\(263\) −19.2713 −1.18832 −0.594160 0.804347i \(-0.702515\pi\)
−0.594160 + 0.804347i \(0.702515\pi\)
\(264\) 6.46052 + 0.560904i 0.397617 + 0.0345212i
\(265\) −2.00000 −0.122859
\(266\) −15.6644 + 8.45065i −0.960447 + 0.518143i
\(267\) 3.37169i 0.206344i
\(268\) 6.68585 + 4.39312i 0.408403 + 0.268352i
\(269\) 24.7434i 1.50863i 0.656512 + 0.754315i \(0.272031\pi\)
−0.656512 + 0.754315i \(0.727969\pi\)
\(270\) −0.671462 1.24464i −0.0408638 0.0757466i
\(271\) 27.5640 1.67440 0.837198 0.546900i \(-0.184192\pi\)
0.837198 + 0.546900i \(0.184192\pi\)
\(272\) 4.72869 + 10.9357i 0.286719 + 0.663076i
\(273\) −23.3288 −1.41193
\(274\) 10.0575 + 18.6430i 0.607598 + 1.12626i
\(275\) 2.29273i 0.138257i
\(276\) −4.48929 2.94981i −0.270223 0.177558i
\(277\) 20.3074i 1.22015i 0.792342 + 0.610077i \(0.208862\pi\)
−0.792342 + 0.610077i \(0.791138\pi\)
\(278\) −5.77888 + 3.11760i −0.346594 + 0.186981i
\(279\) 6.97858 0.417796
\(280\) −1.14637 + 13.2039i −0.0685084 + 0.789084i
\(281\) −10.7862 −0.643453 −0.321726 0.946833i \(-0.604263\pi\)
−0.321726 + 0.946833i \(0.604263\pi\)
\(282\) 9.05019 4.88240i 0.538931 0.290743i
\(283\) 20.0000i 1.18888i 0.804141 + 0.594438i \(0.202626\pi\)
−0.804141 + 0.594438i \(0.797374\pi\)
\(284\) −0.643000 + 0.978577i −0.0381551 + 0.0580679i
\(285\) 2.68585i 0.159096i
\(286\) −7.66442 14.2070i −0.453207 0.840080i
\(287\) −53.2860 −3.14537
\(288\) 3.50367 4.44120i 0.206456 0.261700i
\(289\) −8.12808 −0.478122
\(290\) −1.34292 2.48929i −0.0788592 0.146176i
\(291\) 3.95715i 0.231972i
\(292\) 6.58967 10.0288i 0.385631 0.586889i
\(293\) 21.9143i 1.28025i 0.768272 + 0.640124i \(0.221117\pi\)
−0.768272 + 0.640124i \(0.778883\pi\)
\(294\) 18.6163 10.0432i 1.08573 0.585729i
\(295\) 1.70727 0.0994010
\(296\) 1.07475 12.3790i 0.0624686 0.719517i
\(297\) −2.29273 −0.133038
\(298\) −2.48929 + 1.34292i −0.144201 + 0.0777934i
\(299\) 13.3717i 0.773305i
\(300\) 1.67146 + 1.09828i 0.0965019 + 0.0634092i
\(301\) 43.9143i 2.53118i
\(302\) 5.60688 + 10.3931i 0.322640 + 0.598057i
\(303\) −2.00000 −0.114897
\(304\) −9.86098 + 4.26396i −0.565566 + 0.244555i
\(305\) 4.58546 0.262563
\(306\) −2.00000 3.70727i −0.114332 0.211930i
\(307\) 26.5426i 1.51487i −0.652912 0.757434i \(-0.726453\pi\)
0.652912 0.757434i \(-0.273547\pi\)
\(308\) 17.9572 + 11.7992i 1.02320 + 0.672324i
\(309\) 14.6430i 0.833011i
\(310\) −8.68585 + 4.68585i −0.493323 + 0.266138i
\(311\) 12.2008 0.691842 0.345921 0.938264i \(-0.387566\pi\)
0.345921 + 0.938264i \(0.387566\pi\)
\(312\) −14.0288 1.21798i −0.794223 0.0689546i
\(313\) 15.9572 0.901952 0.450976 0.892536i \(-0.351076\pi\)
0.450976 + 0.892536i \(0.351076\pi\)
\(314\) 27.8181 15.0073i 1.56987 0.846914i
\(315\) 4.68585i 0.264018i
\(316\) −1.12181 + 1.70727i −0.0631066 + 0.0960414i
\(317\) 33.5296i 1.88321i 0.336718 + 0.941605i \(0.390683\pi\)
−0.336718 + 0.941605i \(0.609317\pi\)
\(318\) 1.34292 + 2.48929i 0.0753074 + 0.139592i
\(319\) −4.58546 −0.256737
\(320\) −1.37873 + 7.88030i −0.0770734 + 0.440522i
\(321\) −11.3288 −0.632315
\(322\) −8.45065 15.6644i −0.470937 0.872944i
\(323\) 8.00000i 0.445132i
\(324\) −1.09828 + 1.67146i −0.0610155 + 0.0928590i
\(325\) 4.97858i 0.276162i
\(326\) 1.70727 0.921039i 0.0945569 0.0510116i
\(327\) −9.37169 −0.518256
\(328\) −32.0435 2.78202i −1.76930 0.153611i
\(329\) 34.0722 1.87846
\(330\) 2.85363 1.53948i 0.157087 0.0847456i
\(331\) 19.8568i 1.09143i 0.837972 + 0.545713i \(0.183741\pi\)
−0.837972 + 0.545713i \(0.816259\pi\)
\(332\) −22.3503 14.6858i −1.22663 0.805991i
\(333\) 4.39312i 0.240741i
\(334\) −7.56825 14.0288i −0.414116 0.767620i
\(335\) 4.00000 0.218543
\(336\) 17.2039 7.43910i 0.938550 0.405836i
\(337\) 7.17092 0.390625 0.195313 0.980741i \(-0.437428\pi\)
0.195313 + 0.980741i \(0.437428\pi\)
\(338\) 7.91400 + 14.6697i 0.430465 + 0.797925i
\(339\) 19.7648i 1.07348i
\(340\) 4.97858 + 3.27131i 0.270001 + 0.177412i
\(341\) 16.0000i 0.866449i
\(342\) 3.34292 1.80344i 0.180765 0.0975190i
\(343\) 37.2860 2.01325
\(344\) 2.29273 26.4078i 0.123616 1.42381i
\(345\) −2.68585 −0.144601
\(346\) 13.4250 7.24254i 0.721734 0.389361i
\(347\) 0.786230i 0.0422071i −0.999777 0.0211035i \(-0.993282\pi\)
0.999777 0.0211035i \(-0.00671796\pi\)
\(348\) −2.19656 + 3.34292i −0.117748 + 0.179199i
\(349\) 6.15792i 0.329626i −0.986325 0.164813i \(-0.947298\pi\)
0.986325 0.164813i \(-0.0527021\pi\)
\(350\) 3.14637 + 5.83221i 0.168180 + 0.311745i
\(351\) 4.97858 0.265737
\(352\) 10.1825 + 8.03298i 0.542728 + 0.428159i
\(353\) 21.7220 1.15614 0.578072 0.815986i \(-0.303805\pi\)
0.578072 + 0.815986i \(0.303805\pi\)
\(354\) −1.14637 2.12494i −0.0609286 0.112939i
\(355\) 0.585462i 0.0310731i
\(356\) −3.70306 + 5.63565i −0.196262 + 0.298689i
\(357\) 13.9572i 0.738691i
\(358\) −4.56090 + 2.46052i −0.241051 + 0.130042i
