Properties

Label 30.3.d.a.11.4
Level $30$
Weight $3$
Character 30.11
Analytic conductor $0.817$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [30,3,Mod(11,30)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(30, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("30.11");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 30.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.817440793081\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 11.4
Root \(1.58114 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 30.11
Dual form 30.3.d.a.11.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +(2.58114 - 1.52896i) q^{3} -2.00000 q^{4} +2.23607i q^{5} +(2.16228 + 3.65028i) q^{6} -7.48683 q^{7} -2.82843i q^{8} +(4.32456 - 7.89292i) q^{9} -3.16228 q^{10} -8.48528i q^{11} +(-5.16228 + 3.05792i) q^{12} -10.0000 q^{13} -10.5880i q^{14} +(3.41886 + 5.77160i) q^{15} +4.00000 q^{16} +30.3870i q^{17} +(11.1623 + 6.11584i) q^{18} +26.9737 q^{19} -4.47214i q^{20} +(-19.3246 + 11.4471i) q^{21} +12.0000 q^{22} -9.17377i q^{23} +(-4.32456 - 7.30056i) q^{24} -5.00000 q^{25} -14.1421i q^{26} +(-0.905694 - 26.9848i) q^{27} +14.9737 q^{28} +26.8328i q^{29} +(-8.16228 + 4.83500i) q^{30} +8.00000 q^{31} +5.65685i q^{32} +(-12.9737 - 21.9017i) q^{33} -42.9737 q^{34} -16.7411i q^{35} +(-8.64911 + 15.7858i) q^{36} +15.9473 q^{37} +38.1465i q^{38} +(-25.8114 + 15.2896i) q^{39} +6.32456 q^{40} -47.3575i q^{41} +(-16.1886 - 27.3290i) q^{42} -14.4605 q^{43} +16.9706i q^{44} +(17.6491 + 9.67000i) q^{45} +12.9737 q^{46} -45.8688i q^{47} +(10.3246 - 6.11584i) q^{48} +7.05267 q^{49} -7.07107i q^{50} +(46.4605 + 78.4330i) q^{51} +20.0000 q^{52} +30.3870i q^{53} +(38.1623 - 1.28084i) q^{54} +18.9737 q^{55} +21.1760i q^{56} +(69.6228 - 41.2417i) q^{57} -37.9473 q^{58} +24.0789i q^{59} +(-6.83772 - 11.5432i) q^{60} -53.9473 q^{61} +11.3137i q^{62} +(-32.3772 + 59.0930i) q^{63} -8.00000 q^{64} -22.3607i q^{65} +(30.9737 - 18.3475i) q^{66} -110.460 q^{67} -60.7739i q^{68} +(-14.0263 - 23.6788i) q^{69} +23.6754 q^{70} -15.5936i q^{71} +(-22.3246 - 12.2317i) q^{72} +87.9473 q^{73} +22.5529i q^{74} +(-12.9057 + 7.64481i) q^{75} -53.9473 q^{76} +63.5279i q^{77} +(-21.6228 - 36.5028i) q^{78} -46.9737 q^{79} +8.94427i q^{80} +(-43.5964 - 68.2668i) q^{81} +66.9737 q^{82} -26.1443i q^{83} +(38.6491 - 22.8942i) q^{84} -67.9473 q^{85} -20.4502i q^{86} +(41.0263 + 69.2592i) q^{87} -24.0000 q^{88} -60.7739i q^{89} +(-13.6754 + 24.9596i) q^{90} +74.8683 q^{91} +18.3475i q^{92} +(20.6491 - 12.2317i) q^{93} +64.8683 q^{94} +60.3150i q^{95} +(8.64911 + 14.6011i) q^{96} +36.0527 q^{97} +9.97398i q^{98} +(-66.9737 - 36.6951i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 8 q^{4} - 4 q^{6} + 8 q^{7} - 8 q^{9} - 8 q^{12} - 40 q^{13} + 20 q^{15} + 16 q^{16} + 32 q^{18} + 32 q^{19} - 52 q^{21} + 48 q^{22} + 8 q^{24} - 20 q^{25} + 28 q^{27} - 16 q^{28} - 20 q^{30}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 2.58114 1.52896i 0.860380 0.509654i
\(4\) −2.00000 −0.500000
\(5\) 2.23607i 0.447214i
\(6\) 2.16228 + 3.65028i 0.360380 + 0.608380i
\(7\) −7.48683 −1.06955 −0.534774 0.844995i \(-0.679603\pi\)
−0.534774 + 0.844995i \(0.679603\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 4.32456 7.89292i 0.480506 0.876991i
\(10\) −3.16228 −0.316228
\(11\) 8.48528i 0.771389i −0.922627 0.385695i \(-0.873962\pi\)
0.922627 0.385695i \(-0.126038\pi\)
\(12\) −5.16228 + 3.05792i −0.430190 + 0.254827i
\(13\) −10.0000 −0.769231 −0.384615 0.923077i \(-0.625666\pi\)
−0.384615 + 0.923077i \(0.625666\pi\)
\(14\) 10.5880i 0.756284i
\(15\) 3.41886 + 5.77160i 0.227924 + 0.384773i
\(16\) 4.00000 0.250000
\(17\) 30.3870i 1.78747i 0.448596 + 0.893734i \(0.351924\pi\)
−0.448596 + 0.893734i \(0.648076\pi\)
\(18\) 11.1623 + 6.11584i 0.620127 + 0.339769i
\(19\) 26.9737 1.41967 0.709833 0.704370i \(-0.248770\pi\)
0.709833 + 0.704370i \(0.248770\pi\)
\(20\) 4.47214i 0.223607i
\(21\) −19.3246 + 11.4471i −0.920217 + 0.545099i
\(22\) 12.0000 0.545455
\(23\) 9.17377i 0.398859i −0.979912 0.199430i \(-0.936091\pi\)
0.979912 0.199430i \(-0.0639090\pi\)
\(24\) −4.32456 7.30056i −0.180190 0.304190i
\(25\) −5.00000 −0.200000
\(26\) 14.1421i 0.543928i
\(27\) −0.905694 26.9848i −0.0335442 0.999437i
\(28\) 14.9737 0.534774
\(29\) 26.8328i 0.925270i 0.886549 + 0.462635i \(0.153096\pi\)
−0.886549 + 0.462635i \(0.846904\pi\)
\(30\) −8.16228 + 4.83500i −0.272076 + 0.161167i
\(31\) 8.00000 0.258065 0.129032 0.991640i \(-0.458813\pi\)
0.129032 + 0.991640i \(0.458813\pi\)
\(32\) 5.65685i 0.176777i
\(33\) −12.9737 21.9017i −0.393141 0.663688i
\(34\) −42.9737 −1.26393
\(35\) 16.7411i 0.478316i
\(36\) −8.64911 + 15.7858i −0.240253 + 0.438496i
\(37\) 15.9473 0.431009 0.215504 0.976503i \(-0.430860\pi\)
0.215504 + 0.976503i \(0.430860\pi\)
\(38\) 38.1465i 1.00386i
\(39\) −25.8114 + 15.2896i −0.661830 + 0.392041i
\(40\) 6.32456 0.158114
\(41\) 47.3575i 1.15506i −0.816369 0.577531i \(-0.804016\pi\)
0.816369 0.577531i \(-0.195984\pi\)
\(42\) −16.1886 27.3290i −0.385443 0.650692i
\(43\) −14.4605 −0.336291 −0.168145 0.985762i \(-0.553778\pi\)
−0.168145 + 0.985762i \(0.553778\pi\)
\(44\) 16.9706i 0.385695i
\(45\) 17.6491 + 9.67000i 0.392202 + 0.214889i
\(46\) 12.9737 0.282036
\(47\) 45.8688i 0.975933i −0.872862 0.487966i \(-0.837739\pi\)
0.872862 0.487966i \(-0.162261\pi\)
\(48\) 10.3246 6.11584i 0.215095 0.127413i
\(49\) 7.05267 0.143932
\(50\) 7.07107i 0.141421i
\(51\) 46.4605 + 78.4330i 0.910990 + 1.53790i
\(52\) 20.0000 0.384615
\(53\) 30.3870i 0.573339i 0.958030 + 0.286670i \(0.0925482\pi\)
−0.958030 + 0.286670i \(0.907452\pi\)
\(54\) 38.1623 1.28084i 0.706709 0.0237194i
\(55\) 18.9737 0.344976
\(56\) 21.1760i 0.378142i
\(57\) 69.6228 41.2417i 1.22145 0.723538i
\(58\) −37.9473 −0.654264
\(59\) 24.0789i 0.408116i 0.978959 + 0.204058i \(0.0654132\pi\)
−0.978959 + 0.204058i \(0.934587\pi\)
\(60\) −6.83772 11.5432i −0.113962 0.192387i
\(61\) −53.9473 −0.884382 −0.442191 0.896921i \(-0.645799\pi\)
−0.442191 + 0.896921i \(0.645799\pi\)
\(62\) 11.3137i 0.182479i
\(63\) −32.3772 + 59.0930i −0.513924 + 0.937984i
\(64\) −8.00000 −0.125000
\(65\) 22.3607i 0.344010i
\(66\) 30.9737 18.3475i 0.469298 0.277993i
\(67\) −110.460 −1.64866 −0.824332 0.566107i \(-0.808449\pi\)
−0.824332 + 0.566107i \(0.808449\pi\)
\(68\) 60.7739i 0.893734i
