Properties

Label 1216.2.m.a.303.2
Level $1216$
Weight $2$
Character 1216.303
Analytic conductor $9.710$
Analytic rank $0$
Dimension $76$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(303,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.303");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(76\)
Relative dimension: \(38\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 304)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 303.2
Character \(\chi\) \(=\) 1216.303
Dual form 1216.2.m.a.911.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.19409 - 2.19409i) q^{3} +(-1.29836 + 1.29836i) q^{5} +4.71096 q^{7} +6.62806i q^{9} +(-1.58474 - 1.58474i) q^{11} +(1.15106 - 1.15106i) q^{13} +5.69744 q^{15} -4.49586 q^{17} +(-3.77529 + 2.17881i) q^{19} +(-10.3363 - 10.3363i) q^{21} +1.10072 q^{23} +1.62852i q^{25} +(7.96029 - 7.96029i) q^{27} +(-3.39896 + 3.39896i) q^{29} -10.6386 q^{31} +6.95410i q^{33} +(-6.11653 + 6.11653i) q^{35} +(4.15324 + 4.15324i) q^{37} -5.05107 q^{39} -3.12271 q^{41} +(-2.25762 - 2.25762i) q^{43} +(-8.60561 - 8.60561i) q^{45} -3.92587i q^{47} +15.1932 q^{49} +(9.86431 + 9.86431i) q^{51} +(1.36482 + 1.36482i) q^{53} +4.11512 q^{55} +(13.0638 + 3.50281i) q^{57} +(-1.17894 + 1.17894i) q^{59} +(6.25950 + 6.25950i) q^{61} +31.2246i q^{63} +2.98899i q^{65} +(5.98603 + 5.98603i) q^{67} +(-2.41507 - 2.41507i) q^{69} +2.56883i q^{71} +7.75197i q^{73} +(3.57312 - 3.57312i) q^{75} +(-7.46563 - 7.46563i) q^{77} -3.39244 q^{79} -15.0470 q^{81} +(-8.05613 + 8.05613i) q^{83} +(5.83724 - 5.83724i) q^{85} +14.9152 q^{87} +0.722185 q^{89} +(5.42261 - 5.42261i) q^{91} +(23.3421 + 23.3421i) q^{93} +(2.07280 - 7.73056i) q^{95} -10.8873i q^{97} +(10.5037 - 10.5037i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q - 4 q^{5} + 8 q^{7} + 4 q^{11} - 8 q^{17} - 6 q^{19} + 8 q^{23} + 8 q^{39} + 4 q^{43} + 4 q^{45} + 44 q^{49} + 8 q^{55} + 28 q^{61} - 32 q^{77} - 52 q^{81} - 36 q^{83} - 56 q^{85} + 120 q^{87} - 16 q^{93}+ \cdots - 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.19409 2.19409i −1.26676 1.26676i −0.947753 0.319005i \(-0.896651\pi\)
−0.319005 0.947753i \(-0.603349\pi\)
\(4\) 0 0
\(5\) −1.29836 + 1.29836i −0.580644 + 0.580644i −0.935080 0.354436i \(-0.884673\pi\)
0.354436 + 0.935080i \(0.384673\pi\)
\(6\) 0 0
\(7\) 4.71096 1.78058 0.890289 0.455397i \(-0.150503\pi\)
0.890289 + 0.455397i \(0.150503\pi\)
\(8\) 0 0
\(9\) 6.62806i 2.20935i
\(10\) 0 0
\(11\) −1.58474 1.58474i −0.477816 0.477816i 0.426617 0.904433i \(-0.359705\pi\)
−0.904433 + 0.426617i \(0.859705\pi\)
\(12\) 0 0
\(13\) 1.15106 1.15106i 0.319247 0.319247i −0.529231 0.848478i \(-0.677519\pi\)
0.848478 + 0.529231i \(0.177519\pi\)
\(14\) 0 0
\(15\) 5.69744 1.47107
\(16\) 0 0
\(17\) −4.49586 −1.09041 −0.545203 0.838304i \(-0.683547\pi\)
−0.545203 + 0.838304i \(0.683547\pi\)
\(18\) 0 0
\(19\) −3.77529 + 2.17881i −0.866110 + 0.499853i
\(20\) 0 0
\(21\) −10.3363 10.3363i −2.25556 2.25556i
\(22\) 0 0
\(23\) 1.10072 0.229515 0.114758 0.993394i \(-0.463391\pi\)
0.114758 + 0.993394i \(0.463391\pi\)
\(24\) 0 0
\(25\) 1.62852i 0.325704i
\(26\) 0 0
\(27\) 7.96029 7.96029i 1.53196 1.53196i
\(28\) 0 0
\(29\) −3.39896 + 3.39896i −0.631171 + 0.631171i −0.948362 0.317191i \(-0.897260\pi\)
0.317191 + 0.948362i \(0.397260\pi\)
\(30\) 0 0
\(31\) −10.6386 −1.91075 −0.955377 0.295388i \(-0.904551\pi\)
−0.955377 + 0.295388i \(0.904551\pi\)
\(32\) 0 0
\(33\) 6.95410i 1.21055i
\(34\) 0 0
\(35\) −6.11653 + 6.11653i −1.03388 + 1.03388i
\(36\) 0 0
\(37\) 4.15324 + 4.15324i 0.682788 + 0.682788i 0.960628 0.277839i \(-0.0896183\pi\)
−0.277839 + 0.960628i \(0.589618\pi\)
\(38\) 0 0
\(39\) −5.05107 −0.808818
\(40\) 0 0
\(41\) −3.12271 −0.487686 −0.243843 0.969815i \(-0.578408\pi\)
−0.243843 + 0.969815i \(0.578408\pi\)
\(42\) 0 0
\(43\) −2.25762 2.25762i −0.344284 0.344284i 0.513691 0.857975i \(-0.328278\pi\)
−0.857975 + 0.513691i \(0.828278\pi\)
\(44\) 0 0
\(45\) −8.60561 8.60561i −1.28285 1.28285i
\(46\) 0 0
\(47\) 3.92587i 0.572647i −0.958133 0.286323i \(-0.907567\pi\)
0.958133 0.286323i \(-0.0924332\pi\)
\(48\) 0 0
\(49\) 15.1932 2.17046
\(50\) 0 0
\(51\) 9.86431 + 9.86431i 1.38128 + 1.38128i
\(52\) 0 0
\(53\) 1.36482 + 1.36482i 0.187472 + 0.187472i 0.794602 0.607130i \(-0.207679\pi\)
