Properties

Label 1216.2.m.a.303.16
Level $1216$
Weight $2$
Character 1216.303
Analytic conductor $9.710$
Analytic rank $0$
Dimension $76$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(303,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.303");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(76\)
Relative dimension: \(38\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 304)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 303.16
Character \(\chi\) \(=\) 1216.303
Dual form 1216.2.m.a.911.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.549728 - 0.549728i) q^{3} +(1.49999 - 1.49999i) q^{5} +3.48044 q^{7} -2.39560i q^{9} +(3.68459 + 3.68459i) q^{11} +(3.73303 - 3.73303i) q^{13} -1.64918 q^{15} +1.51477 q^{17} +(-4.16692 + 1.27937i) q^{19} +(-1.91329 - 1.91329i) q^{21} +0.482269 q^{23} +0.500032i q^{25} +(-2.96611 + 2.96611i) q^{27} +(-7.26730 + 7.26730i) q^{29} +2.39300 q^{31} -4.05104i q^{33} +(5.22064 - 5.22064i) q^{35} +(3.14537 + 3.14537i) q^{37} -4.10430 q^{39} +7.94060 q^{41} +(-3.02093 - 3.02093i) q^{43} +(-3.59339 - 3.59339i) q^{45} -3.58534i q^{47} +5.11344 q^{49} +(-0.832709 - 0.832709i) q^{51} +(-3.55950 - 3.55950i) q^{53} +11.0537 q^{55} +(2.99397 + 1.58737i) q^{57} +(-0.408827 + 0.408827i) q^{59} +(2.47804 + 2.47804i) q^{61} -8.33773i q^{63} -11.1991i q^{65} +(-10.6691 - 10.6691i) q^{67} +(-0.265116 - 0.265116i) q^{69} +5.59302i q^{71} -13.6019i q^{73} +(0.274881 - 0.274881i) q^{75} +(12.8240 + 12.8240i) q^{77} -5.02027 q^{79} -3.92569 q^{81} +(-10.3497 + 10.3497i) q^{83} +(2.27214 - 2.27214i) q^{85} +7.99007 q^{87} +7.42593 q^{89} +(12.9926 - 12.9926i) q^{91} +(-1.31550 - 1.31550i) q^{93} +(-4.33131 + 8.16940i) q^{95} +3.70124i q^{97} +(8.82679 - 8.82679i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q - 4 q^{5} + 8 q^{7} + 4 q^{11} - 8 q^{17} - 6 q^{19} + 8 q^{23} + 8 q^{39} + 4 q^{43} + 4 q^{45} + 44 q^{49} + 8 q^{55} + 28 q^{61} - 32 q^{77} - 52 q^{81} - 36 q^{83} - 56 q^{85} + 120 q^{87} - 16 q^{93}+ \cdots - 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.549728 0.549728i −0.317385 0.317385i 0.530377 0.847762i \(-0.322050\pi\)
−0.847762 + 0.530377i \(0.822050\pi\)
\(4\) 0 0
\(5\) 1.49999 1.49999i 0.670818 0.670818i −0.287087 0.957905i \(-0.592687\pi\)
0.957905 + 0.287087i \(0.0926868\pi\)
\(6\) 0 0
\(7\) 3.48044 1.31548 0.657741 0.753244i \(-0.271512\pi\)
0.657741 + 0.753244i \(0.271512\pi\)
\(8\) 0 0
\(9\) 2.39560i 0.798533i
\(10\) 0 0
\(11\) 3.68459 + 3.68459i 1.11094 + 1.11094i 0.993023 + 0.117921i \(0.0376231\pi\)
0.117921 + 0.993023i \(0.462377\pi\)
\(12\) 0 0
\(13\) 3.73303 3.73303i 1.03536 1.03536i 0.0360050 0.999352i \(-0.488537\pi\)
0.999352 0.0360050i \(-0.0114632\pi\)
\(14\) 0 0
\(15\) −1.64918 −0.425816
\(16\) 0 0
\(17\) 1.51477 0.367385 0.183693 0.982984i \(-0.441195\pi\)
0.183693 + 0.982984i \(0.441195\pi\)
\(18\) 0 0
\(19\) −4.16692 + 1.27937i −0.955957 + 0.293507i
\(20\) 0 0
\(21\) −1.91329 1.91329i −0.417515 0.417515i
\(22\) 0 0
\(23\) 0.482269 0.100560 0.0502800 0.998735i \(-0.483989\pi\)
0.0502800 + 0.998735i \(0.483989\pi\)
\(24\) 0 0
\(25\) 0.500032i 0.100006i
\(26\) 0 0
\(27\) −2.96611 + 2.96611i −0.570828 + 0.570828i
\(28\) 0 0
\(29\) −7.26730 + 7.26730i −1.34950 + 1.34950i −0.463303 + 0.886200i \(0.653336\pi\)
−0.886200 + 0.463303i \(0.846664\pi\)
\(30\) 0 0
\(31\) 2.39300 0.429795 0.214897 0.976637i \(-0.431058\pi\)
0.214897 + 0.976637i \(0.431058\pi\)
\(32\) 0 0
\(33\) 4.05104i 0.705195i
\(34\) 0 0
\(35\) 5.22064 5.22064i 0.882449 0.882449i
\(36\) 0 0
\(37\) 3.14537 + 3.14537i 0.517096 + 0.517096i 0.916691 0.399596i \(-0.130850\pi\)
−0.399596 + 0.916691i \(0.630850\pi\)
\(38\) 0 0
\(39\) −4.10430 −0.657214
\(40\) 0 0
\(41\) 7.94060 1.24011 0.620057 0.784557i \(-0.287110\pi\)
0.620057 + 0.784557i \(0.287110\pi\)
\(42\) 0 0
\(43\) −3.02093 3.02093i −0.460687 0.460687i 0.438193 0.898881i \(-0.355618\pi\)
−0.898881 + 0.438193i \(0.855618\pi\)
\(44\) 0 0
\(45\) −3.59339 3.59339i −0.535670 0.535670i
\(46\) 0 0
\(47\) 3.58534i 0.522975i −0.965207 0.261488i \(-0.915787\pi\)
0.965207 0.261488i \(-0.0842130\pi\)
\(48\) 0 0
\(49\) 5.11344 0.730492
\(50\) 0 0
\(51\) −0.832709 0.832709i −0.116603 0.116603i
\(52\) 0 0
\(53\) −3.55950 3.55950i −0.488935 0.488935i 0.419035 0.907970i \(-0.362369\pi\)
−0.907970 + 0.419035i \(0.862369\pi\)
\(54\) 0 0
\(55\) 11.0537 1.49048
\(56\) 0 0
\(57\) 2.99397 + 1.58737i 0.396562 + 0.210252i
\(58\) 0 0
\(59\) −0.408827 + 0.408827i −0.0532248 + 0.0532248i −0.733218 0.679993i \(-0.761983\pi\)
0.679993 + 0.733218i \(0.261983\pi\)
\(60\) 0 0
\(61\) 2.47804 + 2.47804i 0.317281 + 0.317281i 0.847722 0.530441i \(-0.177974\pi\)
−0.530441 + 0.847722i \(0.677974\pi\)
\(62\) 0 0
\(63\) 8.33773i 1.05046i
\(64\) 0 0
\(65\) 11.1991i 1.38907i
\(66\) 0 0
\(67\) −10.6691 10.6691i −1.30344 1.30344i −0.926056 0.377387i \(-0.876823\pi\)
−0.377387 0.926056i \(-0.623177\pi\)
\(68\) 0 0
\(69\) −0.265116 0.265116i −0.0319163 0.0319163i
\(70\) 0 0
