Properties

Label 1200.3.l.u.401.4
Level $1200$
Weight $3$
Character 1200.401
Analytic conductor $32.698$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,3,Mod(401,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.401");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.6976317232\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 401.4
Root \(1.58114 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1200.401
Dual form 1200.3.l.u.401.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.58114 + 1.52896i) q^{3} -7.48683 q^{7} +(4.32456 + 7.89292i) q^{9} -8.48528i q^{11} +10.0000 q^{13} +30.3870i q^{17} -26.9737 q^{19} +(-19.3246 - 11.4471i) q^{21} +9.17377i q^{23} +(-0.905694 + 26.9848i) q^{27} -26.8328i q^{29} -8.00000 q^{31} +(12.9737 - 21.9017i) q^{33} -15.9473 q^{37} +(25.8114 + 15.2896i) q^{39} +47.3575i q^{41} -14.4605 q^{43} +45.8688i q^{47} +7.05267 q^{49} +(-46.4605 + 78.4330i) q^{51} +30.3870i q^{53} +(-69.6228 - 41.2417i) q^{57} +24.0789i q^{59} -53.9473 q^{61} +(-32.3772 - 59.0930i) q^{63} -110.460 q^{67} +(-14.0263 + 23.6788i) q^{69} -15.5936i q^{71} -87.9473 q^{73} +63.5279i q^{77} +46.9737 q^{79} +(-43.5964 + 68.2668i) q^{81} +26.1443i q^{83} +(41.0263 - 69.2592i) q^{87} +60.7739i q^{89} -74.8683 q^{91} +(-20.6491 - 12.2317i) q^{93} -36.0527 q^{97} +(66.9737 - 36.6951i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 8 q^{7} - 8 q^{9} + 40 q^{13} - 32 q^{19} - 52 q^{21} + 28 q^{27} - 32 q^{31} - 24 q^{33} + 88 q^{37} + 40 q^{39} + 56 q^{43} + 180 q^{49} - 72 q^{51} - 152 q^{57} - 64 q^{61} - 256 q^{63}+ \cdots + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.58114 + 1.52896i 0.860380 + 0.509654i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −7.48683 −1.06955 −0.534774 0.844995i \(-0.679603\pi\)
−0.534774 + 0.844995i \(0.679603\pi\)
\(8\) 0 0
\(9\) 4.32456 + 7.89292i 0.480506 + 0.876991i
\(10\) 0 0
\(11\) 8.48528i 0.771389i −0.922627 0.385695i \(-0.873962\pi\)
0.922627 0.385695i \(-0.126038\pi\)
\(12\) 0 0
\(13\) 10.0000 0.769231 0.384615 0.923077i \(-0.374334\pi\)
0.384615 + 0.923077i \(0.374334\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 30.3870i 1.78747i 0.448596 + 0.893734i \(0.351924\pi\)
−0.448596 + 0.893734i \(0.648076\pi\)
\(18\) 0 0
\(19\) −26.9737 −1.41967 −0.709833 0.704370i \(-0.751230\pi\)
−0.709833 + 0.704370i \(0.751230\pi\)
\(20\) 0 0
\(21\) −19.3246 11.4471i −0.920217 0.545099i
\(22\) 0 0
\(23\) 9.17377i 0.398859i 0.979912 + 0.199430i \(0.0639090\pi\)
−0.979912 + 0.199430i \(0.936091\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −0.905694 + 26.9848i −0.0335442 + 0.999437i
\(28\) 0 0
\(29\) 26.8328i 0.925270i −0.886549 0.462635i \(-0.846904\pi\)
0.886549 0.462635i \(-0.153096\pi\)
\(30\) 0 0
\(31\) −8.00000 −0.258065 −0.129032 0.991640i \(-0.541187\pi\)
−0.129032 + 0.991640i \(0.541187\pi\)
\(32\) 0 0
\(33\) 12.9737 21.9017i 0.393141 0.663688i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −15.9473 −0.431009 −0.215504 0.976503i \(-0.569140\pi\)
−0.215504 + 0.976503i \(0.569140\pi\)
\(38\) 0 0
\(39\) 25.8114 + 15.2896i 0.661830 + 0.392041i
\(40\) 0 0
\(41\) 47.3575i 1.15506i 0.816369 + 0.577531i \(0.195984\pi\)
−0.816369 + 0.577531i \(0.804016\pi\)
\(42\) 0 0
\(43\) −14.4605 −0.336291 −0.168145 0.985762i \(-0.553778\pi\)
−0.168145 + 0.985762i \(0.553778\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 45.8688i 0.975933i 0.872862 + 0.487966i \(0.162261\pi\)
−0.872862 + 0.487966i \(0.837739\pi\)
\(48\) 0 0
\(49\) 7.05267 0.143932
\(50\) 0 0
\(51\) −46.4605 + 78.4330i −0.910990 + 1.53790i
\(52\) 0 0
\(53\) 30.3870i 0.573339i 0.958030 + 0.286670i \(0.0925482\pi\)
−0.958030 + 0.286670i \(0.907452\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −69.6228 41.2417i −1.22145 0.723538i
\(58\) 0 0
\(59\) 24.0789i 0.408116i 0.978959 + 0.204058i \(0.0654132\pi\)
−0.978959 + 0.204058i \(0.934587\pi\)
\(60\) 0 0
\(61\) −53.9473 −0.884382 −0.442191 0.896921i \(-0.645799\pi\)
−0.442191 + 0.896921i \(0.645799\pi\)
\(62\) 0 0
\(63\) −32.3772 59.0930i −0.513924 0.937984i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −110.460 −1.64866 −0.824332 0.566107i \(-0.808449\pi\)
−0.824332 + 0.566107i \(0.808449\pi\)
\(68\) 0 0
\(69\) −14.0263 + 23.6788i −0.203280 + 0.343171i
\(70\) 0 0
\(71\) 15.5936i 0.219628i −0.993952 0.109814i \(-0.964974\pi\)
0.993952 0.109814i \(-0.0350255\pi\)
\(72\) 0 0
\(73\) −87.9473 −1.20476 −0.602379 0.798210i \(-0.705780\pi\)
−0.602379 + 0.798210i \(0.705780\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 63.5279i 0.825037i
\(78\) 0 0
\(79\) 46.9737 0.594603 0.297302 0.954784i \(-0.403913\pi\)