−0.607130 + 0.794602i \(0.707679\pi\)
\(54\) 0 0
\(55\) 4.11512 0.554882
\(56\) 0 0
\(57\) 13.0638 + 3.50281i 1.73035 + 0.463958i
\(58\) 0 0
\(59\) −1.17894 + 1.17894i −0.153485 + 0.153485i −0.779672 0.626188i \(-0.784614\pi\)
0.626188 + 0.779672i \(0.284614\pi\)
\(60\) 0 0
\(61\) 6.25950 + 6.25950i 0.801447 + 0.801447i 0.983322 0.181875i \(-0.0582165\pi\)
−0.181875 + 0.983322i \(0.558216\pi\)
\(62\) 0 0
\(63\) 31.2246i 3.93392i
\(64\) 0 0
\(65\) 2.98899i 0.370738i
\(66\) 0 0
\(67\) 5.98603 + 5.98603i 0.731310 + 0.731310i 0.970879 0.239569i \(-0.0770062\pi\)
−0.239569 + 0.970879i \(0.577006\pi\)
\(68\) 0 0
\(69\) −2.41507 2.41507i −0.290740 0.290740i
\(70\) 0 0
\(71\) 2.56883i 0.304864i 0.988314 + 0.152432i \(0.0487105\pi\)
−0.988314 + 0.152432i \(0.951289\pi\)
\(72\) 0 0
\(73\) 7.75197i 0.907300i 0.891180 + 0.453650i \(0.149878\pi\)
−0.891180 + 0.453650i \(0.850122\pi\)
\(74\) 0 0
\(75\) 3.57312 3.57312i 0.412589 0.412589i
\(76\) 0 0
\(77\) −7.46563 7.46563i −0.850788 0.850788i
\(78\) 0 0
\(79\) −3.39244 −0.381679 −0.190840 0.981621i \(-0.561121\pi\)
−0.190840 + 0.981621i \(0.561121\pi\)
\(80\) 0 0
\(81\) −15.0470 −1.67189
\(82\) 0 0
\(83\) −8.05613 + 8.05613i −0.884275 + 0.884275i −0.993966 0.109690i \(-0.965014\pi\)
0.109690 + 0.993966i \(0.465014\pi\)
\(84\) 0 0
\(85\) 5.83724 5.83724i 0.633138 0.633138i
\(86\) 0 0
\(87\) 14.9152 1.59908
\(88\) 0 0
\(89\) 0.722185 0.0765514 0.0382757 0.999267i \(-0.487813\pi\)
0.0382757 + 0.999267i \(0.487813\pi\)
\(90\) 0 0
\(91\) 5.42261 5.42261i 0.568444 0.568444i
\(92\) 0 0
\(93\) 23.3421 + 23.3421i 2.42046 + 2.42046i
\(94\) 0 0
\(95\) 2.07280 7.73056i 0.212665 0.793139i
\(96\) 0 0
\(97\) 10.8873i 1.10544i −0.833366 0.552721i \(-0.813589\pi\)
0.833366 0.552721i \(-0.186411\pi\)
\(98\) 0 0
\(99\) 10.5037 10.5037i 1.05566 1.05566i
\(100\) 0 0
\(101\) −8.99362 + 8.99362i −0.894899 + 0.894899i −0.994979 0.100080i \(-0.968090\pi\)
0.100080 + 0.994979i \(0.468090\pi\)
\(102\) 0 0
\(103\) 11.7813i 1.16085i 0.814314 + 0.580424i \(0.197113\pi\)
−0.814314 + 0.580424i \(0.802887\pi\)
\(104\) 0 0
\(105\) 26.8404 2.61936
\(106\) 0 0
\(107\) −12.1132 + 12.1132i −1.17103 + 1.17103i −0.189066 + 0.981964i \(0.560546\pi\)
−0.981964 + 0.189066i \(0.939454\pi\)
\(108\) 0 0
\(109\) 0.908423 0.908423i 0.0870112 0.0870112i −0.662262 0.749273i \(-0.730403\pi\)
0.749273 + 0.662262i \(0.230403\pi\)
\(110\) 0 0
\(111\) 18.2252i 1.72985i
\(112\) 0 0
\(113\) 13.4511i 1.26538i 0.774407 + 0.632688i \(0.218048\pi\)
−0.774407 + 0.632688i \(0.781952\pi\)
\(114\) 0 0
\(115\) −1.42913 + 1.42913i −0.133267 + 0.133267i
\(116\) 0 0
\(117\) 7.62931 + 7.62931i 0.705330 + 0.705330i
\(118\) 0 0
\(119\) −21.1798 −1.94155
\(120\) 0 0
\(121\) 5.97723i 0.543384i
\(122\) 0 0
\(123\) 6.85151 + 6.85151i 0.617780 + 0.617780i
\(124\) 0 0
\(125\) −8.60621 8.60621i −0.769763 0.769763i
\(126\) 0 0
\(127\) −0.800848 −0.0710638 −0.0355319 0.999369i \(-0.511313\pi\)
−0.0355319 + 0.999369i \(0.511313\pi\)
\(128\) 0 0
\(129\) 9.90686i 0.872250i
\(130\) 0 0
\(131\) 4.83506 4.83506i 0.422441 0.422441i −0.463602 0.886043i \(-0.653443\pi\)
0.886043 + 0.463602i \(0.153443\pi\)
\(132\) 0 0
\(133\) −17.7852 + 10.2643i −1.54218 + 0.890028i
\(134\) 0 0
\(135\) 20.6706i 1.77905i
\(136\) 0 0
\(137\) 13.8006i 1.17907i −0.807745 0.589533i \(-0.799312\pi\)
0.807745 0.589533i \(-0.200688\pi\)
\(138\) 0 0
\(139\) 8.95077 + 8.95077i 0.759195 + 0.759195i 0.976176 0.216981i \(-0.0696210\pi\)
−0.216981 + 0.976176i \(0.569621\pi\)
\(140\) 0 0
\(141\) −8.61371 + 8.61371i −0.725405 + 0.725405i
\(142\) 0 0
\(143\) −3.64826 −0.305083
\(144\) 0 0
\(145\) 8.82614i 0.732971i
\(146\) 0 0
\(147\) −33.3352 33.3352i −2.74944 2.74944i
\(148\) 0 0
\(149\) 0.455069 0.455069i 0.0372807 0.0372807i −0.688221 0.725501i \(-0.741608\pi\)
0.725501 + 0.688221i \(0.241608\pi\)
\(150\) 0 0
\(151\) 17.7082i 1.44108i 0.693415 + 0.720538i \(0.256105\pi\)
−0.693415 + 0.720538i \(0.743895\pi\)
\(152\) 0 0
\(153\) 29.7988i 2.40909i
\(154\) 0 0
\(155\) 13.8128 13.8128i 1.10947 1.10947i
\(156\) 0 0
\(157\) 0.222635 + 0.222635i 0.0177682 + 0.0177682i 0.715935 0.698167i \(-0.246001\pi\)
−0.698167 + 0.715935i \(0.746001\pi\)
\(158\) 0 0
\(159\) 5.98906i 0.474963i
\(160\) 0 0
\(161\) 5.18544 0.408670
\(162\) 0 0