\(71\) 5.59302i 0.663769i 0.943320 + 0.331885i \(0.107684\pi\)
−0.943320 + 0.331885i \(0.892316\pi\)
\(72\) 0 0
\(73\) 13.6019i 1.59198i −0.605311 0.795989i \(-0.706951\pi\)
0.605311 0.795989i \(-0.293049\pi\)
\(74\) 0 0
\(75\) 0.274881 0.274881i 0.0317406 0.0317406i
\(76\) 0 0
\(77\) 12.8240 + 12.8240i 1.46143 + 1.46143i
\(78\) 0 0
\(79\) −5.02027 −0.564825 −0.282412 0.959293i \(-0.591135\pi\)
−0.282412 + 0.959293i \(0.591135\pi\)
\(80\) 0 0
\(81\) −3.92569 −0.436188
\(82\) 0 0
\(83\) −10.3497 + 10.3497i −1.13603 + 1.13603i −0.146870 + 0.989156i \(0.546920\pi\)
−0.989156 + 0.146870i \(0.953080\pi\)
\(84\) 0 0
\(85\) 2.27214 2.27214i 0.246448 0.246448i
\(86\) 0 0
\(87\) 7.99007 0.856625
\(88\) 0 0
\(89\) 7.42593 0.787147 0.393573 0.919293i \(-0.371239\pi\)
0.393573 + 0.919293i \(0.371239\pi\)
\(90\) 0 0
\(91\) 12.9926 12.9926i 1.36199 1.36199i
\(92\) 0 0
\(93\) −1.31550 1.31550i −0.136411 0.136411i
\(94\) 0 0
\(95\) −4.33131 + 8.16940i −0.444383 + 0.838163i
\(96\) 0 0
\(97\) 3.70124i 0.375804i 0.982188 + 0.187902i \(0.0601688\pi\)
−0.982188 + 0.187902i \(0.939831\pi\)
\(98\) 0 0
\(99\) 8.82679 8.82679i 0.887126 0.887126i
\(100\) 0 0
\(101\) 4.78718 4.78718i 0.476342 0.476342i −0.427618 0.903960i \(-0.640647\pi\)
0.903960 + 0.427618i \(0.140647\pi\)
\(102\) 0 0
\(103\) 11.4253i 1.12577i 0.826536 + 0.562885i \(0.190308\pi\)
−0.826536 + 0.562885i \(0.809692\pi\)
\(104\) 0 0
\(105\) −5.73986 −0.560153
\(106\) 0 0
\(107\) 11.7874 11.7874i 1.13953 1.13953i 0.150999 0.988534i \(-0.451751\pi\)
0.988534 0.150999i \(-0.0482490\pi\)
\(108\) 0 0
\(109\) −10.3205 + 10.3205i −0.988523 + 0.988523i −0.999935 0.0114120i \(-0.996367\pi\)
0.0114120 + 0.999935i \(0.496367\pi\)
\(110\) 0 0
\(111\) 3.45819i 0.328237i
\(112\) 0 0
\(113\) 14.0443i 1.32118i −0.750747 0.660590i \(-0.770306\pi\)
0.750747 0.660590i \(-0.229694\pi\)
\(114\) 0 0
\(115\) 0.723400 0.723400i 0.0674574 0.0674574i
\(116\) 0 0
\(117\) −8.94285 8.94285i −0.826766 0.826766i
\(118\) 0 0
\(119\) 5.27205 0.483288
\(120\) 0 0
\(121\) 16.1523i 1.46839i
\(122\) 0 0
\(123\) −4.36517 4.36517i −0.393594 0.393594i
\(124\) 0 0
\(125\) 8.25002 + 8.25002i 0.737904 + 0.737904i
\(126\) 0 0
\(127\) 5.68283 0.504269 0.252135 0.967692i \(-0.418867\pi\)
0.252135 + 0.967692i \(0.418867\pi\)
\(128\) 0 0
\(129\) 3.32138i 0.292431i
\(130\) 0 0
\(131\) −0.994673 + 0.994673i −0.0869050 + 0.0869050i −0.749223 0.662318i \(-0.769573\pi\)
0.662318 + 0.749223i \(0.269573\pi\)
\(132\) 0 0
\(133\) −14.5027 + 4.45276i −1.25754 + 0.386104i
\(134\) 0 0
\(135\) 8.89830i 0.765844i
\(136\) 0 0
\(137\) 10.6023i 0.905817i −0.891557 0.452909i \(-0.850386\pi\)
0.891557 0.452909i \(-0.149614\pi\)
\(138\) 0 0
\(139\) −9.25182 9.25182i −0.784729 0.784729i 0.195895 0.980625i \(-0.437239\pi\)
−0.980625 + 0.195895i \(0.937239\pi\)
\(140\) 0 0
\(141\) −1.97096 + 1.97096i −0.165985 + 0.165985i
\(142\) 0 0
\(143\) 27.5093 2.30045
\(144\) 0 0
\(145\) 21.8018i 1.81054i
\(146\) 0 0
\(147\) −2.81100 2.81100i −0.231847 0.231847i
\(148\) 0 0
\(149\) 0.265791 0.265791i 0.0217745 0.0217745i −0.696136 0.717910i \(-0.745099\pi\)
0.717910 + 0.696136i \(0.245099\pi\)
\(150\) 0 0
\(151\) 8.26373i 0.672493i −0.941774 0.336246i \(-0.890843\pi\)
0.941774 0.336246i \(-0.109157\pi\)
\(152\) 0 0
\(153\) 3.62878i 0.293369i
\(154\) 0 0
\(155\) 3.58948 3.58948i 0.288314 0.288314i
\(156\) 0 0
\(157\) −11.1943 11.1943i −0.893405 0.893405i 0.101437 0.994842i \(-0.467656\pi\)
−0.994842 + 0.101437i \(0.967656\pi\)
\(158\) 0 0
\(159\) 3.91351i 0.310362i
\(160\) 0 0
\(161\) 1.67851 0.132285
\(162\) 0 0
\(163\) −5.31053 + 5.31053i −0.415953 + 0.415953i −0.883806 0.467853i \(-0.845028\pi\)
0.467853 + 0.883806i \(0.345028\pi\)
\(164\) 0 0
\(165\) −6.07653 6.07653i −0.473058 0.473058i
\(166\) 0 0
\(167\) 9.02701i 0.698531i 0.937024 + 0.349266i \(0.113569\pi\)
−0.937024 + 0.349266i \(0.886431\pi\)
\(168\) 0 0
\(169\) 14.8710i 1.14393i
\(170\) 0 0
\(171\) 3.06486 + 9.98227i 0.234375 + 0.763363i
\(172\) 0 0
\(173\) −7.82463 + 7.82463i −0.594895 + 0.594895i −0.938950 0.344054i \(-0.888200\pi\)
0.344054 + 0.938950i \(0.388200\pi\)
\(174\) 0 0
\(175\) 1.74033i 0.131557i
\(176\) 0 0
\(177\) 0.449487 0.0337855
\(178\) 0 0
\(179\) 2.95338 + 2.95338i 0.220746 + 0.220746i 0.808813 0.588067i \(-0.200111\pi\)
−0.588067 + 0.808813i \(0.700111\pi\)
\(180\) 0 0
\(181\) 6.95777 + 6.95777i 0.517167 + 0.517167i 0.916713 0.399546i \(-0.130832\pi\)
−0.399546 + 0.916713i \(0.630832\pi\)
\(182\) 0 0
\(183\) 2.72450i 0.201401i
\(184\) 0 0
\(185\) 9.43607 0.693754
\(186\) 0 0
\(187\) 5.58129 + 5.58129i 0.408144 + 0.408144i
\(188\) 0 0
\(189\) −10.3234 + 10.3234i −0.750914 + 0.750914i
\(190\) 0 0
\(191\) 3.91455i 0.283247i 0.989921 + 0.141624i \(0.0452322\pi\)
−0.989921 + 0.141624i \(0.954768\pi\)
\(192\) 0 0
\(193\) 17.5680i 1.26457i 0.774736 + 0.632285i \(0.217883\pi\)
−0.774736 + 0.632285i \(0.782117\pi\)
\(194\) 0 0
\(195\) −6.15643 + 6.15643i −0.440871 + 0.440871i
\(196\) 0 0
\(197\) −16.2889 + 16.2889i −1.16053 + 1.16053i −0.176176 + 0.984359i \(0.556373\pi\)