\(359\) 0.585462 0.0308995 0.0154498 0.999881i \(-0.495082\pi\)
0.0154498 + 0.999881i \(0.495082\pi\)
\(360\) 0.244644 2.81783i 0.0128939 0.148513i
\(361\) 11.7862 0.620328
\(362\) 8.24989 4.45065i 0.433604 0.233921i
\(363\) 5.74338i 0.301450i
\(364\) −38.9933 25.6216i −2.04380 1.34294i
\(365\) 6.00000i 0.314054i
\(366\) −3.07896 5.70727i −0.160940 0.298324i
\(367\) −0.485078 −0.0253209 −0.0126604 0.999920i \(-0.504030\pi\)
−0.0126604 + 0.999920i \(0.504030\pi\)
\(368\) −4.26396 9.86098i −0.222274 0.514039i
\(369\) 11.3717 0.591987
\(370\) −2.94981 5.46787i −0.153353 0.284261i
\(371\) 9.37169i 0.486554i
\(372\) 11.6644 + 7.66442i 0.604772 + 0.397382i
\(373\) 12.3931i 0.641691i 0.947132 + 0.320846i \(0.103967\pi\)
−0.947132 + 0.320846i \(0.896033\pi\)
\(374\) 8.49977 4.58546i 0.439513 0.237109i
\(375\) 1.00000 0.0516398
\(376\) 20.4893 + 1.77888i 1.05665 + 0.0917389i
\(377\) 9.95715 0.512820
\(378\) −5.83221 + 3.14637i −0.299977 + 0.161832i
\(379\) 26.0147i 1.33629i 0.744033 + 0.668143i \(0.232910\pi\)
−0.744033 + 0.668143i \(0.767090\pi\)
\(380\) −2.94981 + 4.48929i −0.151322 + 0.230296i
\(381\) 6.64300i 0.340331i
\(382\) 5.37169 + 9.95715i 0.274840 + 0.509452i
\(383\) 6.68585 0.341631 0.170815 0.985303i \(-0.445360\pi\)
0.170815 + 0.985303i \(0.445360\pi\)
\(384\) 10.7339 3.57529i 0.547764 0.182451i
\(385\) 10.7434 0.547534
\(386\) −0.815000 1.51071i −0.0414824 0.0768932i
\(387\) 9.37169i 0.476390i
\(388\) 4.34606 6.61423i 0.220638 0.335787i
\(389\) 29.9143i 1.51672i −0.651838 0.758358i \(-0.726002\pi\)
0.651838 0.758358i \(-0.273998\pi\)
\(390\) −6.19656 + 3.34292i −0.313775 + 0.169275i
\(391\) −8.00000 −0.404577
\(392\) 42.1467 + 3.65918i 2.12873 + 0.184817i
\(393\) 7.07896 0.357086
\(394\) −29.8181 + 16.0863i −1.50222 + 0.810416i
\(395\) 1.02142i 0.0513934i
\(396\) −3.83221 2.51806i −0.192576 0.126537i
\(397\) 9.76481i 0.490082i −0.969513 0.245041i \(-0.921199\pi\)
0.969513 0.245041i \(-0.0788014\pi\)
\(398\) −0.235192 0.435961i −0.0117891 0.0218527i
\(399\) 12.5855 0.630061
\(400\) 1.58757 + 3.67146i 0.0793784 + 0.183573i
\(401\) −6.58546 −0.328862 −0.164431 0.986389i \(-0.552579\pi\)
−0.164431 + 0.986389i \(0.552579\pi\)
\(402\) −2.68585 4.97858i −0.133958 0.248309i
\(403\) 34.7434i 1.73069i
\(404\) −3.34292 2.19656i −0.166317 0.109283i
\(405\) 1.00000i 0.0496904i
\(406\) −11.6644 + 6.29273i −0.578896 + 0.312303i
\(407\) −10.0722 −0.499262
\(408\) 0.728692 8.39312i 0.0360756 0.415521i
\(409\) −25.9143 −1.28138 −0.640690 0.767800i \(-0.721352\pi\)
−0.640690 + 0.767800i \(0.721352\pi\)
\(410\) −14.1537 + 7.63565i −0.699002 + 0.377098i
\(411\) 14.9786i 0.738839i
\(412\) 16.0821 24.4752i 0.792308 1.20581i
\(413\) 8.00000i 0.393654i
\(414\) 1.80344 + 3.34292i 0.0886344 + 0.164296i
\(415\) −13.3717 −0.656391
\(416\) −22.1109 17.4433i −1.08407 0.855229i
\(417\) 4.64300 0.227369
\(418\) 4.13481 + 7.66442i 0.202240 + 0.374879i
\(419\) 12.2499i 0.598446i 0.954183 + 0.299223i \(0.0967275\pi\)
−0.954183 + 0.299223i \(0.903273\pi\)
\(420\) 5.14637 7.83221i 0.251117 0.382173i
\(421\) 4.67115i 0.227658i 0.993500 + 0.113829i \(0.0363116\pi\)
−0.993500 + 0.113829i \(0.963688\pi\)
\(422\) −17.5500 + 9.46787i −0.854319 + 0.460888i
\(423\) −7.27131 −0.353543
\(424\) −0.489289 + 5.63565i −0.0237620 + 0.273692i
\(425\) 2.97858 0.144482
\(426\) 0.728692 0.393115i 0.0353052 0.0190465i
\(427\) 21.4868i 1.03982i
\(428\) −18.9357 12.4422i −0.915293 0.601418i
\(429\) 11.4145i 0.551099i
\(430\) −6.29273 11.6644i −0.303462 0.562508i
\(431\) 0.585462 0.0282007 0.0141004 0.999901i \(-0.495512\pi\)
0.0141004 + 0.999901i \(0.495512\pi\)
\(432\) −3.67146 + 1.58757i −0.176643 + 0.0763819i
\(433\) −21.9143 −1.05313 −0.526567 0.850133i \(-0.676521\pi\)
−0.526567 + 0.850133i \(0.676521\pi\)
\(434\) 21.9572 + 40.7005i 1.05398 + 1.95369i
\(435\) 2.00000i 0.0958927i
\(436\) −15.6644 10.2927i −0.750190 0.492932i
\(437\) 7.21377i 0.345081i
\(438\) −7.46787 + 4.02877i −0.356828 + 0.192502i
\(439\) −2.39312 −0.114217 −0.0571086 0.998368i \(-0.518188\pi\)
−0.0571086 + 0.998368i \(0.518188\pi\)
\(440\) 6.46052 + 0.560904i 0.307993 + 0.0267400i
\(441\) −14.9572 −0.712245
\(442\) −18.4569 + 9.95715i −0.877906 + 0.473614i
\(443\) 20.7005i 0.983512i 0.870733 + 0.491756i \(0.163645\pi\)
−0.870733 + 0.491756i \(0.836355\pi\)
\(444\) −4.82487 + 7.34292i −0.228978 + 0.348480i
\(445\) 3.37169i 0.159834i
\(446\) 4.51806 + 8.37483i 0.213936 + 0.396560i
\(447\) 2.00000 0.0945968
\(448\) 36.9259 + 6.46052i 1.74458 + 0.305231i
\(449\) −37.9143 −1.78929 −0.894643 0.446781i \(-0.852570\pi\)
−0.894643 + 0.446781i \(0.852570\pi\)
\(450\) −0.671462 1.24464i −0.0316530 0.0586731i
\(451\) 26.0722i 1.22769i
\(452\) −21.7073 + 33.0361i −1.02102 + 1.55389i
\(453\) 8.35027i 0.392330i
\(454\) −12.3931 + 6.68585i −0.581638 + 0.313782i