0.297302 + 0.954784i \(0.403913\pi\)
\(80\) 0 0
\(81\) −43.5964 + 68.2668i −0.538228 + 0.842799i
\(82\) 0 0
\(83\) 26.1443i 0.314992i 0.987520 + 0.157496i \(0.0503421\pi\)
−0.987520 + 0.157496i \(0.949658\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 41.0263 69.2592i 0.471567 0.796083i
\(88\) 0 0
\(89\) 60.7739i 0.682853i 0.939908 + 0.341427i \(0.110910\pi\)
−0.939908 + 0.341427i \(0.889090\pi\)
\(90\) 0 0
\(91\) −74.8683 −0.822729
\(92\) 0 0
\(93\) −20.6491 12.2317i −0.222033 0.131524i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −36.0527 −0.371677 −0.185838 0.982580i \(-0.559500\pi\)
−0.185838 + 0.982580i \(0.559500\pi\)
\(98\) 0 0
\(99\) 66.9737 36.6951i 0.676502 0.370657i
\(100\) 0 0
\(101\) 48.1577i 0.476809i −0.971166 0.238405i \(-0.923376\pi\)
0.971166 0.238405i \(-0.0766245\pi\)
\(102\) 0 0
\(103\) 140.408 1.36318 0.681591 0.731733i \(-0.261288\pi\)
0.681591 + 0.731733i \(0.261288\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 43.1149i 0.402943i −0.979494 0.201471i \(-0.935428\pi\)
0.979494 0.201471i \(-0.0645723\pi\)
\(108\) 0 0
\(109\) 133.842 1.22791 0.613954 0.789342i \(-0.289578\pi\)
0.613954 + 0.789342i \(0.289578\pi\)
\(110\) 0 0
\(111\) −41.1623 24.3829i −0.370831 0.219665i
\(112\) 0 0
\(113\) 7.90852i 0.0699869i −0.999388 0.0349935i \(-0.988859\pi\)
0.999388 0.0349935i \(-0.0111410\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 43.2456 + 78.9292i 0.369620 + 0.674609i
\(118\) 0 0
\(119\) 227.502i 1.91178i
\(120\) 0 0
\(121\) 49.0000 0.404959
\(122\) 0 0
\(123\) −72.4078 + 122.236i −0.588682 + 0.993792i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −134.460 −1.05874 −0.529372 0.848390i \(-0.677572\pi\)
−0.529372 + 0.848390i \(0.677572\pi\)
\(128\) 0 0
\(129\) −37.3246 22.1095i −0.289338 0.171392i
\(130\) 0 0
\(131\) 220.394i 1.68240i 0.540727 + 0.841198i \(0.318149\pi\)
−0.540727 + 0.841198i \(0.681851\pi\)
\(132\) 0 0
\(133\) 201.947 1.51840
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 95.5153i 0.697192i −0.937273 0.348596i \(-0.886659\pi\)
0.937273 0.348596i \(-0.113341\pi\)
\(138\) 0 0
\(139\) 76.8157 0.552631 0.276315 0.961067i \(-0.410887\pi\)
0.276315 + 0.961067i \(0.410887\pi\)
\(140\) 0 0
\(141\) −70.1317 + 118.394i −0.497388 + 0.839673i
\(142\) 0 0
\(143\) 84.8528i 0.593376i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 18.2039 + 10.7833i 0.123836 + 0.0733555i
\(148\) 0 0
\(149\) 276.237i 1.85394i −0.375139 0.926969i \(-0.622405\pi\)
0.375139 0.926969i \(-0.377595\pi\)
\(150\) 0 0
\(151\) −18.0527 −0.119554 −0.0597770 0.998212i \(-0.519039\pi\)
−0.0597770 + 0.998212i \(0.519039\pi\)
\(152\) 0 0
\(153\) −239.842 + 131.410i −1.56759 + 0.858890i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −103.842 −0.661414 −0.330707 0.943733i \(-0.607287\pi\)
−0.330707 + 0.943733i \(0.607287\pi\)
\(158\) 0 0
\(159\) −46.4605 + 78.4330i −0.292204 + 0.493289i
\(160\) 0 0
\(161\) 68.6825i 0.426599i
\(162\) 0 0
\(163\) −11.3815 −0.0698251 −0.0349126 0.999390i \(-0.511115\pi\)
−0.0349126 + 0.999390i \(0.511115\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 252.270i 1.51060i 0.655382 + 0.755298i \(0.272508\pi\)
−0.655382 + 0.755298i \(0.727492\pi\)
\(168\) 0 0
\(169\) −69.0000 −0.408284
\(170\) 0 0
\(171\) −116.649 212.901i −0.682159 1.24504i
\(172\) 0 0
\(173\) 11.8160i 0.0683005i −0.999417 0.0341502i \(-0.989128\pi\)
0.999417 0.0341502i \(-0.0108725\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −36.8157 + 62.1509i −0.207998 + 0.351135i
\(178\) 0 0
\(179\) 69.0358i 0.385675i 0.981231 + 0.192837i \(0.0617690\pi\)
−0.981231 + 0.192837i \(0.938231\pi\)
\(180\) 0 0
\(181\) −189.684 −1.04798 −0.523989 0.851725i \(-0.675557\pi\)
−0.523989 + 0.851725i \(0.675557\pi\)
\(182\) 0 0
\(183\) −139.246 82.4834i −0.760905 0.450729i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 257.842 1.37883
\(188\) 0 0
\(189\) 6.78078 202.031i 0.0358771 1.06895i
\(190\) 0 0
\(191\) 108.708i 0.569153i −0.958653 0.284577i \(-0.908147\pi\)
0.958653 0.284577i \(-0.0918530\pi\)
\(192\) 0 0
\(193\) 167.947 0.870193 0.435097 0.900384i \(-0.356714\pi\)
0.435097 + 0.900384i \(0.356714\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 171.659i 0.871367i −0.900100 0.435684i \(-0.856507\pi\)
0.900100 0.435684i \(-0.143493\pi\)
\(198\) 0 0
\(199\) −35.0790 −0.176276 −0.0881382 0.996108i \(-0.528092\pi\)
−0.0881382 + 0.996108i \(0.528092\pi\)
\(200\) 0 0
\(201\) −285.114 168.890i −1.41848 0.840248i
\(202\) 0 0
\(203\) 200.893i 0.989620i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −72.4078 + 39.6725i −0.349796 + 0.191654i