−0.984359 + 0.176176i \(0.943627\pi\)
\(198\) 0 0
\(199\) −21.6100 −1.53189 −0.765945 0.642906i \(-0.777728\pi\)
−0.765945 + 0.642906i \(0.777728\pi\)
\(200\) 0 0
\(201\) 11.7302i 0.827387i
\(202\) 0 0
\(203\) −25.2934 + 25.2934i −1.77525 + 1.77525i
\(204\) 0 0
\(205\) 11.9109 11.9109i 0.831891 0.831891i
\(206\) 0 0
\(207\) 1.15532i 0.0803004i
\(208\) 0 0
\(209\) −20.0673 10.6394i −1.38809 0.735944i
\(210\) 0 0
\(211\) −16.6981 16.6981i −1.14954 1.14954i −0.986642 0.162901i \(-0.947915\pi\)
−0.162901 0.986642i \(-0.552085\pi\)
\(212\) 0 0
\(213\) 3.07464 3.07464i 0.210671 0.210671i
\(214\) 0 0
\(215\) −9.06275 −0.618075
\(216\) 0 0
\(217\) 8.32868 0.565387
\(218\) 0 0
\(219\) −7.47732 + 7.47732i −0.505271 + 0.505271i
\(220\) 0 0
\(221\) 5.65467 5.65467i 0.380374 0.380374i
\(222\) 0 0
\(223\) −1.63480 −0.109474 −0.0547372 0.998501i \(-0.517432\pi\)
−0.0547372 + 0.998501i \(0.517432\pi\)
\(224\) 0 0
\(225\) 1.19788 0.0798584
\(226\) 0 0
\(227\) 0.463368 + 0.463368i 0.0307548 + 0.0307548i 0.722317 0.691562i \(-0.243077\pi\)
−0.691562 + 0.722317i \(0.743077\pi\)
\(228\) 0 0
\(229\) −8.36381 + 8.36381i −0.552696 + 0.552696i −0.927218 0.374522i \(-0.877807\pi\)
0.374522 + 0.927218i \(0.377807\pi\)
\(230\) 0 0
\(231\) 14.0994i 0.927671i
\(232\) 0 0
\(233\) 9.02414i 0.591191i 0.955313 + 0.295596i \(0.0955181\pi\)
−0.955313 + 0.295596i \(0.904482\pi\)
\(234\) 0 0
\(235\) −5.37799 5.37799i −0.350821 0.350821i
\(236\) 0 0
\(237\) 2.75978 + 2.75978i 0.179267 + 0.179267i
\(238\) 0 0
\(239\) 0.575236i 0.0372089i −0.999827 0.0186045i \(-0.994078\pi\)
0.999827 0.0186045i \(-0.00592233\pi\)
\(240\) 0 0
\(241\) 10.2254i 0.658678i 0.944212 + 0.329339i \(0.106826\pi\)
−0.944212 + 0.329339i \(0.893174\pi\)
\(242\) 0 0
\(243\) 11.0564 + 11.0564i 0.709268 + 0.709268i
\(244\) 0 0
\(245\) 7.67014 7.67014i 0.490027 0.490027i
\(246\) 0 0
\(247\) −10.7793 + 20.3312i −0.685871 + 1.29364i
\(248\) 0 0
\(249\) 11.3790 0.721116
\(250\) 0 0
\(251\) 9.67088 + 9.67088i 0.610421 + 0.610421i 0.943056 0.332635i \(-0.107938\pi\)
−0.332635 + 0.943056i \(0.607938\pi\)
\(252\) 0 0
\(253\) 1.77696 + 1.77696i 0.111717 + 0.111717i
\(254\) 0 0
\(255\) −2.49812 −0.156438
\(256\) 0 0
\(257\) 18.8850i 1.17802i −0.808127 0.589008i \(-0.799519\pi\)
0.808127 0.589008i \(-0.200481\pi\)
\(258\) 0 0
\(259\) 10.9473 + 10.9473i 0.680230 + 0.680230i
\(260\) 0 0
\(261\) 17.4095 + 17.4095i 1.07762 + 1.07762i
\(262\) 0 0
\(263\) 12.0775 0.744732 0.372366 0.928086i \(-0.378547\pi\)
0.372366 + 0.928086i \(0.378547\pi\)
\(264\) 0 0
\(265\) −10.6785 −0.655973
\(266\) 0 0
\(267\) −4.08224 4.08224i −0.249829 0.249829i
\(268\) 0 0
\(269\) −8.54359 + 8.54359i −0.520912 + 0.520912i −0.917847 0.396935i \(-0.870074\pi\)
0.396935 + 0.917847i \(0.370074\pi\)
\(270\) 0 0
\(271\) 8.30882i 0.504725i −0.967633 0.252362i \(-0.918793\pi\)
0.967633 0.252362i \(-0.0812075\pi\)
\(272\) 0 0
\(273\) −14.2848 −0.864553
\(274\) 0 0
\(275\) −1.84241 + 1.84241i −0.111102 + 0.111102i
\(276\) 0 0
\(277\) 9.55608 9.55608i 0.574169 0.574169i −0.359122 0.933291i \(-0.616924\pi\)
0.933291 + 0.359122i \(0.116924\pi\)
\(278\) 0 0
\(279\) 5.73266i 0.343205i
\(280\) 0 0
\(281\) −9.32142 −0.556069 −0.278035 0.960571i \(-0.589683\pi\)
−0.278035 + 0.960571i \(0.589683\pi\)
\(282\) 0 0
\(283\) −4.19436 4.19436i −0.249329 0.249329i 0.571366 0.820695i \(-0.306414\pi\)
−0.820695 + 0.571366i \(0.806414\pi\)
\(284\) 0 0
\(285\) 6.87199 2.10991i 0.407061 0.124980i
\(286\) 0 0
\(287\) 27.6368 1.63135
\(288\) 0 0
\(289\) −14.7055 −0.865028
\(290\) 0 0
\(291\) 2.03467 2.03467i 0.119275 0.119275i
\(292\) 0 0
\(293\) 13.7219 + 13.7219i 0.801640 + 0.801640i 0.983352 0.181712i \(-0.0581639\pi\)
−0.181712 + 0.983352i \(0.558164\pi\)
\(294\) 0 0
\(295\) 1.22648i 0.0714083i
\(296\) 0 0
\(297\) −21.8578 −1.26832
\(298\) 0 0
\(299\) 1.80032 1.80032i 0.104115 0.104115i
\(300\) 0 0
\(301\) −10.5142 10.5142i −0.606026 0.606026i
\(302\) 0 0
\(303\) −5.26329 −0.302368
\(304\) 0 0
\(305\) 7.43410 0.425675
\(306\) 0 0
\(307\) 9.90107 + 9.90107i 0.565084 + 0.565084i 0.930747 0.365663i \(-0.119158\pi\)
−0.365663 + 0.930747i \(0.619158\pi\)
\(308\) 0 0
\(309\) 6.28081 6.28081i 0.357303 0.357303i
\(310\) 0 0
\(311\) −17.4462 −0.989283 −0.494642 0.869097i \(-0.664701\pi\)
−0.494642 + 0.869097i \(0.664701\pi\)
\(312\) 0 0
\(313\) 9.14849i 0.517103i 0.965997 + 0.258552i \(0.0832452\pi\)
−0.965997 + 0.258552i \(0.916755\pi\)
\(314\) 0 0
\(315\) −12.5066 12.5066i −0.704665 0.704665i
\(316\) 0 0
\(317\) 19.0979 19.0979i 1.07264 1.07264i 0.0754990 0.997146i \(-0.475945\pi\)
0.997146 0.0754990i \(-0.0240550\pi\)
\(318\) 0 0
\(319\) −53.5539 −2.99845
\(320\) 0 0
\(321\) −12.9597 −0.723342
\(322\) 0 0
\(323\) −6.31191 + 1.93795i −0.351204 + 0.107830i
\(324\) 0 0
\(325\) 1.86664 + 1.86664i 0.103542 + 0.103542i
\(326\) 0 0
\(327\) 11.3469 0.627485
\(328\) 0 0
\(329\) 12.4785i 0.687964i
\(330\) 0 0
\(331\) −3.09582 + 3.09582i −0.170162 + 0.170162i −0.787050 0.616889i \(-0.788393\pi\)
