Properties

Label 600.2.d.f.349.6
Level $600$
Weight $2$
Character 600.349
Analytic conductor $4.791$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,2,Mod(349,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.6
Root \(-0.671462 + 1.24464i\) of defining polynomial
Character \(\chi\) \(=\) 600.349
Dual form 600.2.d.f.349.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.24464 + 0.671462i) q^{2} +1.00000 q^{3} +(1.09828 + 1.67146i) q^{4} +(1.24464 + 0.671462i) q^{6} -4.68585i q^{7} +(0.244644 + 2.81783i) q^{8} +1.00000 q^{9} +2.29273i q^{11} +(1.09828 + 1.67146i) q^{12} +4.97858 q^{13} +(3.14637 - 5.83221i) q^{14} +(-1.58757 + 3.67146i) q^{16} +2.97858i q^{17} +(1.24464 + 0.671462i) q^{18} -2.68585i q^{19} -4.68585i q^{21} +(-1.53948 + 2.85363i) q^{22} +2.68585i q^{23} +(0.244644 + 2.81783i) q^{24} +(6.19656 + 3.34292i) q^{26} +1.00000 q^{27} +(7.83221 - 5.14637i) q^{28} -2.00000i q^{29} -6.97858 q^{31} +(-4.44120 + 3.50367i) q^{32} +2.29273i q^{33} +(-2.00000 + 3.70727i) q^{34} +(1.09828 + 1.67146i) q^{36} +4.39312 q^{37} +(1.80344 - 3.34292i) q^{38} +4.97858 q^{39} -11.3717 q^{41} +(3.14637 - 5.83221i) q^{42} -9.37169 q^{43} +(-3.83221 + 2.51806i) q^{44} +(-1.80344 + 3.34292i) q^{46} -7.27131i q^{47} +(-1.58757 + 3.67146i) q^{48} -14.9572 q^{49} +2.97858i q^{51} +(5.46787 + 8.32150i) q^{52} +2.00000 q^{53} +(1.24464 + 0.671462i) q^{54} +(13.2039 - 1.14637i) q^{56} -2.68585i q^{57} +(1.34292 - 2.48929i) q^{58} -1.70727i q^{59} +4.58546i q^{61} +(-8.68585 - 4.68585i) q^{62} -4.68585i q^{63} +(-7.88030 + 1.37873i) q^{64} +(-1.53948 + 2.85363i) q^{66} +4.00000 q^{67} +(-4.97858 + 3.27131i) q^{68} +2.68585i q^{69} +0.585462 q^{71} +(0.244644 + 2.81783i) q^{72} -6.00000i q^{73} +(5.46787 + 2.94981i) q^{74} +(4.48929 - 2.94981i) q^{76} +10.7434 q^{77} +(6.19656 + 3.34292i) q^{78} -1.02142 q^{79} +1.00000 q^{81} +(-14.1537 - 7.63565i) q^{82} +13.3717 q^{83} +(7.83221 - 5.14637i) q^{84} +(-11.6644 - 6.29273i) q^{86} -2.00000i q^{87} +(-6.46052 + 0.560904i) q^{88} -3.37169 q^{89} -23.3288i q^{91} +(-4.48929 + 2.94981i) q^{92} -6.97858 q^{93} +(4.88240 - 9.05019i) q^{94} +(-4.44120 + 3.50367i) q^{96} +3.95715i q^{97} +(-18.6163 - 10.0432i) q^{98} +2.29273i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 2 q^{4} - 6 q^{8} + 6 q^{9} + 2 q^{12} + 16 q^{14} + 10 q^{16} + 12 q^{22} - 6 q^{24} + 28 q^{26} + 6 q^{27} + 20 q^{28} - 12 q^{31} - 10 q^{32} - 12 q^{34} + 2 q^{36} + 8 q^{37} + 20 q^{38}+ \cdots - 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.24464 + 0.671462i 0.880096 + 0.474795i
\(3\) 1.00000 0.577350
\(4\) 1.09828 + 1.67146i 0.549139 + 0.835731i
\(5\) 0 0
\(6\) 1.24464 + 0.671462i 0.508124 + 0.274123i
\(7\) 4.68585i 1.77108i −0.464560 0.885542i \(-0.653787\pi\)
0.464560 0.885542i \(-0.346213\pi\)
\(8\) 0.244644 + 2.81783i 0.0864948 + 0.996252i
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.29273i 0.691284i 0.938366 + 0.345642i \(0.112339\pi\)
−0.938366 + 0.345642i \(0.887661\pi\)
\(12\) 1.09828 + 1.67146i 0.317046 + 0.482509i
\(13\) 4.97858 1.38081 0.690404 0.723424i \(-0.257433\pi\)
0.690404 + 0.723424i \(0.257433\pi\)
\(14\) 3.14637 5.83221i 0.840902 1.55872i
\(15\) 0 0
\(16\) −1.58757 + 3.67146i −0.396892 + 0.917865i
\(17\) 2.97858i 0.722411i 0.932486 + 0.361206i \(0.117635\pi\)
−0.932486 + 0.361206i \(0.882365\pi\)
\(18\) 1.24464 + 0.671462i 0.293365 + 0.158265i
\(19\) 2.68585i 0.616175i −0.951358 0.308088i \(-0.900311\pi\)
0.951358 0.308088i \(-0.0996890\pi\)
\(20\) 0 0
\(21\) 4.68585i 1.02254i
\(22\) −1.53948 + 2.85363i −0.328218 + 0.608397i
\(23\) 2.68585i 0.560038i 0.959995 + 0.280019i \(0.0903407\pi\)
−0.959995 + 0.280019i \(0.909659\pi\)
\(24\) 0.244644 + 2.81783i 0.0499378 + 0.575187i
\(25\) 0 0
\(26\) 6.19656 + 3.34292i 1.21524 + 0.655601i
\(27\) 1.00000 0.192450
\(28\) 7.83221 5.14637i 1.48015 0.972572i
\(29\) 2.00000i 0.371391i −0.982607 0.185695i \(-0.940546\pi\)
0.982607 0.185695i \(-0.0594537\pi\)
\(30\) 0 0
\(31\) −6.97858 −1.25339 −0.626695 0.779265i \(-0.715593\pi\)
−0.626695 + 0.779265i \(0.715593\pi\)
\(32\) −4.44120 + 3.50367i −0.785101 + 0.619368i
\(33\) 2.29273i 0.399113i
\(34\) −2.00000 + 3.70727i −0.342997 + 0.635791i
\(35\) 0 0
\(36\) 1.09828 + 1.67146i 0.183046 + 0.278577i
\(37\) 4.39312 0.722224 0.361112 0.932523i \(-0.382397\pi\)
0.361112 + 0.932523i \(0.382397\pi\)
\(38\) 1.80344 3.34292i 0.292557 0.542294i
\(39\) 4.97858 0.797210
\(40\) 0 0
\(41\) −11.3717 −1.77596 −0.887980 0.459882i \(-0.847892\pi\)
−0.887980 + 0.459882i \(0.847892\pi\)
\(42\) 3.14637 5.83221i 0.485495 0.899930i
\(43\) −9.37169 −1.42917 −0.714585 0.699549i \(-0.753384\pi\)
−0.714585 + 0.699549i \(0.753384\pi\)
\(44\) −3.83221 + 2.51806i −0.577728 + 0.379611i
\(45\) 0 0
\(46\) −1.80344 + 3.34292i −0.265903 + 0.492887i
\(47\) 7.27131i 1.06063i −0.847801 0.530315i \(-0.822074\pi\)
0.847801 0.530315i \(-0.177926\pi\)
\(48\) −1.58757 + 3.67146i −0.229146 + 0.529930i
\(49\) −14.9572 −2.13674
\(50\) 0 0
\(51\) 2.97858i 0.417084i
\(52\) 5.46787 + 8.32150i 0.758257 + 1.15398i
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 1.24464 + 0.671462i 0.169375 + 0.0913743i
\(55\) 0 0
\(56\) 13.2039 1.14637i 1.76445 0.153190i
\(57\) 2.68585i 0.355749i
\(58\) 1.34292 2.48929i 0.176334 0.326860i
\(59\) 1.70727i 0.222267i −0.993805 0.111134i \(-0.964552\pi\)
0.993805 0.111134i \(-0.0354482\pi\)
\(60\) 0 0
\(61\) 4.58546i 0.587108i 0.955942 + 0.293554i \(0.0948381\pi\)
−0.955942 + 0.293554i \(0.905162\pi\)
\(62\) −8.68585 4.68585i −1.10310 0.595103i
\(63\) 4.68585i 0.590361i
\(64\) −7.88030 + 1.37873i −0.985037 + 0.172341i
\(65\) 0 0
\(66\) −1.53948 + 2.85363i −0.189497 + 0.351258i
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −4.97858 + 3.27131i −0.603741 + 0.396704i
\(69\) 2.68585i 0.323338i
\(70\) 0 0
\(71\) 0.585462 0.0694816 0.0347408 0.999396i \(-0.488939\pi\)
0.0347408 + 0.999396i \(0.488939\pi\)
\(72\) 0.244644 + 2.81783i 0.0288316 + 0.332084i
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 5.46787 + 2.94981i 0.635626 + 0.342908i
\(75\) 0 0
\(76\) 4.48929 2.94981i 0.514957 0.338366i
\(77\) 10.7434 1.22432