\(69\) −14.0263 23.6788i −0.203280 0.343171i
\(70\) 23.6754 0.338221
\(71\) 15.5936i 0.219628i −0.993952 0.109814i \(-0.964974\pi\)
0.993952 0.109814i \(-0.0350255\pi\)
\(72\) −22.3246 12.2317i −0.310063 0.169885i
\(73\) 87.9473 1.20476 0.602379 0.798210i \(-0.294220\pi\)
0.602379 + 0.798210i \(0.294220\pi\)
\(74\) 22.5529i 0.304769i
\(75\) −12.9057 + 7.64481i −0.172076 + 0.101931i
\(76\) −53.9473 −0.709833
\(77\) 63.5279i 0.825037i
\(78\) −21.6228 36.5028i −0.277215 0.467985i
\(79\) −46.9737 −0.594603 −0.297302 0.954784i \(-0.596087\pi\)
−0.297302 + 0.954784i \(0.596087\pi\)
\(80\) 8.94427i 0.111803i
\(81\) −43.5964 68.2668i −0.538228 0.842799i
\(82\) 66.9737 0.816752
\(83\) 26.1443i 0.314992i −0.987520 0.157496i \(-0.949658\pi\)
0.987520 0.157496i \(-0.0503421\pi\)
\(84\) 38.6491 22.8942i 0.460108 0.272549i
\(85\) −67.9473 −0.799380
\(86\) 20.4502i 0.237793i
\(87\) 41.0263 + 69.2592i 0.471567 + 0.796083i
\(88\) −24.0000 −0.272727
\(89\) 60.7739i 0.682853i −0.939908 0.341427i \(-0.889090\pi\)
0.939908 0.341427i \(-0.110910\pi\)
\(90\) −13.6754 + 24.9596i −0.151949 + 0.277329i
\(91\) 74.8683 0.822729
\(92\) 18.3475i 0.199430i
\(93\) 20.6491 12.2317i 0.222033 0.131524i
\(94\) 64.8683 0.690089
\(95\) 60.3150i 0.634894i
\(96\) 8.64911 + 14.6011i 0.0900949 + 0.152095i
\(97\) 36.0527 0.371677 0.185838 0.982580i \(-0.440500\pi\)
0.185838 + 0.982580i \(0.440500\pi\)
\(98\) 9.97398i 0.101775i
\(99\) −66.9737 36.6951i −0.676502 0.370657i
\(100\) 10.0000 0.100000
\(101\) 48.1577i 0.476809i 0.971166 + 0.238405i \(0.0766245\pi\)
−0.971166 + 0.238405i \(0.923376\pi\)
\(102\) −110.921 + 65.7051i −1.08746 + 0.644167i
\(103\) 140.408 1.36318 0.681591 0.731733i \(-0.261288\pi\)
0.681591 + 0.731733i \(0.261288\pi\)
\(104\) 28.2843i 0.271964i
\(105\) −25.5964 43.2110i −0.243776 0.411534i
\(106\) −42.9737 −0.405412
\(107\) 43.1149i 0.402943i 0.979494 + 0.201471i \(0.0645723\pi\)
−0.979494 + 0.201471i \(0.935428\pi\)
\(108\) 1.81139 + 53.9696i 0.0167721 + 0.499719i
\(109\) 133.842 1.22791 0.613954 0.789342i \(-0.289578\pi\)
0.613954 + 0.789342i \(0.289578\pi\)
\(110\) 26.8328i 0.243935i
\(111\) 41.1623 24.3829i 0.370831 0.219665i
\(112\) −29.9473 −0.267387
\(113\) 7.90852i 0.0699869i −0.999388 0.0349935i \(-0.988859\pi\)
0.999388 0.0349935i \(-0.0111410\pi\)
\(114\) 58.3246 + 98.4615i 0.511619 + 0.863697i
\(115\) 20.5132 0.178375
\(116\) 53.6656i 0.462635i
\(117\) −43.2456 + 78.9292i −0.369620 + 0.674609i
\(118\) −34.0527 −0.288582
\(119\) 227.502i 1.91178i
\(120\) 16.3246 9.67000i 0.136038 0.0805833i
\(121\) 49.0000 0.404959
\(122\) 76.2930i 0.625353i
\(123\) −72.4078 122.236i −0.588682 0.993792i
\(124\) −16.0000 −0.129032
\(125\) 11.1803i 0.0894427i
\(126\) −83.5701 45.7883i −0.663255 0.363399i
\(127\) −134.460 −1.05874 −0.529372 0.848390i \(-0.677572\pi\)
−0.529372 + 0.848390i \(0.677572\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) −37.3246 + 22.1095i −0.289338 + 0.171392i
\(130\) 31.6228 0.243252
\(131\) 220.394i 1.68240i 0.540727 + 0.841198i \(0.318149\pi\)
−0.540727 + 0.841198i \(0.681851\pi\)
\(132\) 25.9473 + 43.8034i 0.196571 + 0.331844i
\(133\) −201.947 −1.51840
\(134\) 156.215i 1.16578i
\(135\) 60.3399 2.02519i 0.446962 0.0150014i
\(136\) 85.9473 0.631966
\(137\) 95.5153i 0.697192i −0.937273 0.348596i \(-0.886659\pi\)
0.937273 0.348596i \(-0.113341\pi\)
\(138\) 33.4868 19.8362i 0.242658 0.143741i
\(139\) −76.8157 −0.552631 −0.276315 0.961067i \(-0.589113\pi\)
−0.276315 + 0.961067i \(0.589113\pi\)
\(140\) 33.4821i 0.239158i
\(141\) −70.1317 118.394i −0.497388 0.839673i
\(142\) 22.0527 0.155300
\(143\) 84.8528i 0.593376i
\(144\) 17.2982 31.5717i 0.120127 0.219248i
\(145\) −60.0000 −0.413793
\(146\) 124.376i 0.851893i
\(147\) 18.2039 10.7833i 0.123836 0.0733555i
\(148\) −31.8947 −0.215504
\(149\) 276.237i 1.85394i 0.375139 + 0.926969i \(0.377595\pi\)
−0.375139 + 0.926969i \(0.622405\pi\)
\(150\) −10.8114 18.2514i −0.0720759 0.121676i
\(151\) 18.0527 0.119554 0.0597770 0.998212i \(-0.480961\pi\)
0.0597770 + 0.998212i \(0.480961\pi\)
\(152\) 76.2930i 0.501928i
\(153\) 239.842 + 131.410i 1.56759 + 0.858890i
\(154\) −89.8420 −0.583390
\(155\) 17.8885i 0.115410i
\(156\) 51.6228 30.5792i 0.330915 0.196021i
\(157\) 103.842 0.661414 0.330707 0.943733i \(-0.392713\pi\)
0.330707 + 0.943733i \(0.392713\pi\)
\(158\) 66.4308i 0.420448i
\(159\) 46.4605 + 78.4330i 0.292204 + 0.493289i
\(160\) −12.6491 −0.0790569
\(161\) 68.6825i 0.426599i
\(162\) 96.5438 61.6547i 0.595949 0.380584i
\(163\) −11.3815 −0.0698251 −0.0349126 0.999390i \(-0.511115\pi\)
−0.0349126 + 0.999390i \(0.511115\pi\)
\(164\) 94.7151i 0.577531i
\(165\) 48.9737 29.0100i 0.296810 0.175818i
\(166\) 36.9737 0.222733
\(167\) 252.270i 1.51060i −0.655382 0.755298i \(-0.727492\pi\)
0.655382 0.755298i \(-0.272508\pi\)
\(168\) 32.3772 + 54.6581i 0.192722 + 0.325346i
\(169\) −69.0000 −0.408284
\(170\) 96.0920i 0.565247i
\(171\) 116.649 212.901i 0.682159 1.24504i
\(172\) 28.9210 0.168145
\(173\) 11.8160i 0.0683005i −0.999417 0.0341502i \(-0.989128\pi\)
0.999417 0.0341502i \(-0.0108725\pi\)
\(174\) −97.9473 + 58.0200i −0.562916 + 0.333448i
\(175\) 37.4342 0.213910
\(176\) 33.9411i 0.192847i
\(177\) 36.8157 + 62.1509i 0.207998 + 0.351135i
\(178\) 85.9473 0.482850
\(179\) 69.0358i 0.385675i 0.981231 + 0.192837i \(0.0617690\pi\)
−0.981231 + 0.192837i \(0.938231\pi\)
\(180\) −35.2982 19.3400i −0.196101 0.107444i
\(181\) −189.684 −1.04798 −0.523989 0.851725i \(-0.675557\pi\)
−0.523989 + 0.851725i \(0.675557\pi\)
\(182\) 105.880i 0.581757i
\(183\) −139.246 + 82.4834i −0.760905 + 0.450729i
\(184\) −25.9473 −0.141018
\(185\) 35.6593i 0.192753i
\(186\) 17.2982 + 29.2023i 0.0930012 + 0.157001i
\(187\) 257.842 1.37883
\(188\) 91.7377i 0.487966i
\(189\) 6.78078 + 202.031i 0.0358771 + 1.06895i
\(190\) −85.2982 −0.448938
\(191\) 108.708i 0.569153i −0.958653 0.284577i \(-0.908147\pi\)
0.958653 0.284577i \(-0.0918530\pi\)
\(192\) −20.6491 + 12.2317i −0.107547 + 0.0637067i
\(193\) −167.947 −0.870193 −0.435097 0.900384i \(-0.643286\pi\)
−0.435097 + 0.900384i \(0.643286\pi\)
\(194\) 50.9862i 0.262815i
\(195\) −34.1886 57.7160i −0.175326 0.295980i
\(196\) −14.1053 −0.0719660
\(197\) 171.659i 0.871367i −0.900100 0.435684i \(-0.856507\pi\)
0.900100 0.435684i \(-0.143493\pi\)
\(198\) 51.8947 94.7151i 0.262094 0.478359i
