Properties

Label 1216.2.m.a.303.1
Level $1216$
Weight $2$
Character 1216.303
Analytic conductor $9.710$
Analytic rank $0$
Dimension $76$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(303,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.303");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(76\)
Relative dimension: \(38\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 304)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 303.1
Character \(\chi\) \(=\) 1216.303
Dual form 1216.2.m.a.911.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.33030 - 2.33030i) q^{3} +(1.33252 - 1.33252i) q^{5} -2.39899 q^{7} +7.86060i q^{9} +(2.97334 + 2.97334i) q^{11} +(2.73192 - 2.73192i) q^{13} -6.21034 q^{15} +2.34440 q^{17} +(3.47263 + 2.63455i) q^{19} +(5.59038 + 5.59038i) q^{21} +5.58224 q^{23} +1.44878i q^{25} +(11.3267 - 11.3267i) q^{27} +(-1.09806 + 1.09806i) q^{29} +5.96193 q^{31} -13.8576i q^{33} +(-3.19671 + 3.19671i) q^{35} +(3.00913 + 3.00913i) q^{37} -12.7324 q^{39} -11.6084 q^{41} +(-1.11788 - 1.11788i) q^{43} +(10.4744 + 10.4744i) q^{45} +0.270003i q^{47} -1.24483 q^{49} +(-5.46317 - 5.46317i) q^{51} +(-1.45983 - 1.45983i) q^{53} +7.92408 q^{55} +(-1.95299 - 14.2316i) q^{57} +(-0.797173 + 0.797173i) q^{59} +(9.29825 + 9.29825i) q^{61} -18.8575i q^{63} -7.28068i q^{65} +(0.276174 + 0.276174i) q^{67} +(-13.0083 - 13.0083i) q^{69} +0.225827i q^{71} -13.2848i q^{73} +(3.37610 - 3.37610i) q^{75} +(-7.13304 - 7.13304i) q^{77} -7.28534 q^{79} -29.2072 q^{81} +(3.66221 - 3.66221i) q^{83} +(3.12397 - 3.12397i) q^{85} +5.11762 q^{87} +11.2392 q^{89} +(-6.55386 + 6.55386i) q^{91} +(-13.8931 - 13.8931i) q^{93} +(8.13793 - 1.11677i) q^{95} +3.27963i q^{97} +(-23.3723 + 23.3723i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q - 4 q^{5} + 8 q^{7} + 4 q^{11} - 8 q^{17} - 6 q^{19} + 8 q^{23} + 8 q^{39} + 4 q^{43} + 4 q^{45} + 44 q^{49} + 8 q^{55} + 28 q^{61} - 32 q^{77} - 52 q^{81} - 36 q^{83} - 56 q^{85} + 120 q^{87} - 16 q^{93}+ \cdots - 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.33030 2.33030i −1.34540 1.34540i −0.890588 0.454812i \(-0.849706\pi\)
−0.454812 0.890588i \(-0.650294\pi\)
\(4\) 0 0
\(5\) 1.33252 1.33252i 0.595921 0.595921i −0.343304 0.939224i \(-0.611546\pi\)
0.939224 + 0.343304i \(0.111546\pi\)
\(6\) 0 0
\(7\) −2.39899 −0.906734 −0.453367 0.891324i \(-0.649777\pi\)
−0.453367 + 0.891324i \(0.649777\pi\)
\(8\) 0 0
\(9\) 7.86060i 2.62020i
\(10\) 0 0
\(11\) 2.97334 + 2.97334i 0.896497 + 0.896497i 0.995124 0.0986273i \(-0.0314452\pi\)
−0.0986273 + 0.995124i \(0.531445\pi\)
\(12\) 0 0
\(13\) 2.73192 2.73192i 0.757699 0.757699i −0.218205 0.975903i \(-0.570020\pi\)
0.975903 + 0.218205i \(0.0700200\pi\)
\(14\) 0 0
\(15\) −6.21034 −1.60350
\(16\) 0 0
\(17\) 2.34440 0.568602 0.284301 0.958735i \(-0.408239\pi\)
0.284301 + 0.958735i \(0.408239\pi\)
\(18\) 0 0
\(19\) 3.47263 + 2.63455i 0.796676 + 0.604406i
\(20\) 0 0
\(21\) 5.59038 + 5.59038i 1.21992 + 1.21992i
\(22\) 0 0
\(23\) 5.58224 1.16398 0.581989 0.813197i \(-0.302275\pi\)
0.581989 + 0.813197i \(0.302275\pi\)
\(24\) 0 0
\(25\) 1.44878i 0.289757i
\(26\) 0 0
\(27\) 11.3267 11.3267i 2.17982 2.17982i
\(28\) 0 0
\(29\) −1.09806 + 1.09806i −0.203905 + 0.203905i −0.801671 0.597766i \(-0.796055\pi\)
0.597766 + 0.801671i \(0.296055\pi\)
\(30\) 0 0
\(31\) 5.96193 1.07079 0.535397 0.844601i \(-0.320162\pi\)
0.535397 + 0.844601i \(0.320162\pi\)
\(32\) 0 0
\(33\) 13.8576i 2.41229i
\(34\) 0 0
\(35\) −3.19671 + 3.19671i −0.540342 + 0.540342i
\(36\) 0 0
\(37\) 3.00913 + 3.00913i 0.494698 + 0.494698i 0.909783 0.415085i \(-0.136248\pi\)
−0.415085 + 0.909783i \(0.636248\pi\)
\(38\) 0 0
\(39\) −12.7324 −2.03881
\(40\) 0 0
\(41\) −11.6084 −1.81293 −0.906463 0.422286i \(-0.861228\pi\)
−0.906463 + 0.422286i \(0.861228\pi\)
\(42\) 0 0
\(43\) −1.11788 1.11788i −0.170475 0.170475i 0.616713 0.787188i \(-0.288464\pi\)
−0.787188 + 0.616713i \(0.788464\pi\)
\(44\) 0 0
\(45\) 10.4744 + 10.4744i 1.56143 + 1.56143i
\(46\) 0 0
\(47\) 0.270003i 0.0393840i 0.999806 + 0.0196920i \(0.00626856\pi\)
−0.999806 + 0.0196920i \(0.993731\pi\)
\(48\) 0 0
\(49\) −1.24483 −0.177833
\(50\) 0 0
\(51\) −5.46317 5.46317i −0.764996 0.764996i
\(52\) 0 0
\(53\) −1.45983 1.45983i −0.200523 0.200523i 0.599701 0.800224i \(-0.295286\pi\)
−0.800224 + 0.599701i \(0.795286\pi\)
\(54\) 0 0
\(55\) 7.92408 1.06848
\(56\) 0 0
\(57\) −1.95299 14.2316i −0.258680 1.88502i
\(58\) 0 0
\(59\) −0.797173 + 0.797173i −0.103783 + 0.103783i −0.757092 0.653309i \(-0.773380\pi\)
0.653309 + 0.757092i \(0.273380\pi\)
\(60\) 0 0
\(61\) 9.29825 + 9.29825i 1.19052 + 1.19052i 0.976922 + 0.213597i \(0.0685178\pi\)
0.213597 + 0.976922i \(0.431482\pi\)
\(62\) 0 0
\(63\) 18.8575i 2.37582i
\(64\) 0 0
\(65\) 7.28068i 0.903057i
\(66\) 0 0
\(67\) 0.276174 + 0.276174i 0.0337400 + 0.0337400i 0.723776 0.690036i \(-0.242405\pi\)
−0.690036 + 0.723776i \(0.742405\pi\)
\(68\) 0 0
\(69\) −13.0083 13.0083i −1.56602 1.56602i
\(70\) 0 0