\(78\) 6.19656 + 3.34292i 0.701622 + 0.378512i
\(79\) −1.02142 −0.114919 −0.0574595 0.998348i \(-0.518300\pi\)
−0.0574595 + 0.998348i \(0.518300\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −14.1537 7.63565i −1.56302 0.843217i
\(83\) 13.3717 1.46773 0.733867 0.679293i \(-0.237714\pi\)
0.733867 + 0.679293i \(0.237714\pi\)
\(84\) 7.83221 5.14637i 0.854564 0.561515i
\(85\) 0 0
\(86\) −11.6644 6.29273i −1.25781 0.678563i
\(87\) 2.00000i 0.214423i
\(88\) −6.46052 + 0.560904i −0.688694 + 0.0597925i
\(89\) −3.37169 −0.357399 −0.178699 0.983904i \(-0.557189\pi\)
−0.178699 + 0.983904i \(0.557189\pi\)
\(90\) 0 0
\(91\) 23.3288i 2.44553i
\(92\) −4.48929 + 2.94981i −0.468041 + 0.307539i
\(93\) −6.97858 −0.723645
\(94\) 4.88240 9.05019i 0.503581 0.933456i
\(95\) 0 0
\(96\) −4.44120 + 3.50367i −0.453278 + 0.357592i
\(97\) 3.95715i 0.401788i 0.979613 + 0.200894i \(0.0643847\pi\)
−0.979613 + 0.200894i \(0.935615\pi\)
\(98\) −18.6163 10.0432i −1.88053 1.01451i
\(99\) 2.29273i 0.230428i
\(100\) 0 0
\(101\) 2.00000i 0.199007i −0.995037 0.0995037i \(-0.968274\pi\)
0.995037 0.0995037i \(-0.0317255\pi\)
\(102\) −2.00000 + 3.70727i −0.198030 + 0.367074i
\(103\) 14.6430i 1.44282i −0.692509 0.721409i \(-0.743495\pi\)
0.692509 0.721409i \(-0.256505\pi\)
\(104\) 1.21798 + 14.0288i 0.119433 + 1.37563i
\(105\) 0 0
\(106\) 2.48929 + 1.34292i 0.241781 + 0.130436i
\(107\) −11.3288 −1.09520 −0.547600 0.836740i \(-0.684459\pi\)
−0.547600 + 0.836740i \(0.684459\pi\)
\(108\) 1.09828 + 1.67146i 0.105682 + 0.160836i
\(109\) 9.37169i 0.897645i 0.893621 + 0.448823i \(0.148157\pi\)
−0.893621 + 0.448823i \(0.851843\pi\)
\(110\) 0 0
\(111\) 4.39312 0.416976
\(112\) 17.2039 + 7.43910i 1.62562 + 0.702929i
\(113\) 19.7648i 1.85932i 0.368423 + 0.929658i \(0.379898\pi\)
−0.368423 + 0.929658i \(0.620102\pi\)
\(114\) 1.80344 3.34292i 0.168908 0.313093i
\(115\) 0 0
\(116\) 3.34292 2.19656i 0.310383 0.203945i
\(117\) 4.97858 0.460270
\(118\) 1.14637 2.12494i 0.105531 0.195617i
\(119\) 13.9572 1.27945
\(120\) 0 0
\(121\) 5.74338 0.522126
\(122\) −3.07896 + 5.70727i −0.278756 + 0.516712i
\(123\) −11.3717 −1.02535
\(124\) −7.66442 11.6644i −0.688286 1.04750i
\(125\) 0 0
\(126\) 3.14637 5.83221i 0.280301 0.519575i
\(127\) 6.64300i 0.589471i −0.955579 0.294735i \(-0.904768\pi\)
0.955579 0.294735i \(-0.0952315\pi\)
\(128\) −10.7339 3.57529i −0.948755 0.316014i
\(129\) −9.37169 −0.825132
\(130\) 0 0
\(131\) 7.07896i 0.618492i 0.950982 + 0.309246i \(0.100077\pi\)
−0.950982 + 0.309246i \(0.899923\pi\)
\(132\) −3.83221 + 2.51806i −0.333551 + 0.219169i
\(133\) −12.5855 −1.09130
\(134\) 4.97858 + 2.68585i 0.430084 + 0.232022i
\(135\) 0 0
\(136\) −8.39312 + 0.728692i −0.719704 + 0.0624848i
\(137\) 14.9786i 1.27971i 0.768497 + 0.639853i \(0.221005\pi\)
−0.768497 + 0.639853i \(0.778995\pi\)
\(138\) −1.80344 + 3.34292i −0.153519 + 0.284569i
\(139\) 4.64300i 0.393814i −0.980422 0.196907i \(-0.936910\pi\)
0.980422 0.196907i \(-0.0630897\pi\)
\(140\) 0 0
\(141\) 7.27131i 0.612355i
\(142\) 0.728692 + 0.393115i 0.0611505 + 0.0329895i
\(143\) 11.4145i 0.954532i
\(144\) −1.58757 + 3.67146i −0.132297 + 0.305955i
\(145\) 0 0
\(146\) 4.02877 7.46787i 0.333423 0.618045i
\(147\) −14.9572 −1.23365
\(148\) 4.82487 + 7.34292i 0.396601 + 0.603585i
\(149\) 2.00000i 0.163846i −0.996639 0.0819232i \(-0.973894\pi\)
0.996639 0.0819232i \(-0.0261062\pi\)
\(150\) 0 0
\(151\) −8.35027 −0.679535 −0.339768 0.940509i \(-0.610348\pi\)
−0.339768 + 0.940509i \(0.610348\pi\)
\(152\) 7.56825 0.657077i 0.613866 0.0532960i
\(153\) 2.97858i 0.240804i
\(154\) 13.3717 + 7.21377i 1.07752 + 0.581302i
\(155\) 0 0
\(156\) 5.46787 + 8.32150i 0.437780 + 0.666253i
\(157\) −22.3503 −1.78375 −0.891873 0.452286i \(-0.850609\pi\)
−0.891873 + 0.452286i \(0.850609\pi\)
\(158\) −1.27131 0.685846i −0.101140 0.0545630i
\(159\) 2.00000 0.158610
\(160\) 0 0
\(161\) 12.5855 0.991873
\(162\) 1.24464 + 0.671462i 0.0977885 + 0.0527550i
\(163\) 1.37169 0.107439 0.0537196 0.998556i \(-0.482892\pi\)
0.0537196 + 0.998556i \(0.482892\pi\)
\(164\) −12.4893 19.0073i −0.975250 1.48422i
\(165\) 0 0
\(166\) 16.6430 + 8.97858i 1.29175 + 0.696873i
\(167\) 11.2713i 0.872200i −0.899898 0.436100i \(-0.856359\pi\)
0.899898 0.436100i \(-0.143641\pi\)
\(168\) 13.2039 1.14637i 1.01870 0.0884440i
\(169\) 11.7862 0.906633
\(170\) 0 0
\(171\) 2.68585i 0.205392i
\(172\) −10.2927 15.6644i −0.784813 1.19440i
\(173\) 10.7862 0.820062 0.410031 0.912072i \(-0.365518\pi\)
0.410031 + 0.912072i \(0.365518\pi\)
\(174\) 1.34292 2.48929i 0.101807 0.188712i
\(175\) 0 0
\(176\) −8.41767 3.63986i −0.634506 0.274365i
\(177\) 1.70727i 0.128326i
\(178\) −4.19656 2.26396i −0.314545 0.169691i
\(179\) 3.66442i 0.273892i −0.990579 0.136946i \(-0.956271\pi\)
0.990579 0.136946i \(-0.0437287\pi\)
\(180\) 0 0
\(181\) 6.62831i 0.492678i −0.969184 0.246339i \(-0.920772\pi\)
0.969184 0.246339i \(-0.0792277\pi\)
\(182\) 15.6644 29.0361i 1.16112 2.15230i
\(183\) 4.58546i 0.338967i
\(184\) −7.56825 + 0.657077i −0.557939 + 0.0484404i
\(185\) 0 0
\(186\) −8.68585 4.68585i −0.636877 0.343583i
\(187\) −6.82908 −0.499392
\(188\) 12.1537 7.98592i 0.886401 0.582433i
\(189\) 4.68585i 0.340845i
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) −7.88030 + 1.37873i −0.568712 + 0.0995013i
\(193\) 1.21377i 0.0873690i 0.999045 + 0.0436845i \(0.0139096\pi\)
−0.999045 + 0.0436845i \(0.986090\pi\)
\(194\) −2.65708 + 4.92525i −0.190767 + 0.353612i
\(195\) 0 0
\(196\) −16.4271 25.0003i −1.17337 1.78574i
\(197\) 23.9572 1.70688 0.853438 0.521194i \(-0.174513\pi\)
0.853438 + 0.521194i \(0.174513\pi\)
\(198\) −1.53948 + 2.85363i −0.109406 + 0.202799i
\(199\) −0.350269 −0.0248299 −0.0124150 0.999923i \(-0.503952\pi\)
−0.0124150 + 0.999923i \(0.503952\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 1.34292 2.48929i 0.0944877 0.175146i
\(203\) −9.37169 −0.657764
\(204\) −4.97858 + 3.27131i −0.348570 + 0.229037i
\(205\) 0 0
\(206\) 9.83221 18.2253i 0.685043 1.26982i
\(207\) 2.68585i 0.186679i
\(208\) −7.90383 + 18.2787i −0.548032 + 1.26740i
\(209\) 6.15792 0.425952
\(210\) 0 0
\(211\) 14.1004i 0.970710i 0.874317 + 0.485355i \(0.161310\pi\)