\(208\) 0 0
\(209\) 228.879i 1.09512i
\(210\) 0 0
\(211\) 58.1580 0.275630 0.137815 0.990458i \(-0.455992\pi\)
0.137815 + 0.990458i \(0.455992\pi\)
\(212\) 0 0
\(213\) 23.8420 40.2492i 0.111934 0.188963i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 59.8947 0.276012
\(218\) 0 0
\(219\) −227.004 134.468i −1.03655 0.614009i
\(220\) 0 0
\(221\) 303.870i 1.37498i
\(222\) 0 0
\(223\) 99.3815 0.445657 0.222828 0.974858i \(-0.428471\pi\)
0.222828 + 0.974858i \(0.428471\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 216.951i 0.955733i −0.878432 0.477867i \(-0.841410\pi\)
0.878432 0.477867i \(-0.158590\pi\)
\(228\) 0 0
\(229\) 325.684 1.42220 0.711100 0.703090i \(-0.248197\pi\)
0.711100 + 0.703090i \(0.248197\pi\)
\(230\) 0 0
\(231\) −97.1317 + 163.974i −0.420483 + 0.709845i
\(232\) 0 0
\(233\) 51.7119i 0.221939i 0.993824 + 0.110970i \(0.0353957\pi\)
−0.993824 + 0.110970i \(0.964604\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 121.246 + 71.8209i 0.511585 + 0.303042i
\(238\) 0 0
\(239\) 410.047i 1.71568i 0.513917 + 0.857840i \(0.328194\pi\)
−0.513917 + 0.857840i \(0.671806\pi\)
\(240\) 0 0
\(241\) 445.526 1.84866 0.924328 0.381599i \(-0.124627\pi\)
0.924328 + 0.381599i \(0.124627\pi\)
\(242\) 0 0
\(243\) −216.906 + 109.549i −0.892616 + 0.450818i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −269.737 −1.09205
\(248\) 0 0
\(249\) −39.9737 + 67.4821i −0.160537 + 0.271013i
\(250\) 0 0
\(251\) 237.364i 0.945675i 0.881150 + 0.472838i \(0.156770\pi\)
−0.881150 + 0.472838i \(0.843230\pi\)
\(252\) 0 0
\(253\) 77.8420 0.307676
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 318.887i 1.24080i 0.784284 + 0.620402i \(0.213030\pi\)
−0.784284 + 0.620402i \(0.786970\pi\)
\(258\) 0 0
\(259\) 119.395 0.460985
\(260\) 0 0
\(261\) 211.789 116.040i 0.811453 0.444598i
\(262\) 0 0
\(263\) 36.2300i 0.137757i −0.997625 0.0688784i \(-0.978058\pi\)
0.997625 0.0688784i \(-0.0219420\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −92.9210 + 156.866i −0.348019 + 0.587513i
\(268\) 0 0
\(269\) 528.041i 1.96298i 0.191518 + 0.981489i \(0.438659\pi\)
−0.191518 + 0.981489i \(0.561341\pi\)
\(270\) 0 0
\(271\) 475.895 1.75607 0.878034 0.478597i \(-0.158855\pi\)
0.878034 + 0.478597i \(0.158855\pi\)
\(272\) 0 0
\(273\) −193.246 114.471i −0.707859 0.419307i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −188.158 −0.679271 −0.339635 0.940557i \(-0.610304\pi\)
−0.339635 + 0.940557i \(0.610304\pi\)
\(278\) 0 0
\(279\) −34.5964 63.1434i −0.124002 0.226320i
\(280\) 0 0
\(281\) 24.4322i 0.0869473i −0.999055 0.0434736i \(-0.986158\pi\)
0.999055 0.0434736i \(-0.0138424\pi\)
\(282\) 0 0
\(283\) 198.460 0.701274 0.350637 0.936511i \(-0.385965\pi\)
0.350637 + 0.936511i \(0.385965\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 354.558i 1.23539i
\(288\) 0 0
\(289\) −634.368 −2.19504
\(290\) 0 0
\(291\) −93.0569 55.1231i −0.319783 0.189427i
\(292\) 0 0
\(293\) 513.825i 1.75367i −0.480794 0.876834i \(-0.659651\pi\)
0.480794 0.876834i \(-0.340349\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 228.974 + 7.68507i 0.770955 + 0.0258757i
\(298\) 0 0
\(299\) 91.7377i 0.306815i
\(300\) 0 0
\(301\) 108.263 0.359679
\(302\) 0 0
\(303\) 73.6313 124.302i 0.243008 0.410237i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −11.3815 −0.0370733 −0.0185366 0.999828i \(-0.505901\pi\)
−0.0185366 + 0.999828i \(0.505901\pi\)
\(308\) 0 0
\(309\) 362.412 + 214.678i 1.17285 + 0.694751i
\(310\) 0 0
\(311\) 518.756i 1.66802i −0.551746 0.834012i \(-0.686038\pi\)
0.551746 0.834012i \(-0.313962\pi\)
\(312\) 0 0
\(313\) 46.3160 0.147974 0.0739872 0.997259i \(-0.476428\pi\)
0.0739872 + 0.997259i \(0.476428\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 39.0957i 0.123330i 0.998097 + 0.0616651i \(0.0196411\pi\)
−0.998097 + 0.0616651i \(0.980359\pi\)
\(318\) 0 0
\(319\) −227.684 −0.713743
\(320\) 0 0
\(321\) 65.9210 111.286i 0.205361 0.346684i
\(322\) 0 0
\(323\) 819.648i 2.53761i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 345.465 + 204.639i 1.05647 + 0.625808i
\(328\) 0 0
\(329\) 343.412i 1.04381i
\(330\) 0 0
\(331\) 445.421 1.34568 0.672841 0.739787i \(-0.265074\pi\)
0.672841 + 0.739787i \(0.265074\pi\)
\(332\) 0 0
\(333\) −68.9651 125.871i −0.207102 0.377991i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −325.684 −0.966421 −0.483211 0.875504i \(-0.660529\pi\)
−0.483211 + 0.875504i \(0.660529\pi\)
\(338\) 0 0
\(339\) 12.0918 20.4130i 0.0356691 0.0602153i
\(340\) 0 0
\(341\) 67.8823i 0.199068i
\(342\) 0 0
\(343\) 314.053 0.915605
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 51.8236i 0.149348i 0.997208 + 0.0746738i \(0.0237916\pi\)