\(71\) 0.225827i 0.0268008i 0.999910 + 0.0134004i \(0.00426560\pi\)
−0.999910 + 0.0134004i \(0.995734\pi\)
\(72\) 0 0
\(73\) 13.2848i 1.55487i −0.628966 0.777433i \(-0.716522\pi\)
0.628966 0.777433i \(-0.283478\pi\)
\(74\) 0 0
\(75\) 3.37610 3.37610i 0.389838 0.389838i
\(76\) 0 0
\(77\) −7.13304 7.13304i −0.812885 0.812885i
\(78\) 0 0
\(79\) −7.28534 −0.819665 −0.409832 0.912161i \(-0.634413\pi\)
−0.409832 + 0.912161i \(0.634413\pi\)
\(80\) 0 0
\(81\) −29.2072 −3.24525
\(82\) 0 0
\(83\) 3.66221 3.66221i 0.401980 0.401980i −0.476950 0.878930i \(-0.658258\pi\)
0.878930 + 0.476950i \(0.158258\pi\)
\(84\) 0 0
\(85\) 3.12397 3.12397i 0.338842 0.338842i
\(86\) 0 0
\(87\) 5.11762 0.548666
\(88\) 0 0
\(89\) 11.2392 1.19135 0.595677 0.803224i \(-0.296884\pi\)
0.595677 + 0.803224i \(0.296884\pi\)
\(90\) 0 0
\(91\) −6.55386 + 6.55386i −0.687031 + 0.687031i
\(92\) 0 0
\(93\) −13.8931 13.8931i −1.44064 1.44064i
\(94\) 0 0
\(95\) 8.13793 1.11677i 0.834934 0.114578i
\(96\) 0 0
\(97\) 3.27963i 0.332996i 0.986042 + 0.166498i \(0.0532459\pi\)
−0.986042 + 0.166498i \(0.946754\pi\)
\(98\) 0 0
\(99\) −23.3723 + 23.3723i −2.34900 + 2.34900i
\(100\) 0 0
\(101\) 7.70237 7.70237i 0.766414 0.766414i −0.211059 0.977473i \(-0.567691\pi\)
0.977473 + 0.211059i \(0.0676913\pi\)
\(102\) 0 0
\(103\) 2.67310i 0.263388i 0.991290 + 0.131694i \(0.0420417\pi\)
−0.991290 + 0.131694i \(0.957958\pi\)
\(104\) 0 0
\(105\) 14.8986 1.45395
\(106\) 0 0
\(107\) −2.80581 + 2.80581i −0.271248 + 0.271248i −0.829602 0.558355i \(-0.811433\pi\)
0.558355 + 0.829602i \(0.311433\pi\)
\(108\) 0 0
\(109\) 11.5264 11.5264i 1.10403 1.10403i 0.110110 0.993919i \(-0.464880\pi\)
0.993919 0.110110i \(-0.0351203\pi\)
\(110\) 0 0
\(111\) 14.0244i 1.33113i
\(112\) 0 0
\(113\) 4.74600i 0.446466i 0.974765 + 0.223233i \(0.0716611\pi\)
−0.974765 + 0.223233i \(0.928339\pi\)
\(114\) 0 0
\(115\) 7.43845 7.43845i 0.693639 0.693639i
\(116\) 0 0
\(117\) 21.4745 + 21.4745i 1.98532 + 1.98532i
\(118\) 0 0
\(119\) −5.62421 −0.515571
\(120\) 0 0
\(121\) 6.68156i 0.607414i
\(122\) 0 0
\(123\) 27.0510 + 27.0510i 2.43911 + 2.43911i
\(124\) 0 0
\(125\) 8.59313 + 8.59313i 0.768593 + 0.768593i
\(126\) 0 0
\(127\) 0.202697 0.0179864 0.00899322 0.999960i \(-0.497137\pi\)
0.00899322 + 0.999960i \(0.497137\pi\)
\(128\) 0 0
\(129\) 5.21000i 0.458715i
\(130\) 0 0
\(131\) 5.99216 5.99216i 0.523537 0.523537i −0.395101 0.918638i \(-0.629290\pi\)
0.918638 + 0.395101i \(0.129290\pi\)
\(132\) 0 0
\(133\) −8.33082 6.32026i −0.722374 0.548036i
\(134\) 0 0
\(135\) 30.1860i 2.59800i
\(136\) 0 0
\(137\) 8.24092i 0.704069i 0.935987 + 0.352035i \(0.114510\pi\)
−0.935987 + 0.352035i \(0.885490\pi\)
\(138\) 0 0
\(139\) −13.2949 13.2949i −1.12766 1.12766i −0.990556 0.137106i \(-0.956220\pi\)
−0.137106 0.990556i \(-0.543780\pi\)
\(140\) 0 0
\(141\) 0.629188 0.629188i 0.0529872 0.0529872i
\(142\) 0 0
\(143\) 16.2459 1.35855
\(144\) 0 0
\(145\) 2.92637i 0.243022i
\(146\) 0 0
\(147\) 2.90082 + 2.90082i 0.239256 + 0.239256i
\(148\) 0 0
\(149\) 8.75170 8.75170i 0.716967 0.716967i −0.251016 0.967983i \(-0.580765\pi\)
0.967983 + 0.251016i \(0.0807647\pi\)
\(150\) 0 0
\(151\) 19.9711i 1.62523i 0.582803 + 0.812614i \(0.301956\pi\)
−0.582803 + 0.812614i \(0.698044\pi\)
\(152\) 0 0
\(153\) 18.4284i 1.48985i
\(154\) 0 0
\(155\) 7.94438 7.94438i 0.638108 0.638108i
\(156\) 0 0
\(157\) −3.17405 3.17405i −0.253317 0.253317i 0.569012 0.822329i \(-0.307326\pi\)
−0.822329 + 0.569012i \(0.807326\pi\)
\(158\) 0 0
\(159\) 6.80368i 0.539567i
\(160\) 0 0
\(161\) −13.3918 −1.05542
\(162\) 0 0
\(163\) 6.37132 6.37132i 0.499040 0.499040i −0.412099 0.911139i \(-0.635204\pi\)
0.911139 + 0.412099i \(0.135204\pi\)
\(164\) 0 0
\(165\) −18.4655 18.4655i −1.43754 1.43754i
\(166\) 0 0
\(167\) 9.04774i 0.700135i 0.936725 + 0.350067i \(0.113841\pi\)
−0.936725 + 0.350067i \(0.886159\pi\)
\(168\) 0 0
\(169\) 1.92678i 0.148214i
\(170\) 0 0
\(171\) −20.7091 + 27.2970i −1.58366 + 2.08745i
\(172\) 0 0
\(173\) −0.0273170 + 0.0273170i −0.00207688 + 0.00207688i −0.708144 0.706068i \(-0.750467\pi\)
0.706068 + 0.708144i \(0.250467\pi\)
\(174\) 0 0
\(175\) 3.47562i 0.262732i
\(176\) 0 0
\(177\) 3.71531 0.279260
\(178\) 0 0
\(179\) −2.17615 2.17615i −0.162653 0.162653i 0.621088 0.783741i \(-0.286691\pi\)
−0.783741 + 0.621088i \(0.786691\pi\)
\(180\) 0 0
\(181\) −4.89736 4.89736i −0.364018 0.364018i 0.501272 0.865290i \(-0.332866\pi\)
−0.865290 + 0.501272i \(0.832866\pi\)
\(182\) 0 0
\(183\) 43.3354i 3.20345i
\(184\) 0 0
\(185\) 8.01945 0.589602
\(186\) 0 0
\(187\) 6.97072 + 6.97072i 0.509750 + 0.509750i
\(188\) 0 0
\(189\) −27.1726 + 27.1726i −1.97651 + 1.97651i
\(190\) 0 0
\(191\) 16.3442i 1.18262i −0.806444 0.591311i \(-0.798611\pi\)
0.806444 0.591311i \(-0.201389\pi\)
\(192\) 0 0
\(193\) 2.52445i 0.181714i −0.995864 0.0908568i \(-0.971039\pi\)
0.995864 0.0908568i \(-0.0289606\pi\)
\(194\) 0 0
\(195\) −16.9662 + 16.9662i −1.21497 + 1.21497i
\(196\) 0 0
\(197\) 10.2745 10.2745i 0.732029 0.732029i −0.238993 0.971021i \(-0.576817\pi\)