−0.874317 + 0.485355i \(0.838690\pi\)
\(212\) 2.19656 + 3.34292i 0.150860 + 0.229593i
\(213\) 0.585462 0.0401152
\(214\) −14.1004 7.60688i −0.963882 0.519996i
\(215\) 0 0
\(216\) 0.244644 + 2.81783i 0.0166459 + 0.191729i
\(217\) 32.7005i 2.21986i
\(218\) −6.29273 + 11.6644i −0.426198 + 0.790014i
\(219\) 6.00000i 0.405442i
\(220\) 0 0
\(221\) 14.8291i 0.997512i
\(222\) 5.46787 + 2.94981i 0.366979 + 0.197978i
\(223\) 6.72869i 0.450587i −0.974291 0.225293i \(-0.927666\pi\)
0.974291 0.225293i \(-0.0723340\pi\)
\(224\) 16.4177 + 20.8108i 1.09695 + 1.39048i
\(225\) 0 0
\(226\) −13.2713 + 24.6002i −0.882794 + 1.63638i
\(227\) 9.95715 0.660880 0.330440 0.943827i \(-0.392803\pi\)
0.330440 + 0.943827i \(0.392803\pi\)
\(228\) 4.48929 2.94981i 0.297310 0.195356i
\(229\) 11.3288i 0.748631i 0.927301 + 0.374316i \(0.122122\pi\)
−0.927301 + 0.374316i \(0.877878\pi\)
\(230\) 0 0
\(231\) 10.7434 0.706863
\(232\) 5.63565 0.489289i 0.369999 0.0321234i
\(233\) 18.9786i 1.24333i −0.783284 0.621664i \(-0.786457\pi\)
0.783284 0.621664i \(-0.213543\pi\)
\(234\) 6.19656 + 3.34292i 0.405082 + 0.218534i
\(235\) 0 0
\(236\) 2.85363 1.87506i 0.185756 0.122056i
\(237\) −1.02142 −0.0663485
\(238\) 17.3717 + 9.37169i 1.12604 + 0.607477i
\(239\) −2.62831 −0.170011 −0.0850055 0.996380i \(-0.527091\pi\)
−0.0850055 + 0.996380i \(0.527091\pi\)
\(240\) 0 0
\(241\) 10.7862 0.694802 0.347401 0.937717i \(-0.387064\pi\)
0.347401 + 0.937717i \(0.387064\pi\)
\(242\) 7.14847 + 3.85646i 0.459521 + 0.247903i
\(243\) 1.00000 0.0641500
\(244\) −7.66442 + 5.03612i −0.490664 + 0.322404i
\(245\) 0 0
\(246\) −14.1537 7.63565i −0.902408 0.486832i
\(247\) 13.3717i 0.850820i
\(248\) −1.70727 19.6644i −0.108412 1.24869i
\(249\) 13.3717 0.847397
\(250\) 0 0
\(251\) 30.9933i 1.95628i 0.207952 + 0.978139i \(0.433320\pi\)
−0.207952 + 0.978139i \(0.566680\pi\)
\(252\) 7.83221 5.14637i 0.493383 0.324191i
\(253\) −6.15792 −0.387145
\(254\) 4.46052 8.26817i 0.279878 0.518791i
\(255\) 0 0
\(256\) −10.9593 11.6574i −0.684954 0.728587i
\(257\) 20.9357i 1.30594i −0.757386 0.652968i \(-0.773524\pi\)
0.757386 0.652968i \(-0.226476\pi\)
\(258\) −11.6644 6.29273i −0.726195 0.391768i
\(259\) 20.5855i 1.27912i
\(260\) 0 0
\(261\) 2.00000i 0.123797i
\(262\) −4.75325 + 8.81079i −0.293657 + 0.544332i
\(263\) 19.2713i 1.18832i −0.804347 0.594160i \(-0.797485\pi\)
0.804347 0.594160i \(-0.202515\pi\)
\(264\) −6.46052 + 0.560904i −0.397617 + 0.0345212i
\(265\) 0 0
\(266\) −15.6644 8.45065i −0.960447 0.518143i
\(267\) −3.37169 −0.206344
\(268\) 4.39312 + 6.68585i 0.268352 + 0.408403i
\(269\) 24.7434i 1.50863i 0.656512 + 0.754315i \(0.272031\pi\)
−0.656512 + 0.754315i \(0.727969\pi\)
\(270\) 0 0
\(271\) 27.5640 1.67440 0.837198 0.546900i \(-0.184192\pi\)
0.837198 + 0.546900i \(0.184192\pi\)
\(272\) −10.9357 4.72869i −0.663076 0.286719i
\(273\) 23.3288i 1.41193i
\(274\) −10.0575 + 18.6430i −0.607598 + 1.12626i
\(275\) 0 0
\(276\) −4.48929 + 2.94981i −0.270223 + 0.177558i
\(277\) −20.3074 −1.22015 −0.610077 0.792342i \(-0.708862\pi\)
−0.610077 + 0.792342i \(0.708862\pi\)
\(278\) 3.11760 5.77888i 0.186981 0.346594i
\(279\) −6.97858 −0.417796
\(280\) 0 0
\(281\) −10.7862 −0.643453 −0.321726 0.946833i \(-0.604263\pi\)
−0.321726 + 0.946833i \(0.604263\pi\)
\(282\) 4.88240 9.05019i 0.290743 0.538931i
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0.643000 + 0.978577i 0.0381551 + 0.0580679i
\(285\) 0 0
\(286\) −7.66442 + 14.2070i −0.453207 + 0.840080i
\(287\) 53.2860i 3.14537i
\(288\) −4.44120 + 3.50367i −0.261700 + 0.206456i
\(289\) 8.12808 0.478122
\(290\) 0 0
\(291\) 3.95715i 0.231972i
\(292\) 10.0288 6.58967i 0.586889 0.385631i
\(293\) 21.9143 1.28025 0.640124 0.768272i \(-0.278883\pi\)
0.640124 + 0.768272i \(0.278883\pi\)
\(294\) −18.6163 10.0432i −1.08573 0.585729i
\(295\) 0 0
\(296\) 1.07475 + 12.3790i 0.0624686 + 0.719517i
\(297\) 2.29273i 0.133038i
\(298\) 1.34292 2.48929i 0.0777934 0.144201i
\(299\) 13.3717i 0.773305i
\(300\) 0 0
\(301\) 43.9143i 2.53118i
\(302\) −10.3931 5.60688i −0.598057 0.322640i
\(303\) 2.00000i 0.114897i
\(304\) 9.86098 + 4.26396i 0.565566 + 0.244555i
\(305\) 0 0
\(306\) −2.00000 + 3.70727i −0.114332 + 0.211930i
\(307\) 26.5426 1.51487 0.757434 0.652912i \(-0.226453\pi\)
0.757434 + 0.652912i \(0.226453\pi\)
\(308\) 11.7992 + 17.9572i 0.672324 + 1.02320i
\(309\) 14.6430i 0.833011i
\(310\) 0 0
\(311\) 12.2008 0.691842 0.345921 0.938264i \(-0.387566\pi\)
0.345921 + 0.938264i \(0.387566\pi\)
\(312\) 1.21798 + 14.0288i 0.0689546 + 0.794223i
\(313\) 15.9572i 0.901952i 0.892536 + 0.450976i \(0.148924\pi\)
−0.892536 + 0.450976i \(0.851076\pi\)
\(314\) −27.8181 15.0073i −1.56987 0.846914i
\(315\) 0 0
\(316\) −1.12181 1.70727i −0.0631066 0.0960414i
\(317\) −33.5296 −1.88321 −0.941605 0.336718i \(-0.890683\pi\)
−0.941605 + 0.336718i \(0.890683\pi\)
\(318\) 2.48929 + 1.34292i 0.139592 + 0.0753074i
\(319\) 4.58546 0.256737
\(320\) 0 0
\(321\) −11.3288 −0.632315
\(322\) 15.6644 + 8.45065i 0.872944 + 0.470937i
\(323\) 8.00000 0.445132
\(324\) 1.09828 + 1.67146i 0.0610155 + 0.0928590i
\(325\) 0 0
\(326\) 1.70727 + 0.921039i 0.0945569 + 0.0510116i
\(327\) 9.37169i 0.518256i
\(328\) −2.78202 32.0435i −0.153611 1.76930i
\(329\) −34.0722 −1.87846
\(330\) 0 0
\(331\) 19.8568i 1.09143i −0.837972 0.545713i \(-0.816259\pi\)
0.837972 0.545713i \(-0.183741\pi\)
\(332\) 14.6858 + 22.3503i 0.805991 + 1.22663i
\(333\) 4.39312 0.240741
\(334\) 7.56825 14.0288i 0.414116 0.767620i
\(335\) 0 0
\(336\) 17.2039 + 7.43910i 0.938550 + 0.405836i
\(337\) 7.17092i 0.390625i −0.980741 0.195313i \(-0.937428\pi\)
0.980741 0.195313i \(-0.0625721\pi\)
\(338\) 14.6697 + 7.91400i 0.797925 + 0.430465i
\(339\) 19.7648i 1.07348i
\(340\) 0 0
\(341\) 16.0000i 0.866449i
\(342\) 1.80344 3.34292i 0.0975190 0.180765i
\(343\) 37.2860i 2.01325i
\(344\) −2.29273 26.4078i −0.123616 1.42381i
\(345\) 0 0
\(346\) 13.4250 + 7.24254i 0.721734 + 0.389361i
\(347\) 0.786230 0.0422071 0.0211035 0.999777i \(-0.493282\pi\)
0.0211035 + 0.999777i \(0.493282\pi\)
\(348\) 3.34292 2.19656i 0.179199 0.117748i
\(349\) 6.15792i 0.329626i −0.986325 0.164813i \(-0.947298\pi\)