−0.997208 + 0.0746738i \(0.976208\pi\)
\(348\) 0 0
\(349\) −97.5787 −0.279595 −0.139798 0.990180i \(-0.544645\pi\)
−0.139798 + 0.990180i \(0.544645\pi\)
\(350\) 0 0
\(351\) −9.05694 + 269.848i −0.0258033 + 0.768798i
\(352\) 0 0
\(353\) 569.797i 1.61416i 0.590445 + 0.807078i \(0.298952\pi\)
−0.590445 + 0.807078i \(0.701048\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 347.842 587.215i 0.974347 1.64486i
\(358\) 0 0
\(359\) 274.283i 0.764019i −0.924158 0.382010i \(-0.875232\pi\)
0.924158 0.382010i \(-0.124768\pi\)
\(360\) 0 0
\(361\) 366.579 1.01545
\(362\) 0 0
\(363\) 126.476 + 74.9191i 0.348418 + 0.206389i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 461.828 1.25839 0.629194 0.777248i \(-0.283385\pi\)
0.629194 + 0.777248i \(0.283385\pi\)
\(368\) 0 0
\(369\) −373.789 + 204.800i −1.01298 + 0.555014i
\(370\) 0 0
\(371\) 227.502i 0.613213i
\(372\) 0 0
\(373\) 491.947 1.31889 0.659447 0.751751i \(-0.270791\pi\)
0.659447 + 0.751751i \(0.270791\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 268.328i 0.711746i
\(378\) 0 0
\(379\) 258.763 0.682752 0.341376 0.939927i \(-0.389107\pi\)
0.341376 + 0.939927i \(0.389107\pi\)
\(380\) 0 0
\(381\) −347.061 205.585i −0.910922 0.539593i
\(382\) 0 0
\(383\) 522.422i 1.36402i 0.731341 + 0.682012i \(0.238895\pi\)
−0.731341 + 0.682012i \(0.761105\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −62.5352 114.136i −0.161590 0.294924i
\(388\) 0 0
\(389\) 610.847i 1.57030i −0.619306 0.785150i \(-0.712586\pi\)
0.619306 0.785150i \(-0.287414\pi\)
\(390\) 0 0
\(391\) −278.763 −0.712949
\(392\) 0 0
\(393\) −336.974 + 568.867i −0.857439 + 1.44750i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 214.000 0.539043 0.269521 0.962994i \(-0.413135\pi\)
0.269521 + 0.962994i \(0.413135\pi\)
\(398\) 0 0
\(399\) 521.254 + 308.770i 1.30640 + 0.773859i
\(400\) 0 0
\(401\) 454.557i 1.13356i −0.823869 0.566780i \(-0.808189\pi\)
0.823869 0.566780i \(-0.191811\pi\)
\(402\) 0 0
\(403\) −80.0000 −0.198511
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 135.318i 0.332476i
\(408\) 0 0
\(409\) −573.842 −1.40304 −0.701518 0.712651i \(-0.747494\pi\)
−0.701518 + 0.712651i \(0.747494\pi\)
\(410\) 0 0
\(411\) 146.039 246.538i 0.355326 0.599850i
\(412\) 0 0
\(413\) 180.274i 0.436500i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 198.272 + 117.448i 0.475472 + 0.281650i
\(418\) 0 0
\(419\) 97.9159i 0.233690i 0.993150 + 0.116845i \(0.0372780\pi\)
−0.993150 + 0.116845i \(0.962722\pi\)
\(420\) 0 0
\(421\) 717.315 1.70384 0.851918 0.523675i \(-0.175439\pi\)
0.851918 + 0.523675i \(0.175439\pi\)
\(422\) 0 0
\(423\) −362.039 + 198.362i −0.855885 + 0.468942i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 403.895 0.945889
\(428\) 0 0
\(429\) 129.737 219.017i 0.302416 0.510529i
\(430\) 0 0
\(431\) 293.077i 0.679994i 0.940427 + 0.339997i \(0.110426\pi\)
−0.940427 + 0.339997i \(0.889574\pi\)
\(432\) 0 0
\(433\) −487.526 −1.12593 −0.562963 0.826482i \(-0.690339\pi\)
−0.562963 + 0.826482i \(0.690339\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 247.450i 0.566247i
\(438\) 0 0
\(439\) −257.237 −0.585961 −0.292981 0.956118i \(-0.594647\pi\)
−0.292981 + 0.956118i \(0.594647\pi\)
\(440\) 0 0
\(441\) 30.4997 + 55.6662i 0.0691602 + 0.126227i
\(442\) 0 0
\(443\) 293.096i 0.661615i 0.943698 + 0.330808i \(0.107321\pi\)
−0.943698 + 0.330808i \(0.892679\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 422.355 713.005i 0.944866 1.59509i
\(448\) 0 0
\(449\) 585.614i 1.30426i 0.758106 + 0.652132i \(0.226125\pi\)
−0.758106 + 0.652132i \(0.773875\pi\)
\(450\) 0 0
\(451\) 401.842 0.891002
\(452\) 0 0
\(453\) −46.5964 27.6018i −0.102862 0.0609312i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 813.052 1.77911 0.889554 0.456831i \(-0.151016\pi\)
0.889554 + 0.456831i \(0.151016\pi\)
\(458\) 0 0
\(459\) −819.986 27.5213i −1.78646 0.0599593i
\(460\) 0 0
\(461\) 554.074i 1.20190i −0.799288 0.600948i \(-0.794790\pi\)
0.799288 0.600948i \(-0.205210\pi\)
\(462\) 0 0
\(463\) −449.723 −0.971324 −0.485662 0.874147i \(-0.661421\pi\)
−0.485662 + 0.874147i \(0.661421\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.7221i 0.0657862i 0.999459 + 0.0328931i \(0.0104721\pi\)
−0.999459 + 0.0328931i \(0.989528\pi\)
\(468\) 0 0
\(469\) 826.999 1.76332
\(470\) 0 0
\(471\) −268.031 158.770i −0.569067 0.337092i
\(472\) 0 0
\(473\) 122.701i 0.259411i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −239.842 + 131.410i −0.502813 + 0.275493i
\(478\) 0 0
\(479\) 735.242i 1.53495i −0.641078 0.767476i \(-0.721512\pi\)
0.641078 0.767476i \(-0.278488\pi\)