\(455\) −23.3288 −1.09367
\(456\) 7.56825 + 0.657077i 0.354416 + 0.0307704i
\(457\) 38.7005 1.81033 0.905167 0.425055i \(-0.139745\pi\)
0.905167 + 0.425055i \(0.139745\pi\)
\(458\) 14.1004 7.60688i 0.658868 0.355446i
\(459\) 2.97858i 0.139028i
\(460\) −4.48929 2.94981i −0.209314 0.137536i
\(461\) 4.74338i 0.220921i 0.993880 + 0.110461i \(0.0352326\pi\)
−0.993880 + 0.110461i \(0.964767\pi\)
\(462\) −7.21377 13.3717i −0.335615 0.622107i
\(463\) 15.3142 0.711709 0.355855 0.934541i \(-0.384190\pi\)
0.355855 + 0.934541i \(0.384190\pi\)
\(464\) −7.34292 + 3.17513i −0.340887 + 0.147402i
\(465\) 6.97858 0.323624
\(466\) 12.7434 + 23.6216i 0.590326 + 1.09425i
\(467\) 30.5426i 1.41334i 0.707541 + 0.706672i \(0.249804\pi\)
−0.707541 + 0.706672i \(0.750196\pi\)
\(468\) 8.32150 + 5.46787i 0.384661 + 0.252752i
\(469\) 18.7434i 0.865489i
\(470\) 9.05019 4.88240i 0.417454 0.225208i
\(471\) −22.3503 −1.02985
\(472\) 0.417674 4.81079i 0.0192250 0.221435i
\(473\) −21.4868 −0.987963
\(474\) 1.27131 0.685846i 0.0583931 0.0315020i
\(475\) 2.68585i 0.123235i
\(476\) 15.3288 23.3288i 0.702597 1.06928i
\(477\) 2.00000i 0.0915737i
\(478\) −1.76481 3.27131i −0.0807204 0.149626i
\(479\) 3.32885 0.152099 0.0760494 0.997104i \(-0.475769\pi\)
0.0760494 + 0.997104i \(0.475769\pi\)
\(480\) 3.50367 4.44120i 0.159920 0.202712i
\(481\) 21.8715 0.997253
\(482\) −7.24254 13.4250i −0.329889 0.611493i
\(483\) 12.5855i 0.572658i
\(484\) −6.30784 + 9.59985i −0.286720 + 0.436357i
\(485\) 3.95715i 0.179685i
\(486\) 1.24464 0.671462i 0.0564582 0.0304581i
\(487\) −12.1004 −0.548321 −0.274160 0.961684i \(-0.588400\pi\)
−0.274160 + 0.961684i \(0.588400\pi\)
\(488\) 1.12181 12.9210i 0.0507818 0.584908i
\(489\) −1.37169 −0.0620301
\(490\) 18.6163 10.0432i 0.841000 0.453703i
\(491\) 14.2927i 0.645022i −0.946566 0.322511i \(-0.895473\pi\)
0.946566 0.322511i \(-0.104527\pi\)
\(492\) 19.0073 + 12.4893i 0.856917 + 0.563061i
\(493\) 5.95715i 0.268297i
\(494\) −8.97858 16.6430i −0.403965 0.748804i
\(495\) −2.29273 −0.103051
\(496\) 11.0790 + 25.6216i 0.497460 + 1.15044i
\(497\) 2.74338 0.123058
\(498\) 8.97858 + 16.6430i 0.402340 + 0.745791i
\(499\) 9.22846i 0.413123i 0.978434 + 0.206561i \(0.0662273\pi\)
−0.978434 + 0.206561i \(0.933773\pi\)
\(500\) 1.67146 + 1.09828i 0.0747500 + 0.0491165i
\(501\) 11.2713i 0.503565i
\(502\) −38.5756 + 20.8108i −1.72171 + 0.928831i
\(503\) −14.1004 −0.628705 −0.314353 0.949306i \(-0.601787\pi\)
−0.314353 + 0.949306i \(0.601787\pi\)
\(504\) −13.2039 1.14637i −0.588149 0.0510632i
\(505\) −2.00000 −0.0889988
\(506\) −7.66442 + 4.13481i −0.340725 + 0.183815i
\(507\) 11.7862i 0.523445i
\(508\) −7.29587 + 11.1035i −0.323702 + 0.492639i
\(509\) 43.4011i 1.92372i −0.273544 0.961859i \(-0.588196\pi\)
0.273544 0.961859i \(-0.411804\pi\)
\(510\) −2.00000 3.70727i −0.0885615 0.164161i
\(511\) −28.1151 −1.24374
\(512\) 21.8680 + 5.81289i 0.966439 + 0.256896i
\(513\) −2.68585 −0.118583
\(514\) −14.0575 26.0575i −0.620051 1.14935i
\(515\) 14.6430i 0.645248i
\(516\) −10.2927 + 15.6644i −0.453112 + 0.689588i
\(517\) 16.6712i 0.733196i
\(518\) −25.6216 + 13.8223i −1.12575 + 0.607319i
\(519\) −10.7862 −0.473463
\(520\) −14.0288 1.21798i −0.615202 0.0534120i
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 2.48929 1.34292i 0.108953 0.0587781i
\(523\) 13.5725i 0.593482i 0.954958 + 0.296741i \(0.0958998\pi\)
−0.954958 + 0.296741i \(0.904100\pi\)
\(524\) 11.8322 + 7.77467i 0.516893 + 0.339638i
\(525\) 4.68585i 0.204507i
\(526\) 12.9399 + 23.9859i 0.564208 + 1.04584i
\(527\) 20.7862 0.905462
\(528\) −3.63986 8.41767i −0.158405 0.366332i
\(529\) −15.7862 −0.686358
\(530\) 1.34292 + 2.48929i 0.0583329 + 0.108128i
\(531\) 1.70727i 0.0740892i
\(532\) 21.0361 + 13.8223i 0.912031 + 0.599275i
\(533\) 56.6148i 2.45226i
\(534\) 4.19656 2.26396i 0.181603 0.0979712i
\(535\) −11.3288 −0.489789
\(536\) 0.978577 11.2713i 0.0422681 0.486846i
\(537\) 3.66442 0.158132
\(538\) 30.7967 16.6142i 1.32774 0.716290i
\(539\) 34.2927i 1.47709i
\(540\) −1.09828 + 1.67146i −0.0472624 + 0.0719283i
\(541\) 37.2860i 1.60305i −0.597961 0.801525i \(-0.704022\pi\)
0.597961 0.801525i \(-0.295978\pi\)
\(542\) −18.5082 34.3074i −0.794995 1.47363i
\(543\) −6.62831 −0.284448
\(544\) 10.4360 13.2285i 0.447438 0.567166i
\(545\) −9.37169 −0.401439
\(546\) 15.6644 + 29.0361i 0.670375 + 1.24263i
\(547\) 0.200768i 0.00858424i −0.999991 0.00429212i \(-0.998634\pi\)
0.999991 0.00429212i \(-0.00136623\pi\)
\(548\) 16.4507 25.0361i 0.702737 1.06949i
\(549\) 4.58546i 0.195703i
\(550\) 2.85363 1.53948i 0.121679 0.0656437i
\(551\) −5.37169 −0.228842
\(552\) −0.657077 + 7.56825i −0.0279671 + 0.322126i
\(553\) 4.78623 0.203531
\(554\) 25.2755 13.6357i 1.07385 0.579323i
\(555\) 4.39312i 0.186477i