0.971021 + 0.238993i \(0.0768171\pi\)
\(198\) 0 0
\(199\) 19.9560 1.41465 0.707323 0.706891i \(-0.249903\pi\)
0.707323 + 0.706891i \(0.249903\pi\)
\(200\) 0 0
\(201\) 1.28714i 0.0907876i
\(202\) 0 0
\(203\) 2.63424 2.63424i 0.184887 0.184887i
\(204\) 0 0
\(205\) −15.4684 + 15.4684i −1.08036 + 1.08036i
\(206\) 0 0
\(207\) 43.8798i 3.04985i
\(208\) 0 0
\(209\) 2.49192 + 18.1587i 0.172370 + 1.25607i
\(210\) 0 0
\(211\) −11.7475 11.7475i −0.808734 0.808734i 0.175708 0.984442i \(-0.443778\pi\)
−0.984442 + 0.175708i \(0.943778\pi\)
\(212\) 0 0
\(213\) 0.526245 0.526245i 0.0360577 0.0360577i
\(214\) 0 0
\(215\) −2.97920 −0.203180
\(216\) 0 0
\(217\) −14.3026 −0.970925
\(218\) 0 0
\(219\) −30.9575 + 30.9575i −2.09192 + 2.09192i
\(220\) 0 0
\(221\) 6.40473 6.40473i 0.430829 0.430829i
\(222\) 0 0
\(223\) 5.60143 0.375100 0.187550 0.982255i \(-0.439945\pi\)
0.187550 + 0.982255i \(0.439945\pi\)
\(224\) 0 0
\(225\) −11.3883 −0.759220
\(226\) 0 0
\(227\) −1.37469 1.37469i −0.0912411 0.0912411i 0.660013 0.751254i \(-0.270551\pi\)
−0.751254 + 0.660013i \(0.770551\pi\)
\(228\) 0 0
\(229\) −17.9610 + 17.9610i −1.18690 + 1.18690i −0.208979 + 0.977920i \(0.567014\pi\)
−0.977920 + 0.208979i \(0.932986\pi\)
\(230\) 0 0
\(231\) 33.2442i 2.18731i
\(232\) 0 0
\(233\) 1.79953i 0.117891i −0.998261 0.0589456i \(-0.981226\pi\)
0.998261 0.0589456i \(-0.0187739\pi\)
\(234\) 0 0
\(235\) 0.359784 + 0.359784i 0.0234697 + 0.0234697i
\(236\) 0 0
\(237\) 16.9770 + 16.9770i 1.10278 + 1.10278i
\(238\) 0 0
\(239\) 15.5816i 1.00789i 0.863735 + 0.503947i \(0.168119\pi\)
−0.863735 + 0.503947i \(0.831881\pi\)
\(240\) 0 0
\(241\) 19.0529i 1.22730i 0.789577 + 0.613651i \(0.210300\pi\)
−0.789577 + 0.613651i \(0.789700\pi\)
\(242\) 0 0
\(243\) 34.0816 + 34.0816i 2.18634 + 2.18634i
\(244\) 0 0
\(245\) −1.65876 + 1.65876i −0.105974 + 0.105974i
\(246\) 0 0
\(247\) 16.6843 2.28958i 1.06160 0.145683i
\(248\) 0 0
\(249\) −17.0681 −1.08165
\(250\) 0 0
\(251\) 12.1046 + 12.1046i 0.764036 + 0.764036i 0.977049 0.213013i \(-0.0683278\pi\)
−0.213013 + 0.977049i \(0.568328\pi\)
\(252\) 0 0
\(253\) 16.5979 + 16.5979i 1.04350 + 1.04350i
\(254\) 0 0
\(255\) −14.5596 −0.911755
\(256\) 0 0
\(257\) 23.8066i 1.48502i 0.669838 + 0.742508i \(0.266364\pi\)
−0.669838 + 0.742508i \(0.733636\pi\)
\(258\) 0 0
\(259\) −7.21889 7.21889i −0.448560 0.448560i
\(260\) 0 0
\(261\) −8.63140 8.63140i −0.534271 0.534271i
\(262\) 0 0
\(263\) −14.7026 −0.906602 −0.453301 0.891358i \(-0.649754\pi\)
−0.453301 + 0.891358i \(0.649754\pi\)
\(264\) 0 0
\(265\) −3.89050 −0.238992
\(266\) 0 0
\(267\) −26.1907 26.1907i −1.60285 1.60285i
\(268\) 0 0
\(269\) 22.6486 22.6486i 1.38091 1.38091i 0.537903 0.843007i \(-0.319217\pi\)
0.843007 0.537903i \(-0.180783\pi\)
\(270\) 0 0
\(271\) 23.6407i 1.43607i −0.696007 0.718035i \(-0.745042\pi\)
0.696007 0.718035i \(-0.254958\pi\)
\(272\) 0 0
\(273\) 30.5449 1.84866
\(274\) 0 0
\(275\) −4.30773 + 4.30773i −0.259766 + 0.259766i
\(276\) 0 0
\(277\) −11.3244 + 11.3244i −0.680416 + 0.680416i −0.960094 0.279678i \(-0.909772\pi\)
0.279678 + 0.960094i \(0.409772\pi\)
\(278\) 0 0
\(279\) 46.8643i 2.80569i
\(280\) 0 0
\(281\) −13.3448 −0.796083 −0.398042 0.917367i \(-0.630310\pi\)
−0.398042 + 0.917367i \(0.630310\pi\)
\(282\) 0 0
\(283\) −6.55442 6.55442i −0.389620 0.389620i 0.484932 0.874552i \(-0.338844\pi\)
−0.874552 + 0.484932i \(0.838844\pi\)
\(284\) 0 0
\(285\) −21.5662 16.3614i −1.27747 0.969167i
\(286\) 0 0
\(287\) 27.8484 1.64384
\(288\) 0 0
\(289\) −11.5038 −0.676692
\(290\) 0 0
\(291\) 7.64252 7.64252i 0.448012 0.448012i
\(292\) 0 0
\(293\) 15.0537 + 15.0537i 0.879448 + 0.879448i 0.993477 0.114029i \(-0.0363757\pi\)
−0.114029 + 0.993477i \(0.536376\pi\)
\(294\) 0 0
\(295\) 2.12450i 0.123693i
\(296\) 0 0
\(297\) 67.3561 3.90840
\(298\) 0 0
\(299\) 15.2502 15.2502i 0.881944 0.881944i
\(300\) 0 0
\(301\) 2.68179 + 2.68179i 0.154576 + 0.154576i
\(302\) 0 0
\(303\) −35.8977 −2.06227
\(304\) 0 0
\(305\) 24.7802 1.41891
\(306\) 0 0
\(307\) −6.30108 6.30108i −0.359621 0.359621i 0.504052 0.863673i \(-0.331842\pi\)
−0.863673 + 0.504052i \(0.831842\pi\)
\(308\) 0 0
\(309\) 6.22913 6.22913i 0.354363 0.354363i
\(310\) 0 0
\(311\) −2.98954 −0.169521 −0.0847605 0.996401i \(-0.527013\pi\)
−0.0847605 + 0.996401i \(0.527013\pi\)
\(312\) 0 0
\(313\) 19.5677i 1.10603i −0.833171 0.553015i \(-0.813477\pi\)
0.833171 0.553015i \(-0.186523\pi\)
\(314\) 0 0
\(315\) −25.1280 25.1280i −1.41580 1.41580i
\(316\) 0 0
\(317\) 4.52149 4.52149i 0.253952 0.253952i −0.568637 0.822589i \(-0.692529\pi\)
0.822589 + 0.568637i \(0.192529\pi\)
\(318\) 0 0
\(319\) −6.52982 −0.365600
\(320\) 0 0
\(321\) 13.0768 0.729873
\(322\) 0 0
\(323\) 8.14125 + 6.17644i 0.452991 + 0.343666i
\(324\) 0 0
\(325\) 3.95796 + 3.95796i 0.219548 + 0.219548i
\(326\) 0 0
\(327\) −53.7200 −2.97072
\(328\) 0 0
\(329\) 0.647735i 0.0357108i
\(330\) 0 0
\(331\) 2.04624 2.04624i 0.112472 0.112472i −0.648631 0.761103i \(-0.724658\pi\)