\(480\) 0 0
\(481\) −159.473 −0.331545
\(482\) 0 0
\(483\) 105.013 177.279i 0.217418 0.367037i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −92.6185 −0.190182 −0.0950909 0.995469i \(-0.530314\pi\)
−0.0950909 + 0.995469i \(0.530314\pi\)
\(488\) 0 0
\(489\) −29.3772 17.4019i −0.0600761 0.0355866i
\(490\) 0 0
\(491\) 898.323i 1.82958i −0.403933 0.914789i \(-0.632357\pi\)
0.403933 0.914789i \(-0.367643\pi\)
\(492\) 0 0
\(493\) 815.368 1.65389
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 116.747i 0.234903i
\(498\) 0 0
\(499\) −136.921 −0.274391 −0.137195 0.990544i \(-0.543809\pi\)
−0.137195 + 0.990544i \(0.543809\pi\)
\(500\) 0 0
\(501\) −385.710 + 651.143i −0.769881 + 1.29969i
\(502\) 0 0
\(503\) 443.077i 0.880868i 0.897785 + 0.440434i \(0.145175\pi\)
−0.897785 + 0.440434i \(0.854825\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −178.099 105.498i −0.351279 0.208083i
\(508\) 0 0
\(509\) 213.062i 0.418590i −0.977853 0.209295i \(-0.932883\pi\)
0.977853 0.209295i \(-0.0671168\pi\)
\(510\) 0 0
\(511\) 658.447 1.28855
\(512\) 0 0
\(513\) 24.4299 727.879i 0.0476216 1.41887i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 389.210 0.752824
\(518\) 0 0
\(519\) 18.0662 30.4987i 0.0348096 0.0587643i
\(520\) 0 0
\(521\) 3.20085i 0.00614366i −0.999995 0.00307183i \(-0.999022\pi\)
0.999995 0.00307183i \(-0.000977795\pi\)
\(522\) 0 0
\(523\) 966.644 1.84827 0.924134 0.382069i \(-0.124788\pi\)
0.924134 + 0.382069i \(0.124788\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 243.096i 0.461282i
\(528\) 0 0
\(529\) 444.842 0.840911
\(530\) 0 0
\(531\) −190.053 + 104.130i −0.357915 + 0.196102i
\(532\) 0 0
\(533\) 473.575i 0.888509i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −105.553 + 178.191i −0.196561 + 0.331827i
\(538\) 0 0
\(539\) 59.8439i 0.111028i
\(540\) 0 0
\(541\) −186.105 −0.344002 −0.172001 0.985097i \(-0.555023\pi\)
−0.172001 + 0.985097i \(0.555023\pi\)
\(542\) 0 0
\(543\) −489.601 290.019i −0.901659 0.534106i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −309.434 −0.565693 −0.282847 0.959165i \(-0.591279\pi\)
−0.282847 + 0.959165i \(0.591279\pi\)
\(548\) 0 0
\(549\) −233.298 425.802i −0.424951 0.775596i
\(550\) 0 0
\(551\) 723.779i 1.31357i
\(552\) 0 0
\(553\) −351.684 −0.635957
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.00106i 0.00718323i 0.999994 + 0.00359161i \(0.00114325\pi\)
−0.999994 + 0.00359161i \(0.998857\pi\)
\(558\) 0 0
\(559\) −144.605 −0.258685
\(560\) 0 0
\(561\) 665.526 + 394.230i 1.18632 + 0.702728i
\(562\) 0 0
\(563\) 166.970i 0.296572i 0.988945 + 0.148286i \(0.0473756\pi\)
−0.988945 + 0.148286i \(0.952624\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 326.399 511.102i 0.575660 0.901414i
\(568\) 0 0
\(569\) 156.289i 0.274673i 0.990524 + 0.137337i \(0.0438542\pi\)
−0.990524 + 0.137337i \(0.956146\pi\)
\(570\) 0 0
\(571\) 144.105 0.252374 0.126187 0.992006i \(-0.459726\pi\)
0.126187 + 0.992006i \(0.459726\pi\)
\(572\) 0 0
\(573\) 166.211 280.591i 0.290071 0.489688i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −532.947 −0.923651 −0.461826 0.886971i \(-0.652805\pi\)
−0.461826 + 0.886971i \(0.652805\pi\)
\(578\) 0 0
\(579\) 433.495 + 256.785i 0.748697 + 0.443497i
\(580\) 0 0
\(581\) 195.738i 0.336899i
\(582\) 0 0
\(583\) 257.842 0.442268
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 190.342i 0.324262i 0.986769 + 0.162131i \(0.0518368\pi\)
−0.986769 + 0.162131i \(0.948163\pi\)
\(588\) 0 0
\(589\) 215.789 0.366366
\(590\) 0 0
\(591\) 262.460 443.077i 0.444096 0.749707i
\(592\) 0 0
\(593\) 345.719i 0.583001i −0.956571 0.291500i \(-0.905846\pi\)
0.956571 0.291500i \(-0.0941544\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −90.5438 53.6344i −0.151665 0.0898399i
\(598\) 0 0
\(599\) 704.055i 1.17538i 0.809085 + 0.587692i \(0.199963\pi\)
−0.809085 + 0.587692i \(0.800037\pi\)
\(600\) 0 0
\(601\) 338.474 0.563185 0.281592 0.959534i \(-0.409137\pi\)
0.281592 + 0.959534i \(0.409137\pi\)
\(602\) 0 0
\(603\) −477.693 871.856i −0.792193 1.44586i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −816.513 −1.34516 −0.672581 0.740024i \(-0.734814\pi\)
−0.672581 + 0.740024i \(0.734814\pi\)
\(608\) 0 0
\(609\) −307.157 + 518.532i −0.504363 + 0.851449i
\(610\) 0 0
\(611\) 458.688i 0.750717i
\(612\) 0 0
\(613\) 229.263 0.374001 0.187001 0.982360i \(-0.440123\pi\)
0.187001 + 0.982360i \(0.440123\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1072.25i 1.73785i −0.494945 0.868924i \(-0.664812\pi\)
0.494945 0.868924i \(-0.335188\pi\)
\(618\) 0 0
\(619\) 80.7103 0.130388 0.0651941 0.997873i \(-0.479233\pi\)