0.616889 + 0.787050i \(0.288393\pi\)
\(332\) 0 0
\(333\) 7.53504 7.53504i 0.412918 0.412918i
\(334\) 0 0
\(335\) −32.0073 −1.74875
\(336\) 0 0
\(337\) 12.1693i 0.662903i −0.943472 0.331452i \(-0.892462\pi\)
0.943472 0.331452i \(-0.107538\pi\)
\(338\) 0 0
\(339\) −7.72056 + 7.72056i −0.419323 + 0.419323i
\(340\) 0 0
\(341\) 8.81720 + 8.81720i 0.477478 + 0.477478i
\(342\) 0 0
\(343\) −6.56604 −0.354533
\(344\) 0 0
\(345\) −0.795346 −0.0428200
\(346\) 0 0
\(347\) 8.14038 + 8.14038i 0.436999 + 0.436999i 0.891001 0.454002i \(-0.150004\pi\)
−0.454002 + 0.891001i \(0.650004\pi\)
\(348\) 0 0
\(349\) 11.7882 + 11.7882i 0.631010 + 0.631010i 0.948321 0.317311i \(-0.102780\pi\)
−0.317311 + 0.948321i \(0.602780\pi\)
\(350\) 0 0
\(351\) 22.1452i 1.18202i
\(352\) 0 0
\(353\) 4.06776 0.216505 0.108253 0.994123i \(-0.465474\pi\)
0.108253 + 0.994123i \(0.465474\pi\)
\(354\) 0 0
\(355\) 8.38950 + 8.38950i 0.445268 + 0.445268i
\(356\) 0 0
\(357\) −2.89819 2.89819i −0.153389 0.153389i
\(358\) 0 0
\(359\) 7.30143 0.385355 0.192677 0.981262i \(-0.438283\pi\)
0.192677 + 0.981262i \(0.438283\pi\)
\(360\) 0 0
\(361\) 15.7264 10.6621i 0.827707 0.561161i
\(362\) 0 0
\(363\) 8.87939 8.87939i 0.466047 0.466047i
\(364\) 0 0
\(365\) −20.4027 20.4027i −1.06793 1.06793i
\(366\) 0 0
\(367\) 8.15940i 0.425917i −0.977061 0.212959i \(-0.931690\pi\)
0.977061 0.212959i \(-0.0683100\pi\)
\(368\) 0 0
\(369\) 19.0225i 0.990272i
\(370\) 0 0
\(371\) −12.3886 12.3886i −0.643185 0.643185i
\(372\) 0 0
\(373\) 7.35016 + 7.35016i 0.380577 + 0.380577i 0.871310 0.490733i \(-0.163271\pi\)
−0.490733 + 0.871310i \(0.663271\pi\)
\(374\) 0 0
\(375\) 9.07053i 0.468400i
\(376\) 0 0
\(377\) 54.2581i 2.79443i
\(378\) 0 0
\(379\) 20.2426 20.2426i 1.03979 1.03979i 0.0406169 0.999175i \(-0.487068\pi\)
0.999175 0.0406169i \(-0.0129323\pi\)
\(380\) 0 0
\(381\) −3.12401 3.12401i −0.160048 0.160048i
\(382\) 0 0
\(383\) 18.4669 0.943615 0.471807 0.881702i \(-0.343602\pi\)
0.471807 + 0.881702i \(0.343602\pi\)
\(384\) 0 0
\(385\) 38.4718 1.96070
\(386\) 0 0
\(387\) −7.23693 + 7.23693i −0.367874 + 0.367874i
\(388\) 0 0
\(389\) −16.3368 + 16.3368i −0.828309 + 0.828309i −0.987283 0.158974i \(-0.949181\pi\)
0.158974 + 0.987283i \(0.449181\pi\)
\(390\) 0 0
\(391\) 0.730525 0.0369442
\(392\) 0 0
\(393\) 1.09360 0.0551648
\(394\) 0 0
\(395\) −7.53038 + 7.53038i −0.378895 + 0.378895i
\(396\) 0 0
\(397\) −13.0533 13.0533i −0.655126 0.655126i 0.299097 0.954223i \(-0.403315\pi\)
−0.954223 + 0.299097i \(0.903315\pi\)
\(398\) 0 0
\(399\) 10.4203 + 5.52473i 0.521670 + 0.276582i
\(400\) 0 0
\(401\) 26.3416i 1.31544i 0.753263 + 0.657719i \(0.228479\pi\)
−0.753263 + 0.657719i \(0.771521\pi\)
\(402\) 0 0
\(403\) 8.93313 8.93313i 0.444991 0.444991i
\(404\) 0 0
\(405\) −5.88852 + 5.88852i −0.292603 + 0.292603i
\(406\) 0 0
\(407\) 23.1788i 1.14893i
\(408\) 0 0
\(409\) 0.821310 0.0406112 0.0203056 0.999794i \(-0.493536\pi\)
0.0203056 + 0.999794i \(0.493536\pi\)
\(410\) 0 0
\(411\) −5.82839 + 5.82839i −0.287493 + 0.287493i
\(412\) 0 0
\(413\) −1.42290 + 1.42290i −0.0700162 + 0.0700162i
\(414\) 0 0
\(415\) 31.0489i 1.52413i
\(416\) 0 0
\(417\) 10.1720i 0.498123i
\(418\) 0 0
\(419\) −2.51426 + 2.51426i −0.122830 + 0.122830i −0.765849 0.643020i \(-0.777681\pi\)
0.643020 + 0.765849i \(0.277681\pi\)
\(420\) 0 0
\(421\) −9.64923 9.64923i −0.470275 0.470275i 0.431729 0.902003i \(-0.357904\pi\)
−0.902003 + 0.431729i \(0.857904\pi\)
\(422\) 0 0
\(423\) −8.58903 −0.417613
\(424\) 0 0
\(425\) 0.757432i 0.0367409i
\(426\) 0 0
\(427\) 8.62467 + 8.62467i 0.417377 + 0.417377i
\(428\) 0 0
\(429\) −15.1226 15.1226i −0.730128 0.730128i
\(430\) 0 0
\(431\) 5.87725 0.283097 0.141549 0.989931i \(-0.454792\pi\)
0.141549 + 0.989931i \(0.454792\pi\)
\(432\) 0 0
\(433\) 2.62302i 0.126054i 0.998012 + 0.0630271i \(0.0200754\pi\)
−0.998012 + 0.0630271i \(0.979925\pi\)
\(434\) 0 0
\(435\) 11.9851 11.9851i 0.574639 0.574639i
\(436\) 0 0
\(437\) −2.00957 + 0.617000i −0.0961310 + 0.0295151i
\(438\) 0 0
\(439\) 34.6282i 1.65272i −0.563146 0.826358i \(-0.690409\pi\)
0.563146 0.826358i \(-0.309591\pi\)
\(440\) 0 0
\(441\) 12.2498i 0.583322i
\(442\) 0 0
\(443\) −3.58478 3.58478i −0.170318 0.170318i 0.616801 0.787119i \(-0.288428\pi\)
−0.787119 + 0.616801i \(0.788428\pi\)
\(444\) 0 0
\(445\) 11.1389 11.1389i 0.528032 0.528032i
\(446\) 0 0
\(447\) −0.292226 −0.0138218
\(448\) 0 0
\(449\) 6.98073i 0.329441i 0.986340 + 0.164721i \(0.0526722\pi\)
−0.986340 + 0.164721i \(0.947328\pi\)
\(450\) 0 0
\(451\) 29.2578 + 29.2578i 1.37770 + 1.37770i
\(452\) 0 0
\(453\) −4.54280 + 4.54280i −0.213439 + 0.213439i
\(454\) 0 0
\(455\) 38.9776i 1.82730i
\(456\) 0 0
\(457\) 1.61947i 0.0757556i −0.999282 0.0378778i \(-0.987940\pi\)
0.999282 0.0378778i \(-0.0120598\pi\)
\(458\) 0 0
\(459\) −4.49297 + 4.49297i −0.209714 + 0.209714i
\(460\) 0 0
\(461\) 11.2678 + 11.2678i 0.524792 + 0.524792i 0.919015 0.394223i \(-0.128986\pi\)
−0.394223 + 0.919015i \(0.628986\pi\)
\(462\) 0 0
