Properties

Label 120.6.f.a
Level 120120
Weight 66
Character orbit 120.f
Analytic conductor 19.24619.246
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,6,Mod(49,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 120=2335 120 = 2^{3} \cdot 3 \cdot 5
Weight: k k == 6 6
Character orbit: [χ][\chi] == 120.f (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.246058377619.2460583776
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.25787221056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6+61x4+852x2+576 x^{6} + 61x^{4} + 852x^{2} + 576 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2452 2^{4}\cdot 5^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+9β1q3+(2β5+β39β1+8)q5+(3β5+3β4++38β1)q781q9+(9β5+9β4+102)q11+(2β5+2β4+30β1)q13++(729β5729β4++8262)q99+O(q100) q + 9 \beta_1 q^{3} + ( - 2 \beta_{5} + \beta_{3} - 9 \beta_1 + 8) q^{5} + ( - 3 \beta_{5} + 3 \beta_{4} + \cdots + 38 \beta_1) q^{7} - 81 q^{9} + (9 \beta_{5} + 9 \beta_{4} + \cdots - 102) q^{11} + ( - 2 \beta_{5} + 2 \beta_{4} + \cdots - 30 \beta_1) q^{13}+ \cdots + ( - 729 \beta_{5} - 729 \beta_{4} + \cdots + 8262) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+50q5486q9664q11+540q15+288q191872q21+3750q251892q2910248q3118880q35+1584q391324q414050q45+28410q49+20088q51++53784q99+O(q100) 6 q + 50 q^{5} - 486 q^{9} - 664 q^{11} + 540 q^{15} + 288 q^{19} - 1872 q^{21} + 3750 q^{25} - 1892 q^{29} - 10248 q^{31} - 18880 q^{35} + 1584 q^{39} - 1324 q^{41} - 4050 q^{45} + 28410 q^{49} + 20088 q^{51}+ \cdots + 53784 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6+61x4+852x2+576 x^{6} + 61x^{4} + 852x^{2} + 576 : Copy content Toggle raw display

β1\beta_{1}== (ν5+85ν3+1596ν)/1296 ( \nu^{5} + 85\nu^{3} + 1596\nu ) / 1296 Copy content Toggle raw display
β2\beta_{2}== (7ν528ν4379ν31516ν22748ν11856)/432 ( -7\nu^{5} - 28\nu^{4} - 379\nu^{3} - 1516\nu^{2} - 2748\nu - 11856 ) / 432 Copy content Toggle raw display
β3\beta_{3}== (7ν5+28ν4379ν3+1516ν22748ν+11856)/432 ( -7\nu^{5} + 28\nu^{4} - 379\nu^{3} + 1516\nu^{2} - 2748\nu + 11856 ) / 432 Copy content Toggle raw display
β4\beta_{4}== (65ν5108ν4+3581ν33996ν2+40884ν9072)/1296 ( 65\nu^{5} - 108\nu^{4} + 3581\nu^{3} - 3996\nu^{2} + 40884\nu - 9072 ) / 1296 Copy content Toggle raw display
β5\beta_{5}== (65ν5108ν43581ν33996ν240884ν9072)/1296 ( -65\nu^{5} - 108\nu^{4} - 3581\nu^{3} - 3996\nu^{2} - 40884\nu - 9072 ) / 1296 Copy content Toggle raw display
ν\nu== (β5+β4+3β3+3β24β1)/20 ( -\beta_{5} + \beta_{4} + 3\beta_{3} + 3\beta_{2} - 4\beta_1 ) / 20 Copy content Toggle raw display
ν2\nu^{2}== (7β5+7β4+9β39β2396)/20 ( 7\beta_{5} + 7\beta_{4} + 9\beta_{3} - 9\beta_{2} - 396 ) / 20 Copy content Toggle raw display
ν3\nu^{3}== (39β539β497β397β2+996β1)/20 ( 39\beta_{5} - 39\beta_{4} - 97\beta_{3} - 97\beta_{2} + 996\beta_1 ) / 20 Copy content Toggle raw display
ν4\nu^{4}== (379β5379β4333β3+333β2+12972)/20 ( -379\beta_{5} - 379\beta_{4} - 333\beta_{3} + 333\beta_{2} + 12972 ) / 20 Copy content Toggle raw display
ν5\nu^{5}== (1719β5+1719β4+3457β3+3457β252356β1)/20 ( -1719\beta_{5} + 1719\beta_{4} + 3457\beta_{3} + 3457\beta_{2} - 52356\beta_1 ) / 20 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/120Z)×\left(\mathbb{Z}/120\mathbb{Z}\right)^\times.