0.0651941 + 0.997873i \(0.479233\pi\)
\(620\) 0 0
\(621\) −247.552 8.30863i −0.398635 0.0133794i
\(622\) 0 0
\(623\) 455.004i 0.730344i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −349.947 + 590.769i −0.558130 + 0.942215i
\(628\) 0 0
\(629\) 484.591i 0.770415i
\(630\) 0 0
\(631\) −492.894 −0.781131 −0.390566 0.920575i \(-0.627721\pi\)
−0.390566 + 0.920575i \(0.627721\pi\)
\(632\) 0 0
\(633\) 150.114 + 88.9213i 0.237147 + 0.140476i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 70.5267 0.110717
\(638\) 0 0
\(639\) 123.079 67.4353i 0.192612 0.105533i
\(640\) 0 0
\(641\) 65.4816i 0.102155i −0.998695 0.0510777i \(-0.983734\pi\)
0.998695 0.0510777i \(-0.0162656\pi\)
\(642\) 0 0
\(643\) −428.619 −0.666592 −0.333296 0.942822i \(-0.608161\pi\)
−0.333296 + 0.942822i \(0.608161\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 462.801i 0.715303i 0.933855 + 0.357652i \(0.116422\pi\)
−0.933855 + 0.357652i \(0.883578\pi\)
\(648\) 0 0
\(649\) 204.316 0.314817
\(650\) 0 0
\(651\) 154.596 + 91.5766i 0.237475 + 0.140671i
\(652\) 0 0
\(653\) 425.064i 0.650941i −0.945552 0.325470i \(-0.894477\pi\)
0.945552 0.325470i \(-0.105523\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −380.333 694.161i −0.578894 1.05656i
\(658\) 0 0
\(659\) 182.769i 0.277343i 0.990338 + 0.138671i \(0.0442831\pi\)
−0.990338 + 0.138671i \(0.955717\pi\)
\(660\) 0 0
\(661\) −482.053 −0.729278 −0.364639 0.931149i \(-0.618808\pi\)
−0.364639 + 0.931149i \(0.618808\pi\)
\(662\) 0 0
\(663\) −464.605 + 784.330i −0.700762 + 1.18300i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 246.158 0.369052
\(668\) 0 0
\(669\) 256.517 + 151.950i 0.383434 + 0.227131i
\(670\) 0 0
\(671\) 457.758i 0.682203i
\(672\) 0 0
\(673\) −184.579 −0.274264 −0.137132 0.990553i \(-0.543788\pi\)
−0.137132 + 0.990553i \(0.543788\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1065.85i 1.57437i 0.616715 + 0.787187i \(0.288463\pi\)
−0.616715 + 0.787187i \(0.711537\pi\)
\(678\) 0 0
\(679\) 269.920 0.397526
\(680\) 0 0
\(681\) 331.710 559.982i 0.487093 0.822293i
\(682\) 0 0
\(683\) 788.926i 1.15509i −0.816359 0.577545i \(-0.804011\pi\)
0.816359 0.577545i \(-0.195989\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 840.636 + 497.958i 1.22363 + 0.724830i
\(688\) 0 0
\(689\) 303.870i 0.441030i
\(690\) 0 0
\(691\) −932.000 −1.34877 −0.674385 0.738380i \(-0.735591\pi\)
−0.674385 + 0.738380i \(0.735591\pi\)
\(692\) 0 0
\(693\) −501.421 + 274.730i −0.723551 + 0.396436i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1439.05 −2.06464
\(698\) 0 0
\(699\) −79.0655 + 133.476i −0.113112 + 0.190952i
\(700\) 0 0
\(701\) 1352.75i 1.92974i 0.262721 + 0.964872i \(0.415380\pi\)
−0.262721 + 0.964872i \(0.584620\pi\)
\(702\) 0 0
\(703\) 430.158 0.611889
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 360.549i 0.509970i
\(708\) 0 0
\(709\) −269.473 −0.380075 −0.190038 0.981777i \(-0.560861\pi\)
−0.190038 + 0.981777i \(0.560861\pi\)
\(710\) 0 0
\(711\) 203.140 + 370.759i 0.285711 + 0.521462i
\(712\) 0 0
\(713\) 73.3901i 0.102931i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −626.947 + 1058.39i −0.874403 + 1.47614i
\(718\) 0 0
\(719\) 537.103i 0.747014i 0.927627 + 0.373507i \(0.121845\pi\)
−0.927627 + 0.373507i \(0.878155\pi\)
\(720\) 0 0
\(721\) −1051.21 −1.45799
\(722\) 0 0
\(723\) 1149.96 + 681.192i 1.59055 + 0.942174i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1117.83 −1.53759 −0.768795 0.639495i \(-0.779144\pi\)
−0.768795 + 0.639495i \(0.779144\pi\)
\(728\) 0 0
\(729\) −727.359 48.8800i −0.997750 0.0670507i
\(730\) 0 0
\(731\) 439.411i 0.601109i
\(732\) 0 0
\(733\) −7.52599 −0.0102674 −0.00513369 0.999987i \(-0.501634\pi\)
−0.00513369 + 0.999987i \(0.501634\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 937.288i 1.27176i
\(738\) 0 0
\(739\) 823.079 1.11377 0.556887 0.830588i \(-0.311996\pi\)
0.556887 + 0.830588i \(0.311996\pi\)
\(740\) 0 0
\(741\) −696.228 412.417i −0.939579 0.556568i
\(742\) 0 0
\(743\) 3.21898i 0.00433241i −0.999998 0.00216620i \(-0.999310\pi\)
0.999998 0.00216620i \(-0.000689524\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −206.355 + 113.063i −0.276245 + 0.151356i
\(748\) 0 0
\(749\) 322.794i 0.430967i
\(750\) 0 0
\(751\) −1185.63 −1.57874 −0.789368 0.613920i \(-0.789592\pi\)
−0.789368 + 0.613920i \(0.789592\pi\)
\(752\) 0 0
\(753\) −362.921 + 612.671i −0.481967 + 0.813639i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 863.315 1.14044 0.570221 0.821491i \(-0.306857\pi\)
0.570221 + 0.821491i \(0.306857\pi\)
\(758\) 0 0
\(759\) 200.921 + 119.017i 0.264718 + 0.156808i
\(760\) 0 0