\(163\) 11.4055 11.4055i 0.893350 0.893350i −0.101487 0.994837i \(-0.532360\pi\)
0.994837 + 0.101487i \(0.0323599\pi\)
\(164\) 0 0
\(165\) −9.02893 9.02893i −0.702901 0.702901i
\(166\) 0 0
\(167\) 9.05469i 0.700673i −0.936624 0.350336i \(-0.886067\pi\)
0.936624 0.350336i \(-0.113933\pi\)
\(168\) 0 0
\(169\) 10.3501i 0.796163i
\(170\) 0 0
\(171\) −14.4413 25.0228i −1.10435 1.91354i
\(172\) 0 0
\(173\) −9.11174 + 9.11174i −0.692753 + 0.692753i −0.962837 0.270084i \(-0.912949\pi\)
0.270084 + 0.962837i \(0.412949\pi\)
\(174\) 0 0
\(175\) 7.67191i 0.579942i
\(176\) 0 0
\(177\) 5.17340 0.388857
\(178\) 0 0
\(179\) −12.4047 12.4047i −0.927171 0.927171i 0.0703516 0.997522i \(-0.477588\pi\)
−0.997522 + 0.0703516i \(0.977588\pi\)
\(180\) 0 0
\(181\) −7.68767 7.68767i −0.571420 0.571420i 0.361105 0.932525i \(-0.382400\pi\)
−0.932525 + 0.361105i \(0.882400\pi\)
\(182\) 0 0
\(183\) 27.4678i 2.03048i
\(184\) 0 0
\(185\) −10.7848 −0.792914
\(186\) 0 0
\(187\) 7.12474 + 7.12474i 0.521013 + 0.521013i
\(188\) 0 0
\(189\) 37.5006 37.5006i 2.72777 2.72777i
\(190\) 0 0
\(191\) 3.08602i 0.223297i 0.993748 + 0.111648i \(0.0356130\pi\)
−0.993748 + 0.111648i \(0.964387\pi\)
\(192\) 0 0
\(193\) 9.54148i 0.686810i −0.939187 0.343405i \(-0.888420\pi\)
0.939187 0.343405i \(-0.111580\pi\)
\(194\) 0 0
\(195\) 6.55810 6.55810i 0.469635 0.469635i
\(196\) 0 0
\(197\) 11.3391 11.3391i 0.807875 0.807875i −0.176437 0.984312i \(-0.556457\pi\)
0.984312 + 0.176437i \(0.0564573\pi\)
\(198\) 0 0
\(199\) −15.8997 −1.12710 −0.563549 0.826082i \(-0.690565\pi\)
−0.563549 + 0.826082i \(0.690565\pi\)
\(200\) 0 0
\(201\) 26.2678i 1.85279i
\(202\) 0 0
\(203\) −16.0124 + 16.0124i −1.12385 + 1.12385i
\(204\) 0 0
\(205\) 4.05441 4.05441i 0.283172 0.283172i
\(206\) 0 0
\(207\) 7.29561i 0.507080i
\(208\) 0 0
\(209\) 9.43567 + 2.52999i 0.652679 + 0.175003i
\(210\) 0 0
\(211\) −1.30123 1.30123i −0.0895803 0.0895803i 0.660897 0.750477i \(-0.270176\pi\)
−0.750477 + 0.660897i \(0.770176\pi\)
\(212\) 0 0
\(213\) 5.63624 5.63624i 0.386189 0.386189i
\(214\) 0 0
\(215\) 5.86242 0.399813
\(216\) 0 0
\(217\) −50.1182 −3.40225
\(218\) 0 0
\(219\) 17.0085 17.0085i 1.14933 1.14933i
\(220\) 0 0
\(221\) −5.17501 + 5.17501i −0.348109 + 0.348109i
\(222\) 0 0
\(223\) −15.1433 −1.01407 −0.507034 0.861926i \(-0.669258\pi\)
−0.507034 + 0.861926i \(0.669258\pi\)
\(224\) 0 0
\(225\) −10.7939 −0.719596
\(226\) 0 0
\(227\) 11.5587 + 11.5587i 0.767176 + 0.767176i 0.977608 0.210433i \(-0.0674873\pi\)
−0.210433 + 0.977608i \(0.567487\pi\)
\(228\) 0 0
\(229\) 3.11406 3.11406i 0.205783 0.205783i −0.596689 0.802472i \(-0.703518\pi\)
0.802472 + 0.596689i \(0.203518\pi\)
\(230\) 0 0
\(231\) 32.7605i 2.15549i
\(232\) 0 0
\(233\) 16.4933i 1.08051i 0.841500 + 0.540257i \(0.181673\pi\)
−0.841500 + 0.540257i \(0.818327\pi\)
\(234\) 0 0
\(235\) 5.09719 + 5.09719i 0.332504 + 0.332504i
\(236\) 0 0
\(237\) 7.44331 + 7.44331i 0.483495 + 0.483495i
\(238\) 0 0
\(239\) 0.361719i 0.0233977i 0.999932 + 0.0116988i \(0.00372394\pi\)
−0.999932 + 0.0116988i \(0.996276\pi\)
\(240\) 0 0
\(241\) 17.9224i 1.15448i 0.816574 + 0.577241i \(0.195871\pi\)
−0.816574 + 0.577241i \(0.804129\pi\)
\(242\) 0 0
\(243\) 9.13358 + 9.13358i 0.585920 + 0.585920i
\(244\) 0 0
\(245\) −19.7262 + 19.7262i −1.26026 + 1.26026i
\(246\) 0 0
\(247\) −1.83764 + 6.85353i −0.116926 + 0.436080i
\(248\) 0 0
\(249\) 35.3518 2.24033
\(250\) 0 0
\(251\) 13.3647 + 13.3647i 0.843571 + 0.843571i 0.989321 0.145750i \(-0.0465595\pi\)
−0.145750 + 0.989321i \(0.546560\pi\)
\(252\) 0 0
\(253\) −1.74434 1.74434i −0.109666 0.109666i
\(254\) 0 0
\(255\) −25.6149 −1.60406
\(256\) 0 0
\(257\) 3.03209i 0.189136i −0.995518 0.0945682i \(-0.969853\pi\)
0.995518 0.0945682i \(-0.0301470\pi\)
\(258\) 0 0
\(259\) 19.5658 + 19.5658i 1.21576 + 1.21576i
\(260\) 0 0
\(261\) −22.5285 22.5285i −1.39448 1.39448i
\(262\) 0 0
\(263\) −8.57603 −0.528821 −0.264410 0.964410i \(-0.585177\pi\)
−0.264410 + 0.964410i \(0.585177\pi\)
\(264\) 0 0
\(265\) −3.54405 −0.217709
\(266\) 0 0
\(267\) −1.58454 1.58454i −0.0969722 0.0969722i
\(268\) 0 0
\(269\) 12.8132 12.8132i 0.781237 0.781237i −0.198803 0.980040i \(-0.563705\pi\)
0.980040 + 0.198803i \(0.0637053\pi\)
\(270\) 0 0
\(271\) 19.8803i 1.20764i −0.797119 0.603822i \(-0.793644\pi\)
0.797119 0.603822i \(-0.206356\pi\)
\(272\) 0 0