0.761103 + 0.648631i \(0.224658\pi\)
\(332\) 0 0
\(333\) −23.6536 + 23.6536i −1.29621 + 1.29621i
\(334\) 0 0
\(335\) 0.736014 0.0402128
\(336\) 0 0
\(337\) 18.1089i 0.986454i −0.869901 0.493227i \(-0.835817\pi\)
0.869901 0.493227i \(-0.164183\pi\)
\(338\) 0 0
\(339\) 11.0596 11.0596i 0.600676 0.600676i
\(340\) 0 0
\(341\) 17.7269 + 17.7269i 0.959963 + 0.959963i
\(342\) 0 0
\(343\) 19.7793 1.06798
\(344\) 0 0
\(345\) −34.6676 −1.86644
\(346\) 0 0
\(347\) 13.2006 + 13.2006i 0.708646 + 0.708646i 0.966250 0.257605i \(-0.0829332\pi\)
−0.257605 + 0.966250i \(0.582933\pi\)
\(348\) 0 0
\(349\) −1.46513 1.46513i −0.0784265 0.0784265i 0.666805 0.745232i \(-0.267661\pi\)
−0.745232 + 0.666805i \(0.767661\pi\)
\(350\) 0 0
\(351\) 61.8870i 3.30329i
\(352\) 0 0
\(353\) 12.5708 0.669077 0.334538 0.942382i \(-0.391420\pi\)
0.334538 + 0.942382i \(0.391420\pi\)
\(354\) 0 0
\(355\) 0.300919 + 0.300919i 0.0159711 + 0.0159711i
\(356\) 0 0
\(357\) 13.1061 + 13.1061i 0.693648 + 0.693648i
\(358\) 0 0
\(359\) −28.1715 −1.48684 −0.743418 0.668827i \(-0.766797\pi\)
−0.743418 + 0.668827i \(0.766797\pi\)
\(360\) 0 0
\(361\) 5.11834 + 18.2976i 0.269386 + 0.963032i
\(362\) 0 0
\(363\) 15.5700 15.5700i 0.817215 0.817215i
\(364\) 0 0
\(365\) −17.7022 17.7022i −0.926577 0.926577i
\(366\) 0 0
\(367\) 31.5789i 1.64840i 0.566297 + 0.824201i \(0.308376\pi\)
−0.566297 + 0.824201i \(0.691624\pi\)
\(368\) 0 0
\(369\) 91.2488i 4.75023i
\(370\) 0 0
\(371\) 3.50212 + 3.50212i 0.181821 + 0.181821i
\(372\) 0 0
\(373\) −9.32220 9.32220i −0.482685 0.482685i 0.423303 0.905988i \(-0.360871\pi\)
−0.905988 + 0.423303i \(0.860871\pi\)
\(374\) 0 0
\(375\) 40.0491i 2.06813i
\(376\) 0 0
\(377\) 5.99962i 0.308996i
\(378\) 0 0
\(379\) 6.70381 6.70381i 0.344352 0.344352i −0.513649 0.858001i \(-0.671707\pi\)
0.858001 + 0.513649i \(0.171707\pi\)
\(380\) 0 0
\(381\) −0.472345 0.472345i −0.0241989 0.0241989i
\(382\) 0 0
\(383\) −23.6297 −1.20742 −0.603712 0.797203i \(-0.706312\pi\)
−0.603712 + 0.797203i \(0.706312\pi\)
\(384\) 0 0
\(385\) −19.0098 −0.968830
\(386\) 0 0
\(387\) 8.78722 8.78722i 0.446680 0.446680i
\(388\) 0 0
\(389\) 4.44506 4.44506i 0.225374 0.225374i −0.585383 0.810757i \(-0.699056\pi\)
0.810757 + 0.585383i \(0.199056\pi\)
\(390\) 0 0
\(391\) 13.0870 0.661840
\(392\) 0 0
\(393\) −27.9271 −1.40873
\(394\) 0 0
\(395\) −9.70786 + 9.70786i −0.488456 + 0.488456i
\(396\) 0 0
\(397\) −9.43095 9.43095i −0.473326 0.473326i 0.429664 0.902989i \(-0.358632\pi\)
−0.902989 + 0.429664i \(0.858632\pi\)
\(398\) 0 0
\(399\) 4.68522 + 34.1414i 0.234554 + 1.70921i
\(400\) 0 0
\(401\) 1.35978i 0.0679041i −0.999423 0.0339521i \(-0.989191\pi\)
0.999423 0.0339521i \(-0.0108094\pi\)
\(402\) 0 0
\(403\) 16.2875 16.2875i 0.811339 0.811339i
\(404\) 0 0
\(405\) −38.9192 + 38.9192i −1.93391 + 1.93391i
\(406\) 0 0
\(407\) 17.8944i 0.886991i
\(408\) 0 0
\(409\) −29.3461 −1.45107 −0.725535 0.688185i \(-0.758408\pi\)
−0.725535 + 0.688185i \(0.758408\pi\)
\(410\) 0 0
\(411\) 19.2038 19.2038i 0.947254 0.947254i
\(412\) 0 0
\(413\) 1.91241 1.91241i 0.0941037 0.0941037i
\(414\) 0 0
\(415\) 9.75995i 0.479097i
\(416\) 0 0
\(417\) 61.9624i 3.03431i
\(418\) 0 0
\(419\) −9.29373 + 9.29373i −0.454028 + 0.454028i −0.896689 0.442661i \(-0.854035\pi\)
0.442661 + 0.896689i \(0.354035\pi\)
\(420\) 0 0
\(421\) 2.81150 + 2.81150i 0.137024 + 0.137024i 0.772292 0.635268i \(-0.219110\pi\)
−0.635268 + 0.772292i \(0.719110\pi\)
\(422\) 0 0
\(423\) −2.12238 −0.103194
\(424\) 0 0
\(425\) 3.39653i 0.164756i
\(426\) 0 0
\(427\) −22.3064 22.3064i −1.07948 1.07948i
\(428\) 0 0
\(429\) −37.8578 37.8578i −1.82779 1.82779i
\(430\) 0 0
\(431\) 36.4166 1.75413 0.877063 0.480376i \(-0.159500\pi\)
0.877063 + 0.480376i \(0.159500\pi\)
\(432\) 0 0
\(433\) 4.74856i 0.228201i −0.993469 0.114101i \(-0.963601\pi\)
0.993469 0.114101i \(-0.0363986\pi\)
\(434\) 0 0
\(435\) 6.81933 6.81933i 0.326962 0.326962i
\(436\) 0 0
\(437\) 19.3851 + 14.7067i 0.927314 + 0.703515i
\(438\) 0 0
\(439\) 6.45592i 0.308124i 0.988061 + 0.154062i \(0.0492356\pi\)
−0.988061 + 0.154062i \(0.950764\pi\)
\(440\) 0 0
\(441\) 9.78510i 0.465957i
\(442\) 0 0
\(443\) 1.87841 + 1.87841i 0.0892461 + 0.0892461i 0.750320 0.661074i \(-0.229899\pi\)
−0.661074 + 0.750320i \(0.729899\pi\)
\(444\) 0 0
\(445\) 14.9765 14.9765i 0.709952 0.709952i
\(446\) 0 0
\(447\) −40.7882 −1.92921
\(448\) 0 0
\(449\) 25.3294i 1.19537i 0.801732 + 0.597683i \(0.203912\pi\)
−0.801732 + 0.597683i \(0.796088\pi\)
\(450\) 0 0
\(451\) −34.5157 34.5157i −1.62528 1.62528i
\(452\) 0 0
\(453\) 46.5387 46.5387i 2.18658 2.18658i
\(454\) 0 0
\(455\) 17.4663i 0.818833i
\(456\) 0 0
\(457\) 23.2446i 1.08734i −0.839300 0.543668i \(-0.817035\pi\)
0.839300 0.543668i \(-0.182965\pi\)
\(458\) 0 0
\(459\) 26.5543 26.5543i 1.23945 1.23945i
\(460\) 0 0
\(461\) 24.3080 + 24.3080i 1.13213 + 1.13213i 0.989822 + 0.142313i \(0.0454539\pi\)
0.142313 + 0.989822i \(0.454546\pi\)
\(462\) 0 0
\(463\) 31.0847i 1.44463i −0.691564 0.722315i \(-0.743078\pi\)