\(199\) 35.0790 0.176276 0.0881382 0.996108i \(-0.471908\pi\)
0.0881382 + 0.996108i \(0.471908\pi\)
\(200\) 14.1421i 0.0707107i
\(201\) −285.114 + 168.890i −1.41848 + 0.840248i
\(202\) −68.1053 −0.337155
\(203\) 200.893i 0.989620i
\(204\) −92.9210 156.866i −0.455495 0.768951i
\(205\) 105.895 0.516559
\(206\) 198.567i 0.963916i
\(207\) −72.4078 39.6725i −0.349796 0.191654i
\(208\) −40.0000 −0.192308
\(209\) 228.879i 1.09512i
\(210\) 61.1096 36.1988i 0.290998 0.172375i
\(211\) −58.1580 −0.275630 −0.137815 0.990458i \(-0.544008\pi\)
−0.137815 + 0.990458i \(0.544008\pi\)
\(212\) 60.7739i 0.286670i
\(213\) −23.8420 40.2492i −0.111934 0.188963i
\(214\) −60.9737 −0.284924
\(215\) 32.3347i 0.150394i
\(216\) −76.3246 + 2.56169i −0.353354 + 0.0118597i
\(217\) −59.8947 −0.276012
\(218\) 189.281i 0.868262i
\(219\) 227.004 134.468i 1.03655 0.614009i
\(220\) −37.9473 −0.172488
\(221\) 303.870i 1.37498i
\(222\) 34.4826 + 58.2123i 0.155327 + 0.262217i
\(223\) 99.3815 0.445657 0.222828 0.974858i \(-0.428471\pi\)
0.222828 + 0.974858i \(0.428471\pi\)
\(224\) 42.3519i 0.189071i
\(225\) −21.6228 + 39.4646i −0.0961012 + 0.175398i
\(226\) 11.1843 0.0494882
\(227\) 216.951i 0.955733i 0.878432 + 0.477867i \(0.158590\pi\)
−0.878432 + 0.477867i \(0.841410\pi\)
\(228\) −139.246 + 82.4834i −0.610726 + 0.361769i
\(229\) 325.684 1.42220 0.711100 0.703090i \(-0.248197\pi\)
0.711100 + 0.703090i \(0.248197\pi\)
\(230\) 29.0100i 0.126130i
\(231\) 97.1317 + 163.974i 0.420483 + 0.709845i
\(232\) 75.8947 0.327132
\(233\) 51.7119i 0.221939i 0.993824 + 0.110970i \(0.0353957\pi\)
−0.993824 + 0.110970i \(0.964604\pi\)
\(234\) −111.623 61.1584i −0.477020 0.261361i
\(235\) 102.566 0.436450
\(236\) 48.1577i 0.204058i
\(237\) −121.246 + 71.8209i −0.511585 + 0.303042i
\(238\) 321.737 1.35183
\(239\) 410.047i 1.71568i 0.513917 + 0.857840i \(0.328194\pi\)
−0.513917 + 0.857840i \(0.671806\pi\)
\(240\) 13.6754 + 23.0864i 0.0569810 + 0.0961934i
\(241\) 445.526 1.84866 0.924328 0.381599i \(-0.124627\pi\)
0.924328 + 0.381599i \(0.124627\pi\)
\(242\) 69.2965i 0.286349i
\(243\) −216.906 109.549i −0.892616 0.450818i
\(244\) 107.895 0.442191
\(245\) 15.7702i 0.0643683i
\(246\) 172.868 102.400i 0.702717 0.416261i
\(247\) −269.737 −1.09205
\(248\) 22.6274i 0.0912396i
\(249\) −39.9737 67.4821i −0.160537 0.271013i
\(250\) 15.8114 0.0632456
\(251\) 237.364i 0.945675i 0.881150 + 0.472838i \(0.156770\pi\)
−0.881150 + 0.472838i \(0.843230\pi\)
\(252\) 64.7544 118.186i 0.256962 0.468992i
\(253\) −77.8420 −0.307676
\(254\) 190.156i 0.748645i
\(255\) −175.381 + 103.889i −0.687771 + 0.407407i
\(256\) 16.0000 0.0625000
\(257\) 318.887i 1.24080i 0.784284 + 0.620402i \(0.213030\pi\)
−0.784284 + 0.620402i \(0.786970\pi\)
\(258\) −31.2676 52.7849i −0.121192 0.204593i
\(259\) −119.395 −0.460985
\(260\) 44.7214i 0.172005i
\(261\) 211.789 + 116.040i 0.811453 + 0.444598i
\(262\) −311.684 −1.18963
\(263\) 36.2300i 0.137757i 0.997625 + 0.0688784i \(0.0219420\pi\)
−0.997625 + 0.0688784i \(0.978058\pi\)
\(264\) −61.9473 + 36.6951i −0.234649 + 0.138996i
\(265\) −67.9473 −0.256405
\(266\) 285.597i 1.07367i
\(267\) −92.9210 156.866i −0.348019 0.587513i
\(268\) 220.921 0.824332
\(269\) 528.041i 1.96298i −0.191518 0.981489i \(-0.561341\pi\)
0.191518 0.981489i \(-0.438659\pi\)
\(270\) 2.86406 + 85.3334i 0.0106076 + 0.316050i
\(271\) −475.895 −1.75607 −0.878034 0.478597i \(-0.841145\pi\)
−0.878034 + 0.478597i \(0.841145\pi\)
\(272\) 121.548i 0.446867i
\(273\) 193.246 114.471i 0.707859 0.419307i
\(274\) 135.079 0.492989
\(275\) 42.4264i 0.154278i
\(276\) 28.0527 + 47.3575i 0.101640 + 0.171585i
\(277\) 188.158 0.679271 0.339635 0.940557i \(-0.389696\pi\)
0.339635 + 0.940557i \(0.389696\pi\)
\(278\) 108.634i 0.390769i
\(279\) 34.5964 63.1434i 0.124002 0.226320i
\(280\) −47.3509 −0.169110
\(281\) 24.4322i 0.0869473i 0.999055 + 0.0434736i \(0.0138424\pi\)
−0.999055 + 0.0434736i \(0.986158\pi\)
\(282\) 167.434 99.1812i 0.593738 0.351706i
\(283\) 198.460 0.701274 0.350637 0.936511i \(-0.385965\pi\)
0.350637 + 0.936511i \(0.385965\pi\)
\(284\) 31.1872i 0.109814i
\(285\) 92.2192 + 155.681i 0.323576 + 0.546250i
\(286\) −120.000 −0.419580
\(287\) 354.558i 1.23539i
\(288\) 44.6491 + 24.4634i 0.155032 + 0.0849423i
\(289\) −634.368 −2.19504
\(290\) 84.8528i 0.292596i
\(291\) 93.0569 55.1231i 0.319783 0.189427i
\(292\) −175.895 −0.602379
\(293\) 513.825i 1.75367i −0.480794 0.876834i \(-0.659651\pi\)
0.480794 0.876834i \(-0.340349\pi\)
\(294\) 15.2498 + 25.7442i 0.0518702 + 0.0875654i
\(295\) −53.8420 −0.182515
\(296\) 45.1059i 0.152385i
\(297\) −228.974 + 7.68507i −0.770955 + 0.0258757i
\(298\) −390.658 −1.31093
\(299\) 91.7377i 0.306815i
\(300\) 25.8114 15.2896i 0.0860380 0.0509654i
\(301\) 108.263 0.359679
\(302\) 25.5303i 0.0845375i
\(303\) 73.6313 + 124.302i 0.243008 + 0.410237i
\(304\) 107.895 0.354917
\(305\) 120.630i 0.395508i
\(306\) −185.842 + 339.188i −0.607327 + 1.10846i
\(307\) −11.3815 −0.0370733 −0.0185366 0.999828i \(-0.505901\pi\)
−0.0185366 + 0.999828i \(0.505901\pi\)
\(308\) 127.056i 0.412519i
\(309\) 362.412 214.678i 1.17285 0.694751i
\(310\) −25.2982 −0.0816072
\(311\) 518.756i 1.66802i −0.551746 0.834012i \(-0.686038\pi\)
0.551746 0.834012i \(-0.313962\pi\)
\(312\) 43.2456 + 73.0056i 0.138608 + 0.233992i
\(313\) −46.3160 −0.147974 −0.0739872 0.997259i \(-0.523572\pi\)
−0.0739872 + 0.997259i \(0.523572\pi\)
\(314\) 146.855i 0.467690i
\(315\) −132.136 72.3977i −0.419479 0.229834i
\(316\) 93.9473 0.297302
\(317\) 39.0957i 0.123330i 0.998097 + 0.0616651i \(0.0196411\pi\)
−0.998097 + 0.0616651i \(0.980359\pi\)
\(318\) −110.921 + 65.7051i −0.348808 + 0.206620i
\(319\) 227.684 0.713743
\(320\) 17.8885i 0.0559017i
\(321\) 65.9210 + 111.286i 0.205361 + 0.346684i
\(322\) −97.1317 −0.301651
\(323\) 819.648i 2.53761i
\(324\) 87.1929 + 136.534i 0.269114 + 0.421400i
\(325\) 50.0000 0.153846
\(326\) 16.0959i 0.0493738i
\(327\) 345.465 204.639i 1.05647 0.625808i
\(328\) −133.947 −0.408376
\(329\) 343.412i 1.04381i
\(330\) 41.0263 + 69.2592i 0.124322 + 0.209876i
\(331\) −445.421 −1.34568 −0.672841 0.739787i \(-0.734926\pi\)
−0.672841 + 0.739787i \(0.734926\pi\)
\(332\) 52.2887i 0.157496i
\(333\) 68.9651 125.871i 0.207102 0.377991i
\(334\) 356.763 1.06815
\(335\) 246.997i 0.737305i
\(336\) −77.2982 + 45.7883i −0.230054 + 0.136275i