\(463\) 26.2153i 1.21833i 0.793043 + 0.609165i \(0.208495\pi\)
−0.793043 + 0.609165i \(0.791505\pi\)
\(464\) 0 0
\(465\) −3.94648 −0.183013
\(466\) 0 0
\(467\) −7.45814 + 7.45814i −0.345121 + 0.345121i −0.858289 0.513167i \(-0.828472\pi\)
0.513167 + 0.858289i \(0.328472\pi\)
\(468\) 0 0
\(469\) −37.1333 37.1333i −1.71465 1.71465i
\(470\) 0 0
\(471\) 12.3077i 0.567107i
\(472\) 0 0
\(473\) 22.2617i 1.02360i
\(474\) 0 0
\(475\) −0.639726 2.08359i −0.0293526 0.0956018i
\(476\) 0 0
\(477\) −8.52714 + 8.52714i −0.390431 + 0.390431i
\(478\) 0 0
\(479\) 22.0408i 1.00707i −0.863975 0.503534i \(-0.832033\pi\)
0.863975 0.503534i \(-0.167967\pi\)
\(480\) 0 0
\(481\) 23.4835 1.07076
\(482\) 0 0
\(483\) −0.922721 0.922721i −0.0419853 0.0419853i
\(484\) 0 0
\(485\) 5.55184 + 5.55184i 0.252096 + 0.252096i
\(486\) 0 0
\(487\) 21.9766i 0.995856i 0.867218 + 0.497928i \(0.165906\pi\)
−0.867218 + 0.497928i \(0.834094\pi\)
\(488\) 0 0
\(489\) 5.83869 0.264035
\(490\) 0 0
\(491\) 17.7224 + 17.7224i 0.799803 + 0.799803i 0.983064 0.183261i \(-0.0586655\pi\)
−0.183261 + 0.983064i \(0.558665\pi\)
\(492\) 0 0
\(493\) −11.0083 + 11.0083i −0.495787 + 0.495787i
\(494\) 0 0
\(495\) 26.4803i 1.19020i
\(496\) 0 0
\(497\) 19.4662i 0.873176i
\(498\) 0 0
\(499\) 30.3549 30.3549i 1.35887 1.35887i 0.483562 0.875310i \(-0.339343\pi\)
0.875310 0.483562i \(-0.160657\pi\)
\(500\) 0 0
\(501\) 4.96240 4.96240i 0.221704 0.221704i
\(502\) 0 0
\(503\) −7.49320 −0.334105 −0.167053 0.985948i \(-0.553425\pi\)
−0.167053 + 0.985948i \(0.553425\pi\)
\(504\) 0 0
\(505\) 14.3615i 0.639077i
\(506\) 0 0
\(507\) −8.17502 + 8.17502i −0.363066 + 0.363066i
\(508\) 0 0
\(509\) 21.4192 21.4192i 0.949391 0.949391i −0.0493888 0.998780i \(-0.515727\pi\)
0.998780 + 0.0493888i \(0.0157273\pi\)
\(510\) 0 0
\(511\) 47.3405i 2.09422i
\(512\) 0 0
\(513\) 8.56479 16.1543i 0.378145 0.713229i
\(514\) 0 0
\(515\) 17.1379 + 17.1379i 0.755186 + 0.755186i
\(516\) 0 0
\(517\) 13.2105 13.2105i 0.580996 0.580996i
\(518\) 0 0
\(519\) 8.60283 0.377622
\(520\) 0 0
\(521\) −28.5238 −1.24965 −0.624824 0.780765i \(-0.714829\pi\)
−0.624824 + 0.780765i \(0.714829\pi\)
\(522\) 0 0
\(523\) 2.87573 2.87573i 0.125747 0.125747i −0.641433 0.767179i \(-0.721660\pi\)
0.767179 + 0.641433i \(0.221660\pi\)
\(524\) 0 0
\(525\) 0.956708 0.956708i 0.0417541 0.0417541i
\(526\) 0 0
\(527\) 3.62483 0.157900
\(528\) 0 0
\(529\) −22.7674 −0.989888
\(530\) 0 0
\(531\) 0.979386 + 0.979386i 0.0425017 + 0.0425017i
\(532\) 0 0
\(533\) 29.6425 29.6425i 1.28396 1.28396i
\(534\) 0 0
\(535\) 35.3621i 1.52884i
\(536\) 0 0
\(537\) 3.24711i 0.140123i
\(538\) 0 0
\(539\) 18.8409 + 18.8409i 0.811536 + 0.811536i
\(540\) 0 0
\(541\) 1.13344 + 1.13344i 0.0487304 + 0.0487304i 0.731052 0.682322i \(-0.239030\pi\)
−0.682322 + 0.731052i \(0.739030\pi\)
\(542\) 0 0
\(543\) 7.64975i 0.328282i
\(544\) 0 0
\(545\) 30.9613i 1.32624i
\(546\) 0 0
\(547\) −13.4249 13.4249i −0.574008 0.574008i 0.359238 0.933246i \(-0.383037\pi\)
−0.933246 + 0.359238i \(0.883037\pi\)
\(548\) 0 0
\(549\) 5.93640 5.93640i 0.253359 0.253359i
\(550\) 0 0
\(551\) 20.9847 39.5798i 0.893977 1.68616i
\(552\) 0 0
\(553\) −17.4727 −0.743017
\(554\) 0 0
\(555\) −5.18727 5.18727i −0.220187 0.220187i
\(556\) 0 0
\(557\) 7.79578 + 7.79578i 0.330318 + 0.330318i 0.852707 0.522389i \(-0.174959\pi\)
−0.522389 + 0.852707i \(0.674959\pi\)
\(558\) 0 0
\(559\) −22.5544 −0.953951
\(560\) 0 0
\(561\) 6.13638i 0.259078i
\(562\) 0 0
\(563\) −4.84245 4.84245i −0.204085 0.204085i 0.597663 0.801748i \(-0.296096\pi\)
−0.801748 + 0.597663i \(0.796096\pi\)
\(564\) 0 0
\(565\) −21.0664 21.0664i −0.886272 0.886272i
\(566\) 0 0
\(567\) −13.6631 −0.573797
\(568\) 0 0
\(569\) −20.2563 −0.849190 −0.424595 0.905383i \(-0.639583\pi\)
−0.424595 + 0.905383i \(0.639583\pi\)
\(570\) 0 0
\(571\) −18.3379 18.3379i −0.767419 0.767419i 0.210233 0.977651i \(-0.432578\pi\)
−0.977651 + 0.210233i \(0.932578\pi\)
\(572\) 0 0
\(573\) 2.15194 2.15194i 0.0898985 0.0898985i
\(574\) 0 0
\(575\) 0.241150i 0.0100566i
\(576\) 0 0
\(577\) −5.18354 −0.215793 −0.107897 0.994162i \(-0.534412\pi\)
−0.107897 + 0.994162i \(0.534412\pi\)
\(578\) 0 0
\(579\) 9.65759 9.65759i 0.401356 0.401356i
\(580\) 0 0
\(581\) −36.0214 + 36.0214i −1.49442 + 1.49442i
\(582\) 0 0
\(583\) 26.2306i 1.08636i
\(584\) 0 0
\(585\) −26.8284 −1.10922
\(586\) 0 0
\(587\) 1.88371 + 1.88371i 0.0777491 + 0.0777491i 0.744912 0.667163i \(-0.232491\pi\)
−0.667163 + 0.744912i \(0.732491\pi\)
\(588\) 0 0
\(589\) −9.97142 + 3.06153i −0.410865 + 0.126148i
\(590\) 0 0
\(591\) 17.9089 0.736673
\(592\) 0 0
\(593\) 44.2304 1.81632 0.908162 0.418619i \(-0.137486\pi\)
0.908162 + 0.418619i \(0.137486\pi\)
\(594\) 0 0
\(595\) 7.90805 7.90805i 0.324198 0.324198i
\(596\) 0 0
\(597\) 11.8796 + 11.8796i 0.486199 + 0.486199i
\(598\) 0 0
\(599\) 25.1207i 1.02640i 0.858268 + 0.513202i \(0.171541\pi\)
−0.858268 + 0.513202i \(0.828459\pi\)
\(600\) 0 0
\(601\) −21.0826 −0.859976 −0.429988 0.902835i \(-0.641482\pi\)