0.691564 0.722315i \(-0.256922\pi\)
\(464\) 0 0
\(465\) −37.0256 −1.71702
\(466\) 0 0
\(467\) 15.3866 15.3866i 0.712005 0.712005i −0.254949 0.966954i \(-0.582059\pi\)
0.966954 + 0.254949i \(0.0820588\pi\)
\(468\) 0 0
\(469\) −0.662539 0.662539i −0.0305932 0.0305932i
\(470\) 0 0
\(471\) 14.7930i 0.681624i
\(472\) 0 0
\(473\) 6.64770i 0.305662i
\(474\) 0 0
\(475\) −3.81688 + 5.03109i −0.175131 + 0.230842i
\(476\) 0 0
\(477\) 11.4751 11.4751i 0.525410 0.525410i
\(478\) 0 0
\(479\) 3.19320i 0.145901i −0.997336 0.0729505i \(-0.976758\pi\)
0.997336 0.0729505i \(-0.0232415\pi\)
\(480\) 0 0
\(481\) 16.4414 0.749664
\(482\) 0 0
\(483\) 31.2068 + 31.2068i 1.41996 + 1.41996i
\(484\) 0 0
\(485\) 4.37017 + 4.37017i 0.198439 + 0.198439i
\(486\) 0 0
\(487\) 22.1580i 1.00407i −0.864846 0.502037i \(-0.832584\pi\)
0.864846 0.502037i \(-0.167416\pi\)
\(488\) 0 0
\(489\) −29.6942 −1.34282
\(490\) 0 0
\(491\) 20.0830 + 20.0830i 0.906333 + 0.906333i 0.995974 0.0896416i \(-0.0285722\pi\)
−0.0896416 + 0.995974i \(0.528572\pi\)
\(492\) 0 0
\(493\) −2.57430 + 2.57430i −0.115940 + 0.115940i
\(494\) 0 0
\(495\) 62.2880i 2.79964i
\(496\) 0 0
\(497\) 0.541758i 0.0243012i
\(498\) 0 0
\(499\) −21.2194 + 21.2194i −0.949912 + 0.949912i −0.998804 0.0488919i \(-0.984431\pi\)
0.0488919 + 0.998804i \(0.484431\pi\)
\(500\) 0 0
\(501\) 21.0839 21.0839i 0.941961 0.941961i
\(502\) 0 0
\(503\) 15.4238 0.687714 0.343857 0.939022i \(-0.388266\pi\)
0.343857 + 0.939022i \(0.388266\pi\)
\(504\) 0 0
\(505\) 20.5271i 0.913444i
\(506\) 0 0
\(507\) −4.48998 + 4.48998i −0.199407 + 0.199407i
\(508\) 0 0
\(509\) 9.94323 9.94323i 0.440726 0.440726i −0.451530 0.892256i \(-0.649122\pi\)
0.892256 + 0.451530i \(0.149122\pi\)
\(510\) 0 0
\(511\) 31.8701i 1.40985i
\(512\) 0 0
\(513\) 69.1739 9.49271i 3.05410 0.419113i
\(514\) 0 0
\(515\) 3.56196 + 3.56196i 0.156959 + 0.156959i
\(516\) 0 0
\(517\) −0.802812 + 0.802812i −0.0353076 + 0.0353076i
\(518\) 0 0
\(519\) 0.127314 0.00558846
\(520\) 0 0
\(521\) 29.1422 1.27674 0.638371 0.769729i \(-0.279609\pi\)
0.638371 + 0.769729i \(0.279609\pi\)
\(522\) 0 0
\(523\) 13.4425 13.4425i 0.587801 0.587801i −0.349235 0.937035i \(-0.613558\pi\)
0.937035 + 0.349235i \(0.113558\pi\)
\(524\) 0 0
\(525\) −8.09924 + 8.09924i −0.353480 + 0.353480i
\(526\) 0 0
\(527\) 13.9772 0.608855
\(528\) 0 0
\(529\) 8.16142 0.354844
\(530\) 0 0
\(531\) −6.26626 6.26626i −0.271933 0.271933i
\(532\) 0 0
\(533\) −31.7132 + 31.7132i −1.37365 + 1.37365i
\(534\) 0 0
\(535\) 7.47759i 0.323284i
\(536\) 0 0
\(537\) 10.1422i 0.437667i
\(538\) 0 0
\(539\) −3.70131 3.70131i −0.159426 0.159426i
\(540\) 0 0
\(541\) 9.25234 + 9.25234i 0.397789 + 0.397789i 0.877453 0.479663i \(-0.159241\pi\)
−0.479663 + 0.877453i \(0.659241\pi\)
\(542\) 0 0
\(543\) 22.8246i 0.979499i
\(544\) 0 0
\(545\) 30.7183i 1.31583i
\(546\) 0 0
\(547\) −15.1431 15.1431i −0.647473 0.647473i 0.304909 0.952381i \(-0.401374\pi\)
−0.952381 + 0.304909i \(0.901374\pi\)
\(548\) 0 0
\(549\) −73.0898 + 73.0898i −3.11940 + 3.11940i
\(550\) 0 0
\(551\) −6.70604 + 0.920268i −0.285687 + 0.0392047i
\(552\) 0 0
\(553\) 17.4775 0.743218
\(554\) 0 0
\(555\) −18.6877 18.6877i −0.793250 0.793250i
\(556\) 0 0
\(557\) −13.4125 13.4125i −0.568307 0.568307i 0.363347 0.931654i \(-0.381634\pi\)
−0.931654 + 0.363347i \(0.881634\pi\)
\(558\) 0 0
\(559\) −6.10793 −0.258338
\(560\) 0 0
\(561\) 32.4878i 1.37163i
\(562\) 0 0
\(563\) −2.35825 2.35825i −0.0993885 0.0993885i 0.655664 0.755053i \(-0.272389\pi\)
−0.755053 + 0.655664i \(0.772389\pi\)
\(564\) 0 0
\(565\) 6.32414 + 6.32414i 0.266059 + 0.266059i
\(566\) 0 0
\(567\) 70.0679 2.94258
\(568\) 0 0
\(569\) 24.1782 1.01360 0.506802 0.862062i \(-0.330828\pi\)
0.506802 + 0.862062i \(0.330828\pi\)
\(570\) 0 0
\(571\) 15.9271 + 15.9271i 0.666528 + 0.666528i 0.956911 0.290383i \(-0.0937827\pi\)
−0.290383 + 0.956911i \(0.593783\pi\)
\(572\) 0 0
\(573\) −38.0868 + 38.0868i −1.59110 + 1.59110i
\(574\) 0 0
\(575\) 8.08745i 0.337270i
\(576\) 0 0
\(577\) −9.78296 −0.407270 −0.203635 0.979047i \(-0.565276\pi\)
−0.203635 + 0.979047i \(0.565276\pi\)
\(578\) 0 0
\(579\) −5.88272 + 5.88272i −0.244478 + 0.244478i
\(580\) 0 0
\(581\) −8.78563 + 8.78563i −0.364489 + 0.364489i
\(582\) 0 0
\(583\) 8.68115i 0.359536i
\(584\) 0 0
\(585\) 57.2305 2.36619
\(586\) 0 0
\(587\) −12.6453 12.6453i −0.521928 0.521928i 0.396225 0.918153i \(-0.370320\pi\)
−0.918153 + 0.396225i \(0.870320\pi\)
\(588\) 0 0
\(589\) 20.7036 + 15.7070i 0.853076 + 0.647194i
\(590\) 0 0
\(591\) −47.8854 −1.96974
\(592\) 0 0
\(593\) −41.0325 −1.68500 −0.842502 0.538693i \(-0.818918\pi\)
−0.842502 + 0.538693i \(0.818918\pi\)
\(594\) 0 0
\(595\) −7.49437 + 7.49437i −0.307239 + 0.307239i
\(596\) 0 0
\(597\) −46.5036 46.5036i −1.90326 1.90326i
\(598\) 0 0
\(599\) 14.8233i 0.605664i −0.953044 0.302832i \(-0.902068\pi\)
0.953044 0.302832i \(-0.0979320\pi\)
\(600\) 0 0
\(601\) −28.0014 −1.14220 −0.571099 0.820881i \(-0.693483\pi\)
−0.571099 + 0.820881i \(0.693483\pi\)