\(337\) 325.684 0.966421 0.483211 0.875504i \(-0.339471\pi\)
0.483211 + 0.875504i \(0.339471\pi\)
\(338\) 97.5807i 0.288700i
\(339\) −12.0918 20.4130i −0.0356691 0.0602153i
\(340\) 135.895 0.399690
\(341\) 67.8823i 0.199068i
\(342\) 301.088 + 164.967i 0.880373 + 0.482359i
\(343\) 314.053 0.915605
\(344\) 40.9005i 0.118897i
\(345\) 52.9473 31.3638i 0.153471 0.0909097i
\(346\) 16.7103 0.0482957
\(347\) 51.8236i 0.149348i −0.997208 0.0746738i \(-0.976208\pi\)
0.997208 0.0746738i \(-0.0237916\pi\)
\(348\) −82.0527 138.518i −0.235784 0.398042i
\(349\) −97.5787 −0.279595 −0.139798 0.990180i \(-0.544645\pi\)
−0.139798 + 0.990180i \(0.544645\pi\)
\(350\) 52.9399i 0.151257i
\(351\) 9.05694 + 269.848i 0.0258033 + 0.768798i
\(352\) 48.0000 0.136364
\(353\) 569.797i 1.61416i 0.590445 + 0.807078i \(0.298952\pi\)
−0.590445 + 0.807078i \(0.701048\pi\)
\(354\) −87.8947 + 52.0652i −0.248290 + 0.147077i
\(355\) 34.8683 0.0982206
\(356\) 121.548i 0.341427i
\(357\) −347.842 587.215i −0.974347 1.64486i
\(358\) −97.6313 −0.272713
\(359\) 274.283i 0.764019i −0.924158 0.382010i \(-0.875232\pi\)
0.924158 0.382010i \(-0.124768\pi\)
\(360\) 27.3509 49.9192i 0.0759747 0.138665i
\(361\) 366.579 1.01545
\(362\) 268.254i 0.741032i
\(363\) 126.476 74.9191i 0.348418 0.206389i
\(364\) −149.737 −0.411364
\(365\) 196.656i 0.538784i
\(366\) −116.649 196.923i −0.318713 0.538041i
\(367\) 461.828 1.25839 0.629194 0.777248i \(-0.283385\pi\)
0.629194 + 0.777248i \(0.283385\pi\)
\(368\) 36.6951i 0.0997149i
\(369\) −373.789 204.800i −1.01298 0.555014i
\(370\) −50.4299 −0.136297
\(371\) 227.502i 0.613213i
\(372\) −41.2982 + 24.4634i −0.111017 + 0.0657618i
\(373\) −491.947 −1.31889 −0.659447 0.751751i \(-0.729209\pi\)
−0.659447 + 0.751751i \(0.729209\pi\)
\(374\) 364.644i 0.974983i
\(375\) −17.0943 28.8580i −0.0455848 0.0769547i
\(376\) −129.737 −0.345044
\(377\) 268.328i 0.711746i
\(378\) −285.715 + 9.58947i −0.755859 + 0.0253690i
\(379\) −258.763 −0.682752 −0.341376 0.939927i \(-0.610893\pi\)
−0.341376 + 0.939927i \(0.610893\pi\)
\(380\) 120.630i 0.317447i
\(381\) −347.061 + 205.585i −0.910922 + 0.539593i
\(382\) 153.737 0.402452
\(383\) 522.422i 1.36402i −0.731341 0.682012i \(-0.761105\pi\)
0.731341 0.682012i \(-0.238895\pi\)
\(384\) −17.2982 29.2023i −0.0450475 0.0760475i
\(385\) −142.053 −0.368968
\(386\) 237.513i 0.615320i
\(387\) −62.5352 + 114.136i −0.161590 + 0.294924i
\(388\) −72.1053 −0.185838
\(389\) 610.847i 1.57030i 0.619306 + 0.785150i \(0.287414\pi\)
−0.619306 + 0.785150i \(0.712586\pi\)
\(390\) 81.6228 48.3500i 0.209289 0.123974i
\(391\) 278.763 0.712949
\(392\) 19.9480i 0.0508876i
\(393\) 336.974 + 568.867i 0.857439 + 1.44750i
\(394\) 242.763 0.616150
\(395\) 105.036i 0.265915i
\(396\) 133.947 + 73.3901i 0.338251 + 0.185329i
\(397\) −214.000 −0.539043 −0.269521 0.962994i \(-0.586865\pi\)
−0.269521 + 0.962994i \(0.586865\pi\)
\(398\) 49.6092i 0.124646i
\(399\) −521.254 + 308.770i −1.30640 + 0.773859i
\(400\) −20.0000 −0.0500000
\(401\) 454.557i 1.13356i 0.823869 + 0.566780i \(0.191811\pi\)
−0.823869 + 0.566780i \(0.808189\pi\)
\(402\) −238.846 403.212i −0.594145 1.00301i
\(403\) −80.0000 −0.198511
\(404\) 96.3155i 0.238405i
\(405\) 152.649 97.4846i 0.376911 0.240703i
\(406\) 284.105 0.699767
\(407\) 135.318i 0.332476i
\(408\) 221.842 131.410i 0.543730 0.322084i
\(409\) −573.842 −1.40304 −0.701518 0.712651i \(-0.747494\pi\)
−0.701518 + 0.712651i \(0.747494\pi\)
\(410\) 149.758i 0.365263i
\(411\) −146.039 246.538i −0.355326 0.599850i
\(412\) −280.816 −0.681591
\(413\) 180.274i 0.436500i
\(414\) 56.1053 102.400i 0.135520 0.247343i
\(415\) 58.4605 0.140869
\(416\) 56.5685i 0.135982i
\(417\) −198.272 + 117.448i −0.475472 + 0.281650i
\(418\) 323.684 0.774364
\(419\) 97.9159i 0.233690i 0.993150 + 0.116845i \(0.0372780\pi\)
−0.993150 + 0.116845i \(0.962722\pi\)
\(420\) 51.1929 + 86.4220i 0.121888 + 0.205767i
\(421\) 717.315 1.70384 0.851918 0.523675i \(-0.175439\pi\)
0.851918 + 0.523675i \(0.175439\pi\)
\(422\) 82.2478i 0.194900i
\(423\) −362.039 198.362i −0.855885 0.468942i
\(424\) 85.9473 0.202706
\(425\) 151.935i 0.357494i
\(426\) 56.9210 33.7177i 0.133617 0.0791495i
\(427\) 403.895 0.945889
\(428\) 86.2298i 0.201471i
\(429\) 129.737 + 219.017i 0.302416 + 0.510529i
\(430\) 45.7281 0.106344
\(431\) 293.077i 0.679994i 0.940427 + 0.339997i \(0.110426\pi\)
−0.940427 + 0.339997i \(0.889574\pi\)
\(432\) −3.62278 107.939i −0.00838606 0.249859i
\(433\) 487.526 1.12593 0.562963 0.826482i \(-0.309661\pi\)
0.562963 + 0.826482i \(0.309661\pi\)
\(434\) 84.7038i 0.195170i
\(435\) −154.868 + 91.7377i −0.356019 + 0.210891i
\(436\) −267.684 −0.613954
\(437\) 247.450i 0.566247i
\(438\) 190.167 + 321.033i 0.434170 + 0.732951i
\(439\) 257.237 0.585961 0.292981 0.956118i \(-0.405353\pi\)
0.292981 + 0.956118i \(0.405353\pi\)
\(440\) 53.6656i 0.121967i
\(441\) 30.4997 55.6662i 0.0691602 0.126227i
\(442\) 429.737 0.972255
\(443\) 293.096i 0.661615i −0.943698 0.330808i \(-0.892679\pi\)
0.943698 0.330808i \(-0.107321\pi\)
\(444\) −82.3246 + 48.7657i −0.185416 + 0.109833i
\(445\) 135.895 0.305381
\(446\) 140.547i 0.315127i
\(447\) 422.355 + 713.005i 0.944866 + 1.59509i
\(448\) 59.8947 0.133693
\(449\) 585.614i 1.30426i −0.758106 0.652132i \(-0.773875\pi\)
0.758106 0.652132i \(-0.226125\pi\)
\(450\) −55.8114 30.5792i −0.124025 0.0679538i
\(451\) −401.842 −0.891002
\(452\) 15.8170i 0.0349935i
\(453\) 46.5964 27.6018i 0.102862 0.0609312i
\(454\) −306.816 −0.675805
\(455\) 167.411i 0.367936i
\(456\) −116.649 196.923i −0.255809 0.431849i
\(457\) −813.052 −1.77911 −0.889554 0.456831i \(-0.848984\pi\)
−0.889554 + 0.456831i \(0.848984\pi\)
\(458\) 460.587i 1.00565i
\(459\) 819.986 27.5213i 1.78646 0.0599593i
\(460\) −41.0263 −0.0891877
\(461\) 554.074i 1.20190i 0.799288 + 0.600948i \(0.205210\pi\)
−0.799288 + 0.600948i \(0.794790\pi\)
\(462\) −231.895 + 137.365i −0.501937 + 0.297327i
\(463\) −449.723 −0.971324 −0.485662 0.874147i \(-0.661421\pi\)
−0.485662 + 0.874147i \(0.661421\pi\)
\(464\) 107.331i 0.231317i
\(465\) 27.3509 + 46.1728i 0.0588191 + 0.0992964i
\(466\) −73.1317 −0.156935
\(467\) 30.7221i 0.0657862i −0.999459 0.0328931i \(-0.989528\pi\)
0.999459 0.0328931i \(-0.0104721\pi\)
\(468\) 86.4911 157.858i 0.184810 0.337304i
\(469\) 826.999 1.76332
\(470\) 145.050i 0.308617i