0.986325 0.164813i \(-0.0527021\pi\)
\(350\) 0 0
\(351\) 4.97858 0.265737
\(352\) −8.03298 10.1825i −0.428159 0.542728i
\(353\) 21.7220i 1.15614i 0.815986 + 0.578072i \(0.196195\pi\)
−0.815986 + 0.578072i \(0.803805\pi\)
\(354\) 1.14637 2.12494i 0.0609286 0.112939i
\(355\) 0 0
\(356\) −3.70306 5.63565i −0.196262 0.298689i
\(357\) 13.9572 0.738691
\(358\) 2.46052 4.56090i 0.130042 0.241051i
\(359\) −0.585462 −0.0308995 −0.0154498 0.999881i \(-0.504918\pi\)
−0.0154498 + 0.999881i \(0.504918\pi\)
\(360\) 0 0
\(361\) 11.7862 0.620328
\(362\) 4.45065 8.24989i 0.233921 0.433604i
\(363\) 5.74338 0.301450
\(364\) 38.9933 25.6216i 2.04380 1.34294i
\(365\) 0 0
\(366\) −3.07896 + 5.70727i −0.160940 + 0.298324i
\(367\) 0.485078i 0.0253209i 0.999920 + 0.0126604i \(0.00403005\pi\)
−0.999920 + 0.0126604i \(0.995970\pi\)
\(368\) −9.86098 4.26396i −0.514039 0.222274i
\(369\) −11.3717 −0.591987
\(370\) 0 0
\(371\) 9.37169i 0.486554i
\(372\) −7.66442 11.6644i −0.397382 0.604772i
\(373\) 12.3931 0.641691 0.320846 0.947132i \(-0.396033\pi\)
0.320846 + 0.947132i \(0.396033\pi\)
\(374\) −8.49977 4.58546i −0.439513 0.237109i
\(375\) 0 0
\(376\) 20.4893 1.77888i 1.05665 0.0917389i
\(377\) 9.95715i 0.512820i
\(378\) 3.14637 5.83221i 0.161832 0.299977i
\(379\) 26.0147i 1.33629i 0.744033 + 0.668143i \(0.232910\pi\)
−0.744033 + 0.668143i \(0.767090\pi\)
\(380\) 0 0
\(381\) 6.64300i 0.340331i
\(382\) −9.95715 5.37169i −0.509452 0.274840i
\(383\) 6.68585i 0.341631i 0.985303 + 0.170815i \(0.0546402\pi\)
−0.985303 + 0.170815i \(0.945360\pi\)
\(384\) −10.7339 3.57529i −0.547764 0.182451i
\(385\) 0 0
\(386\) −0.815000 + 1.51071i −0.0414824 + 0.0768932i
\(387\) −9.37169 −0.476390
\(388\) −6.61423 + 4.34606i −0.335787 + 0.220638i
\(389\) 29.9143i 1.51672i −0.651838 0.758358i \(-0.726002\pi\)
0.651838 0.758358i \(-0.273998\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) −3.65918 42.1467i −0.184817 2.12873i
\(393\) 7.07896i 0.357086i
\(394\) 29.8181 + 16.0863i 1.50222 + 0.810416i
\(395\) 0 0
\(396\) −3.83221 + 2.51806i −0.192576 + 0.126537i
\(397\) 9.76481 0.490082 0.245041 0.969513i \(-0.421199\pi\)
0.245041 + 0.969513i \(0.421199\pi\)
\(398\) −0.435961 0.235192i −0.0218527 0.0117891i
\(399\) −12.5855 −0.630061
\(400\) 0 0
\(401\) −6.58546 −0.328862 −0.164431 0.986389i \(-0.552579\pi\)
−0.164431 + 0.986389i \(0.552579\pi\)
\(402\) 4.97858 + 2.68585i 0.248309 + 0.133958i
\(403\) −34.7434 −1.73069
\(404\) 3.34292 2.19656i 0.166317 0.109283i
\(405\) 0 0
\(406\) −11.6644 6.29273i −0.578896 0.312303i
\(407\) 10.0722i 0.499262i
\(408\) −8.39312 + 0.728692i −0.415521 + 0.0360756i
\(409\) 25.9143 1.28138 0.640690 0.767800i \(-0.278648\pi\)
0.640690 + 0.767800i \(0.278648\pi\)
\(410\) 0 0
\(411\) 14.9786i 0.738839i
\(412\) 24.4752 16.0821i 1.20581 0.792308i
\(413\) −8.00000 −0.393654
\(414\) −1.80344 + 3.34292i −0.0886344 + 0.164296i
\(415\) 0 0
\(416\) −22.1109 + 17.4433i −1.08407 + 0.855229i
\(417\) 4.64300i 0.227369i
\(418\) 7.66442 + 4.13481i 0.374879 + 0.202240i
\(419\) 12.2499i 0.598446i 0.954183 + 0.299223i \(0.0967275\pi\)
−0.954183 + 0.299223i \(0.903273\pi\)
\(420\) 0 0
\(421\) 4.67115i 0.227658i −0.993500 0.113829i \(-0.963688\pi\)
0.993500 0.113829i \(-0.0363116\pi\)
\(422\) −9.46787 + 17.5500i −0.460888 + 0.854319i
\(423\) 7.27131i 0.353543i
\(424\) 0.489289 + 5.63565i 0.0237620 + 0.273692i
\(425\) 0 0
\(426\) 0.728692 + 0.393115i 0.0353052 + 0.0190465i
\(427\) 21.4868 1.03982
\(428\) −12.4422 18.9357i −0.601418 0.915293i
\(429\) 11.4145i 0.551099i
\(430\) 0 0
\(431\) 0.585462 0.0282007 0.0141004 0.999901i \(-0.495512\pi\)
0.0141004 + 0.999901i \(0.495512\pi\)
\(432\) −1.58757 + 3.67146i −0.0763819 + 0.176643i
\(433\) 21.9143i 1.05313i −0.850133 0.526567i \(-0.823479\pi\)
0.850133 0.526567i \(-0.176521\pi\)
\(434\) −21.9572 + 40.7005i −1.05398 + 1.95369i
\(435\) 0 0
\(436\) −15.6644 + 10.2927i −0.750190 + 0.492932i
\(437\) 7.21377 0.345081
\(438\) 4.02877 7.46787i 0.192502 0.356828i
\(439\) 2.39312 0.114217 0.0571086 0.998368i \(-0.481812\pi\)
0.0571086 + 0.998368i \(0.481812\pi\)
\(440\) 0 0
\(441\) −14.9572 −0.712245
\(442\) −9.95715 + 18.4569i −0.473614 + 0.877906i
\(443\) 20.7005 0.983512 0.491756 0.870733i \(-0.336355\pi\)
0.491756 + 0.870733i \(0.336355\pi\)
\(444\) 4.82487 + 7.34292i 0.228978 + 0.348480i
\(445\) 0 0
\(446\) 4.51806 8.37483i 0.213936 0.396560i
\(447\) 2.00000i 0.0945968i
\(448\) 6.46052 + 36.9259i 0.305231 + 1.74458i
\(449\) 37.9143 1.78929 0.894643 0.446781i \(-0.147430\pi\)
0.894643 + 0.446781i \(0.147430\pi\)
\(450\) 0 0
\(451\) 26.0722i 1.22769i
\(452\) −33.0361 + 21.7073i −1.55389 + 1.02102i
\(453\) −8.35027 −0.392330
\(454\) 12.3931 + 6.68585i 0.581638 + 0.313782i
\(455\) 0 0
\(456\) 7.56825 0.657077i 0.354416 0.0307704i
\(457\) 38.7005i 1.81033i −0.425055 0.905167i \(-0.639745\pi\)
0.425055 0.905167i \(-0.360255\pi\)
\(458\) −7.60688 + 14.1004i −0.355446 + 0.658868i
\(459\) 2.97858i 0.139028i
\(460\) 0 0
\(461\) 4.74338i 0.220921i −0.993880 0.110461i \(-0.964767\pi\)
0.993880 0.110461i \(-0.0352326\pi\)
\(462\) 13.3717 + 7.21377i 0.622107 + 0.335615i
\(463\) 15.3142i 0.711709i 0.934541 + 0.355855i \(0.115810\pi\)
−0.934541 + 0.355855i \(0.884190\pi\)
\(464\) 7.34292 + 3.17513i 0.340887 + 0.147402i
\(465\) 0 0
\(466\) 12.7434 23.6216i 0.590326 1.09425i
\(467\) −30.5426 −1.41334 −0.706672 0.707541i \(-0.749804\pi\)
−0.706672 + 0.707541i \(0.749804\pi\)
\(468\) 5.46787 + 8.32150i 0.252752 + 0.384661i
\(469\) 18.7434i 0.865489i
\(470\) 0 0
\(471\) −22.3503 −1.02985
\(472\) 4.81079 0.417674i 0.221435 0.0192250i
\(473\) 21.4868i 0.987963i
\(474\) −1.27131 0.685846i −0.0583931 0.0315020i
\(475\) 0 0
\(476\) 15.3288 + 23.3288i 0.702597 + 1.06928i
\(477\) 2.00000 0.0915737
\(478\) −3.27131 1.76481i −0.149626 0.0807204i
\(479\) −3.32885 −0.152099 −0.0760494 0.997104i \(-0.524231\pi\)
−0.0760494 + 0.997104i \(0.524231\pi\)
\(480\) 0 0
\(481\) 21.8715 0.997253
\(482\) 13.4250 + 7.24254i 0.611493 + 0.329889i
\(483\) 12.5855 0.572658
\(484\) 6.30784 + 9.59985i 0.286720 + 0.436357i
\(485\) 0 0
\(486\) 1.24464 + 0.671462i 0.0564582 + 0.0304581i