\(602\) 0 0
\(603\) −2.17089 + 2.17089i −0.0884055 + 0.0884055i
\(604\) 0 0
\(605\) 8.90331 + 8.90331i 0.361971 + 0.361971i
\(606\) 0 0
\(607\) 21.8986 0.888837 0.444418 0.895819i \(-0.353410\pi\)
0.444418 + 0.895819i \(0.353410\pi\)
\(608\) 0 0
\(609\) −12.2771 −0.497494
\(610\) 0 0
\(611\) 0.737627 + 0.737627i 0.0298412 + 0.0298412i
\(612\) 0 0
\(613\) 2.68844 2.68844i 0.108585 0.108585i −0.650727 0.759312i \(-0.725536\pi\)
0.759312 + 0.650727i \(0.225536\pi\)
\(614\) 0 0
\(615\) 72.0920 2.90703
\(616\) 0 0
\(617\) 11.0704i 0.445676i 0.974856 + 0.222838i \(0.0715320\pi\)
−0.974856 + 0.222838i \(0.928468\pi\)
\(618\) 0 0
\(619\) −19.2885 19.2885i −0.775270 0.775270i 0.203752 0.979022i \(-0.434686\pi\)
−0.979022 + 0.203752i \(0.934686\pi\)
\(620\) 0 0
\(621\) 63.2281 63.2281i 2.53726 2.53726i
\(622\) 0 0
\(623\) −26.9628 −1.08024
\(624\) 0 0
\(625\) 15.6571 0.626285
\(626\) 0 0
\(627\) 36.5084 48.1222i 1.45801 1.92182i
\(628\) 0 0
\(629\) 7.05462 + 7.05462i 0.281286 + 0.281286i
\(630\) 0 0
\(631\) 9.40185 0.374282 0.187141 0.982333i \(-0.440078\pi\)
0.187141 + 0.982333i \(0.440078\pi\)
\(632\) 0 0
\(633\) 54.7506i 2.17614i
\(634\) 0 0
\(635\) 0.270098 0.270098i 0.0107185 0.0107185i
\(636\) 0 0
\(637\) −3.40077 + 3.40077i −0.134744 + 0.134744i
\(638\) 0 0
\(639\) −1.77514 −0.0702233
\(640\) 0 0
\(641\) 2.24937i 0.0888449i 0.999013 + 0.0444224i \(0.0141448\pi\)
−0.999013 + 0.0444224i \(0.985855\pi\)
\(642\) 0 0
\(643\) −29.5495 + 29.5495i −1.16532 + 1.16532i −0.182025 + 0.983294i \(0.558265\pi\)
−0.983294 + 0.182025i \(0.941735\pi\)
\(644\) 0 0
\(645\) 6.94243 + 6.94243i 0.273358 + 0.273358i
\(646\) 0 0
\(647\) 8.30973 0.326689 0.163345 0.986569i \(-0.447772\pi\)
0.163345 + 0.986569i \(0.447772\pi\)
\(648\) 0 0
\(649\) −4.74054 −0.186083
\(650\) 0 0
\(651\) 33.3294 + 33.3294i 1.30628 + 1.30628i
\(652\) 0 0
\(653\) −21.7566 21.7566i −0.851401 0.851401i 0.138905 0.990306i \(-0.455642\pi\)
−0.990306 + 0.138905i \(0.955642\pi\)
\(654\) 0 0
\(655\) 15.9693i 0.623974i
\(656\) 0 0
\(657\) 104.426 4.07406
\(658\) 0 0
\(659\) −16.8631 16.8631i −0.656892 0.656892i 0.297751 0.954643i \(-0.403763\pi\)
−0.954643 + 0.297751i \(0.903763\pi\)
\(660\) 0 0
\(661\) −30.4953 30.4953i −1.18613 1.18613i −0.978129 0.208001i \(-0.933304\pi\)
−0.208001 0.978129i \(-0.566696\pi\)
\(662\) 0 0
\(663\) −29.8499 −1.15927
\(664\) 0 0
\(665\) −19.5229 + 2.67911i −0.757064 + 0.103892i
\(666\) 0 0
\(667\) −6.12963 + 6.12963i −0.237340 + 0.237340i
\(668\) 0 0
\(669\) −13.0530 13.0530i −0.504659 0.504659i
\(670\) 0 0
\(671\) 55.2938i 2.13459i
\(672\) 0 0
\(673\) 30.5918i 1.17923i 0.807685 + 0.589614i \(0.200720\pi\)
−0.807685 + 0.589614i \(0.799280\pi\)
\(674\) 0 0
\(675\) 16.4099 + 16.4099i 0.631616 + 0.631616i
\(676\) 0 0
\(677\) −21.7266 21.7266i −0.835021 0.835021i 0.153178 0.988199i \(-0.451049\pi\)
−0.988199 + 0.153178i \(0.951049\pi\)
\(678\) 0 0
\(679\) 7.86781i 0.301939i
\(680\) 0 0
\(681\) 6.40686i 0.245512i
\(682\) 0 0
\(683\) −33.2404 + 33.2404i −1.27191 + 1.27191i −0.326824 + 0.945085i \(0.605979\pi\)
−0.945085 + 0.326824i \(0.894021\pi\)
\(684\) 0 0
\(685\) 10.9812 + 10.9812i 0.419570 + 0.419570i
\(686\) 0 0
\(687\) 83.7092 3.19371
\(688\) 0 0
\(689\) −7.97627 −0.303872
\(690\) 0 0
\(691\) −6.33177 + 6.33177i −0.240872 + 0.240872i −0.817211 0.576339i \(-0.804481\pi\)
0.576339 + 0.817211i \(0.304481\pi\)
\(692\) 0 0
\(693\) 56.0699 56.0699i 2.12992 2.12992i
\(694\) 0 0
\(695\) −35.4316 −1.34400
\(696\) 0 0
\(697\) −27.2147 −1.03083
\(698\) 0 0
\(699\) −4.19345 + 4.19345i −0.158611 + 0.158611i
\(700\) 0 0
\(701\) −8.55890 8.55890i −0.323265 0.323265i 0.526753 0.850018i \(-0.323409\pi\)
−0.850018 + 0.526753i \(0.823409\pi\)
\(702\) 0 0
\(703\) 2.52191 + 18.3773i 0.0951156 + 0.693113i
\(704\) 0 0
\(705\) 1.67681i 0.0631523i
\(706\) 0 0
\(707\) −18.4779 + 18.4779i −0.694934 + 0.694934i
\(708\) 0 0
\(709\) −11.8005 + 11.8005i −0.443178 + 0.443178i −0.893079 0.449901i \(-0.851459\pi\)
0.449901 + 0.893079i \(0.351459\pi\)
\(710\) 0 0
\(711\) 57.2671i 2.14769i
\(712\) 0 0
\(713\) 33.2809 1.24638
\(714\) 0 0
\(715\) 21.6480 21.6480i 0.809588 0.809588i
\(716\) 0 0
\(717\) 36.3099 36.3099i 1.35602 1.35602i
\(718\) 0 0
\(719\) 16.7274i 0.623826i −0.950111 0.311913i \(-0.899030\pi\)
0.950111 0.311913i \(-0.100970\pi\)
\(720\) 0 0
\(721\) 6.41275i 0.238823i
\(722\) 0 0
\(723\) 44.3989 44.3989i 1.65121 1.65121i
\(724\) 0 0
\(725\) −1.59085 1.59085i −0.0590827 0.0590827i
\(726\) 0 0
\(727\) −34.2209 −1.26918 −0.634592 0.772848i \(-0.718832\pi\)
−0.634592 + 0.772848i \(0.718832\pi\)
\(728\) 0 0
\(729\) 71.2191i 2.63774i
\(730\) 0 0
\(731\) −2.62077 2.62077i −0.0969326 0.0969326i
\(732\) 0 0
\(733\) −29.4292 29.4292i −1.08699 1.08699i −0.995837 0.0911546i \(-0.970944\pi\)
−0.0911546 0.995837i \(-0.529056\pi\)
\(734\) 0 0
\(735\) 7.73081 0.285155
\(736\) 0 0
\(737\) 1.64232i 0.0604956i
\(738\) 0 0
\(739\) −28.5250 + 28.5250i −1.04931 + 1.04931i −0.0505889 + 0.998720i \(0.516110\pi\)