−0.429988 + 0.902835i \(0.641482\pi\)
\(602\) 0 0
\(603\) −25.5590 + 25.5590i −1.04084 + 1.04084i
\(604\) 0 0
\(605\) 24.2284 + 24.2284i 0.985026 + 0.985026i
\(606\) 0 0
\(607\) −15.2446 −0.618759 −0.309379 0.950939i \(-0.600121\pi\)
−0.309379 + 0.950939i \(0.600121\pi\)
\(608\) 0 0
\(609\) 27.8089 1.12687
\(610\) 0 0
\(611\) −13.3842 13.3842i −0.541466 0.541466i
\(612\) 0 0
\(613\) 21.4123 21.4123i 0.864833 0.864833i −0.127062 0.991895i \(-0.540555\pi\)
0.991895 + 0.127062i \(0.0405546\pi\)
\(614\) 0 0
\(615\) −13.0955 −0.528060
\(616\) 0 0
\(617\) 47.5231i 1.91321i 0.291390 + 0.956604i \(0.405882\pi\)
−0.291390 + 0.956604i \(0.594118\pi\)
\(618\) 0 0
\(619\) 1.43559 + 1.43559i 0.0577014 + 0.0577014i 0.735369 0.677667i \(-0.237009\pi\)
−0.677667 + 0.735369i \(0.737009\pi\)
\(620\) 0 0
\(621\) −1.43046 + 1.43046i −0.0574024 + 0.0574024i
\(622\) 0 0
\(623\) 25.8455 1.03548
\(624\) 0 0
\(625\) 22.2498 0.889992
\(626\) 0 0
\(627\) 5.18277 + 16.8803i 0.206980 + 0.674136i
\(628\) 0 0
\(629\) 4.76450 + 4.76450i 0.189973 + 0.189973i
\(630\) 0 0
\(631\) 0.490988 0.0195459 0.00977296 0.999952i \(-0.496889\pi\)
0.00977296 + 0.999952i \(0.496889\pi\)
\(632\) 0 0
\(633\) 18.3588i 0.729696i
\(634\) 0 0
\(635\) 8.52421 8.52421i 0.338273 0.338273i
\(636\) 0 0
\(637\) 19.0886 19.0886i 0.756320 0.756320i
\(638\) 0 0
\(639\) 13.3986 0.530042
\(640\) 0 0
\(641\) 16.9893i 0.671039i −0.942033 0.335519i \(-0.891088\pi\)
0.942033 0.335519i \(-0.108912\pi\)
\(642\) 0 0
\(643\) −12.5699 + 12.5699i −0.495709 + 0.495709i −0.910099 0.414390i \(-0.863995\pi\)
0.414390 + 0.910099i \(0.363995\pi\)
\(644\) 0 0
\(645\) 4.98204 + 4.98204i 0.196168 + 0.196168i
\(646\) 0 0
\(647\) 37.3005 1.46643 0.733217 0.679995i \(-0.238018\pi\)
0.733217 + 0.679995i \(0.238018\pi\)
\(648\) 0 0
\(649\) −3.01272 −0.118260
\(650\) 0 0
\(651\) −4.57850 4.57850i −0.179446 0.179446i
\(652\) 0 0
\(653\) −19.3569 19.3569i −0.757496 0.757496i 0.218370 0.975866i \(-0.429926\pi\)
−0.975866 + 0.218370i \(0.929926\pi\)
\(654\) 0 0
\(655\) 2.98401i 0.116595i
\(656\) 0 0
\(657\) −32.5846 −1.27125
\(658\) 0 0
\(659\) 27.9807 + 27.9807i 1.08997 + 1.08997i 0.995530 + 0.0944429i \(0.0301070\pi\)
0.0944429 + 0.995530i \(0.469893\pi\)
\(660\) 0 0
\(661\) 27.6554 + 27.6554i 1.07567 + 1.07567i 0.996892 + 0.0787770i \(0.0251015\pi\)
0.0787770 + 0.996892i \(0.474898\pi\)
\(662\) 0 0
\(663\) −6.21706 −0.241451
\(664\) 0 0
\(665\) −15.0749 + 28.4331i −0.584578 + 1.10259i
\(666\) 0 0
\(667\) −3.50479 + 3.50479i −0.135706 + 0.135706i
\(668\) 0 0
\(669\) 0.898696 + 0.898696i 0.0347456 + 0.0347456i
\(670\) 0 0
\(671\) 18.2611i 0.704963i
\(672\) 0 0
\(673\) 10.1211i 0.390141i −0.980789 0.195070i \(-0.937506\pi\)
0.980789 0.195070i \(-0.0624935\pi\)
\(674\) 0 0
\(675\) −1.48315 1.48315i −0.0570865 0.0570865i
\(676\) 0 0
\(677\) 22.3139 + 22.3139i 0.857593 + 0.857593i 0.991054 0.133461i \(-0.0426090\pi\)
−0.133461 + 0.991054i \(0.542609\pi\)
\(678\) 0 0
\(679\) 12.8819i 0.494363i
\(680\) 0 0
\(681\) 0.509452i 0.0195223i
\(682\) 0 0
\(683\) 14.4876 14.4876i 0.554354 0.554354i −0.373340 0.927695i \(-0.621788\pi\)
0.927695 + 0.373340i \(0.121788\pi\)
\(684\) 0 0
\(685\) −15.9034 15.9034i −0.607638 0.607638i
\(686\) 0 0
\(687\) 9.19563 0.350835
\(688\) 0 0
\(689\) −26.5755 −1.01244
\(690\) 0 0
\(691\) 24.4373 24.4373i 0.929638 0.929638i −0.0680444 0.997682i \(-0.521676\pi\)
0.997682 + 0.0680444i \(0.0216759\pi\)
\(692\) 0 0
\(693\) 30.7211 30.7211i 1.16700 1.16700i
\(694\) 0 0
\(695\) −27.7554 −1.05282
\(696\) 0 0
\(697\) 12.0282 0.455599
\(698\) 0 0
\(699\) 4.96082 4.96082i 0.187635 0.187635i
\(700\) 0 0
\(701\) 16.1800 + 16.1800i 0.611110 + 0.611110i 0.943235 0.332125i \(-0.107766\pi\)
−0.332125 + 0.943235i \(0.607766\pi\)
\(702\) 0 0
\(703\) −17.1306 9.08241i −0.646092 0.342550i
\(704\) 0 0
\(705\) 5.91285i 0.222691i
\(706\) 0 0
\(707\) 16.6615 16.6615i 0.626619 0.626619i
\(708\) 0 0
\(709\) 11.6536 11.6536i 0.437660 0.437660i −0.453563 0.891224i \(-0.649847\pi\)
0.891224 + 0.453563i \(0.149847\pi\)
\(710\) 0 0
\(711\) 12.0266i 0.451031i
\(712\) 0 0
\(713\) 1.15407 0.0432202
\(714\) 0 0
\(715\) 41.2639 41.2639i 1.54318 1.54318i
\(716\) 0 0
\(717\) −0.316223 + 0.316223i −0.0118096 + 0.0118096i
\(718\) 0 0
\(719\) 49.0662i 1.82986i 0.403611 + 0.914931i \(0.367755\pi\)
−0.403611 + 0.914931i \(0.632245\pi\)
\(720\) 0 0
\(721\) 39.7651i 1.48093i
\(722\) 0 0
\(723\) 5.62120 5.62120i 0.209055 0.209055i
\(724\) 0 0
\(725\) −3.63388 3.63388i −0.134959 0.134959i
\(726\) 0 0
\(727\) 10.6283 0.394182 0.197091 0.980385i \(-0.436851\pi\)
0.197091 + 0.980385i \(0.436851\pi\)
\(728\) 0 0
\(729\) 0.378928i 0.0140344i
\(730\) 0 0
\(731\) −4.57600 4.57600i −0.169250 0.169250i
\(732\) 0 0
\(733\) 36.3785 + 36.3785i 1.34367 + 1.34367i 0.892375 + 0.451295i \(0.149038\pi\)
0.451295 + 0.892375i \(0.350962\pi\)
\(734\) 0 0
\(735\) −8.43297 −0.311055
\(736\) 0 0
\(737\) 78.6227i 2.89610i
\(738\) 0 0
\(739\) 9.52584 9.52584i 0.350414 0.350414i −0.509850 0.860263i \(-0.670299\pi\)