\(273\) −23.7954 −1.44016
\(274\) 0 0
\(275\) 2.58078 2.58078i 0.155627 0.155627i
\(276\) 0 0
\(277\) −3.55753 + 3.55753i −0.213751 + 0.213751i −0.805859 0.592108i \(-0.798296\pi\)
0.592108 + 0.805859i \(0.298296\pi\)
\(278\) 0 0
\(279\) 70.5135i 4.22153i
\(280\) 0 0
\(281\) 4.62309 0.275790 0.137895 0.990447i \(-0.455966\pi\)
0.137895 + 0.990447i \(0.455966\pi\)
\(282\) 0 0
\(283\) −12.0146 12.0146i −0.714193 0.714193i 0.253217 0.967410i \(-0.418511\pi\)
−0.967410 + 0.253217i \(0.918511\pi\)
\(284\) 0 0
\(285\) −21.5095 + 12.4136i −1.27411 + 0.735320i
\(286\) 0 0
\(287\) −14.7110 −0.868362
\(288\) 0 0
\(289\) 3.21273 0.188984
\(290\) 0 0
\(291\) −23.8878 + 23.8878i −1.40033 + 1.40033i
\(292\) 0 0
\(293\) −1.40455 1.40455i −0.0820545 0.0820545i 0.664888 0.746943i \(-0.268479\pi\)
−0.746943 + 0.664888i \(0.768479\pi\)
\(294\) 0 0
\(295\) 3.06138i 0.178240i
\(296\) 0 0
\(297\) −25.2299 −1.46399
\(298\) 0 0
\(299\) 1.26699 1.26699i 0.0732721 0.0732721i
\(300\) 0 0
\(301\) −10.6356 10.6356i −0.613025 0.613025i
\(302\) 0 0
\(303\) 39.4656 2.26724
\(304\) 0 0
\(305\) −16.2542 −0.930712
\(306\) 0 0
\(307\) 1.20707 + 1.20707i 0.0688914 + 0.0688914i 0.740713 0.671822i \(-0.234488\pi\)
−0.671822 + 0.740713i \(0.734488\pi\)
\(308\) 0 0
\(309\) 25.8493 25.8493i 1.47052 1.47052i
\(310\) 0 0
\(311\) −19.3907 −1.09954 −0.549772 0.835315i \(-0.685286\pi\)
−0.549772 + 0.835315i \(0.685286\pi\)
\(312\) 0 0
\(313\) 13.7576i 0.777626i 0.921317 + 0.388813i \(0.127115\pi\)
−0.921317 + 0.388813i \(0.872885\pi\)
\(314\) 0 0
\(315\) −40.5407 40.5407i −2.28421 2.28421i
\(316\) 0 0
\(317\) −13.2954 + 13.2954i −0.746745 + 0.746745i −0.973866 0.227122i \(-0.927068\pi\)
0.227122 + 0.973866i \(0.427068\pi\)
\(318\) 0 0
\(319\) 10.7729 0.603166
\(320\) 0 0
\(321\) 53.1550 2.96682
\(322\) 0 0
\(323\) 16.9731 9.79562i 0.944411 0.545043i
\(324\) 0 0
\(325\) 1.87453 + 1.87453i 0.103980 + 0.103980i
\(326\) 0 0
\(327\) −3.98632 −0.220444
\(328\) 0 0
\(329\) 18.4946i 1.01964i
\(330\) 0 0
\(331\) 11.2930 11.2930i 0.620717 0.620717i −0.324998 0.945715i \(-0.605364\pi\)
0.945715 + 0.324998i \(0.105364\pi\)
\(332\) 0 0
\(333\) −27.5279 + 27.5279i −1.50852 + 1.50852i
\(334\) 0 0
\(335\) −15.5440 −0.849262
\(336\) 0 0
\(337\) 24.4258i 1.33056i 0.746596 + 0.665278i \(0.231687\pi\)
−0.746596 + 0.665278i \(0.768313\pi\)
\(338\) 0 0
\(339\) 29.5130 29.5130i 1.60292 1.60292i
\(340\) 0 0
\(341\) 16.8594 + 16.8594i 0.912989 + 0.912989i
\(342\) 0 0
\(343\) 38.5978 2.08409
\(344\) 0 0
\(345\) 6.27126 0.337634
\(346\) 0 0
\(347\) 6.89538 + 6.89538i 0.370163 + 0.370163i 0.867537 0.497373i \(-0.165702\pi\)
−0.497373 + 0.867537i \(0.665702\pi\)
\(348\) 0 0
\(349\) 5.38977 + 5.38977i 0.288508 + 0.288508i 0.836490 0.547982i \(-0.184604\pi\)
−0.547982 + 0.836490i \(0.684604\pi\)
\(350\) 0 0
\(351\) 18.3256i 0.978146i
\(352\) 0 0
\(353\) −5.34421 −0.284444 −0.142222 0.989835i \(-0.545425\pi\)
−0.142222 + 0.989835i \(0.545425\pi\)
\(354\) 0 0
\(355\) −3.33527 3.33527i −0.177018 0.177018i
\(356\) 0 0
\(357\) 46.4704 + 46.4704i 2.45948 + 2.45948i
\(358\) 0 0
\(359\) 35.5561 1.87658 0.938290 0.345850i \(-0.112409\pi\)
0.938290 + 0.345850i \(0.112409\pi\)
\(360\) 0 0
\(361\) 9.50557 16.4513i 0.500293 0.865856i
\(362\) 0 0
\(363\) −13.1146 + 13.1146i −0.688336 + 0.688336i
\(364\) 0 0
\(365\) −10.0649 10.0649i −0.526818 0.526818i
\(366\) 0 0
\(367\) 19.0452i 0.994150i −0.867708 0.497075i \(-0.834407\pi\)
0.867708 0.497075i \(-0.165593\pi\)
\(368\) 0 0
\(369\) 20.6975i 1.07747i
\(370\) 0 0
\(371\) 6.42960 + 6.42960i 0.333808 + 0.333808i
\(372\) 0 0
\(373\) −21.0610 21.0610i −1.09050 1.09050i −0.995475 0.0950223i \(-0.969708\pi\)
−0.0950223 0.995475i \(-0.530292\pi\)
\(374\) 0 0
\(375\) 37.7656i 1.95021i
\(376\) 0 0
\(377\) 7.82482i 0.402999i
\(378\) 0 0
\(379\) −10.5077 + 10.5077i −0.539746 + 0.539746i −0.923454 0.383708i \(-0.874647\pi\)
0.383708 + 0.923454i \(0.374647\pi\)
\(380\) 0 0
\(381\) 1.75713 + 1.75713i 0.0900207 + 0.0900207i
\(382\) 0 0
\(383\) 19.1498 0.978510 0.489255 0.872141i \(-0.337269\pi\)
0.489255 + 0.872141i \(0.337269\pi\)
\(384\) 0 0
\(385\) 19.3862 0.988010
\(386\) 0 0
\(387\) 14.9637 14.9637i 0.760646 0.760646i
\(388\) 0 0
\(389\) 11.4334 11.4334i 0.579696 0.579696i −0.355123 0.934819i \(-0.615561\pi\)