−0.998720 + 0.0505889i \(0.983890\pi\)
\(740\) 0 0
\(741\) −44.2149 33.5441i −1.62428 1.23227i
\(742\) 0 0
\(743\) 2.63098i 0.0965214i 0.998835 + 0.0482607i \(0.0153678\pi\)
−0.998835 + 0.0482607i \(0.984632\pi\)
\(744\) 0 0
\(745\) 23.3236i 0.854511i
\(746\) 0 0
\(747\) 28.7872 + 28.7872i 1.05327 + 1.05327i
\(748\) 0 0
\(749\) 6.73112 6.73112i 0.245950 0.245950i
\(750\) 0 0
\(751\) 36.9118 1.34693 0.673466 0.739218i \(-0.264805\pi\)
0.673466 + 0.739218i \(0.264805\pi\)
\(752\) 0 0
\(753\) 56.4147i 2.05587i
\(754\) 0 0
\(755\) 26.6119 + 26.6119i 0.968507 + 0.968507i
\(756\) 0 0
\(757\) −10.6159 + 10.6159i −0.385843 + 0.385843i −0.873202 0.487359i \(-0.837960\pi\)
0.487359 + 0.873202i \(0.337960\pi\)
\(758\) 0 0
\(759\) 77.3563i 2.80786i
\(760\) 0 0
\(761\) 1.24281i 0.0450517i 0.999746 + 0.0225259i \(0.00717081\pi\)
−0.999746 + 0.0225259i \(0.992829\pi\)
\(762\) 0 0
\(763\) −27.6518 + 27.6518i −1.00106 + 1.00106i
\(764\) 0 0
\(765\) 24.5562 + 24.5562i 0.887832 + 0.887832i
\(766\) 0 0
\(767\) 4.35563i 0.157273i
\(768\) 0 0
\(769\) −8.10047 −0.292110 −0.146055 0.989276i \(-0.546658\pi\)
−0.146055 + 0.989276i \(0.546658\pi\)
\(770\) 0 0
\(771\) 55.4765 55.4765i 1.99794 1.99794i
\(772\) 0 0
\(773\) −1.50351 1.50351i −0.0540776 0.0540776i 0.679551 0.733628i \(-0.262175\pi\)
−0.733628 + 0.679551i \(0.762175\pi\)
\(774\) 0 0
\(775\) 8.63753i 0.310269i
\(776\) 0 0
\(777\) 33.6443i 1.20698i
\(778\) 0 0
\(779\) −40.3116 30.5828i −1.44431 1.09574i
\(780\) 0 0
\(781\) −0.671462 + 0.671462i −0.0240268 + 0.0240268i
\(782\) 0 0
\(783\) 24.8747i 0.888948i
\(784\) 0 0
\(785\) −8.45896 −0.301913
\(786\) 0 0
\(787\) 20.6706 + 20.6706i 0.736828 + 0.736828i 0.971963 0.235135i \(-0.0755531\pi\)
−0.235135 + 0.971963i \(0.575553\pi\)
\(788\) 0 0
\(789\) 34.2615 + 34.2615i 1.21974 + 1.21974i
\(790\) 0 0
\(791\) 11.3856i 0.404826i
\(792\) 0 0
\(793\) 50.8042 1.80411
\(794\) 0 0
\(795\) 9.06604 + 9.06604i 0.321539 + 0.321539i
\(796\) 0 0
\(797\) −4.73425 + 4.73425i −0.167696 + 0.167696i −0.785966 0.618270i \(-0.787834\pi\)
0.618270 + 0.785966i \(0.287834\pi\)
\(798\) 0 0
\(799\) 0.632996i 0.0223938i
\(800\) 0 0
\(801\) 88.3469i 3.12158i
\(802\) 0 0
\(803\) 39.5002 39.5002i 1.39393 1.39393i
\(804\) 0 0
\(805\) −17.8448 + 17.8448i −0.628946 + 0.628946i
\(806\) 0 0
\(807\) −105.556 −3.71575
\(808\) 0 0
\(809\) 34.1881i 1.20199i 0.799253 + 0.600995i \(0.205229\pi\)
−0.799253 + 0.600995i \(0.794771\pi\)
\(810\) 0 0
\(811\) 4.94468 4.94468i 0.173631 0.173631i −0.614942 0.788573i \(-0.710820\pi\)
0.788573 + 0.614942i \(0.210820\pi\)
\(812\) 0 0
\(813\) −55.0899 + 55.0899i −1.93209 + 1.93209i
\(814\) 0 0
\(815\) 16.9798i 0.594777i
\(816\) 0 0
\(817\) −0.936882 6.82711i −0.0327773 0.238850i
\(818\) 0 0
\(819\) −51.5173 51.5173i −1.80016 1.80016i
\(820\) 0 0
\(821\) 1.33689 1.33689i 0.0466578 0.0466578i −0.683393 0.730051i \(-0.739496\pi\)
0.730051 + 0.683393i \(0.239496\pi\)
\(822\) 0 0
\(823\) −16.6744 −0.581233 −0.290616 0.956840i \(-0.593860\pi\)
−0.290616 + 0.956840i \(0.593860\pi\)
\(824\) 0 0
\(825\) 20.0766 0.698978
\(826\) 0 0
\(827\) 24.6269 24.6269i 0.856362 0.856362i −0.134546 0.990907i \(-0.542957\pi\)
0.990907 + 0.134546i \(0.0429575\pi\)
\(828\) 0 0
\(829\) −24.5347 + 24.5347i −0.852125 + 0.852125i −0.990395 0.138270i \(-0.955846\pi\)
0.138270 + 0.990395i \(0.455846\pi\)
\(830\) 0 0
\(831\) 52.7784 1.83086
\(832\) 0 0
\(833\) −2.91838 −0.101116
\(834\) 0 0
\(835\) 12.0563 + 12.0563i 0.417225 + 0.417225i
\(836\) 0 0
\(837\) 67.5287 67.5287i 2.33413 2.33413i
\(838\) 0 0
\(839\) 43.1844i 1.49089i −0.666566 0.745446i \(-0.732237\pi\)
0.666566 0.745446i \(-0.267763\pi\)
\(840\) 0 0
\(841\) 26.5885i 0.916846i
\(842\) 0 0
\(843\) 31.0974 + 31.0974i 1.07105 + 1.07105i
\(844\) 0 0
\(845\) −2.56748 2.56748i −0.0883239 0.0883239i
\(846\) 0 0
\(847\) 16.0290i 0.550763i
\(848\) 0 0
\(849\) 30.5476i 1.04839i
\(850\) 0 0
\(851\) 16.7977 + 16.7977i 0.575818 + 0.575818i
\(852\) 0 0
\(853\) −14.1512 + 14.1512i −0.484529 + 0.484529i −0.906575 0.422046i \(-0.861312\pi\)
0.422046 + 0.906575i \(0.361312\pi\)
\(854\) 0 0
\(855\) 8.77845 + 63.9690i 0.300217 + 2.18769i
\(856\) 0 0
\(857\) 12.0528 0.411716 0.205858 0.978582i \(-0.434001\pi\)
0.205858 + 0.978582i \(0.434001\pi\)
\(858\) 0 0
\(859\) 9.28621 + 9.28621i 0.316841 + 0.316841i 0.847553 0.530711i \(-0.178075\pi\)
−0.530711 + 0.847553i \(0.678075\pi\)
\(860\) 0 0
\(861\) −64.8952 64.8952i −2.21162 2.21162i
\(862\) 0 0
\(863\) 1.23001 0.0418700 0.0209350 0.999781i \(-0.493336\pi\)
0.0209350 + 0.999781i \(0.493336\pi\)
\(864\) 0 0
\(865\) 0.0728010i 0.00247531i
\(866\) 0 0
\(867\) 26.8072 + 26.8072i 0.910421 + 0.910421i
\(868\) 0 0
\(869\) −21.6618 21.6618i −0.734827 0.734827i
\(870\) 0 0
\(871\) 1.50897 0.0511295
\(872\) 0 0
\(873\) −25.7798 −0.872515
\(874\) 0 0
\(875\) −20.6149 20.6149i −0.696910 0.696910i
\(876\) 0 0
\(877\) 28.8338 28.8338i 0.973649 0.973649i −0.0260127 0.999662i \(-0.508281\pi\)