\(471\) 268.031 158.770i 0.569067 0.337092i
\(472\) 68.1053 0.144291
\(473\) 122.701i 0.259411i
\(474\) −101.570 171.467i −0.214283 0.361745i
\(475\) −134.868 −0.283933
\(476\) 455.004i 0.955891i
\(477\) 239.842 + 131.410i 0.502813 + 0.275493i
\(478\) −579.895 −1.21317
\(479\) 735.242i 1.53495i −0.641078 0.767476i \(-0.721512\pi\)
0.641078 0.767476i \(-0.278488\pi\)
\(480\) −32.6491 + 19.3400i −0.0680190 + 0.0402917i
\(481\) −159.473 −0.331545
\(482\) 630.069i 1.30720i
\(483\) 105.013 + 177.279i 0.217418 + 0.367037i
\(484\) −98.0000 −0.202479
\(485\) 80.6162i 0.166219i
\(486\) 154.925 306.751i 0.318776 0.631175i
\(487\) −92.6185 −0.190182 −0.0950909 0.995469i \(-0.530314\pi\)
−0.0950909 + 0.995469i \(0.530314\pi\)
\(488\) 152.586i 0.312676i
\(489\) −29.3772 + 17.4019i −0.0600761 + 0.0355866i
\(490\) −22.3025 −0.0455153
\(491\) 898.323i 1.82958i −0.403933 0.914789i \(-0.632357\pi\)
0.403933 0.914789i \(-0.367643\pi\)
\(492\) 144.816 + 244.473i 0.294341 + 0.496896i
\(493\) −815.368 −1.65389
\(494\) 381.465i 0.772197i
\(495\) 82.0527 149.758i 0.165763 0.302541i
\(496\) 32.0000 0.0645161
\(497\) 116.747i 0.234903i
\(498\) 95.4342 56.5313i 0.191635 0.113517i
\(499\) 136.921 0.274391 0.137195 0.990544i \(-0.456191\pi\)
0.137195 + 0.990544i \(0.456191\pi\)
\(500\) 22.3607i 0.0447214i
\(501\) −385.710 651.143i −0.769881 1.29969i
\(502\) −335.684 −0.668693
\(503\) 443.077i 0.880868i −0.897785 0.440434i \(-0.854825\pi\)
0.897785 0.440434i \(-0.145175\pi\)
\(504\) 167.140 + 91.5766i 0.331627 + 0.181700i
\(505\) −107.684 −0.213236
\(506\) 110.085i 0.217560i
\(507\) −178.099 + 105.498i −0.351279 + 0.208083i
\(508\) 268.921 0.529372
\(509\) 213.062i 0.418590i 0.977853 + 0.209295i \(0.0671168\pi\)
−0.977853 + 0.209295i \(0.932883\pi\)
\(510\) −146.921 248.027i −0.288080 0.486327i
\(511\) −658.447 −1.28855
\(512\) 22.6274i 0.0441942i
\(513\) −24.4299 727.879i −0.0476216 1.41887i
\(514\) −450.974 −0.877381
\(515\) 313.961i 0.609634i
\(516\) 74.6491 44.2191i 0.144669 0.0856959i
\(517\) −389.210 −0.752824
\(518\) 168.850i 0.325965i
\(519\) −18.0662 30.4987i −0.0348096 0.0587643i
\(520\) −63.2456 −0.121626
\(521\) 3.20085i 0.00614366i 0.999995 + 0.00307183i \(0.000977795\pi\)
−0.999995 + 0.00307183i \(0.999022\pi\)
\(522\) −164.105 + 299.515i −0.314378 + 0.573784i
\(523\) 966.644 1.84827 0.924134 0.382069i \(-0.124788\pi\)
0.924134 + 0.382069i \(0.124788\pi\)
\(524\) 440.788i 0.841198i
\(525\) 96.6228 57.2354i 0.184043 0.109020i
\(526\) −51.2370 −0.0974088
\(527\) 243.096i 0.461282i
\(528\) −51.8947 87.6068i −0.0982853 0.165922i
\(529\) 444.842 0.840911
\(530\) 96.0920i 0.181306i
\(531\) 190.053 + 104.130i 0.357915 + 0.196102i
\(532\) 403.895 0.759200
\(533\) 473.575i 0.888509i
\(534\) 221.842 131.410i 0.415434 0.246086i
\(535\) −96.4078 −0.180202
\(536\) 312.429i 0.582891i
\(537\) 105.553 + 178.191i 0.196561 + 0.331827i
\(538\) 746.763 1.38804
\(539\) 59.8439i 0.111028i
\(540\) −120.680 + 4.05039i −0.223481 + 0.00750072i
\(541\) −186.105 −0.344002 −0.172001 0.985097i \(-0.555023\pi\)
−0.172001 + 0.985097i \(0.555023\pi\)
\(542\) 673.017i 1.24173i
\(543\) −489.601 + 290.019i −0.901659 + 0.534106i
\(544\) −171.895 −0.315983
\(545\) 299.280i 0.549137i
\(546\) 161.886 + 273.290i 0.296495 + 0.500532i
\(547\) −309.434 −0.565693 −0.282847 0.959165i \(-0.591279\pi\)
−0.282847 + 0.959165i \(0.591279\pi\)
\(548\) 191.031i 0.348596i
\(549\) −233.298 + 425.802i −0.424951 + 0.775596i
\(550\) −60.0000 −0.109091
\(551\) 723.779i 1.31357i
\(552\) −66.9737 + 39.6725i −0.121329 + 0.0718704i
\(553\) 351.684 0.635957
\(554\) 266.096i 0.480317i
\(555\) 54.5217 + 92.0417i 0.0982373 + 0.165841i
\(556\) 153.631 0.276315
\(557\) 4.00106i 0.00718323i 0.999994 + 0.00359161i \(0.00114325\pi\)
−0.999994 + 0.00359161i \(0.998857\pi\)
\(558\) 89.2982 + 48.9268i 0.160033 + 0.0876824i
\(559\) 144.605 0.258685
\(560\) 66.9643i 0.119579i
\(561\) 665.526 394.230i 1.18632 0.702728i
\(562\) −34.5523 −0.0614810
\(563\) 166.970i 0.296572i −0.988945 0.148286i \(-0.952624\pi\)
0.988945 0.148286i \(-0.0473756\pi\)
\(564\) 140.263 + 236.788i 0.248694 + 0.419836i
\(565\) 17.6840 0.0312991
\(566\) 280.666i 0.495875i
\(567\) 326.399 + 511.102i 0.575660 + 0.901414i
\(568\) −44.1053 −0.0776502
\(569\) 156.289i 0.274673i −0.990524 0.137337i \(-0.956146\pi\)
0.990524 0.137337i \(-0.0438542\pi\)
\(570\) −220.167 + 130.418i −0.386257 + 0.228803i
\(571\) −144.105 −0.252374 −0.126187 0.992006i \(-0.540274\pi\)
−0.126187 + 0.992006i \(0.540274\pi\)
\(572\) 169.706i 0.296688i
\(573\) −166.211 280.591i −0.290071 0.489688i
\(574\) −501.421 −0.873555
\(575\) 45.8688i 0.0797719i
\(576\) −34.5964 + 63.1434i −0.0600633 + 0.109624i
\(577\) 532.947 0.923651 0.461826 0.886971i \(-0.347195\pi\)
0.461826 + 0.886971i \(0.347195\pi\)
\(578\) 897.132i 1.55213i
\(579\) −433.495 + 256.785i −0.748697 + 0.443497i
\(580\) 120.000 0.206897
\(581\) 195.738i 0.336899i
\(582\) 77.9559 + 131.602i 0.133945 + 0.226121i
\(583\) 257.842 0.442268
\(584\) 248.753i 0.425946i
\(585\) −176.491 96.7000i −0.301694 0.165299i
\(586\) 726.658 1.24003
\(587\) 190.342i 0.324262i −0.986769 0.162131i \(-0.948163\pi\)
0.986769 0.162131i \(-0.0518368\pi\)
\(588\) −36.4078 + 21.5665i −0.0619181 + 0.0366777i
\(589\) 215.789 0.366366
\(590\) 76.1441i 0.129058i
\(591\) −262.460 443.077i −0.444096 0.749707i
\(592\) 63.7893 0.107752
\(593\) 345.719i 0.583001i −0.956571 0.291500i \(-0.905846\pi\)
0.956571 0.291500i \(-0.0941544\pi\)
\(594\) −10.8683 323.818i −0.0182969 0.545148i
\(595\) 508.710 0.854975
\(596\) 552.473i 0.926969i
\(597\) 90.5438 53.6344i 0.151665 0.0898399i
\(598\) −129.737 −0.216951
\(599\) 704.055i 1.17538i 0.809085 + 0.587692i \(0.199963\pi\)
−0.809085 + 0.587692i \(0.800037\pi\)
\(600\) 21.6228 + 36.5028i 0.0360380 + 0.0608380i
\(601\) 338.474 0.563185 0.281592 0.959534i \(-0.409137\pi\)
0.281592 + 0.959534i \(0.409137\pi\)
\(602\) 153.107i 0.254331i
\(603\) −477.693 + 871.856i −0.792193 + 1.44586i
\(604\) −36.1053 −0.0597770
\(605\) 109.567i 0.181103i
\(606\) −175.789 + 104.130i −0.290081 + 0.171832i
\(607\) −816.513 −1.34516 −0.672581 0.740024i \(-0.734814\pi\)
−0.672581 + 0.740024i \(0.734814\pi\)
\(608\) 152.586i 0.250964i
\(609\) −307.157 518.532i −0.504363 0.851449i
\(610\) 170.596 0.279666
\(611\) 458.688i 0.750717i
\(612\) −479.684 262.820i −0.783797 0.429445i