0.934819 + 0.355123i \(0.115561\pi\)
\(390\) 0 0
\(391\) −4.94866 −0.250265
\(392\) 0 0
\(393\) −21.2171 −1.07026
\(394\) 0 0
\(395\) 4.40461 4.40461i 0.221620 0.221620i
\(396\) 0 0
\(397\) −17.9868 17.9868i −0.902731 0.902731i 0.0929404 0.995672i \(-0.470373\pi\)
−0.995672 + 0.0929404i \(0.970373\pi\)
\(398\) 0 0
\(399\) 61.5432 + 16.5016i 3.08101 + 0.826114i
\(400\) 0 0
\(401\) 19.6725i 0.982399i −0.871047 0.491199i \(-0.836559\pi\)
0.871047 0.491199i \(-0.163441\pi\)
\(402\) 0 0
\(403\) −12.2457 + 12.2457i −0.610003 + 0.610003i
\(404\) 0 0
\(405\) 19.5364 19.5364i 0.970772 0.970772i
\(406\) 0 0
\(407\) 13.1636i 0.652494i
\(408\) 0 0
\(409\) 33.9664 1.67953 0.839764 0.542951i \(-0.182693\pi\)
0.839764 + 0.542951i \(0.182693\pi\)
\(410\) 0 0
\(411\) −30.2798 + 30.2798i −1.49359 + 1.49359i
\(412\) 0 0
\(413\) −5.55394 + 5.55394i −0.273292 + 0.273292i
\(414\) 0 0
\(415\) 20.9195i 1.02690i
\(416\) 0 0
\(417\) 39.2776i 1.92343i
\(418\) 0 0
\(419\) −20.0037 + 20.0037i −0.977246 + 0.977246i −0.999747 0.0225008i \(-0.992837\pi\)
0.0225008 + 0.999747i \(0.492837\pi\)
\(420\) 0 0
\(421\) 2.63510 + 2.63510i 0.128427 + 0.128427i 0.768399 0.639972i \(-0.221054\pi\)
−0.639972 + 0.768399i \(0.721054\pi\)
\(422\) 0 0
\(423\) 26.0209 1.26518
\(424\) 0 0
\(425\) 7.32160i 0.355150i
\(426\) 0 0
\(427\) 29.4883 + 29.4883i 1.42704 + 1.42704i
\(428\) 0 0
\(429\) 8.00460 + 8.00460i 0.386466 + 0.386466i
\(430\) 0 0
\(431\) −11.8295 −0.569806 −0.284903 0.958556i \(-0.591961\pi\)
−0.284903 + 0.958556i \(0.591961\pi\)
\(432\) 0 0
\(433\) 18.1618i 0.872798i −0.899753 0.436399i \(-0.856254\pi\)
0.899753 0.436399i \(-0.143746\pi\)
\(434\) 0 0
\(435\) −19.3653 + 19.3653i −0.928497 + 0.928497i
\(436\) 0 0
\(437\) −4.15552 + 2.39825i −0.198785 + 0.114724i
\(438\) 0 0
\(439\) 18.0504i 0.861498i −0.902472 0.430749i \(-0.858249\pi\)
0.902472 0.430749i \(-0.141751\pi\)
\(440\) 0 0
\(441\) 100.701i 4.79530i
\(442\) 0 0
\(443\) 13.9288 + 13.9288i 0.661778 + 0.661778i 0.955799 0.294021i \(-0.0949934\pi\)
−0.294021 + 0.955799i \(0.594993\pi\)
\(444\) 0 0
\(445\) −0.937656 + 0.937656i −0.0444492 + 0.0444492i
\(446\) 0 0
\(447\) −1.99692 −0.0944512
\(448\) 0 0
\(449\) 0.732461i 0.0345670i −0.999851 0.0172835i \(-0.994498\pi\)
0.999851 0.0172835i \(-0.00550178\pi\)
\(450\) 0 0
\(451\) 4.94867 + 4.94867i 0.233024 + 0.233024i
\(452\) 0 0
\(453\) 38.8535 38.8535i 1.82550 1.82550i
\(454\) 0 0
\(455\) 14.0810i 0.660128i
\(456\) 0 0
\(457\) 7.14164i 0.334072i −0.985951 0.167036i \(-0.946580\pi\)
0.985951 0.167036i \(-0.0534196\pi\)
\(458\) 0 0
\(459\) −35.7883 + 35.7883i −1.67046 + 1.67046i
\(460\) 0 0
\(461\) 0.374745 + 0.374745i 0.0174536 + 0.0174536i 0.715780 0.698326i \(-0.246071\pi\)
−0.698326 + 0.715780i \(0.746071\pi\)
\(462\) 0 0
\(463\) 5.93476i 0.275812i 0.990445 + 0.137906i \(0.0440372\pi\)
−0.990445 + 0.137906i \(0.955963\pi\)
\(464\) 0 0
\(465\) −60.6129 −2.81086
\(466\) 0 0
\(467\) −24.5127 + 24.5127i −1.13431 + 1.13431i −0.144860 + 0.989452i \(0.546273\pi\)
−0.989452 + 0.144860i \(0.953727\pi\)
\(468\) 0 0
\(469\) 28.2000 + 28.2000i 1.30215 + 1.30215i
\(470\) 0 0
\(471\) 0.976962i 0.0450160i
\(472\) 0 0
\(473\) 7.15547i 0.329009i
\(474\) 0 0
\(475\) −3.54824 6.14813i −0.162804 0.282096i
\(476\) 0 0
\(477\) −9.04609 + 9.04609i −0.414192 + 0.414192i
\(478\) 0 0
\(479\) 33.6517i 1.53759i −0.639497 0.768793i \(-0.720858\pi\)
0.639497 0.768793i \(-0.279142\pi\)
\(480\) 0 0
\(481\) 9.56127 0.435956
\(482\) 0 0
\(483\) −11.3773 11.3773i −0.517686 0.517686i
\(484\) 0 0
\(485\) 14.1357 + 14.1357i 0.641869 + 0.641869i
\(486\) 0 0
\(487\) 9.60432i 0.435214i −0.976037 0.217607i \(-0.930175\pi\)
0.976037 0.217607i \(-0.0698250\pi\)
\(488\) 0 0
\(489\) −50.0495 −2.26332
\(490\) 0 0
\(491\) −19.4895 19.4895i −0.879547 0.879547i 0.113940 0.993488i \(-0.463653\pi\)
−0.993488 + 0.113940i \(0.963653\pi\)
\(492\) 0 0
\(493\) 15.2812 15.2812i 0.688232 0.688232i
\(494\) 0 0
\(495\) 27.2752i 1.22593i
\(496\) 0 0
\(497\) 12.1017i 0.542834i
\(498\) 0 0
\(499\) −13.0861 + 13.0861i −0.585812 + 0.585812i −0.936494 0.350682i \(-0.885950\pi\)
0.350682 + 0.936494i \(0.385950\pi\)
\(500\) 0 0
\(501\) −19.8668 + 19.8668i −0.887583 + 0.887583i
\(502\) 0 0
\(503\) −24.5252 −1.09352 −0.546761 0.837289i \(-0.684139\pi\)