\(556\) 7.76060 + 5.09931i 0.329123 + 0.216259i
\(557\) 9.21377i 0.390400i 0.980763 + 0.195200i \(0.0625356\pi\)
−0.980763 + 0.195200i \(0.937464\pi\)
\(558\) −4.68585 8.68585i −0.198368 0.367701i
\(559\) 46.6577 1.97341
\(560\) 17.2039 7.43910i 0.726998 0.314359i
\(561\) −6.82908 −0.288324
\(562\) 7.24254 + 13.4250i 0.305508 + 0.566300i
\(563\) 36.7005i 1.54674i −0.633953 0.773372i \(-0.718569\pi\)
0.633953 0.773372i \(-0.281431\pi\)
\(564\) −12.1537 7.98592i −0.511764 0.336268i
\(565\) 19.7648i 0.831512i
\(566\) 24.8929 13.4292i 1.04633 0.564473i
\(567\) 4.68585 0.196787
\(568\) 1.64973 + 0.143230i 0.0692212 + 0.00600979i
\(569\) 13.4145 0.562367 0.281183 0.959654i \(-0.409273\pi\)
0.281183 + 0.959654i \(0.409273\pi\)
\(570\) 3.34292 1.80344i 0.140020 0.0755379i
\(571\) 18.6858i 0.781978i 0.920395 + 0.390989i \(0.127867\pi\)
−0.920395 + 0.390989i \(0.872133\pi\)
\(572\) −12.5363 + 19.0790i −0.524171 + 0.797731i
\(573\) 8.00000i 0.334205i
\(574\) 35.7795 + 66.3221i 1.49341 + 2.76823i
\(575\) −2.68585 −0.112008
\(576\) −7.88030 1.37873i −0.328346 0.0574471i
\(577\) −2.78623 −0.115992 −0.0579961 0.998317i \(-0.518471\pi\)
−0.0579961 + 0.998317i \(0.518471\pi\)
\(578\) 5.45769 + 10.1166i 0.227010 + 0.420794i
\(579\) 1.21377i 0.0504425i
\(580\) −2.19656 + 3.34292i −0.0912071 + 0.138807i
\(581\) 62.6577i 2.59948i
\(582\) −4.92525 + 2.65708i −0.204158 + 0.110139i
\(583\) 4.58546 0.189910
\(584\) −16.9070 1.46787i −0.699615 0.0607407i
\(585\) 4.97858 0.205839
\(586\) 27.2755 14.7146i 1.12674 0.607855i
\(587\) 27.3288i 1.12798i −0.825781 0.563991i \(-0.809265\pi\)
0.825781 0.563991i \(-0.190735\pi\)
\(588\) −25.0003 16.4271i −1.03100 0.677443i
\(589\) 18.7434i 0.772308i
\(590\) −1.14637 2.12494i −0.0471951 0.0874825i
\(591\) 23.9572 0.985466
\(592\) −16.1292 + 6.97437i −0.662904 + 0.286645i
\(593\) −6.97858 −0.286576 −0.143288 0.989681i \(-0.545767\pi\)
−0.143288 + 0.989681i \(0.545767\pi\)
\(594\) 1.53948 + 2.85363i 0.0631657 + 0.117086i
\(595\) 13.9572i 0.572188i
\(596\) 3.34292 + 2.19656i 0.136931 + 0.0899745i
\(597\) 0.350269i 0.0143356i
\(598\) 16.6430 8.97858i 0.680583 0.367161i
\(599\) 36.4998 1.49134 0.745670 0.666315i \(-0.232130\pi\)
0.745670 + 0.666315i \(0.232130\pi\)
\(600\) 0.244644 2.81783i 0.00998756 0.115037i
\(601\) −15.5725 −0.635214 −0.317607 0.948222i \(-0.602879\pi\)
−0.317607 + 0.948222i \(0.602879\pi\)
\(602\) −54.6577 + 29.4868i −2.22768 + 1.20179i
\(603\) 4.00000i 0.162893i
\(604\) 9.17092 13.9572i 0.373160 0.567909i
\(605\) 5.74338i 0.233502i
\(606\) 1.34292 + 2.48929i 0.0545525 + 0.101120i
\(607\) −31.2285 −1.26752 −0.633762 0.773528i \(-0.718490\pi\)
−0.633762 + 0.773528i \(0.718490\pi\)
\(608\) 11.9284 + 9.41033i 0.483760 + 0.381639i
\(609\) 9.37169 0.379760
\(610\) −3.07896 5.70727i −0.124664 0.231081i
\(611\) 36.2008i 1.46453i
\(612\) −3.27131 + 4.97858i −0.132235 + 0.201247i
\(613\) 0.978577i 0.0395244i −0.999805 0.0197622i \(-0.993709\pi\)
0.999805 0.0197622i \(-0.00629091\pi\)
\(614\) −33.0361 + 17.8223i −1.33323 + 0.719251i
\(615\) 11.3717 0.458551
\(616\) 2.62831 30.2730i 0.105898 1.21973i
\(617\) 32.9357 1.32594 0.662971 0.748645i \(-0.269295\pi\)
0.662971 + 0.748645i \(0.269295\pi\)
\(618\) −18.2253 + 9.83221i −0.733130 + 0.395510i
\(619\) 3.35700i 0.134929i 0.997722 + 0.0674646i \(0.0214910\pi\)
−0.997722 + 0.0674646i \(0.978509\pi\)
\(620\) 11.6644 + 7.66442i 0.468455 + 0.307811i
\(621\) 2.68585i 0.107779i
\(622\) −8.19235 15.1856i −0.328483 0.608888i
\(623\) 15.7992 0.632983
\(624\) 7.90383 + 18.2787i 0.316406 + 0.731732i
\(625\) 1.00000 0.0400000
\(626\) −10.7146 19.8610i −0.428242 0.793804i
\(627\) 6.15792i 0.245924i
\(628\) −37.3576 24.5468i −1.49073 0.979525i
\(629\) 13.0852i 0.521742i
\(630\) −5.83221 + 3.14637i −0.232361 + 0.125354i
\(631\) −27.7648 −1.10530 −0.552650 0.833414i \(-0.686383\pi\)
−0.552650 + 0.833414i \(0.686383\pi\)
\(632\) 2.87819 + 0.249885i 0.114488 + 0.00993990i
\(633\) 14.1004 0.560440
\(634\) 41.7324 22.5138i 1.65741 0.894139i
\(635\) 6.64300i 0.263619i
\(636\) 2.19656 3.34292i 0.0870992 0.132556i
\(637\) 74.4653i 2.95042i
\(638\) 3.07896 + 5.70727i 0.121897 + 0.225953i
\(639\) −0.585462 −0.0231605
\(640\) 10.7339 3.57529i 0.424296 0.141326i
\(641\) −21.1281 −0.834509 −0.417254 0.908790i \(-0.637008\pi\)
−0.417254 + 0.908790i \(0.637008\pi\)
\(642\) 7.60688 + 14.1004i 0.300220 + 0.556498i
\(643\) 29.2860i 1.15493i −0.816416 0.577464i \(-0.804043\pi\)
0.816416 0.577464i \(-0.195957\pi\)
\(644\) −13.8223 + 21.0361i −0.544677 + 0.828939i
\(645\) 9.37169i 0.369010i
\(646\) 9.95715 5.37169i 0.391759 0.211346i
\(647\) 15.6728 0.616163 0.308082 0.951360i \(-0.400313\pi\)
0.308082 + 0.951360i \(0.400313\pi\)
\(648\) 2.81783 + 0.244644i 0.110695 + 0.00961054i
\(649\) −3.91431 −0.153650