\(613\) −229.263 −0.374001 −0.187001 0.982360i \(-0.559877\pi\)
−0.187001 + 0.982360i \(0.559877\pi\)
\(614\) 16.0959i 0.0262148i
\(615\) 273.329 161.909i 0.444437 0.263266i
\(616\) 179.684 0.291695
\(617\) 1072.25i 1.73785i −0.494945 0.868924i \(-0.664812\pi\)
0.494945 0.868924i \(-0.335188\pi\)
\(618\) 303.601 + 512.528i 0.491263 + 0.829334i
\(619\) −80.7103 −0.130388 −0.0651941 0.997873i \(-0.520767\pi\)
−0.0651941 + 0.997873i \(0.520767\pi\)
\(620\) 35.7771i 0.0577050i
\(621\) −247.552 + 8.30863i −0.398635 + 0.0133794i
\(622\) 733.631 1.17947
\(623\) 455.004i 0.730344i
\(624\) −103.246 + 61.1584i −0.165458 + 0.0980103i
\(625\) 25.0000 0.0400000
\(626\) 65.5007i 0.104634i
\(627\) −349.947 590.769i −0.558130 0.942215i
\(628\) −207.684 −0.330707
\(629\) 484.591i 0.770415i
\(630\) 102.386 186.868i 0.162517 0.296617i
\(631\) 492.894 0.781131 0.390566 0.920575i \(-0.372279\pi\)
0.390566 + 0.920575i \(0.372279\pi\)
\(632\) 132.862i 0.210224i
\(633\) −150.114 + 88.9213i −0.237147 + 0.140476i
\(634\) −55.2897 −0.0872077
\(635\) 300.663i 0.473485i
\(636\) −92.9210 156.866i −0.146102 0.246645i
\(637\) −70.5267 −0.110717
\(638\) 321.994i 0.504692i
\(639\) −123.079 67.4353i −0.192612 0.105533i
\(640\) 25.2982 0.0395285
\(641\) 65.4816i 0.102155i 0.998695 + 0.0510777i \(0.0162656\pi\)
−0.998695 + 0.0510777i \(0.983734\pi\)
\(642\) −157.381 + 93.2264i −0.245143 + 0.145212i
\(643\) −428.619 −0.666592 −0.333296 0.942822i \(-0.608161\pi\)
−0.333296 + 0.942822i \(0.608161\pi\)
\(644\) 137.365i 0.213300i
\(645\) −49.4384 83.4602i −0.0766487 0.129396i
\(646\) −1159.16 −1.79436
\(647\) 462.801i 0.715303i −0.933855 0.357652i \(-0.883578\pi\)
0.933855 0.357652i \(-0.116422\pi\)
\(648\) −193.088 + 123.309i −0.297975 + 0.190292i
\(649\) 204.316 0.314817
\(650\) 70.7107i 0.108786i
\(651\) −154.596 + 91.5766i −0.237475 + 0.140671i
\(652\) 22.7630 0.0349126
\(653\) 425.064i 0.650941i −0.945552 0.325470i \(-0.894477\pi\)
0.945552 0.325470i \(-0.105523\pi\)
\(654\) 289.404 + 488.561i 0.442513 + 0.747035i
\(655\) −492.816 −0.752390
\(656\) 189.430i 0.288765i
\(657\) 380.333 694.161i 0.578894 1.05656i
\(658\) −485.658 −0.738083
\(659\) 182.769i 0.277343i 0.990338 + 0.138671i \(0.0442831\pi\)
−0.990338 + 0.138671i \(0.955717\pi\)
\(660\) −97.9473 + 58.0200i −0.148405 + 0.0879091i
\(661\) −482.053 −0.729278 −0.364639 0.931149i \(-0.618808\pi\)
−0.364639 + 0.931149i \(0.618808\pi\)
\(662\) 629.920i 0.951541i
\(663\) −464.605 784.330i −0.700762 1.18300i
\(664\) −73.9473 −0.111366
\(665\) 451.568i 0.679050i
\(666\) 178.009 + 97.5314i 0.267280 + 0.146444i
\(667\) 246.158 0.369052
\(668\) 504.539i 0.755298i
\(669\) 256.517 151.950i 0.383434 0.227131i
\(670\) 349.307 0.521353
\(671\) 457.758i 0.682203i
\(672\) −64.7544 109.316i −0.0963608 0.162673i
\(673\) 184.579 0.274264 0.137132 0.990553i \(-0.456212\pi\)
0.137132 + 0.990553i \(0.456212\pi\)
\(674\) 460.587i 0.683363i
\(675\) 4.52847 + 134.924i 0.00670885 + 0.199887i
\(676\) 138.000 0.204142
\(677\) 1065.85i 1.57437i 0.616715 + 0.787187i \(0.288463\pi\)
−0.616715 + 0.787187i \(0.711537\pi\)
\(678\) 28.8683 17.1004i 0.0425787 0.0252219i
\(679\) −269.920 −0.397526
\(680\) 192.184i 0.282624i
\(681\) 331.710 + 559.982i 0.487093 + 0.822293i
\(682\) 96.0000 0.140762
\(683\) 788.926i 1.15509i 0.816359 + 0.577545i \(0.195989\pi\)
−0.816359 + 0.577545i \(0.804011\pi\)
\(684\) −233.298 + 425.802i −0.341079 + 0.622518i
\(685\) 213.579 0.311794
\(686\) 444.138i 0.647431i
\(687\) 840.636 497.958i 1.22363 0.724830i
\(688\) −57.8420 −0.0840727
\(689\) 303.870i 0.441030i
\(690\) 44.3552 + 74.8788i 0.0642828 + 0.108520i
\(691\) 932.000 1.34877 0.674385 0.738380i \(-0.264409\pi\)
0.674385 + 0.738380i \(0.264409\pi\)
\(692\) 23.6320i 0.0341502i
\(693\) 501.421 + 274.730i 0.723551 + 0.396436i
\(694\) 73.2897 0.105605
\(695\) 171.765i 0.247144i
\(696\) 195.895 116.040i 0.281458 0.166724i
\(697\) 1439.05 2.06464
\(698\) 137.997i 0.197704i
\(699\) 79.0655 + 133.476i 0.113112 + 0.190952i
\(700\) −74.8683 −0.106955
\(701\) 1352.75i 1.92974i −0.262721 0.964872i \(-0.584620\pi\)
0.262721 0.964872i \(-0.415380\pi\)
\(702\) −381.623 + 12.8084i −0.543622 + 0.0182457i
\(703\) 430.158 0.611889
\(704\) 67.8823i 0.0964237i
\(705\) 264.737 156.819i 0.375513 0.222439i
\(706\) −805.815 −1.14138
\(707\) 360.549i 0.509970i
\(708\) −73.6313 124.302i −0.103999 0.175568i
\(709\) −269.473 −0.380075 −0.190038 0.981777i \(-0.560861\pi\)
−0.190038 + 0.981777i \(0.560861\pi\)
\(710\) 49.3113i 0.0694525i
\(711\) −203.140 + 370.759i −0.285711 + 0.521462i
\(712\) −171.895 −0.241425
\(713\) 73.3901i 0.102931i
\(714\) 830.447 491.923i 1.16309 0.688968i
\(715\) −189.737 −0.265366
\(716\) 138.072i 0.192837i
\(717\) 626.947 + 1058.39i 0.874403 + 1.47614i
\(718\) 387.895 0.540243
\(719\) 537.103i 0.747014i 0.927627 + 0.373507i \(0.121845\pi\)
−0.927627 + 0.373507i \(0.878155\pi\)
\(720\) 70.5964 + 38.6800i 0.0980506 + 0.0537222i
\(721\) −1051.21 −1.45799
\(722\) 518.421i 0.718034i
\(723\) 1149.96 681.192i 1.59055 0.942174i
\(724\) 379.368 0.523989
\(725\) 134.164i 0.185054i
\(726\) 105.952 + 178.864i 0.145939 + 0.246369i
\(727\) −1117.83 −1.53759 −0.768795 0.639495i \(-0.779144\pi\)
−0.768795 + 0.639495i \(0.779144\pi\)
\(728\) 211.760i 0.290879i
\(729\) −727.359 + 48.8800i −0.997750 + 0.0670507i
\(730\) −278.114 −0.380978
\(731\) 439.411i 0.601109i
\(732\) 278.491 164.967i 0.380452 0.225364i
\(733\) 7.52599 0.0102674 0.00513369 0.999987i \(-0.498366\pi\)
0.00513369 + 0.999987i \(0.498366\pi\)
\(734\) 653.124i 0.889815i
\(735\) 24.1121 + 40.7052i 0.0328056 + 0.0553812i
\(736\) 51.8947 0.0705091
\(737\) 937.288i 1.27176i
\(738\) 289.631 528.618i 0.392454 0.716284i
\(739\) −823.079 −1.11377 −0.556887 0.830588i \(-0.688004\pi\)
−0.556887 + 0.830588i \(0.688004\pi\)
\(740\) 71.3186i 0.0963765i
\(741\) −696.228 + 412.417i −0.939579 + 0.556568i
\(742\) 321.737 0.433607
\(743\) 3.21898i 0.00433241i 0.999998 + 0.00216620i \(0.000689524\pi\)
−0.999998 + 0.00216620i \(0.999310\pi\)
\(744\) −34.5964 58.4045i −0.0465006 0.0785007i
\(745\) −617.684 −0.829106
\(746\) 695.719i 0.932599i
\(747\) −206.355 113.063i −0.276245 0.151356i
\(748\) −515.684 −0.689417
\(749\) 322.794i 0.430967i
\(750\) 40.8114 24.1750i 0.0544152 0.0322333i
\(751\) 1185.63 1.57874 0.789368 0.613920i \(-0.210408\pi\)