−0.546761 + 0.837289i \(0.684139\pi\)
\(504\) 0 0
\(505\) 23.3539i 1.03924i
\(506\) 0 0
\(507\) 22.7091 22.7091i 1.00855 1.00855i
\(508\) 0 0
\(509\) 11.7588 11.7588i 0.521198 0.521198i −0.396735 0.917933i \(-0.629857\pi\)
0.917933 + 0.396735i \(0.129857\pi\)
\(510\) 0 0
\(511\) 36.5193i 1.61552i
\(512\) 0 0
\(513\) −12.7084 + 47.3963i −0.561090 + 2.09260i
\(514\) 0 0
\(515\) −15.2964 15.2964i −0.674040 0.674040i
\(516\) 0 0
\(517\) −6.22146 + 6.22146i −0.273620 + 0.273620i
\(518\) 0 0
\(519\) 39.9839 1.75510
\(520\) 0 0
\(521\) 36.6715 1.60661 0.803304 0.595569i \(-0.203073\pi\)
0.803304 + 0.595569i \(0.203073\pi\)
\(522\) 0 0
\(523\) −10.7643 + 10.7643i −0.470692 + 0.470692i −0.902138 0.431447i \(-0.858003\pi\)
0.431447 + 0.902138i \(0.358003\pi\)
\(524\) 0 0
\(525\) 16.8329 16.8329i 0.734646 0.734646i
\(526\) 0 0
\(527\) 47.8298 2.08350
\(528\) 0 0
\(529\) −21.7884 −0.947323
\(530\) 0 0
\(531\) −7.81408 7.81408i −0.339102 0.339102i
\(532\) 0 0
\(533\) −3.59444 + 3.59444i −0.155692 + 0.155692i
\(534\) 0 0
\(535\) 31.4547i 1.35990i
\(536\) 0 0
\(537\) 54.4340i 2.34900i
\(538\) 0 0
\(539\) −24.0772 24.0772i −1.03708 1.03708i
\(540\) 0 0
\(541\) −23.7352 23.7352i −1.02045 1.02045i −0.999786 0.0206679i \(-0.993421\pi\)
−0.0206679 0.999786i \(-0.506579\pi\)
\(542\) 0 0
\(543\) 33.7349i 1.44770i
\(544\) 0 0
\(545\) 2.35892i 0.101045i
\(546\) 0 0
\(547\) 31.6591 + 31.6591i 1.35364 + 1.35364i 0.881546 + 0.472098i \(0.156503\pi\)
0.472098 + 0.881546i \(0.343497\pi\)
\(548\) 0 0
\(549\) −41.4884 + 41.4884i −1.77068 + 1.77068i
\(550\) 0 0
\(551\) 5.42635 20.2377i 0.231170 0.862156i
\(552\) 0 0
\(553\) −15.9817 −0.679609
\(554\) 0 0
\(555\) 23.6628 + 23.6628i 1.00443 + 1.00443i
\(556\) 0 0
\(557\) 3.12642 + 3.12642i 0.132471 + 0.132471i 0.770233 0.637763i \(-0.220140\pi\)
−0.637763 + 0.770233i \(0.720140\pi\)
\(558\) 0 0
\(559\) −5.19733 −0.219824
\(560\) 0 0
\(561\) 31.2647i 1.31999i
\(562\) 0 0
\(563\) −27.1285 27.1285i −1.14333 1.14333i −0.987837 0.155491i \(-0.950304\pi\)
−0.155491 0.987837i \(-0.549696\pi\)
\(564\) 0 0
\(565\) −17.4644 17.4644i −0.734733 0.734733i
\(566\) 0 0
\(567\) −70.8858 −2.97693
\(568\) 0 0
\(569\) −7.55363 −0.316665 −0.158332 0.987386i \(-0.550612\pi\)
−0.158332 + 0.987386i \(0.550612\pi\)
\(570\) 0 0
\(571\) −10.1399 10.1399i −0.424340 0.424340i 0.462355 0.886695i \(-0.347005\pi\)
−0.886695 + 0.462355i \(0.847005\pi\)
\(572\) 0 0
\(573\) 6.77101 6.77101i 0.282863 0.282863i
\(574\) 0 0
\(575\) 1.79254i 0.0747541i
\(576\) 0 0
\(577\) −1.40934 −0.0586717 −0.0293359 0.999570i \(-0.509339\pi\)
−0.0293359 + 0.999570i \(0.509339\pi\)
\(578\) 0 0
\(579\) −20.9349 + 20.9349i −0.870023 + 0.870023i
\(580\) 0 0
\(581\) −37.9522 + 37.9522i −1.57452 + 1.57452i
\(582\) 0 0
\(583\) 4.32575i 0.179154i
\(584\) 0 0
\(585\) −19.8112 −0.819091
\(586\) 0 0
\(587\) −23.8247 23.8247i −0.983351 0.983351i 0.0165127 0.999864i \(-0.494744\pi\)
−0.999864 + 0.0165127i \(0.994744\pi\)
\(588\) 0 0
\(589\) 40.1639 23.1796i 1.65492 0.955097i
\(590\) 0 0
\(591\) −49.7578 −2.04676
\(592\) 0 0
\(593\) 6.52343 0.267885 0.133943 0.990989i \(-0.457236\pi\)
0.133943 + 0.990989i \(0.457236\pi\)
\(594\) 0 0
\(595\) 27.4990 27.4990i 1.12735 1.12735i
\(596\) 0 0
\(597\) 34.8853 + 34.8853i 1.42776 + 1.42776i
\(598\) 0 0
\(599\) 14.4203i 0.589199i 0.955621 + 0.294600i \(0.0951863\pi\)
−0.955621 + 0.294600i \(0.904814\pi\)
\(600\) 0 0
\(601\) −29.9230 −1.22058 −0.610292 0.792177i \(-0.708948\pi\)
−0.610292 + 0.792177i \(0.708948\pi\)
\(602\) 0 0
\(603\) −39.6758 + 39.6758i −1.61572 + 1.61572i
\(604\) 0 0
\(605\) 7.76059 + 7.76059i 0.315513 + 0.315513i
\(606\) 0 0
\(607\) −23.7445 −0.963760 −0.481880 0.876237i \(-0.660046\pi\)
−0.481880 + 0.876237i \(0.660046\pi\)
\(608\) 0 0
\(609\) 70.2651 2.84729
\(610\) 0 0
\(611\) −4.51892 4.51892i −0.182816 0.182816i
\(612\) 0 0
\(613\) 13.0596 13.0596i 0.527473 0.527473i −0.392345 0.919818i \(-0.628336\pi\)
0.919818 + 0.392345i \(0.128336\pi\)
\(614\) 0 0
\(615\) −17.7915 −0.717421
\(616\) 0 0
\(617\) 12.4139i 0.499764i 0.968276 + 0.249882i \(0.0803918\pi\)
−0.968276 + 0.249882i \(0.919608\pi\)
\(618\) 0 0
\(619\) 12.2337 + 12.2337i 0.491713 + 0.491713i 0.908845 0.417133i \(-0.136965\pi\)
−0.417133 + 0.908845i \(0.636965\pi\)
\(620\) 0 0
\(621\) 8.76202 8.76202i 0.351608 0.351608i