\(650\) −6.19656 + 3.34292i −0.243049 + 0.131120i
\(651\) 32.7005i 1.28164i
\(652\) −2.29273 1.50650i −0.0897903 0.0589991i
\(653\) 17.5296i 0.685987i −0.939338 0.342993i \(-0.888559\pi\)
0.939338 0.342993i \(-0.111441\pi\)
\(654\) 6.29273 + 11.6644i 0.246065 + 0.456115i
\(655\) 7.07896 0.276598
\(656\) 18.0533 + 41.7507i 0.704864 + 1.63009i
\(657\) 6.00000 0.234082
\(658\) −22.8782 42.4078i −0.891885 1.65323i
\(659\) 23.8652i 0.929656i 0.885401 + 0.464828i \(0.153884\pi\)
−0.885401 + 0.464828i \(0.846116\pi\)
\(660\) −3.83221 2.51806i −0.149169 0.0980153i
\(661\) 30.1579i 1.17301i 0.809947 + 0.586504i \(0.199496\pi\)
−0.809947 + 0.586504i \(0.800504\pi\)
\(662\) 24.7146 13.3331i 0.960561 0.518204i
\(663\) 14.8291 0.575914
\(664\) −3.27131 + 37.6791i −0.126951 + 1.46223i
\(665\) 12.5855 0.488043
\(666\) 5.46787 2.94981i 0.211875 0.114303i
\(667\) 5.37169i 0.207993i
\(668\) −12.3790 + 18.8396i −0.478959 + 0.728924i
\(669\) 6.72869i 0.260146i
\(670\) −2.68585 4.97858i −0.103763 0.192339i
\(671\) −10.5132 −0.405859
\(672\) −20.8108 16.4177i −0.802794 0.633326i
\(673\) −18.0000 −0.693849 −0.346925 0.937893i \(-0.612774\pi\)
−0.346925 + 0.937893i \(0.612774\pi\)
\(674\) −4.81500 8.92525i −0.185467 0.343788i
\(675\) 1.00000i 0.0384900i
\(676\) 12.9446 19.7002i 0.497868 0.757701i
\(677\) 9.61531i 0.369546i −0.982781 0.184773i \(-0.940845\pi\)
0.982781 0.184773i \(-0.0591550\pi\)
\(678\) 24.6002 13.2713i 0.944763 0.509682i
\(679\) −18.5426 −0.711600
\(680\) 0.728692 8.39312i 0.0279441 0.321861i
\(681\) 9.95715 0.381559
\(682\) 19.9143 10.7434i 0.762558 0.411385i
\(683\) 18.6283i 0.712792i −0.934335 0.356396i \(-0.884005\pi\)
0.934335 0.356396i \(-0.115995\pi\)
\(684\) −4.48929 2.94981i −0.171652 0.112789i
\(685\) 14.9786i 0.572302i
\(686\) −25.0361 46.4078i −0.955883 1.77186i
\(687\) −11.3288 −0.432222
\(688\) −34.4078 + 14.8782i −1.31179 + 0.567226i
\(689\) −9.95715 −0.379337
\(690\) 1.80344 + 3.34292i 0.0686559 + 0.127263i
\(691\) 13.4292i 0.510872i 0.966826 + 0.255436i \(0.0822190\pi\)
−0.966826 + 0.255436i \(0.917781\pi\)
\(692\) −18.0288 11.8463i −0.685351 0.450328i
\(693\) 10.7434i 0.408107i
\(694\) −0.978577 + 0.527923i −0.0371463 + 0.0200397i
\(695\) 4.64300 0.176119
\(696\) 5.63565 + 0.489289i 0.213619 + 0.0185464i
\(697\) 33.8715 1.28297
\(698\) −7.66442 + 4.13481i −0.290103 + 0.156505i
\(699\) 18.9786i 0.717836i
\(700\) 5.14637 7.83221i 0.194514 0.296030i
\(701\) 19.1709i 0.724076i −0.932163 0.362038i \(-0.882081\pi\)
0.932163 0.362038i \(-0.117919\pi\)
\(702\) −3.34292 6.19656i −0.126171 0.233874i
\(703\) −11.7992 −0.445016
\(704\) 3.16106 18.0674i 0.119137 0.680941i
\(705\) −7.27131 −0.273853
\(706\) −14.5855 27.0361i −0.548931 1.01752i
\(707\) 9.37169i 0.352459i
\(708\) −1.87506 + 2.85363i −0.0704690 + 0.107246i
\(709\) 15.4145i 0.578905i −0.957192 0.289453i \(-0.906527\pi\)
0.957192 0.289453i \(-0.0934732\pi\)
\(710\) 0.728692 0.393115i 0.0273473 0.0147534i
\(711\) −1.02142 −0.0383063
\(712\) 9.50085 + 0.824865i 0.356059 + 0.0309131i
\(713\) −18.7434 −0.701945
\(714\) −17.3717 + 9.37169i −0.650119 + 0.350727i
\(715\) 11.4145i 0.426880i
\(716\) 6.12494 + 4.02456i 0.228900 + 0.150405i
\(717\) 2.62831i 0.0981559i
\(718\) −0.393115 0.728692i −0.0146709 0.0271945i
\(719\) 20.7862 0.775196 0.387598 0.921829i \(-0.373305\pi\)
0.387598 + 0.921829i \(0.373305\pi\)
\(720\) −3.67146 + 1.58757i −0.136827 + 0.0591651i
\(721\) −68.6148 −2.55535
\(722\) −7.91400 14.6697i −0.294529 0.545948i
\(723\) 10.7862i 0.401144i
\(724\) −11.0790 7.27973i −0.411746 0.270549i
\(725\) 2.00000i 0.0742781i
\(726\) 7.14847 3.85646i 0.265305 0.143127i
\(727\) 12.3012 0.456224 0.228112 0.973635i \(-0.426745\pi\)
0.228112 + 0.973635i \(0.426745\pi\)
\(728\) −5.70727 + 65.7367i −0.211525 + 2.43636i
\(729\) −1.00000 −0.0370370
\(730\) −7.46787 + 4.02877i −0.276398 + 0.149111i
\(731\) 27.9143i 1.03245i
\(732\) −5.03612 + 7.66442i −0.186140 + 0.283285i
\(733\) 35.9227i 1.32684i 0.748249 + 0.663418i \(0.230895\pi\)
−0.748249 + 0.663418i \(0.769105\pi\)
\(734\) 0.325711 + 0.603749i 0.0120222 + 0.0222848i
\(735\) −14.9572 −0.551703
\(736\) −9.41033 + 11.9284i −0.346869 + 0.439686i
\(737\) −9.17092 −0.337815
\(738\) −7.63565 14.1537i −0.281072 0.521005i
\(739\) 29.0277i 1.06780i −0.845547 0.533900i \(-0.820726\pi\)
0.845547 0.533900i \(-0.179274\pi\)
\(740\) −4.82487 + 7.34292i −0.177366 + 0.269931i
\(741\) 13.3717i 0.491221i
\(742\) 11.6644 6.29273i 0.428214 0.231013i
\(743\) 2.60015 0.0953904 0.0476952 0.998862i \(-0.484812\pi\)
0.0476952 + 0.998862i \(0.484812\pi\)
\(744\) 1.70727 19.6644i 0.0625915 0.720933i
\(745\) 2.00000 0.0732743
\(746\) 15.4250 8.32150i 0.564750 0.304672i
\(747\) 13.3717i 0.489245i
\(748\) −11.4145 7.50023i −0.417357 0.274236i
\(749\) 53.0852i 1.93969i