0.789368 + 0.613920i \(0.210408\pi\)
\(752\) 183.475i 0.243983i
\(753\) 362.921 + 612.671i 0.481967 + 0.813639i
\(754\) 379.473 0.503280
\(755\) 40.3670i 0.0534662i
\(756\) −13.5616 404.061i −0.0179386 0.534473i
\(757\) −863.315 −1.14044 −0.570221 0.821491i \(-0.693143\pi\)
−0.570221 + 0.821491i \(0.693143\pi\)
\(758\) 365.946i 0.482779i
\(759\) −200.921 + 119.017i −0.264718 + 0.156808i
\(760\) 170.596 0.224469
\(761\) 570.597i 0.749800i −0.927065 0.374900i \(-0.877677\pi\)
0.927065 0.374900i \(-0.122323\pi\)
\(762\) −290.741 490.819i −0.381550 0.644119i
\(763\) −1002.05 −1.31331
\(764\) 217.416i 0.284577i
\(765\) −293.842 + 536.303i −0.384107 + 0.701050i
\(766\) 738.816 0.964511
\(767\) 240.789i 0.313936i
\(768\) 41.2982 24.4634i 0.0537737 0.0318534i
\(769\) −741.684 −0.964479 −0.482239 0.876040i \(-0.660176\pi\)
−0.482239 + 0.876040i \(0.660176\pi\)
\(770\) 200.893i 0.260900i
\(771\) 487.565 + 823.090i 0.632380 + 1.06756i
\(772\) 335.895 0.435097
\(773\) 623.203i 0.806214i 0.915153 + 0.403107i \(0.132070\pi\)
−0.915153 + 0.403107i \(0.867930\pi\)
\(774\) −161.412 88.4382i −0.208543 0.114261i
\(775\) −40.0000 −0.0516129
\(776\) 101.972i 0.131408i
\(777\) −308.175 + 182.550i −0.396622 + 0.234943i
\(778\) −863.868 −1.11037
\(779\) 1277.41i 1.63980i
\(780\) 68.3772 + 115.432i 0.0876631 + 0.147990i
\(781\) −132.316 −0.169419
\(782\) 394.230i 0.504131i
\(783\) 724.078 24.3023i 0.924749 0.0310375i
\(784\) 28.2107 0.0359830
\(785\) 232.198i 0.295793i
\(786\) −804.500 + 476.553i −1.02354 + 0.606301i
\(787\) 335.303 0.426052 0.213026 0.977046i \(-0.431668\pi\)
0.213026 + 0.977046i \(0.431668\pi\)
\(788\) 343.319i 0.435684i
\(789\) 55.3943 + 93.5147i 0.0702083 + 0.118523i
\(790\) 148.544 0.188030
\(791\) 59.2098i 0.0748543i
\(792\) −103.789 + 189.430i −0.131047 + 0.239179i
\(793\) 539.473 0.680294
\(794\) 302.642i 0.381161i
\(795\) −175.381 + 103.889i −0.220606 + 0.130678i
\(796\) −70.1580 −0.0881382
\(797\) 550.520i 0.690740i 0.938467 + 0.345370i \(0.112247\pi\)
−0.938467 + 0.345370i \(0.887753\pi\)
\(798\) −436.666 737.165i −0.547201 0.923765i
\(799\) 1393.81 1.74445
\(800\) 28.2843i 0.0353553i
\(801\) −479.684 262.820i −0.598856 0.328115i
\(802\) −642.841 −0.801548
\(803\) 746.258i 0.929337i
\(804\) 570.228 337.780i 0.709239 0.420124i
\(805\) −153.579 −0.190781
\(806\) 113.137i 0.140369i
\(807\) −807.354 1362.95i −1.00044 1.68891i
\(808\) 136.211 0.168578
\(809\) 560.288i 0.692569i −0.938130 0.346284i \(-0.887443\pi\)
0.938130 0.346284i \(-0.112557\pi\)
\(810\) 137.864 + 215.878i 0.170203 + 0.266517i
\(811\) −237.842 −0.293270 −0.146635 0.989191i \(-0.546844\pi\)
−0.146635 + 0.989191i \(0.546844\pi\)
\(812\) 401.786i 0.494810i
\(813\) −1228.35 + 727.624i −1.51089 + 0.894987i
\(814\) 191.368 0.235096
\(815\) 25.4498i 0.0312267i
\(816\) 185.842 + 313.732i 0.227748 + 0.384475i
\(817\) −390.053 −0.477421
\(818\) 811.535i 0.992097i
\(819\) 323.772 590.930i 0.395326 0.721526i
\(820\) −211.789 −0.258280
\(821\) 65.4816i 0.0797584i 0.999205 + 0.0398792i \(0.0126973\pi\)
−0.999205 + 0.0398792i \(0.987303\pi\)
\(822\) 348.658 206.531i 0.424158 0.251254i
\(823\) 521.512 0.633673 0.316836 0.948480i \(-0.397379\pi\)
0.316836 + 0.948480i \(0.397379\pi\)
\(824\) 397.133i 0.481958i
\(825\) 64.8683 + 109.508i 0.0786283 + 0.132738i
\(826\) 254.947 0.308652
\(827\) 987.512i 1.19409i 0.802208 + 0.597045i \(0.203658\pi\)
−0.802208 + 0.597045i \(0.796342\pi\)
\(828\) 144.816 + 79.3449i 0.174898 + 0.0958272i
\(829\) 333.631 0.402450 0.201225 0.979545i \(-0.435508\pi\)
0.201225 + 0.979545i \(0.435508\pi\)
\(830\) 82.6756i 0.0996092i
\(831\) 485.662 287.686i 0.584431 0.346193i
\(832\) 80.0000 0.0961538
\(833\) 214.309i 0.257274i
\(834\) −166.097 280.399i −0.199157 0.336210i
\(835\) 564.092 0.675559
\(836\) 457.758i 0.547558i
\(837\) −7.24555 215.878i −0.00865657 0.257919i
\(838\) −138.474 −0.165243
\(839\) 129.363i 0.154187i −0.997024 0.0770934i \(-0.975436\pi\)
0.997024 0.0770934i \(-0.0245640\pi\)
\(840\) −122.219 + 72.3977i −0.145499 + 0.0861877i
\(841\) 121.000 0.143876
\(842\) 1014.44i 1.20479i
\(843\) 37.3559 + 63.0629i 0.0443130 + 0.0748077i
\(844\) 116.316 0.137815
\(845\) 154.289i 0.182590i
\(846\) 280.527 512.001i 0.331592 0.605202i
\(847\) −366.855 −0.433123
\(848\) 121.548i 0.143335i
\(849\) 512.254 303.438i 0.603362 0.357407i
\(850\) 214.868 0.252786
\(851\) 146.297i 0.171912i
\(852\) 47.6840 + 80.4984i 0.0559671 + 0.0944817i
\(853\) 1080.42 1.26661 0.633306 0.773902i \(-0.281697\pi\)
0.633306 + 0.773902i \(0.281697\pi\)
\(854\) 571.193i 0.668845i
\(855\) 476.061 + 260.835i 0.556797 + 0.305071i
\(856\) 121.947 0.142462
\(857\) 702.548i 0.819776i 0.912136 + 0.409888i \(0.134432\pi\)
−0.912136 + 0.409888i \(0.865568\pi\)
\(858\) −309.737 + 183.475i −0.360998 + 0.213841i
\(859\) −281.132 −0.327278 −0.163639 0.986520i \(-0.552323\pi\)
−0.163639 + 0.986520i \(0.552323\pi\)
\(860\) 64.6693i 0.0751969i
\(861\) 542.105 + 915.163i 0.629623 + 1.06291i
\(862\) −414.474 −0.480828
\(863\) 419.221i 0.485772i 0.970055 + 0.242886i \(0.0780941\pi\)
−0.970055 + 0.242886i \(0.921906\pi\)
\(864\) 152.649 5.12338i 0.176677 0.00592984i
\(865\) 26.4213 0.0305449
\(866\) 689.466i 0.796150i
\(867\) −1637.39 + 969.924i −1.88857 + 1.11871i
\(868\) 119.789 0.138006
\(869\) 398.585i 0.458671i
\(870\) −129.737 219.017i −0.149123 0.251744i
\(871\) 1104.60 1.26820
\(872\) 378.562i 0.434131i
\(873\) 155.912 284.561i 0.178593 0.325958i
\(874\) 349.947 0.400397
\(875\) 83.7053i 0.0956632i
\(876\) −454.009 + 268.936i −0.518275 + 0.307005i
\(877\) 1079.42 1.23081 0.615405 0.788211i \(-0.288992\pi\)
0.615405 + 0.788211i \(0.288992\pi\)
\(878\) 363.788i 0.414337i
\(879\) −785.618 1326.25i −0.893763 1.50882i
\(880\) 75.8947 0.0862439
\(881\) 748.212i 0.849275i −0.905363 0.424638i \(-0.860401\pi\)
0.905363 0.424638i \(-0.139599\pi\)
\(882\) 78.7238 + 43.1330i 0.0892561 + 0.0489037i
\(883\) −875.749 −0.991788 −0.495894 0.868383i \(-0.665160\pi\)
−0.495894 + 0.868383i \(0.665160\pi\)
\(884\) 607.739i 0.687488i
\(885\) −138.974 + 82.3223i −0.157032 + 0.0930196i
\(886\) 414.500 0.467833
\(887\) 1015.05i 1.14436i 0.820127 + 0.572182i \(0.193903\pi\)
−0.820127 + 0.572182i \(0.806097\pi\)
\(888\) −68.9651 116.425i −0.0776634 0.131109i
\(889\) 1006.68 1.13238
\(890\) 192.184i 0.215937i
