Properties

Label 600.6.a.r
Level $600$
Weight $6$
Character orbit 600.a
Self dual yes
Analytic conductor $96.230$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,6,Mod(1,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.2302918878\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.20073.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 30x - 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 9 q^{3} + ( - 3 \beta_{2} - 2 \beta_1 + 33) q^{7} + 81 q^{9} + ( - 4 \beta_{2} - 9 \beta_1 - 115) q^{11} + (2 \beta_{2} - 3 \beta_1 + 29) q^{13} + (16 \beta_{2} + 23 \beta_1 - 359) q^{17} + (20 \beta_{2} + 64 \beta_1 - 20) q^{19}+ \cdots + ( - 324 \beta_{2} - 729 \beta_1 - 9315) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 27 q^{3} + 104 q^{7} + 243 q^{9} - 332 q^{11} + 88 q^{13} - 1116 q^{17} - 144 q^{19} - 936 q^{21} + 2868 q^{23} - 2187 q^{27} + 946 q^{29} - 5124 q^{31} + 2988 q^{33} - 7808 q^{37} - 792 q^{39} - 662 q^{41}+ \cdots - 26892 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 30x - 24 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{2} + 9\nu + 17 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 3\nu^{2} - 7\nu - 59 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 3\beta _1 + 8 ) / 20 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 9\beta_{2} + 7\beta _1 + 412 ) / 20 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6.33429
−4.49053
−0.843753
0 −9.00000 0 0 0 −85.8595 0 81.0000 0
1.2 0 −9.00000 0 0 0 21.3742 0 81.0000 0
1.3 0 −9.00000 0 0 0 168.485 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.6.a.r 3
5.b even 2 1 600.6.a.s 3
5.c odd 4 2 120.6.f.a 6
15.e even 4 2 360.6.f.a 6
20.e even 4 2 240.6.f.e 6
60.l odd 4 2 720.6.f.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.6.f.a 6 5.c odd 4 2
240.6.f.e 6 20.e even 4 2
360.6.f.a 6 15.e even 4 2
600.6.a.r 3 1.a even 1 1 trivial
600.6.a.s 3 5.b even 2 1
720.6.f.l 6 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{3} - 104T_{7}^{2} - 12700T_{7} + 309200 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(600))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 9)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 104 T^{2} + \cdots + 309200 \) Copy content Toggle raw display
$11$ \( T^{3} + 332 T^{2} + \cdots + 751600 \) Copy content Toggle raw display
$13$ \( T^{3} - 88 T^{2} + \cdots - 862016 \) Copy content Toggle raw display
$17$ \( T^{3} + 1116 T^{2} + \cdots - 563332752 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 2584131584 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 14809498432 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 37303134464 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 71486323200 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 23317590944 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 289547160040 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 202238316864 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 5434818969600 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 1233623106640 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 6990217203600 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 30927698302664 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 186009692416 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 37186025753600 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 144372500393600 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 4303737800704 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 58214767068352 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 11306161037592 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 591535197394432 \) Copy content Toggle raw display
show more
show less