\(750\) −0.671462 1.24464i −0.0245183 0.0454480i
\(751\) −10.8929 −0.397487 −0.198744 0.980052i \(-0.563686\pi\)
−0.198744 + 0.980052i \(0.563686\pi\)
\(752\) −11.5437 26.6963i −0.420955 0.973515i
\(753\) 30.9933 1.12946
\(754\) −6.68585 12.3931i −0.243484 0.451331i
\(755\) 8.35027i 0.303897i
\(756\) 7.83221 + 5.14637i 0.284855 + 0.187172i
\(757\) 34.3503i 1.24848i −0.781232 0.624241i \(-0.785408\pi\)
0.781232 0.624241i \(-0.214592\pi\)
\(758\) 32.3790 17.4679i 1.17606 0.634461i
\(759\) 6.15792 0.223518
\(760\) 7.56825 + 0.657077i 0.274529 + 0.0238347i
\(761\) −19.0852 −0.691839 −0.345920 0.938264i \(-0.612433\pi\)
−0.345920 + 0.938264i \(0.612433\pi\)
\(762\) 8.26817 4.46052i 0.299524 0.161588i
\(763\) 43.9143i 1.58980i
\(764\) 8.78623 13.3717i 0.317875 0.483771i
\(765\) 2.97858i 0.107691i
\(766\) −4.48929 8.32150i −0.162205 0.300668i
\(767\) 8.49977 0.306909
\(768\) −11.6574 10.9593i −0.420650 0.395458i
\(769\) 31.8715 1.14931 0.574657 0.818394i \(-0.305135\pi\)
0.574657 + 0.818394i \(0.305135\pi\)
\(770\) −7.21377 13.3717i −0.259966 0.481882i
\(771\) 20.9357i 0.753982i
\(772\) −1.33306 + 2.02877i −0.0479778 + 0.0730170i
\(773\) 11.9572i 0.430069i 0.976606 + 0.215034i \(0.0689864\pi\)
−0.976606 + 0.215034i \(0.931014\pi\)
\(774\) 11.6644 6.29273i 0.419269 0.226188i
\(775\) 6.97858 0.250678
\(776\) −11.1506 0.968095i −0.400282 0.0347526i
\(777\) 20.5855 0.738499
\(778\) −37.2327 + 20.0863i −1.33486 + 0.720129i
\(779\) 30.5426i 1.09430i
\(780\) 8.32150 + 5.46787i 0.297958 + 0.195781i
\(781\) 1.34231i 0.0480315i
\(782\) 5.37169 + 9.95715i 0.192091 + 0.356067i
\(783\) −2.00000 −0.0714742
\(784\) −23.7455 54.9146i −0.848053 1.96124i
\(785\) −22.3503 −0.797715
\(786\) −4.75325 8.81079i −0.169543 0.314270i
\(787\) 33.0852i 1.17936i −0.807637 0.589681i \(-0.799254\pi\)
0.807637 0.589681i \(-0.200746\pi\)
\(788\) 40.0435 + 26.3116i 1.42649 + 0.937313i
\(789\) 19.2713i 0.686077i
\(790\) 1.27131 0.685846i 0.0452311 0.0244013i
\(791\) 92.6148 3.29300
\(792\) −0.560904 + 6.46052i −0.0199308 + 0.229565i
\(793\) 22.8291 0.810684
\(794\) −12.1537 + 6.55669i −0.431319 + 0.232688i
\(795\) 2.00000i 0.0709327i
\(796\) −0.384694 + 0.585462i −0.0136351 + 0.0207511i
\(797\) 10.0000i 0.354218i 0.984191 + 0.177109i \(0.0566745\pi\)
−0.984191 + 0.177109i \(0.943325\pi\)
\(798\) −8.45065 15.6644i −0.299150 0.554515i
\(799\) −21.6582 −0.766210
\(800\) 3.50367 4.44120i 0.123874 0.157020i
\(801\) −3.37169 −0.119133
\(802\) 4.42188 + 8.19656i 0.156142 + 0.289431i
\(803\) 13.7564i 0.485452i
\(804\) −4.39312 + 6.68585i −0.154933 + 0.235792i
\(805\) 12.5855i 0.443579i
\(806\) −43.2432 + 23.3288i −1.52318 + 0.821724i
\(807\) −24.7434 −0.871008
\(808\) −0.489289 + 5.63565i −0.0172131 + 0.198262i
\(809\) −30.6148 −1.07636 −0.538180 0.842830i \(-0.680888\pi\)
−0.538180 + 0.842830i \(0.680888\pi\)
\(810\) 1.24464 0.671462i 0.0437323 0.0235928i
\(811\) 53.9290i 1.89370i −0.321670 0.946852i \(-0.604244\pi\)
0.321670 0.946852i \(-0.395756\pi\)
\(812\) 15.6644 + 10.2927i 0.549713 + 0.361204i
\(813\) 27.5640i 0.966713i
\(814\) 6.76312 + 12.5363i 0.237047 + 0.439399i
\(815\) −1.37169 −0.0480483
\(816\) −10.9357 + 4.72869i −0.382827 + 0.165537i
\(817\) −25.1709 −0.880619
\(818\) 17.4005 + 32.2541i 0.608393 + 1.12774i
\(819\) 23.3288i 0.815176i
\(820\) 19.0073 + 12.4893i 0.663765 + 0.436145i
\(821\) 12.6577i 0.441757i −0.975301 0.220878i \(-0.929108\pi\)
0.975301 0.220878i \(-0.0708924\pi\)
\(822\) −18.6430 + 10.0575i −0.650249 + 0.350797i
\(823\) −19.8139 −0.690670 −0.345335 0.938479i \(-0.612235\pi\)
−0.345335 + 0.938479i \(0.612235\pi\)
\(824\) −41.2614 3.58233i −1.43741 0.124796i
\(825\) −2.29273 −0.0798226
\(826\) −9.95715 + 5.37169i −0.346454 + 0.186905i
\(827\) 20.0000i 0.695468i −0.937593 0.347734i \(-0.886951\pi\)
0.937593 0.347734i \(-0.113049\pi\)
\(828\) 2.94981 4.48929i 0.102513 0.156014i
\(829\) 41.3717i 1.43690i 0.695580 + 0.718449i \(0.255148\pi\)
−0.695580 + 0.718449i \(0.744852\pi\)
\(830\) 8.97858 + 16.6430i 0.311651 + 0.577687i
\(831\) −20.3074 −0.704457
\(832\) −6.86412 + 39.2327i −0.237970 + 1.36015i
\(833\) −44.5510 −1.54360
\(834\) −3.11760 5.77888i −0.107954 0.200106i
\(835\) 11.2713i 0.390060i
\(836\) 6.76312 10.2927i 0.233907 0.355982i
\(837\) 6.97858i 0.241215i
\(838\) 15.2467 8.22533i 0.526690 0.284139i
\(839\) 20.9013 0.721593 0.360797 0.932645i \(-0.382505\pi\)
0.360797 + 0.932645i \(0.382505\pi\)
\(840\) −13.2039 1.14637i −0.455578 0.0395534i
\(841\) 25.0000 0.862069
\(842\) 5.81392 3.13650i 0.200361 0.108091i
\(843\) 10.7862i 0.371498i
\(844\) 23.5682 + 15.4862i 0.811253 + 0.533055i
\(845\) 11.7862i 0.405459i
\(846\) 4.88240 + 9.05019i 0.167860 + 0.311152i
\(847\) 26.9126 0.924728
\(848\) 7.34292 3.17513i 0.252157 0.109035i
\(849\) −20.0000 −0.686398
\(850\) −2.00000 3.70727i −0.0685994 0.127158i