\(891\) −579.263 + 369.928i −0.650126 + 0.415183i
\(892\) −198.763 −0.222828
\(893\) 1237.25i 1.38550i
\(894\) −1008.34 + 597.300i −1.12790 + 0.668121i
\(895\) −154.369 −0.172479
\(896\) 84.7038i 0.0945355i
\(897\) 140.263 + 236.788i 0.156369 + 0.263977i
\(898\) 828.184 0.922254
\(899\) 214.663i 0.238779i
\(900\) 43.2456 78.9292i 0.0480506 0.0876991i
\(901\) −923.368 −1.02483
\(902\) 568.290i 0.630034i
\(903\) 279.443 165.530i 0.309460 0.183312i
\(904\) −22.3687 −0.0247441
\(905\) 424.146i 0.468670i
\(906\) 39.0349 + 65.8973i 0.0430849 + 0.0727343i
\(907\) 1504.70 1.65898 0.829491 0.558520i \(-0.188631\pi\)
0.829491 + 0.558520i \(0.188631\pi\)
\(908\) 433.903i 0.477867i
\(909\) 380.105 + 208.261i 0.418158 + 0.229110i
\(910\) −236.754 −0.260170
\(911\) 1002.19i 1.10010i −0.835131 0.550051i \(-0.814608\pi\)
0.835131 0.550051i \(-0.185392\pi\)
\(912\) 278.491 164.967i 0.305363 0.180885i
\(913\) −221.842 −0.242981
\(914\) 1149.83i 1.25802i
\(915\) −184.438 311.363i −0.201572 0.340287i
\(916\) −651.368 −0.711100
\(917\) 1650.05i 1.79940i
\(918\) 38.9210 + 1159.64i 0.0423976 + 1.26322i
\(919\) −780.289 −0.849063 −0.424532 0.905413i \(-0.639561\pi\)
−0.424532 + 0.905413i \(0.639561\pi\)
\(920\) 58.0200i 0.0630652i
\(921\) −29.3772 + 17.4019i −0.0318971 + 0.0188945i
\(922\) −783.579 −0.849868
\(923\) 155.936i 0.168945i
\(924\) −194.263 327.949i −0.210242 0.354923i
\(925\) −79.7367 −0.0862018
\(926\) 636.005i 0.686830i
\(927\) 607.201 1108.23i 0.655018 1.19550i
\(928\) −151.789 −0.163566
\(929\) 1093.84i 1.17744i 0.808339 + 0.588718i \(0.200367\pi\)
−0.808339 + 0.588718i \(0.799633\pi\)
\(930\) −65.2982 + 38.6800i −0.0702131 + 0.0415914i
\(931\) 190.236 0.204335
\(932\) 103.424i 0.110970i
\(933\) −793.157 1338.98i −0.850115 1.43513i
\(934\) 43.4477 0.0465179
\(935\) 576.552i 0.616633i
\(936\) 223.246 + 122.317i 0.238510 + 0.130680i
\(937\) −407.947 −0.435376 −0.217688 0.976018i \(-0.569852\pi\)
−0.217688 + 0.976018i \(0.569852\pi\)
\(938\) 1169.55i 1.24686i
\(939\) −119.548 + 70.8154i −0.127314 + 0.0754157i
\(940\) −205.132 −0.218225
\(941\) 671.008i 0.713079i 0.934280 + 0.356540i \(0.116044\pi\)
−0.934280 + 0.356540i \(0.883956\pi\)
\(942\) 224.535 + 379.053i 0.238360 + 0.402391i
\(943\) −434.447 −0.460707
\(944\) 96.3155i 0.102029i
\(945\) −451.754 + 15.1623i −0.478047 + 0.0160447i
\(946\) −173.526 −0.183431
\(947\) 1608.13i 1.69813i −0.528290 0.849064i \(-0.677167\pi\)
0.528290 0.849064i \(-0.322833\pi\)
\(948\) 242.491 143.642i 0.255792 0.151521i
\(949\) −879.473 −0.926737
\(950\) 190.733i 0.200771i
\(951\) 59.7758 + 100.911i 0.0628557 + 0.106111i
\(952\) −643.473 −0.675917
\(953\) 695.440i 0.729737i −0.931059 0.364869i \(-0.881114\pi\)
0.931059 0.364869i \(-0.118886\pi\)
\(954\) −185.842 + 339.188i −0.194803 + 0.355543i
\(955\) 243.079 0.254533
\(956\) 820.095i 0.857840i
\(957\) 587.684 348.120i 0.614090 0.363762i
\(958\) 1039.79 1.08538
\(959\) 715.107i 0.745680i
\(960\) −27.3509 46.1728i −0.0284905 0.0480967i
\(961\) −897.000 −0.933403
\(962\) 225.529i 0.234438i
\(963\) 340.302 + 186.453i 0.353377 + 0.193617i
\(964\) −891.052 −0.924328
\(965\) 375.542i 0.389162i
\(966\) −250.710 + 148.511i −0.259534 + 0.153738i
\(967\) −1030.07 −1.06522 −0.532609 0.846361i \(-0.678788\pi\)
−0.532609 + 0.846361i \(0.678788\pi\)
\(968\) 138.593i 0.143175i
\(969\) 1253.21 + 2115.63i 1.29330 + 2.18331i
\(970\) −114.009 −0.117535
\(971\) 1165.24i 1.20004i 0.799986 + 0.600019i \(0.204840\pi\)
−0.799986 + 0.600019i \(0.795160\pi\)
\(972\) 433.811 + 219.097i 0.446308 + 0.225409i
\(973\) 575.106 0.591065
\(974\) 130.982i 0.134479i
\(975\) 129.057 76.4481i 0.132366 0.0784083i
\(976\) −215.789 −0.221096
\(977\) 726.440i 0.743541i 0.928325 + 0.371771i \(0.121249\pi\)
−0.928325 + 0.371771i \(0.878751\pi\)
\(978\) −24.6100 41.5457i −0.0251636 0.0424802i
\(979\) −515.684 −0.526746
\(980\) 31.5405i 0.0321842i
\(981\) 578.807 1056.40i 0.590017 1.07686i
\(982\) 1270.42 1.29371
\(983\) 1024.21i 1.04192i 0.853581 + 0.520960i \(0.174426\pi\)
−0.853581 + 0.520960i \(0.825574\pi\)
\(984\) −345.737 + 204.800i −0.351358 + 0.208130i
\(985\) 383.842 0.389687
\(986\) 1153.10i 1.16948i
\(987\) 525.064 + 886.395i 0.531980 + 0.898070i
\(988\) 539.473 0.546026
\(989\) 132.657i 0.134133i
\(990\) 211.789 + 116.040i 0.213929 + 0.117212i
\(991\) −1797.89 −1.81422 −0.907111 0.420892i \(-0.861717\pi\)
−0.907111 + 0.420892i \(0.861717\pi\)
\(992\) 45.2548i 0.0456198i
\(993\) −1149.69 + 681.031i −1.15780 + 0.685832i
\(994\) −165.105 −0.166101
\(995\) 78.4390i 0.0788332i
\(996\) 79.9473 + 134.964i 0.0802684 + 0.135506i
\(997\) 901.368 0.904080 0.452040 0.891998i \(-0.350696\pi\)
0.452040 + 0.891998i \(0.350696\pi\)
\(998\) 193.636i 0.194024i
\(999\) −14.4434 430.336i −0.0144579 0.430766i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.3.d.a.11.4 yes 4
3.2 odd 2 inner 30.3.d.a.11.2 4
4.3 odd 2 240.3.l.c.161.2 4
5.2 odd 4 150.3.b.b.149.1 8
5.3 odd 4 150.3.b.b.149.8 8
5.4 even 2 150.3.d.c.101.1 4
8.3 odd 2 960.3.l.f.641.3 4
8.5 even 2 960.3.l.e.641.2 4
9.2 odd 6 810.3.h.a.701.2 8
9.4 even 3 810.3.h.a.431.2 8
9.5 odd 6 810.3.h.a.431.3 8
9.7 even 3 810.3.h.a.701.3 8
12.11 even 2 240.3.l.c.161.1 4
15.2 even 4 150.3.b.b.149.7 8
15.8 even 4 150.3.b.b.149.2 8
15.14 odd 2 150.3.d.c.101.3 4
20.3 even 4 1200.3.c.k.449.3 8
20.7 even 4 1200.3.c.k.449.6 8
20.19 odd 2 1200.3.l.u.401.3 4
24.5 odd 2 960.3.l.e.641.1 4
24.11 even 2 960.3.l.f.641.4 4
60.23 odd 4 1200.3.c.k.449.5 8
60.47 odd 4 1200.3.c.k.449.4 8
60.59 even 2 1200.3.l.u.401.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.3.d.a.11.2 4 3.2 odd 2 inner
30.3.d.a.11.4 yes 4 1.1 even 1 trivial
150.3.b.b.149.1 8 5.2 odd 4
150.3.b.b.149.2 8 15.8 even 4
150.3.b.b.149.7 8 15.2 even 4
150.3.b.b.149.8 8 5.3 odd 4
150.3.d.c.101.1 4 5.4 even 2
150.3.d.c.101.3 4 15.14 odd 2
240.3.l.c.161.1 4 12.11 even 2
240.3.l.c.161.2 4 4.3 odd 2
810.3.h.a.431.2 8 9.4 even 3
810.3.h.a.431.3 8 9.5 odd 6
810.3.h.a.701.2 8 9.2 odd 6
810.3.h.a.701.3 8 9.7 even 3
960.3.l.e.641.1 4 24.5 odd 2
960.3.l.e.641.2 4 8.5 even 2
960.3.l.f.641.3 4 8.3 odd 2
960.3.l.f.641.4 4 24.11 even 2
1200.3.c.k.449.3 8 20.3 even 4
1200.3.c.k.449.4 8 60.47 odd 4
1200.3.c.k.449.5 8 60.23 odd 4
1200.3.c.k.449.6 8 20.7 even 4
1200.3.l.u.401.3 4 20.19 odd 2
1200.3.l.u.401.4 4 60.59 even 2