0.860263 + 0.509850i \(0.170299\pi\)
\(740\) 0 0
\(741\) 17.1023 5.25092i 0.628268 0.192897i
\(742\) 0 0
\(743\) 15.1555i 0.556001i −0.960581 0.278000i \(-0.910328\pi\)
0.960581 0.278000i \(-0.0896716\pi\)
\(744\) 0 0
\(745\) 0.797372i 0.0292134i
\(746\) 0 0
\(747\) 24.7937 + 24.7937i 0.907154 + 0.907154i
\(748\) 0 0
\(749\) 41.0254 41.0254i 1.49903 1.49903i
\(750\) 0 0
\(751\) −40.2293 −1.46799 −0.733994 0.679156i \(-0.762346\pi\)
−0.733994 + 0.679156i \(0.762346\pi\)
\(752\) 0 0
\(753\) 10.6327i 0.387477i
\(754\) 0 0
\(755\) −12.3955 12.3955i −0.451120 0.451120i
\(756\) 0 0
\(757\) −35.3310 + 35.3310i −1.28413 + 1.28413i −0.345827 + 0.938298i \(0.612402\pi\)
−0.938298 + 0.345827i \(0.887598\pi\)
\(758\) 0 0
\(759\) 1.95369i 0.0709144i
\(760\) 0 0
\(761\) 5.10254i 0.184967i 0.995714 + 0.0924834i \(0.0294805\pi\)
−0.995714 + 0.0924834i \(0.970519\pi\)
\(762\) 0 0
\(763\) −35.9198 + 35.9198i −1.30038 + 1.30038i
\(764\) 0 0
\(765\) −5.44314 5.44314i −0.196797 0.196797i
\(766\) 0 0
\(767\) 3.05233i 0.110213i
\(768\) 0 0
\(769\) 35.3943 1.27635 0.638175 0.769891i \(-0.279690\pi\)
0.638175 + 0.769891i \(0.279690\pi\)
\(770\) 0 0
\(771\) −10.3816 + 10.3816i −0.373885 + 0.373885i
\(772\) 0 0
\(773\) −12.5110 12.5110i −0.449991 0.449991i 0.445360 0.895351i \(-0.353076\pi\)
−0.895351 + 0.445360i \(0.853076\pi\)
\(774\) 0 0
\(775\) 1.19658i 0.0429823i
\(776\) 0 0
\(777\) 12.0360i 0.431790i
\(778\) 0 0
\(779\) −33.0878 + 10.1590i −1.18550 + 0.363983i
\(780\) 0 0
\(781\) −20.6080 + 20.6080i −0.737411 + 0.737411i
\(782\) 0 0
\(783\) 43.1112i 1.54067i
\(784\) 0 0
\(785\) −33.5829 −1.19862
\(786\) 0 0
\(787\) 0.304154 + 0.304154i 0.0108419 + 0.0108419i 0.712507 0.701665i \(-0.247560\pi\)
−0.701665 + 0.712507i \(0.747560\pi\)
\(788\) 0 0
\(789\) −6.63935 6.63935i −0.236367 0.236367i
\(790\) 0 0
\(791\) 48.8805i 1.73799i
\(792\) 0 0
\(793\) 18.5012 0.656998
\(794\) 0 0
\(795\) 5.87025 + 5.87025i 0.208196 + 0.208196i
\(796\) 0 0
\(797\) 10.6768 10.6768i 0.378190 0.378190i −0.492259 0.870449i \(-0.663829\pi\)
0.870449 + 0.492259i \(0.163829\pi\)
\(798\) 0 0
\(799\) 5.43095i 0.192133i
\(800\) 0 0
\(801\) 17.7895i 0.628563i
\(802\) 0 0
\(803\) 50.1173 50.1173i 1.76860 1.76860i
\(804\) 0 0
\(805\) 2.51775 2.51775i 0.0887390 0.0887390i
\(806\) 0 0
\(807\) 9.39329 0.330660
\(808\) 0 0
\(809\) 9.58027i 0.336824i −0.985717 0.168412i \(-0.946136\pi\)
0.985717 0.168412i \(-0.0538640\pi\)
\(810\) 0 0
\(811\) −22.4309 + 22.4309i −0.787654 + 0.787654i −0.981109 0.193455i \(-0.938031\pi\)
0.193455 + 0.981109i \(0.438031\pi\)
\(812\) 0 0
\(813\) −4.56759 + 4.56759i −0.160192 + 0.160192i
\(814\) 0 0
\(815\) 15.9315i 0.558058i
\(816\) 0 0
\(817\) 16.4528 + 8.72308i 0.575612 + 0.305182i
\(818\) 0 0
\(819\) −31.1250 31.1250i −1.08760 1.08760i
\(820\) 0 0
\(821\) 24.5153 24.5153i 0.855590 0.855590i −0.135225 0.990815i \(-0.543176\pi\)
0.990815 + 0.135225i \(0.0431756\pi\)
\(822\) 0 0
\(823\) 23.3599 0.814274 0.407137 0.913367i \(-0.366527\pi\)
0.407137 + 0.913367i \(0.366527\pi\)
\(824\) 0 0
\(825\) 2.02565 0.0705240
\(826\) 0 0
\(827\) 24.9222 24.9222i 0.866631 0.866631i −0.125467 0.992098i \(-0.540043\pi\)
0.992098 + 0.125467i \(0.0400428\pi\)
\(828\) 0 0
\(829\) −8.85684 + 8.85684i −0.307611 + 0.307611i −0.843982 0.536371i \(-0.819795\pi\)
0.536371 + 0.843982i \(0.319795\pi\)
\(830\) 0 0
\(831\) −10.5065 −0.364466
\(832\) 0 0
\(833\) 7.74568 0.268372
\(834\) 0 0
\(835\) 13.5405 + 13.5405i 0.468587 + 0.468587i
\(836\) 0 0
\(837\) −7.09789 + 7.09789i −0.245339 + 0.245339i
\(838\) 0 0
\(839\) 23.5109i 0.811686i 0.913943 + 0.405843i \(0.133022\pi\)
−0.913943 + 0.405843i \(0.866978\pi\)
\(840\) 0 0
\(841\) 76.6272i 2.64232i
\(842\) 0 0
\(843\) 5.12424 + 5.12424i 0.176488 + 0.176488i
\(844\) 0 0
\(845\) −22.3065 22.3065i −0.767366 0.767366i
\(846\) 0 0
\(847\) 56.2172i 1.93165i
\(848\) 0 0
\(849\) 4.61151i 0.158267i
\(850\) 0 0
\(851\) 1.51691 + 1.51691i 0.0519991 + 0.0519991i
\(852\) 0 0
\(853\) −2.97132 + 2.97132i −0.101736 + 0.101736i −0.756143 0.654407i \(-0.772918\pi\)
0.654407 + 0.756143i \(0.272918\pi\)
\(854\) 0 0
\(855\) 19.5706 + 10.3761i 0.669301 + 0.354854i
\(856\) 0 0
\(857\) −35.1401 −1.20036 −0.600181 0.799864i \(-0.704905\pi\)
−0.600181 + 0.799864i \(0.704905\pi\)
\(858\) 0 0
\(859\) −34.6341 34.6341i −1.18170 1.18170i −0.979304 0.202395i \(-0.935128\pi\)
−0.202395 0.979304i \(-0.564872\pi\)
\(860\) 0 0
\(861\) −15.1927 15.1927i −0.517766 0.517766i
\(862\) 0 0
\(863\) −22.4122 −0.762921 −0.381461 0.924385i \(-0.624579\pi\)
−0.381461 + 0.924385i \(0.624579\pi\)
\(864\) 0 0
\(865\) 23.4738i 0.798133i
\(866\) 0 0
\(867\) 8.08401 + 8.08401i 0.274547 + 0.274547i
\(868\) 0 0
\(869\) −18.4976 18.4976i −0.627489 0.627489i
\(870\) 0 0
\(871\) −79.6564 −2.69906
\(872\) 0 0
\(873\) 8.86669 0.300092
\(874\) 0 0
\(875\) 28.7137 + 28.7137i 0.970699 + 0.970699i
\(876\) 0 0
\(877\) 19.6785 19.6785i 0.664496 0.664496i −0.291940 0.956437i \(-0.594301\pi\)