nn 3131 4141 6161 9797
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
4.49053i
6.33429i
0.843753i
4.49053i
6.33429i
0.843753i
0 9.00000i 0 −51.5439 + 21.6386i 0 21.3742i 0 −81.0000 0
49.2 0 9.00000i 0 33.8706 + 44.4723i 0 85.8595i 0 −81.0000 0
49.3 0 9.00000i 0 42.6733 36.1108i 0 168.485i 0 −81.0000 0
49.4 0 9.00000i 0 −51.5439 21.6386i 0 21.3742i 0 −81.0000 0
49.5 0 9.00000i 0 33.8706 44.4723i 0 85.8595i 0 −81.0000 0
49.6 0 9.00000i 0 42.6733 + 36.1108i 0 168.485i 0 −81.0000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 120.6.f.a 6
3.b odd 2 1 360.6.f.a 6
4.b odd 2 1 240.6.f.e 6
5.b even 2 1 inner 120.6.f.a 6
5.c odd 4 1 600.6.a.r 3
5.c odd 4 1 600.6.a.s 3
12.b even 2 1 720.6.f.l 6
15.d odd 2 1 360.6.f.a 6
20.d odd 2 1 240.6.f.e 6
60.h even 2 1 720.6.f.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.6.f.a 6 1.a even 1 1 trivial
120.6.f.a 6 5.b even 2 1 inner
240.6.f.e 6 4.b odd 2 1
240.6.f.e 6 20.d odd 2 1
360.6.f.a 6 3.b odd 2 1
360.6.f.a 6 15.d odd 2 1
600.6.a.r 3 5.c odd 4 1
600.6.a.s 3 5.c odd 4 1
720.6.f.l 6 12.b even 2 1
720.6.f.l 6 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T76+36216T74+225603600T72+95604640000 T_{7}^{6} + 36216T_{7}^{4} + 225603600T_{7}^{2} + 95604640000 acting on S6new(120,[χ])S_{6}^{\mathrm{new}}(120, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 (T2+81)3 (T^{2} + 81)^{3} Copy content Toggle raw display
55 T6++30517578125 T^{6} + \cdots + 30517578125 Copy content Toggle raw display
77 T6++95604640000 T^{6} + \cdots + 95604640000 Copy content Toggle raw display
1111 (T3+332T2++751600)2 (T^{3} + 332 T^{2} + \cdots + 751600)^{2} Copy content Toggle raw display
1313 T6++743071584256 T^{6} + \cdots + 743071584256 Copy content Toggle raw display
1717 T6++31 ⁣ ⁣04 T^{6} + \cdots + 31\!\cdots\!04 Copy content Toggle raw display
1919 (T3144T2++2584131584)2 (T^{3} - 144 T^{2} + \cdots + 2584131584)^{2} Copy content Toggle raw display
2323 T6++21 ⁣ ⁣24 T^{6} + \cdots + 21\!\cdots\!24 Copy content Toggle raw display
2929 (T3+946T2++37303134464)2 (T^{3} + 946 T^{2} + \cdots + 37303134464)^{2} Copy content Toggle raw display
3131 (T3+5124T2+71486323200)2 (T^{3} + 5124 T^{2} + \cdots - 71486323200)^{2} Copy content Toggle raw display
3737 T6++54 ⁣ ⁣36 T^{6} + \cdots + 54\!\cdots\!36 Copy content Toggle raw display
4141 (T3+662T2++289547160040)2 (T^{3} + 662 T^{2} + \cdots + 289547160040)^{2} Copy content Toggle raw display
4343 T6++40 ⁣ ⁣96 T^{6} + \cdots + 40\!\cdots\!96 Copy content Toggle raw display
4747 T6++29 ⁣ ⁣00 T^{6} + \cdots + 29\!\cdots\!00 Copy content Toggle raw display
5353 T6++15 ⁣ ⁣00 T^{6} + \cdots + 15\!\cdots\!00 Copy content Toggle raw display
5959 (T3+6990217203600)2 (T^{3} + \cdots - 6990217203600)^{2} Copy content Toggle raw display
6161 (T3+30927698302664)2 (T^{3} + \cdots - 30927698302664)^{2} Copy content Toggle raw display
6767 T6++34 ⁣ ⁣56 T^{6} + \cdots + 34\!\cdots\!56 Copy content Toggle raw display
7171 (T3+37186025753600)2 (T^{3} + \cdots - 37186025753600)^{2} Copy content Toggle raw display
7373 T6++20 ⁣ ⁣00 T^{6} + \cdots + 20\!\cdots\!00 Copy content Toggle raw display
7979 (T3++4303737800704)2 (T^{3} + \cdots + 4303737800704)^{2} Copy content Toggle raw display
8383 T6++33 ⁣ ⁣04 T^{6} + \cdots + 33\!\cdots\!04 Copy content Toggle raw display
8989 (T3++11306161037592)2 (T^{3} + \cdots + 11306161037592)^{2} Copy content Toggle raw display
9797 T6++34 ⁣ ⁣24 T^{6} + \cdots + 34\!\cdots\!24 Copy content Toggle raw display
show more
show less