\(487\) 12.1004i 0.548321i 0.961684 + 0.274160i \(0.0883999\pi\)
−0.961684 + 0.274160i \(0.911600\pi\)
\(488\) −12.9210 + 1.12181i −0.584908 + 0.0507818i
\(489\) 1.37169 0.0620301
\(490\) 0 0
\(491\) 14.2927i 0.645022i 0.946566 + 0.322511i \(0.104527\pi\)
−0.946566 + 0.322511i \(0.895473\pi\)
\(492\) −12.4893 19.0073i −0.563061 0.856917i
\(493\) 5.95715 0.268297
\(494\) 8.97858 16.6430i 0.403965 0.748804i
\(495\) 0 0
\(496\) 11.0790 25.6216i 0.497460 1.15044i
\(497\) 2.74338i 0.123058i
\(498\) 16.6430 + 8.97858i 0.745791 + 0.402340i
\(499\) 9.22846i 0.413123i 0.978434 + 0.206561i \(0.0662273\pi\)
−0.978434 + 0.206561i \(0.933773\pi\)
\(500\) 0 0
\(501\) 11.2713i 0.503565i
\(502\) −20.8108 + 38.5756i −0.928831 + 1.72171i
\(503\) 14.1004i 0.628705i −0.949306 0.314353i \(-0.898213\pi\)
0.949306 0.314353i \(-0.101787\pi\)
\(504\) 13.2039 1.14637i 0.588149 0.0510632i
\(505\) 0 0
\(506\) −7.66442 4.13481i −0.340725 0.183815i
\(507\) 11.7862 0.523445
\(508\) 11.1035 7.29587i 0.492639 0.323702i
\(509\) 43.4011i 1.92372i −0.273544 0.961859i \(-0.588196\pi\)
0.273544 0.961859i \(-0.411804\pi\)
\(510\) 0 0
\(511\) −28.1151 −1.24374
\(512\) −5.81289 21.8680i −0.256896 0.966439i
\(513\) 2.68585i 0.118583i
\(514\) 14.0575 26.0575i 0.620051 1.14935i
\(515\) 0 0
\(516\) −10.2927 15.6644i −0.453112 0.689588i
\(517\) 16.6712 0.733196
\(518\) 13.8223 25.6216i 0.607319 1.12575i
\(519\) 10.7862 0.473463
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 1.34292 2.48929i 0.0587781 0.108953i
\(523\) 13.5725 0.593482 0.296741 0.954958i \(-0.404100\pi\)
0.296741 + 0.954958i \(0.404100\pi\)
\(524\) −11.8322 + 7.77467i −0.516893 + 0.339638i
\(525\) 0 0
\(526\) 12.9399 23.9859i 0.564208 1.04584i
\(527\) 20.7862i 0.905462i
\(528\) −8.41767 3.63986i −0.366332 0.158405i
\(529\) 15.7862 0.686358
\(530\) 0 0
\(531\) 1.70727i 0.0740892i
\(532\) −13.8223 21.0361i −0.599275 0.912031i
\(533\) −56.6148 −2.45226
\(534\) −4.19656 2.26396i −0.181603 0.0979712i
\(535\) 0 0
\(536\) 0.978577 + 11.2713i 0.0422681 + 0.486846i
\(537\) 3.66442i 0.158132i
\(538\) −16.6142 + 30.7967i −0.716290 + 1.32774i
\(539\) 34.2927i 1.47709i
\(540\) 0 0
\(541\) 37.2860i 1.60305i 0.597961 + 0.801525i \(0.295978\pi\)
−0.597961 + 0.801525i \(0.704022\pi\)
\(542\) 34.3074 + 18.5082i 1.47363 + 0.794995i
\(543\) 6.62831i 0.284448i
\(544\) −10.4360 13.2285i −0.447438 0.567166i
\(545\) 0 0
\(546\) 15.6644 29.0361i 0.670375 1.24263i
\(547\) 0.200768 0.00858424 0.00429212 0.999991i \(-0.498634\pi\)
0.00429212 + 0.999991i \(0.498634\pi\)
\(548\) −25.0361 + 16.4507i −1.06949 + 0.702737i
\(549\) 4.58546i 0.195703i
\(550\) 0 0
\(551\) −5.37169 −0.228842
\(552\) −7.56825 + 0.657077i −0.322126 + 0.0279671i
\(553\) 4.78623i 0.203531i
\(554\) −25.2755 13.6357i −1.07385 0.579323i
\(555\) 0 0
\(556\) 7.76060 5.09931i 0.329123 0.216259i
\(557\) −9.21377 −0.390400 −0.195200 0.980763i \(-0.562536\pi\)
−0.195200 + 0.980763i \(0.562536\pi\)
\(558\) −8.68585 4.68585i −0.367701 0.198368i
\(559\) −46.6577 −1.97341
\(560\) 0 0
\(561\) −6.82908 −0.288324
\(562\) −13.4250 7.24254i −0.566300 0.305508i
\(563\) −36.7005 −1.54674 −0.773372 0.633953i \(-0.781431\pi\)
−0.773372 + 0.633953i \(0.781431\pi\)
\(564\) 12.1537 7.98592i 0.511764 0.336268i
\(565\) 0 0
\(566\) 24.8929 + 13.4292i 1.04633 + 0.564473i
\(567\) 4.68585i 0.196787i
\(568\) 0.143230 + 1.64973i 0.00600979 + 0.0692212i
\(569\) −13.4145 −0.562367 −0.281183 0.959654i \(-0.590727\pi\)
−0.281183 + 0.959654i \(0.590727\pi\)
\(570\) 0 0
\(571\) 18.6858i 0.781978i −0.920395 0.390989i \(-0.872133\pi\)
0.920395 0.390989i \(-0.127867\pi\)
\(572\) −19.0790 + 12.5363i −0.797731 + 0.524171i
\(573\) −8.00000 −0.334205
\(574\) −35.7795 + 66.3221i −1.49341 + 2.76823i
\(575\) 0 0
\(576\) −7.88030 + 1.37873i −0.328346 + 0.0574471i
\(577\) 2.78623i 0.115992i 0.998317 + 0.0579961i \(0.0184711\pi\)
−0.998317 + 0.0579961i \(0.981529\pi\)
\(578\) 10.1166 + 5.45769i 0.420794 + 0.227010i
\(579\) 1.21377i 0.0504425i
\(580\) 0 0
\(581\) 62.6577i 2.59948i
\(582\) −2.65708 + 4.92525i −0.110139 + 0.204158i
\(583\) 4.58546i 0.189910i
\(584\) 16.9070 1.46787i 0.699615 0.0607407i
\(585\) 0 0
\(586\) 27.2755 + 14.7146i 1.12674 + 0.607855i
\(587\) 27.3288 1.12798 0.563991 0.825781i \(-0.309265\pi\)
0.563991 + 0.825781i \(0.309265\pi\)
\(588\) −16.4271 25.0003i −0.677443 1.03100i
\(589\) 18.7434i 0.772308i
\(590\) 0 0
\(591\) 23.9572 0.985466
\(592\) −6.97437 + 16.1292i −0.286645 + 0.662904i
\(593\) 6.97858i 0.286576i −0.989681 0.143288i \(-0.954233\pi\)
0.989681 0.143288i \(-0.0457675\pi\)
\(594\) −1.53948 + 2.85363i −0.0631657 + 0.117086i
\(595\) 0 0
\(596\) 3.34292 2.19656i 0.136931 0.0899745i
\(597\) −0.350269 −0.0143356
\(598\) −8.97858 + 16.6430i −0.367161 + 0.680583i
\(599\) −36.4998 −1.49134 −0.745670 0.666315i \(-0.767870\pi\)
−0.745670 + 0.666315i \(0.767870\pi\)
\(600\) 0 0
\(601\) −15.5725 −0.635214 −0.317607 0.948222i \(-0.602879\pi\)
−0.317607 + 0.948222i \(0.602879\pi\)
\(602\) −29.4868 + 54.6577i −1.20179 + 2.22768i
\(603\) 4.00000 0.162893
\(604\) −9.17092 13.9572i −0.373160 0.567909i
\(605\) 0 0
\(606\) 1.34292 2.48929i 0.0545525 0.101120i
\(607\) 31.2285i 1.26752i 0.773528 + 0.633762i \(0.218490\pi\)
−0.773528 + 0.633762i \(0.781510\pi\)
\(608\) 9.41033 + 11.9284i 0.381639 + 0.483760i
\(609\) −9.37169 −0.379760
\(610\) 0 0
\(611\) 36.2008i 1.46453i
\(612\) −4.97858 + 3.27131i −0.201247 + 0.132235i
\(613\) −0.978577 −0.0395244 −0.0197622 0.999805i \(-0.506291\pi\)
−0.0197622 + 0.999805i \(0.506291\pi\)
\(614\) 33.0361 + 17.8223i 1.33323 + 0.719251i
\(615\) 0 0
\(616\) 2.62831 + 30.2730i 0.105898 + 1.21973i
\(617\) 32.9357i 1.32594i −0.748645 0.662971i \(-0.769295\pi\)
0.748645 0.662971i \(-0.230705\pi\)
\(618\) 9.83221 18.2253i 0.395510 0.733130i
\(619\) 3.35700i 0.134929i 0.997722 + 0.0674646i \(0.0214910\pi\)
−0.997722 + 0.0674646i \(0.978509\pi\)
\(620\) 0 0
\(621\) 2.68585i 0.107779i
\(622\) 15.1856 + 8.19235i 0.608888 + 0.328483i
\(623\) 15.7992i 0.632983i
\(624\) −7.90383 + 18.2787i −0.316406 + 0.731732i
\(625\) 0 0
\(626\) −10.7146 + 19.8610i −0.428242 + 0.793804i