\(761\) 570.597i 0.749800i 0.927065 + 0.374900i \(0.122323\pi\)
−0.927065 + 0.374900i \(0.877677\pi\)
\(762\) 0 0
\(763\) −1002.05 −1.31331
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 240.789i 0.313936i
\(768\) 0 0
\(769\) −741.684 −0.964479 −0.482239 0.876040i \(-0.660176\pi\)
−0.482239 + 0.876040i \(0.660176\pi\)
\(770\) 0 0
\(771\) −487.565 + 823.090i −0.632380 + 1.06756i
\(772\) 0 0
\(773\) 623.203i 0.806214i 0.915153 + 0.403107i \(0.132070\pi\)
−0.915153 + 0.403107i \(0.867930\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 308.175 + 182.550i 0.396622 + 0.234943i
\(778\) 0 0
\(779\) 1277.41i 1.63980i
\(780\) 0 0
\(781\) −132.316 −0.169419
\(782\) 0 0
\(783\) 724.078 + 24.3023i 0.924749 + 0.0310375i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 335.303 0.426052 0.213026 0.977046i \(-0.431668\pi\)
0.213026 + 0.977046i \(0.431668\pi\)
\(788\) 0 0
\(789\) 55.3943 93.5147i 0.0702083 0.118523i
\(790\) 0 0
\(791\) 59.2098i 0.0748543i
\(792\) 0 0
\(793\) −539.473 −0.680294
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 550.520i 0.690740i 0.938467 + 0.345370i \(0.112247\pi\)
−0.938467 + 0.345370i \(0.887753\pi\)
\(798\) 0 0
\(799\) −1393.81 −1.74445
\(800\) 0 0
\(801\) −479.684 + 262.820i −0.598856 + 0.328115i
\(802\) 0 0
\(803\) 746.258i 0.929337i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −807.354 + 1362.95i −1.00044 + 1.68891i
\(808\) 0 0
\(809\) 560.288i 0.692569i 0.938130 + 0.346284i \(0.112557\pi\)
−0.938130 + 0.346284i \(0.887443\pi\)
\(810\) 0 0
\(811\) 237.842 0.293270 0.146635 0.989191i \(-0.453156\pi\)
0.146635 + 0.989191i \(0.453156\pi\)
\(812\) 0 0
\(813\) 1228.35 + 727.624i 1.51089 + 0.894987i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 390.053 0.477421
\(818\) 0 0
\(819\) −323.772 590.930i −0.395326 0.721526i
\(820\) 0 0
\(821\) 65.4816i 0.0797584i −0.999205 0.0398792i \(-0.987303\pi\)
0.999205 0.0398792i \(-0.0126973\pi\)
\(822\) 0 0
\(823\) 521.512 0.633673 0.316836 0.948480i \(-0.397379\pi\)
0.316836 + 0.948480i \(0.397379\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 987.512i 1.19409i −0.802208 0.597045i \(-0.796342\pi\)
0.802208 0.597045i \(-0.203658\pi\)
\(828\) 0 0
\(829\) 333.631 0.402450 0.201225 0.979545i \(-0.435508\pi\)
0.201225 + 0.979545i \(0.435508\pi\)
\(830\) 0 0
\(831\) −485.662 287.686i −0.584431 0.346193i
\(832\) 0 0
\(833\) 214.309i 0.257274i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 7.24555 215.878i 0.00865657 0.257919i
\(838\) 0 0
\(839\) 129.363i 0.154187i −0.997024 0.0770934i \(-0.975436\pi\)
0.997024 0.0770934i \(-0.0245640\pi\)
\(840\) 0 0
\(841\) 121.000 0.143876
\(842\) 0 0
\(843\) 37.3559 63.0629i 0.0443130 0.0748077i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −366.855 −0.433123
\(848\) 0 0
\(849\) 512.254 + 303.438i 0.603362 + 0.357407i
\(850\) 0 0
\(851\) 146.297i 0.171912i
\(852\) 0 0
\(853\) −1080.42 −1.26661 −0.633306 0.773902i \(-0.718303\pi\)
−0.633306 + 0.773902i \(0.718303\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 702.548i 0.819776i 0.912136 + 0.409888i \(0.134432\pi\)
−0.912136 + 0.409888i \(0.865568\pi\)
\(858\) 0 0
\(859\) 281.132 0.327278 0.163639 0.986520i \(-0.447677\pi\)
0.163639 + 0.986520i \(0.447677\pi\)
\(860\) 0 0
\(861\) 542.105 915.163i 0.629623 1.06291i
\(862\) 0 0
\(863\) 419.221i 0.485772i −0.970055 0.242886i \(-0.921906\pi\)
0.970055 0.242886i \(-0.0780941\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1637.39 969.924i −1.88857 1.11871i
\(868\) 0 0
\(869\) 398.585i 0.458671i
\(870\) 0 0
\(871\) −1104.60 −1.26820
\(872\) 0 0
\(873\) −155.912 284.561i −0.178593 0.325958i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1079.42 −1.23081 −0.615405 0.788211i \(-0.711008\pi\)
−0.615405 + 0.788211i \(0.711008\pi\)
\(878\) 0 0
\(879\) 785.618 1326.25i 0.893763 1.50882i
\(880\) 0 0
\(881\) 748.212i 0.849275i 0.905363 + 0.424638i \(0.139599\pi\)
−0.905363 + 0.424638i \(0.860401\pi\)
\(882\) 0 0
\(883\) −875.749 −0.991788 −0.495894 0.868383i \(-0.665160\pi\)
−0.495894 + 0.868383i \(0.665160\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1015.05i 1.14436i −0.820127 0.572182i \(-0.806097\pi\)
0.820127 0.572182i \(-0.193903\pi\)
\(888\) 0 0
\(889\) 1006.68 1.13238
\(890\) 0 0
\(891\) 579.263 + 369.928i 0.650126 + 0.415183i
\(892\) 0 0
\(893\) 1237.25i 1.38550i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −140.263 + 236.788i −0.156369 + 0.263977i
\(898\) 0 0
\(899\) 214.663i 0.238779i
\(900\) 0 0
\(901\) −923.368 −1.02483
\(902\) 0 0
\(903\) 279.443 + 165.530i 0.309460 + 0.183312i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1504.70 1.65898 0.829491 0.558520i \(-0.188631\pi\)