\(851\) 11.7992i 0.404472i
\(852\) −0.978577 0.643000i −0.0335255 0.0220288i
\(853\) 6.63673i 0.227237i −0.993524 0.113619i \(-0.963756\pi\)
0.993524 0.113619i \(-0.0362442\pi\)
\(854\) −26.7434 + 14.4275i −0.915140 + 0.493700i
\(855\) −2.68585 −0.0918540
\(856\) −2.77154 + 31.9227i −0.0947292 + 1.09110i
\(857\) 9.80765 0.335023 0.167512 0.985870i \(-0.446427\pi\)
0.167512 + 0.985870i \(0.446427\pi\)
\(858\) 14.2070 7.66442i 0.485020 0.261659i
\(859\) 39.3864i 1.34385i −0.740621 0.671923i \(-0.765469\pi\)
0.740621 0.671923i \(-0.234531\pi\)
\(860\) −10.2927 + 15.6644i −0.350979 + 0.534152i
\(861\) 53.2860i 1.81598i
\(862\) −0.393115 0.728692i −0.0133896 0.0248193i
\(863\) 7.07054 0.240684 0.120342 0.992732i \(-0.461601\pi\)
0.120342 + 0.992732i \(0.461601\pi\)
\(864\) 4.44120 + 3.50367i 0.151093 + 0.119197i
\(865\) −10.7862 −0.366743
\(866\) 14.7146 + 27.2755i 0.500023 + 0.926860i
\(867\) 8.12808i 0.276044i
\(868\) 35.9143 54.6577i 1.21901 1.85520i
\(869\) 2.34185i 0.0794417i
\(870\) 2.48929 1.34292i 0.0843948 0.0455294i
\(871\) 19.9143 0.674771
\(872\) −2.29273 + 26.4078i −0.0776417 + 0.894281i
\(873\) 3.95715 0.133929
\(874\) −8.97858 + 4.84377i −0.303705 + 0.163843i
\(875\) 4.68585i 0.158411i
\(876\) 10.0288 + 6.58967i 0.338841 + 0.222644i
\(877\) 23.1365i 0.781264i −0.920547 0.390632i \(-0.872256\pi\)
0.920547 0.390632i \(-0.127744\pi\)
\(878\) 1.60688 + 2.97858i 0.0542297 + 0.100522i
\(879\) −21.9143 −0.739151
\(880\) −3.63986 8.41767i −0.122700 0.283760i
\(881\) 28.4569 0.958738 0.479369 0.877613i \(-0.340866\pi\)
0.479369 + 0.877613i \(0.340866\pi\)
\(882\) 10.0432 + 18.6163i 0.338171 + 0.626845i
\(883\) 41.2003i 1.38650i 0.720697 + 0.693250i \(0.243822\pi\)
−0.720697 + 0.693250i \(0.756178\pi\)
\(884\) 24.7862 + 16.2865i 0.833651 + 0.547773i
\(885\) 1.70727i 0.0573892i
\(886\) 25.7648 13.8996i 0.865586 0.466967i
\(887\) −3.55777 −0.119458 −0.0597291 0.998215i \(-0.519024\pi\)
−0.0597291 + 0.998215i \(0.519024\pi\)
\(888\) 12.3790 + 1.07475i 0.415413 + 0.0360663i
\(889\) 31.1281 1.04400
\(890\) 4.19656 2.26396i 0.140669 0.0758882i
\(891\) 2.29273i 0.0768094i
\(892\) 7.38998 11.2467i 0.247435 0.376569i
\(893\) 19.5296i 0.653534i
\(894\) −1.34292 2.48929i −0.0449141 0.0832543i
\(895\) 3.66442 0.122488
\(896\) −16.7533 50.2976i −0.559687 1.68032i
\(897\) −13.3717 −0.446468
\(898\) 25.4580 + 47.1898i 0.849544 + 1.57474i
\(899\) 13.9572i 0.465497i
\(900\) −1.09828 + 1.67146i −0.0366093 + 0.0557154i
\(901\) 5.95715i 0.198462i
\(902\) 32.4507 17.5065i 1.08049 0.582903i
\(903\) 43.9143 1.46138
\(904\) 55.6938 + 4.83535i 1.85235 + 0.160821i
\(905\) −6.62831 −0.220332
\(906\) −10.3931 + 5.60688i −0.345288 + 0.186276i
\(907\) 50.6577i 1.68206i 0.540988 + 0.841031i \(0.318051\pi\)
−0.540988 + 0.841031i \(0.681949\pi\)
\(908\) 16.6430 + 10.9357i 0.552317 + 0.362915i
\(909\) 2.00000i 0.0663358i
\(910\) 15.6644 + 29.0361i 0.519271 + 0.962538i
\(911\) −26.4569 −0.876557 −0.438279 0.898839i \(-0.644412\pi\)
−0.438279 + 0.898839i \(0.644412\pi\)
\(912\) −4.26396 9.86098i −0.141194 0.326530i
\(913\) 30.6577 1.01462
\(914\) −25.9859 48.1684i −0.859538 1.59327i
\(915\) 4.58546i 0.151591i
\(916\) −18.9357 12.4422i −0.625654 0.411103i
\(917\) 33.1709i 1.09540i
\(918\) 3.70727 2.00000i 0.122358 0.0660098i
\(919\) 29.8077 0.983264 0.491632 0.870803i \(-0.336401\pi\)
0.491632 + 0.870803i \(0.336401\pi\)
\(920\) −0.657077 + 7.56825i −0.0216632 + 0.249518i
\(921\) 26.5426 0.874609
\(922\) 5.90383 3.18500i 0.194432 0.104892i
\(923\) 2.91477i 0.0959407i
\(924\) −11.7992 + 17.9572i −0.388166 + 0.590747i
\(925\) 4.39312i 0.144445i
\(926\) −10.2829 19.0607i −0.337916 0.626373i
\(927\) 14.6430 0.480939
\(928\) 8.88240 + 7.00735i 0.291579 + 0.230027i
\(929\) −8.82908 −0.289673 −0.144836 0.989456i \(-0.546266\pi\)
−0.144836 + 0.989456i \(0.546266\pi\)
\(930\) −4.68585 8.68585i −0.153655 0.284820i
\(931\) 40.1726i 1.31660i
\(932\) 20.8438 31.7220i 0.682760 1.03909i
\(933\) 12.2008i 0.399435i
\(934\) 38.0147 20.5082i 1.24388 0.671049i
\(935\) −6.82908 −0.223335
\(936\) 1.21798 14.0288i 0.0398109 0.458545i
\(937\) −42.2302 −1.37960 −0.689799 0.724000i \(-0.742301\pi\)
−0.689799 + 0.724000i \(0.742301\pi\)
\(938\) −23.3288 + 12.5855i −0.761714 + 0.410930i
\(939\) 15.9572i 0.520742i
\(940\) −12.1537 7.98592i −0.396410 0.260472i
\(941\) 32.7434i 1.06740i −0.845673 0.533702i \(-0.820800\pi\)
0.845673 0.533702i \(-0.179200\pi\)
\(942\) 15.0073 + 27.8181i 0.488966 + 0.906364i
\(943\) −30.5426 −0.994604
\(944\) −6.26817 + 2.71040i −0.204012 + 0.0882162i
\(945\) 4.68585 0.152431
\(946\) 14.4275 + 26.7434i 0.469080 + 0.869502i
\(947\) 15.9143i 0.517146i 0.965992 + 0.258573i \(0.0832522\pi\)
−0.965992 + 0.258573i \(0.916748\pi\)
\(948\) −1.70727 1.12181i −0.0554495 0.0364346i