\(627\) 6.15792 0.245924
\(628\) −24.5468 37.3576i −0.979525 1.49073i
\(629\) 13.0852i 0.521742i
\(630\) 0 0
\(631\) −27.7648 −1.10530 −0.552650 0.833414i \(-0.686383\pi\)
−0.552650 + 0.833414i \(0.686383\pi\)
\(632\) −0.249885 2.87819i −0.00993990 0.114488i
\(633\) 14.1004i 0.560440i
\(634\) −41.7324 22.5138i −1.65741 0.894139i
\(635\) 0 0
\(636\) 2.19656 + 3.34292i 0.0870992 + 0.132556i
\(637\) −74.4653 −2.95042
\(638\) 5.70727 + 3.07896i 0.225953 + 0.121897i
\(639\) 0.585462 0.0231605
\(640\) 0 0
\(641\) −21.1281 −0.834509 −0.417254 0.908790i \(-0.637008\pi\)
−0.417254 + 0.908790i \(0.637008\pi\)
\(642\) −14.1004 7.60688i −0.556498 0.300220i
\(643\) −29.2860 −1.15493 −0.577464 0.816416i \(-0.695957\pi\)
−0.577464 + 0.816416i \(0.695957\pi\)
\(644\) 13.8223 + 21.0361i 0.544677 + 0.828939i
\(645\) 0 0
\(646\) 9.95715 + 5.37169i 0.391759 + 0.211346i
\(647\) 15.6728i 0.616163i −0.951360 0.308082i \(-0.900313\pi\)
0.951360 0.308082i \(-0.0996870\pi\)
\(648\) 0.244644 + 2.81783i 0.00961054 + 0.110695i
\(649\) 3.91431 0.153650
\(650\) 0 0
\(651\) 32.7005i 1.28164i
\(652\) 1.50650 + 2.29273i 0.0589991 + 0.0897903i
\(653\) −17.5296 −0.685987 −0.342993 0.939338i \(-0.611441\pi\)
−0.342993 + 0.939338i \(0.611441\pi\)
\(654\) −6.29273 + 11.6644i −0.246065 + 0.456115i
\(655\) 0 0
\(656\) 18.0533 41.7507i 0.704864 1.63009i
\(657\) 6.00000i 0.234082i
\(658\) −42.4078 22.8782i −1.65323 0.891885i
\(659\) 23.8652i 0.929656i 0.885401 + 0.464828i \(0.153884\pi\)
−0.885401 + 0.464828i \(0.846116\pi\)
\(660\) 0 0
\(661\) 30.1579i 1.17301i −0.809947 0.586504i \(-0.800504\pi\)
0.809947 0.586504i \(-0.199496\pi\)
\(662\) 13.3331 24.7146i 0.518204 0.960561i
\(663\) 14.8291i 0.575914i
\(664\) 3.27131 + 37.6791i 0.126951 + 1.46223i
\(665\) 0 0
\(666\) 5.46787 + 2.94981i 0.211875 + 0.114303i
\(667\) 5.37169 0.207993
\(668\) 18.8396 12.3790i 0.728924 0.478959i
\(669\) 6.72869i 0.260146i
\(670\) 0 0
\(671\) −10.5132 −0.405859
\(672\) 16.4177 + 20.8108i 0.633326 + 0.802794i
\(673\) 18.0000i 0.693849i −0.937893 0.346925i \(-0.887226\pi\)
0.937893 0.346925i \(-0.112774\pi\)
\(674\) 4.81500 8.92525i 0.185467 0.343788i
\(675\) 0 0
\(676\) 12.9446 + 19.7002i 0.497868 + 0.757701i
\(677\) 9.61531 0.369546 0.184773 0.982781i \(-0.440845\pi\)
0.184773 + 0.982781i \(0.440845\pi\)
\(678\) −13.2713 + 24.6002i −0.509682 + 0.944763i
\(679\) 18.5426 0.711600
\(680\) 0 0
\(681\) 9.95715 0.381559
\(682\) 10.7434 19.9143i 0.411385 0.762558i
\(683\) −18.6283 −0.712792 −0.356396 0.934335i \(-0.615995\pi\)
−0.356396 + 0.934335i \(0.615995\pi\)
\(684\) 4.48929 2.94981i 0.171652 0.112789i
\(685\) 0 0
\(686\) −25.0361 + 46.4078i −0.955883 + 1.77186i
\(687\) 11.3288i 0.432222i
\(688\) 14.8782 34.4078i 0.567226 1.31179i
\(689\) 9.95715 0.379337
\(690\) 0 0
\(691\) 13.4292i 0.510872i −0.966826 0.255436i \(-0.917781\pi\)
0.966826 0.255436i \(-0.0822190\pi\)
\(692\) 11.8463 + 18.0288i 0.450328 + 0.685351i
\(693\) 10.7434 0.408107
\(694\) 0.978577 + 0.527923i 0.0371463 + 0.0200397i
\(695\) 0 0
\(696\) 5.63565 0.489289i 0.213619 0.0185464i
\(697\) 33.8715i 1.28297i
\(698\) 4.13481 7.66442i 0.156505 0.290103i
\(699\) 18.9786i 0.717836i
\(700\) 0 0
\(701\) 19.1709i 0.724076i 0.932163 + 0.362038i \(0.117919\pi\)
−0.932163 + 0.362038i \(0.882081\pi\)
\(702\) 6.19656 + 3.34292i 0.233874 + 0.126171i
\(703\) 11.7992i 0.445016i
\(704\) −3.16106 18.0674i −0.119137 0.680941i
\(705\) 0 0
\(706\) −14.5855 + 27.0361i −0.548931 + 1.01752i
\(707\) −9.37169 −0.352459
\(708\) 2.85363 1.87506i 0.107246 0.0704690i
\(709\) 15.4145i 0.578905i −0.957192 0.289453i \(-0.906527\pi\)
0.957192 0.289453i \(-0.0934732\pi\)
\(710\) 0 0
\(711\) −1.02142 −0.0383063
\(712\) −0.824865 9.50085i −0.0309131 0.356059i
\(713\) 18.7434i 0.701945i
\(714\) 17.3717 + 9.37169i 0.650119 + 0.350727i
\(715\) 0 0
\(716\) 6.12494 4.02456i 0.228900 0.150405i
\(717\) −2.62831 −0.0981559
\(718\) −0.728692 0.393115i −0.0271945 0.0146709i
\(719\) −20.7862 −0.775196 −0.387598 0.921829i \(-0.626695\pi\)
−0.387598 + 0.921829i \(0.626695\pi\)
\(720\) 0 0
\(721\) −68.6148 −2.55535
\(722\) 14.6697 + 7.91400i 0.545948 + 0.294529i
\(723\) 10.7862 0.401144
\(724\) 11.0790 7.27973i 0.411746 0.270549i
\(725\) 0 0
\(726\) 7.14847 + 3.85646i 0.265305 + 0.143127i
\(727\) 12.3012i 0.456224i −0.973635 0.228112i \(-0.926745\pi\)
0.973635 0.228112i \(-0.0732553\pi\)
\(728\) 65.7367 5.70727i 2.43636 0.211525i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 27.9143i 1.03245i
\(732\) −7.66442 + 5.03612i −0.283285 + 0.186140i
\(733\) 35.9227 1.32684 0.663418 0.748249i \(-0.269105\pi\)
0.663418 + 0.748249i \(0.269105\pi\)
\(734\) −0.325711 + 0.603749i −0.0120222 + 0.0222848i
\(735\) 0 0
\(736\) −9.41033 11.9284i −0.346869 0.439686i
\(737\) 9.17092i 0.337815i
\(738\) −14.1537 7.63565i −0.521005 0.281072i
\(739\) 29.0277i 1.06780i −0.845547 0.533900i \(-0.820726\pi\)
0.845547 0.533900i \(-0.179274\pi\)
\(740\) 0 0
\(741\) 13.3717i 0.491221i
\(742\) 6.29273 11.6644i 0.231013 0.428214i
\(743\) 2.60015i 0.0953904i 0.998862 + 0.0476952i \(0.0151876\pi\)
−0.998862 + 0.0476952i \(0.984812\pi\)
\(744\) −1.70727 19.6644i −0.0625915 0.720933i
\(745\) 0 0
\(746\) 15.4250 + 8.32150i 0.564750 + 0.304672i
\(747\) 13.3717 0.489245
\(748\) −7.50023 11.4145i −0.274236 0.417357i
\(749\) 53.0852i 1.93969i
\(750\) 0 0
\(751\) −10.8929 −0.397487 −0.198744 0.980052i \(-0.563686\pi\)
−0.198744 + 0.980052i \(0.563686\pi\)
\(752\) 26.6963 + 11.5437i 0.973515 + 0.420955i
\(753\) 30.9933i 1.12946i
\(754\) 6.68585 12.3931i 0.243484 0.451331i
\(755\) 0 0
\(756\) 7.83221 5.14637i 0.284855 0.187172i
\(757\) 34.3503 1.24848 0.624241 0.781232i \(-0.285408\pi\)
0.624241 + 0.781232i \(0.285408\pi\)
\(758\) −17.4679 + 32.3790i −0.634461 + 1.17606i
\(759\) −6.15792 −0.223518
\(760\) 0 0
\(761\) −19.0852 −0.691839 −0.345920 0.938264i \(-0.612433\pi\)
−0.345920 + 0.938264i \(0.612433\pi\)
\(762\) 4.46052 8.26817i 0.161588 0.299524i
\(763\) 43.9143 1.58980
\(764\) −8.78623 13.3717i −0.317875 0.483771i
\(765\) 0 0
\(766\) −4.48929 + 8.32150i −0.162205 + 0.300668i
\(767\) 8.49977i 0.306909i
\(768\) −10.9593 11.6574i −0.395458 0.420650i