0.829491 + 0.558520i \(0.188631\pi\)
\(908\) 0 0
\(909\) 380.105 208.261i 0.418158 0.229110i
\(910\) 0 0
\(911\) 1002.19i 1.10010i −0.835131 0.550051i \(-0.814608\pi\)
0.835131 0.550051i \(-0.185392\pi\)
\(912\) 0 0
\(913\) 221.842 0.242981
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1650.05i 1.79940i
\(918\) 0 0
\(919\) 780.289 0.849063 0.424532 0.905413i \(-0.360439\pi\)
0.424532 + 0.905413i \(0.360439\pi\)
\(920\) 0 0
\(921\) −29.3772 17.4019i −0.0318971 0.0188945i
\(922\) 0 0
\(923\) 155.936i 0.168945i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 607.201 + 1108.23i 0.655018 + 1.19550i
\(928\) 0 0
\(929\) 1093.84i 1.17744i −0.808339 0.588718i \(-0.799633\pi\)
0.808339 0.588718i \(-0.200367\pi\)
\(930\) 0 0
\(931\) −190.236 −0.204335
\(932\) 0 0
\(933\) 793.157 1338.98i 0.850115 1.43513i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 407.947 0.435376 0.217688 0.976018i \(-0.430148\pi\)
0.217688 + 0.976018i \(0.430148\pi\)
\(938\) 0 0
\(939\) 119.548 + 70.8154i 0.127314 + 0.0754157i
\(940\) 0 0
\(941\) 671.008i 0.713079i −0.934280 0.356540i \(-0.883956\pi\)
0.934280 0.356540i \(-0.116044\pi\)
\(942\) 0 0
\(943\) −434.447 −0.460707
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1608.13i 1.69813i 0.528290 + 0.849064i \(0.322833\pi\)
−0.528290 + 0.849064i \(0.677167\pi\)
\(948\) 0 0
\(949\) −879.473 −0.926737
\(950\) 0 0
\(951\) −59.7758 + 100.911i −0.0628557 + 0.106111i
\(952\) 0 0
\(953\) 695.440i 0.729737i −0.931059 0.364869i \(-0.881114\pi\)
0.931059 0.364869i \(-0.118886\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −587.684 348.120i −0.614090 0.363762i
\(958\) 0 0
\(959\) 715.107i 0.745680i
\(960\) 0 0
\(961\) −897.000 −0.933403
\(962\) 0 0
\(963\) 340.302 186.453i 0.353377 0.193617i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1030.07 −1.06522 −0.532609 0.846361i \(-0.678788\pi\)
−0.532609 + 0.846361i \(0.678788\pi\)
\(968\) 0 0
\(969\) 1253.21 2115.63i 1.29330 2.18331i
\(970\) 0 0
\(971\) 1165.24i 1.20004i 0.799986 + 0.600019i \(0.204840\pi\)
−0.799986 + 0.600019i \(0.795160\pi\)
\(972\) 0 0
\(973\) −575.106 −0.591065
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 726.440i 0.743541i 0.928325 + 0.371771i \(0.121249\pi\)
−0.928325 + 0.371771i \(0.878751\pi\)
\(978\) 0 0
\(979\) 515.684 0.526746
\(980\) 0 0
\(981\) 578.807 + 1056.40i 0.590017 + 1.07686i
\(982\) 0 0
\(983\) 1024.21i 1.04192i −0.853581 0.520960i \(-0.825574\pi\)
0.853581 0.520960i \(-0.174426\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 525.064 886.395i 0.531980 0.898070i
\(988\) 0 0
\(989\) 132.657i 0.134133i
\(990\) 0 0
\(991\) 1797.89 1.81422 0.907111 0.420892i \(-0.138283\pi\)
0.907111 + 0.420892i \(0.138283\pi\)
\(992\) 0 0
\(993\) 1149.69 + 681.031i 1.15780 + 0.685832i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −901.368 −0.904080 −0.452040 0.891998i \(-0.649304\pi\)
−0.452040 + 0.891998i \(0.649304\pi\)
\(998\) 0 0
\(999\) 14.4434 430.336i 0.0144579 0.430766i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.3.l.u.401.4 4
3.2 odd 2 inner 1200.3.l.u.401.3 4
4.3 odd 2 150.3.d.c.101.3 4
5.2 odd 4 1200.3.c.k.449.5 8
5.3 odd 4 1200.3.c.k.449.4 8
5.4 even 2 240.3.l.c.161.1 4
12.11 even 2 150.3.d.c.101.1 4
15.2 even 4 1200.3.c.k.449.3 8
15.8 even 4 1200.3.c.k.449.6 8
15.14 odd 2 240.3.l.c.161.2 4
20.3 even 4 150.3.b.b.149.7 8
20.7 even 4 150.3.b.b.149.2 8
20.19 odd 2 30.3.d.a.11.2 4
40.19 odd 2 960.3.l.e.641.1 4
40.29 even 2 960.3.l.f.641.4 4
60.23 odd 4 150.3.b.b.149.1 8
60.47 odd 4 150.3.b.b.149.8 8
60.59 even 2 30.3.d.a.11.4 yes 4
120.29 odd 2 960.3.l.f.641.3 4
120.59 even 2 960.3.l.e.641.2 4
180.59 even 6 810.3.h.a.431.2 8
180.79 odd 6 810.3.h.a.701.2 8
180.119 even 6 810.3.h.a.701.3 8
180.139 odd 6 810.3.h.a.431.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.3.d.a.11.2 4 20.19 odd 2
30.3.d.a.11.4 yes 4 60.59 even 2
150.3.b.b.149.1 8 60.23 odd 4
150.3.b.b.149.2 8 20.7 even 4
150.3.b.b.149.7 8 20.3 even 4
150.3.b.b.149.8 8 60.47 odd 4
150.3.d.c.101.1 4 12.11 even 2
150.3.d.c.101.3 4 4.3 odd 2
240.3.l.c.161.1 4 5.4 even 2
240.3.l.c.161.2 4 15.14 odd 2
810.3.h.a.431.2 8 180.59 even 6
810.3.h.a.431.3 8 180.139 odd 6
810.3.h.a.701.2 8 180.79 odd 6
810.3.h.a.701.3 8 180.119 even 6
960.3.l.e.641.1 4 40.19 odd 2
960.3.l.e.641.2 4 120.59 even 2
960.3.l.f.641.3 4 120.29 odd 2
960.3.l.f.641.4 4 40.29 even 2
1200.3.c.k.449.3 8 15.2 even 4
1200.3.c.k.449.4 8 5.3 odd 4
1200.3.c.k.449.5 8 5.2 odd 4
1200.3.c.k.449.6 8 15.8 even 4
1200.3.l.u.401.3 4 3.2 odd 2 inner
1200.3.l.u.401.4 4 1.1 even 1 trivial