\(949\) 29.8715i 0.969669i
\(950\) 3.34292 1.80344i 0.108459 0.0585114i
\(951\) −33.5296 −1.08727
\(952\) −39.3288 3.41454i −1.27466 0.110666i
\(953\) 55.6791 1.80362 0.901812 0.432129i \(-0.142238\pi\)
0.901812 + 0.432129i \(0.142238\pi\)
\(954\) −2.48929 + 1.34292i −0.0805937 + 0.0434787i
\(955\) 8.00000i 0.258874i
\(956\) −2.88661 + 4.39312i −0.0933598 + 0.142083i
\(957\) 4.58546i 0.148227i
\(958\) −2.23519 4.14323i −0.0722158 0.133862i
\(959\) −70.1873 −2.26647
\(960\) −7.88030 1.37873i −0.254336 0.0444983i
\(961\) 17.7005 0.570985
\(962\) −14.6858 27.2222i −0.473491 0.877679i
\(963\) 11.3288i 0.365067i
\(964\) −11.8463 + 18.0288i −0.381543 + 0.580668i
\(965\) 1.21377i 0.0390726i
\(966\) 15.6644 8.45065i 0.503995 0.271895i
\(967\) −54.7581 −1.76090 −0.880451 0.474138i \(-0.842760\pi\)
−0.880451 + 0.474138i \(0.842760\pi\)
\(968\) 16.1839 + 1.40509i 0.520169 + 0.0451612i
\(969\) −8.00000 −0.256997
\(970\) −4.92525 + 2.65708i −0.158140 + 0.0853136i
\(971\) 30.3221i 0.973083i 0.873657 + 0.486542i \(0.161742\pi\)
−0.873657 + 0.486542i \(0.838258\pi\)
\(972\) −1.67146 1.09828i −0.0536122 0.0352273i
\(973\) 21.7564i 0.697478i
\(974\) 8.12494 + 15.0607i 0.260340 + 0.482575i
\(975\) 4.97858 0.159442
\(976\) −16.8353 + 7.27973i −0.538886 + 0.233018i
\(977\) −29.7220 −0.950890 −0.475445 0.879746i \(-0.657713\pi\)
−0.475445 + 0.879746i \(0.657713\pi\)
\(978\) 0.921039 + 1.70727i 0.0294516 + 0.0545924i
\(979\) 7.73038i 0.247064i
\(980\) −25.0003 16.4271i −0.798606 0.524745i
\(981\) 9.37169i 0.299215i
\(982\) −17.7894 + 9.59702i −0.567681 + 0.306253i
\(983\) −49.5443 −1.58022 −0.790109 0.612966i \(-0.789976\pi\)
−0.790109 + 0.612966i \(0.789976\pi\)
\(984\) 2.78202 32.0435i 0.0886875 1.02151i
\(985\) 23.9572 0.763338
\(986\) 7.41454 4.00000i 0.236127 0.127386i
\(987\) 34.0722i 1.08453i
\(988\) −14.6858 + 22.3503i −0.467219 + 0.711057i
\(989\) 25.1709i 0.800389i
\(990\) 1.53948 + 2.85363i 0.0489279 + 0.0906945i
\(991\) 19.0937 0.606530 0.303265 0.952906i \(-0.401923\pi\)
0.303265 + 0.952906i \(0.401923\pi\)
\(992\) 24.4507 30.9933i 0.776309 0.984037i
\(993\) −19.8568 −0.630136
\(994\) −1.84208 3.41454i −0.0584271 0.108303i
\(995\) 0.350269i 0.0111043i
\(996\) 14.6858 22.3503i 0.465339 0.708195i
\(997\) 38.8500i 1.23039i −0.788374 0.615197i \(-0.789077\pi\)
0.788374 0.615197i \(-0.210923\pi\)
\(998\) 11.4862 6.19656i 0.363588 0.196149i
\(999\) −4.39312 −0.138992
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 120.2.k.b.61.1 6
3.2 odd 2 360.2.k.f.181.6 6
4.3 odd 2 480.2.k.b.241.1 6
5.2 odd 4 600.2.d.f.349.5 6
5.3 odd 4 600.2.d.e.349.2 6
5.4 even 2 600.2.k.c.301.6 6
8.3 odd 2 480.2.k.b.241.4 6
8.5 even 2 inner 120.2.k.b.61.2 yes 6
12.11 even 2 1440.2.k.f.721.1 6
15.2 even 4 1800.2.d.r.1549.2 6
15.8 even 4 1800.2.d.q.1549.5 6
15.14 odd 2 1800.2.k.p.901.1 6
16.3 odd 4 3840.2.a.br.1.3 3
16.5 even 4 3840.2.a.bq.1.1 3
16.11 odd 4 3840.2.a.bo.1.3 3
16.13 even 4 3840.2.a.bp.1.1 3
20.3 even 4 2400.2.d.f.49.6 6
20.7 even 4 2400.2.d.e.49.1 6
20.19 odd 2 2400.2.k.c.1201.6 6
24.5 odd 2 360.2.k.f.181.5 6
24.11 even 2 1440.2.k.f.721.4 6
40.3 even 4 2400.2.d.e.49.6 6
40.13 odd 4 600.2.d.f.349.6 6
40.19 odd 2 2400.2.k.c.1201.3 6
40.27 even 4 2400.2.d.f.49.1 6
40.29 even 2 600.2.k.c.301.5 6
40.37 odd 4 600.2.d.e.349.1 6
60.23 odd 4 7200.2.d.q.2449.6 6
60.47 odd 4 7200.2.d.r.2449.1 6
60.59 even 2 7200.2.k.p.3601.5 6
120.29 odd 2 1800.2.k.p.901.2 6
120.53 even 4 1800.2.d.r.1549.1 6
120.59 even 2 7200.2.k.p.3601.6 6
120.77 even 4 1800.2.d.q.1549.6 6
120.83 odd 4 7200.2.d.r.2449.6 6
120.107 odd 4 7200.2.d.q.2449.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.k.b.61.1 6 1.1 even 1 trivial
120.2.k.b.61.2 yes 6 8.5 even 2 inner
360.2.k.f.181.5 6 24.5 odd 2
360.2.k.f.181.6 6 3.2 odd 2
480.2.k.b.241.1 6 4.3 odd 2
480.2.k.b.241.4 6 8.3 odd 2
600.2.d.e.349.1 6 40.37 odd 4
600.2.d.e.349.2 6 5.3 odd 4
600.2.d.f.349.5 6 5.2 odd 4
600.2.d.f.349.6 6 40.13 odd 4
600.2.k.c.301.5 6 40.29 even 2
600.2.k.c.301.6 6 5.4 even 2
1440.2.k.f.721.1 6 12.11 even 2
1440.2.k.f.721.4 6 24.11 even 2
1800.2.d.q.1549.5 6 15.8 even 4
1800.2.d.q.1549.6 6 120.77 even 4
1800.2.d.r.1549.1 6 120.53 even 4
1800.2.d.r.1549.2 6 15.2 even 4
1800.2.k.p.901.1 6 15.14 odd 2
1800.2.k.p.901.2 6 120.29 odd 2
2400.2.d.e.49.1 6 20.7 even 4
2400.2.d.e.49.6 6 40.3 even 4
2400.2.d.f.49.1 6 40.27 even 4
2400.2.d.f.49.6 6 20.3 even 4
2400.2.k.c.1201.3 6 40.19 odd 2
2400.2.k.c.1201.6 6 20.19 odd 2
3840.2.a.bo.1.3 3 16.11 odd 4
3840.2.a.bp.1.1 3 16.13 even 4
3840.2.a.bq.1.1 3 16.5 even 4
3840.2.a.br.1.3 3 16.3 odd 4
7200.2.d.q.2449.1 6 120.107 odd 4
7200.2.d.q.2449.6 6 60.23 odd 4
7200.2.d.r.2449.1 6 60.47 odd 4
7200.2.d.r.2449.6 6 120.83 odd 4
7200.2.k.p.3601.5 6 60.59 even 2
7200.2.k.p.3601.6 6 120.59 even 2