\(622\) 0 0
\(623\) 3.40219 0.136306
\(624\) 0 0
\(625\) 14.2053 0.568212
\(626\) 0 0
\(627\) −15.1517 26.2537i −0.605100 1.04847i
\(628\) 0 0
\(629\) −18.6724 18.6724i −0.744516 0.744516i
\(630\) 0 0
\(631\) 11.3028 0.449959 0.224979 0.974364i \(-0.427768\pi\)
0.224979 + 0.974364i \(0.427768\pi\)
\(632\) 0 0
\(633\) 5.71003i 0.226953i
\(634\) 0 0
\(635\) 1.03979 1.03979i 0.0412628 0.0412628i
\(636\) 0 0
\(637\) 17.4883 17.4883i 0.692912 0.692912i
\(638\) 0 0
\(639\) −17.0264 −0.673552
\(640\) 0 0
\(641\) 47.3208i 1.86906i −0.355884 0.934530i \(-0.615820\pi\)
0.355884 0.934530i \(-0.384180\pi\)
\(642\) 0 0
\(643\) 14.9315 14.9315i 0.588840 0.588840i −0.348477 0.937317i \(-0.613301\pi\)
0.937317 + 0.348477i \(0.113301\pi\)
\(644\) 0 0
\(645\) −12.8627 12.8627i −0.506467 0.506467i
\(646\) 0 0
\(647\) −23.3524 −0.918077 −0.459039 0.888416i \(-0.651806\pi\)
−0.459039 + 0.888416i \(0.651806\pi\)
\(648\) 0 0
\(649\) 3.73662 0.146675
\(650\) 0 0
\(651\) 109.964 + 109.964i 4.30982 + 4.30982i
\(652\) 0 0
\(653\) −4.45146 4.45146i −0.174199 0.174199i 0.614622 0.788821i \(-0.289308\pi\)
−0.788821 + 0.614622i \(0.789308\pi\)
\(654\) 0 0
\(655\) 12.5553i 0.490576i
\(656\) 0 0
\(657\) −51.3805 −2.00455
\(658\) 0 0
\(659\) 26.2089 + 26.2089i 1.02095 + 1.02095i 0.999776 + 0.0211773i \(0.00674146\pi\)
0.0211773 + 0.999776i \(0.493259\pi\)
\(660\) 0 0
\(661\) −13.2264 13.2264i −0.514445 0.514445i 0.401440 0.915885i \(-0.368510\pi\)
−0.915885 + 0.401440i \(0.868510\pi\)
\(662\) 0 0
\(663\) 22.7089 0.881939
\(664\) 0 0
\(665\) 9.76489 36.4184i 0.378666 1.41225i
\(666\) 0 0
\(667\) −3.74129 + 3.74129i −0.144863 + 0.144863i
\(668\) 0 0
\(669\) 33.2257 + 33.2257i 1.28458 + 1.28458i
\(670\) 0 0
\(671\) 19.8393i 0.765888i
\(672\) 0 0
\(673\) 20.5186i 0.790935i 0.918480 + 0.395468i \(0.129417\pi\)
−0.918480 + 0.395468i \(0.870583\pi\)
\(674\) 0 0
\(675\) 12.9635 + 12.9635i 0.498965 + 0.498965i
\(676\) 0 0
\(677\) 28.5420 + 28.5420i 1.09696 + 1.09696i 0.994765 + 0.102193i \(0.0325858\pi\)
0.102193 + 0.994765i \(0.467414\pi\)
\(678\) 0 0
\(679\) 51.2899i 1.96833i
\(680\) 0 0
\(681\) 50.7215i 1.94365i
\(682\) 0 0
\(683\) 0.485516 0.485516i 0.0185778 0.0185778i −0.697757 0.716335i \(-0.745818\pi\)
0.716335 + 0.697757i \(0.245818\pi\)
\(684\) 0 0
\(685\) 17.9182 + 17.9182i 0.684618 + 0.684618i
\(686\) 0 0
\(687\) −13.6651 −0.521355
\(688\) 0 0
\(689\) 3.14198 0.119700
\(690\) 0 0
\(691\) 3.92483 3.92483i 0.149308 0.149308i −0.628501 0.777809i \(-0.716331\pi\)
0.777809 + 0.628501i \(0.216331\pi\)
\(692\) 0 0
\(693\) 49.4827 49.4827i 1.87969 1.87969i
\(694\) 0 0
\(695\) −23.2427 −0.881644
\(696\) 0 0
\(697\) 14.0393 0.531775
\(698\) 0 0
\(699\) 36.1879 36.1879i 1.36875 1.36875i
\(700\) 0 0
\(701\) −5.69748 5.69748i −0.215191 0.215191i 0.591277 0.806468i \(-0.298624\pi\)
−0.806468 + 0.591277i \(0.798624\pi\)
\(702\) 0 0
\(703\) −24.7288 6.63054i −0.932664 0.250076i
\(704\) 0 0
\(705\) 22.3674i 0.842405i
\(706\) 0 0
\(707\) −42.3686 + 42.3686i −1.59344 + 1.59344i
\(708\) 0 0
\(709\) −21.4692 + 21.4692i −0.806292 + 0.806292i −0.984071 0.177778i \(-0.943109\pi\)
0.177778 + 0.984071i \(0.443109\pi\)
\(710\) 0 0
\(711\) 22.4853i 0.843264i
\(712\) 0 0
\(713\) −11.7101 −0.438547
\(714\) 0 0
\(715\) 4.73675 4.73675i 0.177144 0.177144i
\(716\) 0 0
\(717\) 0.793644 0.793644i 0.0296392 0.0296392i
\(718\) 0 0
\(719\) 13.1745i 0.491327i −0.969355 0.245664i \(-0.920994\pi\)
0.969355 0.245664i \(-0.0790059\pi\)
\(720\) 0 0
\(721\) 55.5014i 2.06698i
\(722\) 0 0
\(723\) 39.3233 39.3233i 1.46245 1.46245i
\(724\) 0 0
\(725\) −5.53528 5.53528i −0.205575 0.205575i
\(726\) 0 0
\(727\) −11.8970 −0.441234 −0.220617 0.975360i \(-0.570807\pi\)
−0.220617 + 0.975360i \(0.570807\pi\)
\(728\) 0 0
\(729\) 5.06117i 0.187451i
\(730\) 0 0
\(731\) 10.1500 + 10.1500i 0.375410 + 0.375410i
\(732\) 0 0
\(733\) −4.21189 4.21189i −0.155570 0.155570i 0.625031 0.780600i \(-0.285086\pi\)
−0.780600 + 0.625031i \(0.785086\pi\)
\(734\) 0 0
\(735\) 86.5622 3.19290
\(736\) 0 0
\(737\) 18.9726i 0.698863i
\(738\) 0 0
\(739\) 4.42329 4.42329i 0.162713 0.162713i −0.621054 0.783768i \(-0.713295\pi\)
0.783768 + 0.621054i \(0.213295\pi\)
\(740\) 0 0
\(741\) 19.0692 11.0053i 0.700525 0.404290i
\(742\) 0 0
\(743\) 44.5601i 1.63475i 0.576105 + 0.817376i \(0.304572\pi\)