0.956437 + 0.291940i \(0.0943009\pi\)
\(878\) 0 0
\(879\) 15.0866i 0.508857i
\(880\) 0 0
\(881\) 6.88025 0.231801 0.115901 0.993261i \(-0.463025\pi\)
0.115901 + 0.993261i \(0.463025\pi\)
\(882\) 0 0
\(883\) −32.4715 + 32.4715i −1.09275 + 1.09275i −0.0975191 + 0.995234i \(0.531091\pi\)
−0.995234 + 0.0975191i \(0.968909\pi\)
\(884\) 0 0
\(885\) 0.674228 0.674228i 0.0226639 0.0226639i
\(886\) 0 0
\(887\) 11.4832i 0.385567i −0.981241 0.192783i \(-0.938249\pi\)
0.981241 0.192783i \(-0.0617515\pi\)
\(888\) 0 0
\(889\) 19.7787 0.663357
\(890\) 0 0
\(891\) −14.4646 14.4646i −0.484581 0.484581i
\(892\) 0 0
\(893\) 4.58697 + 14.9398i 0.153497 + 0.499942i
\(894\) 0 0
\(895\) 8.86010 0.296161
\(896\) 0 0
\(897\) −1.97938 −0.0660894
\(898\) 0 0
\(899\) −17.3906 + 17.3906i −0.580010 + 0.580010i
\(900\) 0 0
\(901\) −5.39182 5.39182i −0.179627 0.179627i
\(902\) 0 0
\(903\) 11.5598i 0.384687i
\(904\) 0 0
\(905\) 20.8732 0.693849
\(906\) 0 0
\(907\) 1.11054 1.11054i 0.0368750 0.0368750i −0.688429 0.725304i \(-0.741699\pi\)
0.725304 + 0.688429i \(0.241699\pi\)
\(908\) 0 0
\(909\) −11.4682 11.4682i −0.380375 0.380375i
\(910\) 0 0
\(911\) 4.52560 0.149940 0.0749699 0.997186i \(-0.476114\pi\)
0.0749699 + 0.997186i \(0.476114\pi\)
\(912\) 0 0
\(913\) −76.2686 −2.52412
\(914\) 0 0
\(915\) −4.08673 4.08673i −0.135103 0.135103i
\(916\) 0 0
\(917\) −3.46190 + 3.46190i −0.114322 + 0.114322i
\(918\) 0 0
\(919\) 34.2586 1.13009 0.565043 0.825062i \(-0.308860\pi\)
0.565043 + 0.825062i \(0.308860\pi\)
\(920\) 0 0
\(921\) 10.8858i 0.358699i
\(922\) 0 0
\(923\) 20.8789 + 20.8789i 0.687238 + 0.687238i
\(924\) 0 0
\(925\) −1.57279 + 1.57279i −0.0517129 + 0.0517129i
\(926\) 0 0
\(927\) 27.3705 0.898964
\(928\) 0 0
\(929\) 13.5486 0.444516 0.222258 0.974988i \(-0.428657\pi\)
0.222258 + 0.974988i \(0.428657\pi\)
\(930\) 0 0
\(931\) −21.3073 + 6.54198i −0.698319 + 0.214405i
\(932\) 0 0
\(933\) 9.59066 + 9.59066i 0.313984 + 0.313984i
\(934\) 0 0
\(935\) 16.7438 0.547581
\(936\) 0 0
\(937\) 32.7572i 1.07013i −0.844811 0.535065i \(-0.820287\pi\)
0.844811 0.535065i \(-0.179713\pi\)
\(938\) 0 0
\(939\) 5.02918 5.02918i 0.164121 0.164121i
\(940\) 0 0
\(941\) −24.7542 + 24.7542i −0.806965 + 0.806965i −0.984173 0.177208i \(-0.943293\pi\)
0.177208 + 0.984173i \(0.443293\pi\)
\(942\) 0 0
\(943\) 3.82950 0.124706
\(944\) 0 0
\(945\) 30.9700i 1.00745i
\(946\) 0 0
\(947\) −27.4034 + 27.4034i −0.890491 + 0.890491i −0.994569 0.104078i \(-0.966811\pi\)
0.104078 + 0.994569i \(0.466811\pi\)
\(948\) 0 0
\(949\) −50.7762 50.7762i −1.64827 1.64827i
\(950\) 0 0
\(951\) −20.9973 −0.680884
\(952\) 0 0
\(953\) 35.9912 1.16587 0.582935 0.812519i \(-0.301904\pi\)
0.582935 + 0.812519i \(0.301904\pi\)
\(954\) 0 0
\(955\) 5.87181 + 5.87181i 0.190007 + 0.190007i
\(956\) 0 0
\(957\) 29.4401 + 29.4401i 0.951663 + 0.951663i
\(958\) 0 0
\(959\) 36.9007i 1.19159i
\(960\) 0 0
\(961\) −25.2736 −0.815276
\(962\) 0 0
\(963\) −28.2379 28.2379i −0.909955 0.909955i
\(964\) 0 0
\(965\) 26.3518 + 26.3518i 0.848296 + 0.848296i
\(966\) 0 0
\(967\) 20.6822 0.665093 0.332547 0.943087i \(-0.392092\pi\)
0.332547 + 0.943087i \(0.392092\pi\)
\(968\) 0 0
\(969\) 4.53518 + 2.40449i 0.145691 + 0.0772433i
\(970\) 0 0
\(971\) 5.17002 5.17002i 0.165914 0.165914i −0.619267 0.785181i \(-0.712570\pi\)
0.785181 + 0.619267i \(0.212570\pi\)
\(972\) 0 0
\(973\) −32.2004 32.2004i −1.03230 1.03230i
\(974\) 0 0
\(975\) 2.05228i 0.0657256i
\(976\) 0 0
\(977\) 25.5684i 0.818006i 0.912533 + 0.409003i \(0.134123\pi\)
−0.912533 + 0.409003i \(0.865877\pi\)
\(978\) 0 0
\(979\) 27.3615 + 27.3615i 0.874476 + 0.874476i
\(980\) 0 0
\(981\) 24.7237 + 24.7237i 0.789368 + 0.789368i
\(982\) 0 0
\(983\) 20.9464i 0.668085i −0.942558 0.334042i \(-0.891587\pi\)
0.942558 0.334042i \(-0.108413\pi\)
\(984\) 0 0
\(985\) 48.8665i 1.55702i
\(986\) 0 0
\(987\) −6.85980 + 6.85980i −0.218350 + 0.218350i
\(988\) 0 0
\(989\) −1.45690 1.45690i −0.0463267 0.0463267i
\(990\) 0 0
\(991\) 35.4955 1.12755 0.563776 0.825928i \(-0.309348\pi\)
0.563776 + 0.825928i \(0.309348\pi\)
\(992\) 0 0
\(993\) 3.40371 0.108014
\(994\) 0 0
\(995\) −32.4148 + 32.4148i −1.02762 + 1.02762i
\(996\) 0 0
\(997\) −33.0690 + 33.0690i −1.04731 + 1.04731i −0.0484820 + 0.998824i \(0.515438\pi\)
−0.998824 + 0.0484820i \(0.984562\pi\)
\(998\) 0 0
\(999\) −18.6590 −0.590345
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.m.a.303.16 76
4.3 odd 2 304.2.m.a.227.19 yes 76
16.5 even 4 304.2.m.a.75.20 yes 76
16.11 odd 4 inner 1216.2.m.a.911.23 76
19.18 odd 2 inner 1216.2.m.a.303.23 76
76.75 even 2 304.2.m.a.227.20 yes 76
304.37 odd 4 304.2.m.a.75.19 76
304.75 even 4 inner 1216.2.m.a.911.16 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
304.2.m.a.75.19 76 304.37 odd 4
304.2.m.a.75.20 yes 76 16.5 even 4
304.2.m.a.227.19 yes 76 4.3 odd 2
304.2.m.a.227.20 yes 76 76.75 even 2
1216.2.m.a.303.16 76 1.1 even 1 trivial
1216.2.m.a.303.23 76 19.18 odd 2 inner
1216.2.m.a.911.16 76 304.75 even 4 inner
1216.2.m.a.911.23 76 16.11 odd 4 inner