\(769\) −31.8715 −1.14931 −0.574657 0.818394i \(-0.694865\pi\)
−0.574657 + 0.818394i \(0.694865\pi\)
\(770\) 0 0
\(771\) 20.9357i 0.753982i
\(772\) −2.02877 + 1.33306i −0.0730170 + 0.0479778i
\(773\) 11.9572 0.430069 0.215034 0.976606i \(-0.431014\pi\)
0.215034 + 0.976606i \(0.431014\pi\)
\(774\) −11.6644 6.29273i −0.419269 0.226188i
\(775\) 0 0
\(776\) −11.1506 + 0.968095i −0.400282 + 0.0347526i
\(777\) 20.5855i 0.738499i
\(778\) 20.0863 37.2327i 0.720129 1.33486i
\(779\) 30.5426i 1.09430i
\(780\) 0 0
\(781\) 1.34231i 0.0480315i
\(782\) −9.95715 5.37169i −0.356067 0.192091i
\(783\) 2.00000i 0.0714742i
\(784\) 23.7455 54.9146i 0.848053 1.96124i
\(785\) 0 0
\(786\) −4.75325 + 8.81079i −0.169543 + 0.314270i
\(787\) 33.0852 1.17936 0.589681 0.807637i \(-0.299254\pi\)
0.589681 + 0.807637i \(0.299254\pi\)
\(788\) 26.3116 + 40.0435i 0.937313 + 1.42649i
\(789\) 19.2713i 0.686077i
\(790\) 0 0
\(791\) 92.6148 3.29300
\(792\) −6.46052 + 0.560904i −0.229565 + 0.0199308i
\(793\) 22.8291i 0.810684i
\(794\) 12.1537 + 6.55669i 0.431319 + 0.232688i
\(795\) 0 0
\(796\) −0.384694 0.585462i −0.0136351 0.0207511i
\(797\) −10.0000 −0.354218 −0.177109 0.984191i \(-0.556675\pi\)
−0.177109 + 0.984191i \(0.556675\pi\)
\(798\) −15.6644 8.45065i −0.554515 0.299150i
\(799\) 21.6582 0.766210
\(800\) 0 0
\(801\) −3.37169 −0.119133
\(802\) −8.19656 4.42188i −0.289431 0.156142i
\(803\) 13.7564 0.485452
\(804\) 4.39312 + 6.68585i 0.154933 + 0.235792i
\(805\) 0 0
\(806\) −43.2432 23.3288i −1.52318 0.821724i
\(807\) 24.7434i 0.871008i
\(808\) 5.63565 0.489289i 0.198262 0.0172131i
\(809\) 30.6148 1.07636 0.538180 0.842830i \(-0.319112\pi\)
0.538180 + 0.842830i \(0.319112\pi\)
\(810\) 0 0
\(811\) 53.9290i 1.89370i 0.321670 + 0.946852i \(0.395756\pi\)
−0.321670 + 0.946852i \(0.604244\pi\)
\(812\) −10.2927 15.6644i −0.361204 0.549713i
\(813\) 27.5640 0.966713
\(814\) −6.76312 + 12.5363i −0.237047 + 0.439399i
\(815\) 0 0
\(816\) −10.9357 4.72869i −0.382827 0.165537i
\(817\) 25.1709i 0.880619i
\(818\) 32.2541 + 17.4005i 1.12774 + 0.608393i
\(819\) 23.3288i 0.815176i
\(820\) 0 0
\(821\) 12.6577i 0.441757i 0.975301 + 0.220878i \(0.0708924\pi\)
−0.975301 + 0.220878i \(0.929108\pi\)
\(822\) −10.0575 + 18.6430i −0.350797 + 0.650249i
\(823\) 19.8139i 0.690670i −0.938479 0.345335i \(-0.887765\pi\)
0.938479 0.345335i \(-0.112235\pi\)
\(824\) 41.2614 3.58233i 1.43741 0.124796i
\(825\) 0 0
\(826\) −9.95715 5.37169i −0.346454 0.186905i
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) −4.48929 + 2.94981i −0.156014 + 0.102513i
\(829\) 41.3717i 1.43690i 0.695580 + 0.718449i \(0.255148\pi\)
−0.695580 + 0.718449i \(0.744852\pi\)
\(830\) 0 0
\(831\) −20.3074 −0.704457
\(832\) −39.2327 + 6.86412i −1.36015 + 0.237970i
\(833\) 44.5510i 1.54360i
\(834\) 3.11760 5.77888i 0.107954 0.200106i
\(835\) 0 0
\(836\) 6.76312 + 10.2927i 0.233907 + 0.355982i
\(837\) −6.97858 −0.241215
\(838\) −8.22533 + 15.2467i −0.284139 + 0.526690i
\(839\) −20.9013 −0.721593 −0.360797 0.932645i \(-0.617495\pi\)
−0.360797 + 0.932645i \(0.617495\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 3.13650 5.81392i 0.108091 0.200361i
\(843\) −10.7862 −0.371498
\(844\) −23.5682 + 15.4862i −0.811253 + 0.533055i
\(845\) 0 0
\(846\) 4.88240 9.05019i 0.167860 0.311152i
\(847\) 26.9126i 0.924728i
\(848\) −3.17513 + 7.34292i −0.109035 + 0.252157i
\(849\) 20.0000 0.686398
\(850\) 0 0
\(851\) 11.7992i 0.404472i
\(852\) 0.643000 + 0.978577i 0.0220288 + 0.0335255i
\(853\) −6.63673 −0.227237 −0.113619 0.993524i \(-0.536244\pi\)
−0.113619 + 0.993524i \(0.536244\pi\)
\(854\) 26.7434 + 14.4275i 0.915140 + 0.493700i
\(855\) 0 0
\(856\) −2.77154 31.9227i −0.0947292 1.09110i
\(857\) 9.80765i 0.335023i −0.985870 0.167512i \(-0.946427\pi\)
0.985870 0.167512i \(-0.0535731\pi\)
\(858\) −7.66442 + 14.2070i −0.261659 + 0.485020i
\(859\) 39.3864i 1.34385i −0.740621 0.671923i \(-0.765469\pi\)
0.740621 0.671923i \(-0.234531\pi\)
\(860\) 0 0
\(861\) 53.2860i 1.81598i
\(862\) 0.728692 + 0.393115i 0.0248193 + 0.0133896i
\(863\) 7.07054i 0.240684i 0.992732 + 0.120342i \(0.0383991\pi\)
−0.992732 + 0.120342i \(0.961601\pi\)
\(864\) −4.44120 + 3.50367i −0.151093 + 0.119197i
\(865\) 0 0
\(866\) 14.7146 27.2755i 0.500023 0.926860i
\(867\) 8.12808 0.276044
\(868\) −54.6577 + 35.9143i −1.85520 + 1.21901i
\(869\) 2.34185i 0.0794417i
\(870\) 0 0
\(871\) 19.9143 0.674771
\(872\) −26.4078 + 2.29273i −0.894281 + 0.0776417i
\(873\) 3.95715i 0.133929i
\(874\) 8.97858 + 4.84377i 0.303705 + 0.163843i
\(875\) 0 0
\(876\) 10.0288 6.58967i 0.338841 0.222644i
\(877\) 23.1365 0.781264 0.390632 0.920547i \(-0.372256\pi\)
0.390632 + 0.920547i \(0.372256\pi\)
\(878\) 2.97858 + 1.60688i 0.100522 + 0.0542297i
\(879\) 21.9143 0.739151
\(880\) 0 0
\(881\) 28.4569 0.958738 0.479369 0.877613i \(-0.340866\pi\)
0.479369 + 0.877613i \(0.340866\pi\)
\(882\) −18.6163 10.0432i −0.626845 0.338171i
\(883\) 41.2003 1.38650 0.693250 0.720697i \(-0.256178\pi\)
0.693250 + 0.720697i \(0.256178\pi\)
\(884\) −24.7862 + 16.2865i −0.833651 + 0.547773i
\(885\) 0 0
\(886\) 25.7648 + 13.8996i 0.865586 + 0.466967i
\(887\) 3.55777i 0.119458i 0.998215 + 0.0597291i \(0.0190237\pi\)
−0.998215 + 0.0597291i \(0.980976\pi\)
\(888\) 1.07475 + 12.3790i 0.0360663 + 0.415413i
\(889\) −31.1281 −1.04400
\(890\) 0 0
\(891\) 2.29273i 0.0768094i
\(892\) 11.2467 7.38998i 0.376569 0.247435i
\(893\) −19.5296 −0.653534
\(894\) 1.34292 2.48929i 0.0449141 0.0832543i
\(895\) 0 0
\(896\) −16.7533 + 50.2976i −0.559687 + 1.68032i
\(897\) 13.3717i 0.446468i
\(898\) 47.1898 + 25.4580i 1.57474 + 0.849544i
\(899\) 13.9572i 0.465497i
\(900\) 0 0
\(901\) 5.95715i 0.198462i
\(902\) 17.5065 32.4507i 0.582903 1.08049i
\(903\) 43.9143i 1.46138i
\(904\) −55.6938 + 4.83535i −1.85235 + 0.160821i
\(905\) 0 0
\(906\) −10.3931 5.60688i −0.345288 0.186276i
\(907\) −50.6577 −1.68206 −0.841031 0.540988i \(-0.818051\pi\)
−0.841031 + 0.540988i \(0.818051\pi\)
\(908\) 10.9357 + 16.6430i 0.362915 + 0.552317i
\(909\) 2.00000i 0.0663358i
\(910\) 0 0
\(911\) −26.4569 −0.876557 −0.438279 0.898839i \(-0.644412\pi\)
−0.438279 + 0.898839i \(0.644412\pi\)