0.999662 + 0.0260127i \(0.00828103\pi\)
\(878\) 0 0
\(879\) 70.1594i 2.36642i
\(880\) 0 0
\(881\) −39.7413 −1.33892 −0.669460 0.742848i \(-0.733474\pi\)
−0.669460 + 0.742848i \(0.733474\pi\)
\(882\) 0 0
\(883\) −27.2693 + 27.2693i −0.917684 + 0.917684i −0.996861 0.0791763i \(-0.974771\pi\)
0.0791763 + 0.996861i \(0.474771\pi\)
\(884\) 0 0
\(885\) 4.95072 4.95072i 0.166417 0.166417i
\(886\) 0 0
\(887\) 40.9715i 1.37569i 0.725858 + 0.687844i \(0.241443\pi\)
−0.725858 + 0.687844i \(0.758557\pi\)
\(888\) 0 0
\(889\) −0.486269 −0.0163089
\(890\) 0 0
\(891\) −86.8431 86.8431i −2.90935 2.90935i
\(892\) 0 0
\(893\) −0.711335 + 0.937621i −0.0238039 + 0.0313763i
\(894\) 0 0
\(895\) −5.79953 −0.193857
\(896\) 0 0
\(897\) −71.0753 −2.37313
\(898\) 0 0
\(899\) −6.54655 + 6.54655i −0.218340 + 0.218340i
\(900\) 0 0
\(901\) −3.42243 3.42243i −0.114018 0.114018i
\(902\) 0 0
\(903\) 12.4988i 0.415933i
\(904\) 0 0
\(905\) −13.0517 −0.433852
\(906\) 0 0
\(907\) −23.3335 + 23.3335i −0.774775 + 0.774775i −0.978937 0.204162i \(-0.934553\pi\)
0.204162 + 0.978937i \(0.434553\pi\)
\(908\) 0 0
\(909\) 60.5452 + 60.5452i 2.00816 + 2.00816i
\(910\) 0 0
\(911\) 10.3255 0.342100 0.171050 0.985262i \(-0.445284\pi\)
0.171050 + 0.985262i \(0.445284\pi\)
\(912\) 0 0
\(913\) 21.7781 0.720748
\(914\) 0 0
\(915\) −57.7453 57.7453i −1.90900 1.90900i
\(916\) 0 0
\(917\) −14.3751 + 14.3751i −0.474709 + 0.474709i
\(918\) 0 0
\(919\) −18.4954 −0.610108 −0.305054 0.952335i \(-0.598675\pi\)
−0.305054 + 0.952335i \(0.598675\pi\)
\(920\) 0 0
\(921\) 29.3668i 0.967669i
\(922\) 0 0
\(923\) 0.616942 + 0.616942i 0.0203069 + 0.0203069i
\(924\) 0 0
\(925\) −4.35958 + 4.35958i −0.143342 + 0.143342i
\(926\) 0 0
\(927\) −21.0122 −0.690130
\(928\) 0 0
\(929\) 41.8953 1.37454 0.687270 0.726402i \(-0.258809\pi\)
0.687270 + 0.726402i \(0.258809\pi\)
\(930\) 0 0
\(931\) −4.32283 3.27956i −0.141675 0.107483i
\(932\) 0 0
\(933\) 6.96652 + 6.96652i 0.228074 + 0.228074i
\(934\) 0 0
\(935\) 18.5773 0.607541
\(936\) 0 0
\(937\) 51.1111i 1.66973i −0.550458 0.834863i \(-0.685547\pi\)
0.550458 0.834863i \(-0.314453\pi\)
\(938\) 0 0
\(939\) −45.5985 + 45.5985i −1.48805 + 1.48805i
\(940\) 0 0
\(941\) 19.1950 19.1950i 0.625738 0.625738i −0.321255 0.946993i \(-0.604105\pi\)
0.946993 + 0.321255i \(0.104105\pi\)
\(942\) 0 0
\(943\) −64.8008 −2.11020
\(944\) 0 0
\(945\) 72.4160i 2.35569i
\(946\) 0 0
\(947\) −7.49703 + 7.49703i −0.243621 + 0.243621i −0.818346 0.574726i \(-0.805109\pi\)
0.574726 + 0.818346i \(0.305109\pi\)
\(948\) 0 0
\(949\) −36.2930 36.2930i −1.17812 1.17812i
\(950\) 0 0
\(951\) −21.0729 −0.683335
\(952\) 0 0
\(953\) 57.0862 1.84920 0.924602 0.380935i \(-0.124398\pi\)
0.924602 + 0.380935i \(0.124398\pi\)
\(954\) 0 0
\(955\) −21.7789 21.7789i −0.704749 0.704749i
\(956\) 0 0
\(957\) 15.2164 + 15.2164i 0.491878 + 0.491878i
\(958\) 0 0
\(959\) 19.7699i 0.638404i
\(960\) 0 0
\(961\) 4.54455 0.146598
\(962\) 0 0
\(963\) −22.0553 22.0553i −0.710723 0.710723i
\(964\) 0 0
\(965\) −3.36388 3.36388i −0.108287 0.108287i
\(966\) 0 0
\(967\) 35.4312 1.13939 0.569695 0.821856i \(-0.307061\pi\)
0.569695 + 0.821856i \(0.307061\pi\)
\(968\) 0 0
\(969\) −4.57860 33.3645i −0.147086 1.07182i
\(970\) 0 0
\(971\) 21.0434 21.0434i 0.675316 0.675316i −0.283621 0.958937i \(-0.591536\pi\)
0.958937 + 0.283621i \(0.0915356\pi\)
\(972\) 0 0
\(973\) 31.8945 + 31.8945i 1.02249 + 1.02249i
\(974\) 0 0
\(975\) 18.4465i 0.590760i
\(976\) 0 0
\(977\) 28.4135i 0.909027i −0.890740 0.454514i \(-0.849813\pi\)
0.890740 0.454514i \(-0.150187\pi\)
\(978\) 0 0
\(979\) 33.4180 + 33.4180i 1.06805 + 1.06805i
\(980\) 0 0
\(981\) 90.6044 + 90.6044i 2.89278 + 2.89278i
\(982\) 0 0
\(983\) 45.7243i 1.45838i 0.684312 + 0.729190i \(0.260103\pi\)
−0.684312 + 0.729190i \(0.739897\pi\)
\(984\) 0 0
\(985\) 27.3820i 0.872463i
\(986\) 0 0
\(987\) −1.50942 + 1.50942i −0.0480453 + 0.0480453i
\(988\) 0 0
\(989\) −6.24029 6.24029i −0.198430 0.198430i
\(990\) 0 0
\(991\) −26.3265 −0.836289 −0.418145 0.908380i \(-0.637319\pi\)
−0.418145 + 0.908380i \(0.637319\pi\)
\(992\) 0 0
\(993\) −9.53672 −0.302639
\(994\) 0 0
\(995\) 26.5918 26.5918i 0.843017 0.843017i
\(996\) 0 0
\(997\) 12.8909 12.8909i 0.408258 0.408258i −0.472873 0.881131i \(-0.656783\pi\)
0.881131 + 0.472873i \(0.156783\pi\)
\(998\) 0 0
\(999\) 68.1668 2.15670
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.m.a.303.1 76
4.3 odd 2 304.2.m.a.227.3 yes 76
16.5 even 4 304.2.m.a.75.36 yes 76
16.11 odd 4 inner 1216.2.m.a.911.38 76
19.18 odd 2 inner 1216.2.m.a.303.38 76
76.75 even 2 304.2.m.a.227.36 yes 76
304.37 odd 4 304.2.m.a.75.3 76
304.75 even 4 inner 1216.2.m.a.911.1 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
304.2.m.a.75.3 76 304.37 odd 4
304.2.m.a.75.36 yes 76 16.5 even 4
304.2.m.a.227.3 yes 76 4.3 odd 2
304.2.m.a.227.36 yes 76 76.75 even 2
1216.2.m.a.303.1 76 1.1 even 1 trivial
1216.2.m.a.303.38 76 19.18 odd 2 inner
1216.2.m.a.911.1 76 304.75 even 4 inner
1216.2.m.a.911.38 76 16.11 odd 4 inner