\(912\) 9.86098 + 4.26396i 0.326530 + 0.141194i
\(913\) 30.6577i 1.01462i
\(914\) 25.9859 48.1684i 0.859538 1.59327i
\(915\) 0 0
\(916\) −18.9357 + 12.4422i −0.625654 + 0.411103i
\(917\) 33.1709 1.09540
\(918\) −2.00000 + 3.70727i −0.0660098 + 0.122358i
\(919\) −29.8077 −0.983264 −0.491632 0.870803i \(-0.663599\pi\)
−0.491632 + 0.870803i \(0.663599\pi\)
\(920\) 0 0
\(921\) 26.5426 0.874609
\(922\) 3.18500 5.90383i 0.104892 0.194432i
\(923\) 2.91477 0.0959407
\(924\) 11.7992 + 17.9572i 0.388166 + 0.590747i
\(925\) 0 0
\(926\) −10.2829 + 19.0607i −0.337916 + 0.626373i
\(927\) 14.6430i 0.480939i
\(928\) 7.00735 + 8.88240i 0.230027 + 0.291579i
\(929\) 8.82908 0.289673 0.144836 0.989456i \(-0.453734\pi\)
0.144836 + 0.989456i \(0.453734\pi\)
\(930\) 0 0
\(931\) 40.1726i 1.31660i
\(932\) 31.7220 20.8438i 1.03909 0.682760i
\(933\) 12.2008 0.399435
\(934\) −38.0147 20.5082i −1.24388 0.671049i
\(935\) 0 0
\(936\) 1.21798 + 14.0288i 0.0398109 + 0.458545i
\(937\) 42.2302i 1.37960i 0.724000 + 0.689799i \(0.242301\pi\)
−0.724000 + 0.689799i \(0.757699\pi\)
\(938\) 12.5855 23.3288i 0.410930 0.761714i
\(939\) 15.9572i 0.520742i
\(940\) 0 0
\(941\) 32.7434i 1.06740i 0.845673 + 0.533702i \(0.179200\pi\)
−0.845673 + 0.533702i \(0.820800\pi\)
\(942\) −27.8181 15.0073i −0.906364 0.488966i
\(943\) 30.5426i 0.994604i
\(944\) 6.26817 + 2.71040i 0.204012 + 0.0882162i
\(945\) 0 0
\(946\) 14.4275 26.7434i 0.469080 0.869502i
\(947\) −15.9143 −0.517146 −0.258573 0.965992i \(-0.583252\pi\)
−0.258573 + 0.965992i \(0.583252\pi\)
\(948\) −1.12181 1.70727i −0.0364346 0.0554495i
\(949\) 29.8715i 0.969669i
\(950\) 0 0
\(951\) −33.5296 −1.08727
\(952\) 3.41454 + 39.3288i 0.110666 + 1.27466i
\(953\) 55.6791i 1.80362i 0.432129 + 0.901812i \(0.357762\pi\)
−0.432129 + 0.901812i \(0.642238\pi\)
\(954\) 2.48929 + 1.34292i 0.0805937 + 0.0434787i
\(955\) 0 0
\(956\) −2.88661 4.39312i −0.0933598 0.142083i
\(957\) 4.58546 0.148227
\(958\) −4.14323 2.23519i −0.133862 0.0722158i
\(959\) 70.1873 2.26647
\(960\) 0 0
\(961\) 17.7005 0.570985
\(962\) 27.2222 + 14.6858i 0.877679 + 0.473491i
\(963\) −11.3288 −0.365067
\(964\) 11.8463 + 18.0288i 0.381543 + 0.580668i
\(965\) 0 0
\(966\) 15.6644 + 8.45065i 0.503995 + 0.271895i
\(967\) 54.7581i 1.76090i 0.474138 + 0.880451i \(0.342760\pi\)
−0.474138 + 0.880451i \(0.657240\pi\)
\(968\) 1.40509 + 16.1839i 0.0451612 + 0.520169i
\(969\) 8.00000 0.256997
\(970\) 0 0
\(971\) 30.3221i 0.973083i −0.873657 0.486542i \(-0.838258\pi\)
0.873657 0.486542i \(-0.161742\pi\)
\(972\) 1.09828 + 1.67146i 0.0352273 + 0.0536122i
\(973\) −21.7564 −0.697478
\(974\) −8.12494 + 15.0607i −0.260340 + 0.482575i
\(975\) 0 0
\(976\) −16.8353 7.27973i −0.538886 0.233018i
\(977\) 29.7220i 0.950890i 0.879746 + 0.475445i \(0.157713\pi\)
−0.879746 + 0.475445i \(0.842287\pi\)
\(978\) 1.70727 + 0.921039i 0.0545924 + 0.0294516i
\(979\) 7.73038i 0.247064i
\(980\) 0 0
\(981\) 9.37169i 0.299215i
\(982\) −9.59702 + 17.7894i −0.306253 + 0.567681i
\(983\) 49.5443i 1.58022i −0.612966 0.790109i \(-0.710024\pi\)
0.612966 0.790109i \(-0.289976\pi\)
\(984\) −2.78202 32.0435i −0.0886875 1.02151i
\(985\) 0 0
\(986\) 7.41454 + 4.00000i 0.236127 + 0.127386i
\(987\) −34.0722 −1.08453
\(988\) 22.3503 14.6858i 0.711057 0.467219i
\(989\) 25.1709i 0.800389i
\(990\) 0 0
\(991\) 19.0937 0.606530 0.303265 0.952906i \(-0.401923\pi\)
0.303265 + 0.952906i \(0.401923\pi\)
\(992\) 30.9933 24.4507i 0.984037 0.776309i
\(993\) 19.8568i 0.630136i
\(994\) 1.84208 3.41454i 0.0584271 0.108303i
\(995\) 0 0
\(996\) 14.6858 + 22.3503i 0.465339 + 0.708195i
\(997\) 38.8500 1.23039 0.615197 0.788374i \(-0.289077\pi\)
0.615197 + 0.788374i \(0.289077\pi\)
\(998\) −6.19656 + 11.4862i −0.196149 + 0.363588i
\(999\) 4.39312 0.138992
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.2.d.f.349.6 6
3.2 odd 2 1800.2.d.r.1549.1 6
4.3 odd 2 2400.2.d.e.49.6 6
5.2 odd 4 120.2.k.b.61.2 yes 6
5.3 odd 4 600.2.k.c.301.5 6
5.4 even 2 600.2.d.e.349.1 6
8.3 odd 2 2400.2.d.f.49.6 6
8.5 even 2 600.2.d.e.349.2 6
12.11 even 2 7200.2.d.r.2449.6 6
15.2 even 4 360.2.k.f.181.5 6
15.8 even 4 1800.2.k.p.901.2 6
15.14 odd 2 1800.2.d.q.1549.6 6
20.3 even 4 2400.2.k.c.1201.3 6
20.7 even 4 480.2.k.b.241.4 6
20.19 odd 2 2400.2.d.f.49.1 6
24.5 odd 2 1800.2.d.q.1549.5 6
24.11 even 2 7200.2.d.q.2449.6 6
40.3 even 4 2400.2.k.c.1201.6 6
40.13 odd 4 600.2.k.c.301.6 6
40.19 odd 2 2400.2.d.e.49.1 6
40.27 even 4 480.2.k.b.241.1 6
40.29 even 2 inner 600.2.d.f.349.5 6
40.37 odd 4 120.2.k.b.61.1 6
60.23 odd 4 7200.2.k.p.3601.6 6
60.47 odd 4 1440.2.k.f.721.4 6
60.59 even 2 7200.2.d.q.2449.1 6
80.27 even 4 3840.2.a.br.1.3 3
80.37 odd 4 3840.2.a.bp.1.1 3
80.67 even 4 3840.2.a.bo.1.3 3
80.77 odd 4 3840.2.a.bq.1.1 3
120.29 odd 2 1800.2.d.r.1549.2 6
120.53 even 4 1800.2.k.p.901.1 6
120.59 even 2 7200.2.d.r.2449.1 6
120.77 even 4 360.2.k.f.181.6 6
120.83 odd 4 7200.2.k.p.3601.5 6
120.107 odd 4 1440.2.k.f.721.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.k.b.61.1 6 40.37 odd 4
120.2.k.b.61.2 yes 6 5.2 odd 4
360.2.k.f.181.5 6 15.2 even 4
360.2.k.f.181.6 6 120.77 even 4
480.2.k.b.241.1 6 40.27 even 4
480.2.k.b.241.4 6 20.7 even 4
600.2.d.e.349.1 6 5.4 even 2
600.2.d.e.349.2 6 8.5 even 2
600.2.d.f.349.5 6 40.29 even 2 inner
600.2.d.f.349.6 6 1.1 even 1 trivial
600.2.k.c.301.5 6 5.3 odd 4
600.2.k.c.301.6 6 40.13 odd 4
1440.2.k.f.721.1 6 120.107 odd 4
1440.2.k.f.721.4 6 60.47 odd 4
1800.2.d.q.1549.5 6 24.5 odd 2
1800.2.d.q.1549.6 6 15.14 odd 2
1800.2.d.r.1549.1 6 3.2 odd 2
1800.2.d.r.1549.2 6 120.29 odd 2
1800.2.k.p.901.1 6 120.53 even 4
1800.2.k.p.901.2 6 15.8 even 4
2400.2.d.e.49.1 6 40.19 odd 2
2400.2.d.e.49.6 6 4.3 odd 2
2400.2.d.f.49.1 6 20.19 odd 2
2400.2.d.f.49.6 6 8.3 odd 2
2400.2.k.c.1201.3 6 20.3 even 4
2400.2.k.c.1201.6 6 40.3 even 4
3840.2.a.bo.1.3 3 80.67 even 4
3840.2.a.bp.1.1 3 80.37 odd 4
3840.2.a.bq.1.1 3 80.77 odd 4
3840.2.a.br.1.3 3 80.27 even 4
7200.2.d.q.2449.1 6 60.59 even 2
7200.2.d.q.2449.6 6 24.11 even 2
7200.2.d.r.2449.1 6 120.59 even 2
7200.2.d.r.2449.6 6 12.11 even 2
7200.2.k.p.3601.5 6 120.83 odd 4
7200.2.k.p.3601.6 6 60.23 odd 4