−0.576105 + 0.817376i \(0.695428\pi\)
\(744\) 0 0
\(745\) 1.18169i 0.0432936i
\(746\) 0 0
\(747\) −53.3965 53.3965i −1.95368 1.95368i
\(748\) 0 0
\(749\) −57.0650 + 57.0650i −2.08511 + 2.08511i
\(750\) 0 0
\(751\) 0.774702 0.0282693 0.0141346 0.999900i \(-0.495501\pi\)
0.0141346 + 0.999900i \(0.495501\pi\)
\(752\) 0 0
\(753\) 58.6466i 2.13720i
\(754\) 0 0
\(755\) −22.9917 22.9917i −0.836753 0.836753i
\(756\) 0 0
\(757\) 4.08476 4.08476i 0.148463 0.148463i −0.628968 0.777431i \(-0.716522\pi\)
0.777431 + 0.628968i \(0.216522\pi\)
\(758\) 0 0
\(759\) 7.65450i 0.277841i
\(760\) 0 0
\(761\) 37.8011i 1.37029i 0.728407 + 0.685144i \(0.240261\pi\)
−0.728407 + 0.685144i \(0.759739\pi\)
\(762\) 0 0
\(763\) 4.27955 4.27955i 0.154930 0.154930i
\(764\) 0 0
\(765\) 38.6896 + 38.6896i 1.39882 + 1.39882i
\(766\) 0 0
\(767\) 2.71407i 0.0979992i
\(768\) 0 0
\(769\) −7.74433 −0.279268 −0.139634 0.990203i \(-0.544593\pi\)
−0.139634 + 0.990203i \(0.544593\pi\)
\(770\) 0 0
\(771\) −6.65267 + 6.65267i −0.239590 + 0.239590i
\(772\) 0 0
\(773\) −15.8591 15.8591i −0.570411 0.570411i 0.361832 0.932243i \(-0.382151\pi\)
−0.932243 + 0.361832i \(0.882151\pi\)
\(774\) 0 0
\(775\) 17.3252i 0.622341i
\(776\) 0 0
\(777\) 85.8580i 3.08014i
\(778\) 0 0
\(779\) 11.7891 6.80380i 0.422390 0.243771i
\(780\) 0 0
\(781\) 4.07092 4.07092i 0.145669 0.145669i
\(782\) 0 0
\(783\) 54.1134i 1.93385i
\(784\) 0 0
\(785\) −0.578121 −0.0206340
\(786\) 0 0
\(787\) 18.0270 + 18.0270i 0.642595 + 0.642595i 0.951193 0.308598i \(-0.0998597\pi\)
−0.308598 + 0.951193i \(0.599860\pi\)
\(788\) 0 0
\(789\) 18.8166 + 18.8166i 0.669888 + 0.669888i
\(790\) 0 0
\(791\) 63.3678i 2.25310i
\(792\) 0 0
\(793\) 14.4102 0.511719
\(794\) 0 0
\(795\) 7.77596 + 7.77596i 0.275785 + 0.275785i
\(796\) 0 0
\(797\) −12.7483 + 12.7483i −0.451570 + 0.451570i −0.895875 0.444306i \(-0.853450\pi\)
0.444306 + 0.895875i \(0.353450\pi\)
\(798\) 0 0
\(799\) 17.6501i 0.624417i
\(800\) 0 0
\(801\) 4.78668i 0.169129i
\(802\) 0 0
\(803\) 12.2848 12.2848i 0.433522 0.433522i
\(804\) 0 0
\(805\) −6.73256 + 6.73256i −0.237292 + 0.237292i
\(806\) 0 0
\(807\) −56.2268 −1.97928
\(808\) 0 0
\(809\) 7.53879i 0.265050i −0.991180 0.132525i \(-0.957692\pi\)
0.991180 0.132525i \(-0.0423084\pi\)
\(810\) 0 0
\(811\) −38.0934 + 38.0934i −1.33764 + 1.33764i −0.439299 + 0.898341i \(0.644773\pi\)
−0.898341 + 0.439299i \(0.855227\pi\)
\(812\) 0 0
\(813\) −43.6192 + 43.6192i −1.52979 + 1.52979i
\(814\) 0 0
\(815\) 29.6170i 1.03744i
\(816\) 0 0
\(817\) 13.4421 + 3.60424i 0.470280 + 0.126096i
\(818\) 0 0
\(819\) 35.9414 + 35.9414i 1.25589 + 1.25589i
\(820\) 0 0
\(821\) −6.99026 + 6.99026i −0.243962 + 0.243962i −0.818487 0.574525i \(-0.805187\pi\)
0.574525 + 0.818487i \(0.305187\pi\)
\(822\) 0 0
\(823\) −53.6796 −1.87115 −0.935576 0.353126i \(-0.885119\pi\)
−0.935576 + 0.353126i \(0.885119\pi\)
\(824\) 0 0
\(825\) −11.3249 −0.394283
\(826\) 0 0
\(827\) 15.1806 15.1806i 0.527882 0.527882i −0.392058 0.919940i \(-0.628237\pi\)
0.919940 + 0.392058i \(0.128237\pi\)
\(828\) 0 0
\(829\) 13.8098 13.8098i 0.479635 0.479635i −0.425380 0.905015i \(-0.639859\pi\)
0.905015 + 0.425380i \(0.139859\pi\)
\(830\) 0 0
\(831\) 15.6111 0.541542
\(832\) 0 0
\(833\) −68.3064 −2.36668
\(834\) 0 0
\(835\) 11.7562 + 11.7562i 0.406842 + 0.406842i
\(836\) 0 0
\(837\) −84.6866 + 84.6866i −2.92720 + 2.92720i
\(838\) 0 0
\(839\) 39.1275i 1.35083i −0.737438 0.675415i \(-0.763964\pi\)
0.737438 0.675415i \(-0.236036\pi\)
\(840\) 0 0
\(841\) 5.89418i 0.203247i
\(842\) 0 0
\(843\) −10.1435 10.1435i −0.349360 0.349360i
\(844\) 0 0
\(845\) −13.4382 13.4382i −0.462287 0.462287i
\(846\) 0 0
\(847\) 28.1585i 0.967538i
\(848\) 0 0
\(849\) 52.7222i 1.80942i
\(850\) 0 0
\(851\) 4.57154 + 4.57154i 0.156710 + 0.156710i
\(852\) 0 0
\(853\) 14.8382 14.8382i 0.508050 0.508050i −0.405877 0.913928i \(-0.633034\pi\)
0.913928 + 0.405877i \(0.133034\pi\)
\(854\) 0 0
\(855\) 51.2386 + 13.7386i 1.75232 + 0.469852i
\(856\) 0 0
\(857\) −0.927011 −0.0316661 −0.0158330 0.999875i \(-0.505040\pi\)
−0.0158330 + 0.999875i \(0.505040\pi\)
\(858\) 0 0
\(859\) 24.5697 + 24.5697i 0.838306 + 0.838306i 0.988636 0.150330i \(-0.0480335\pi\)
−0.150330 + 0.988636i \(0.548033\pi\)
\(860\) 0 0
\(861\) 32.2772 + 32.2772i 1.10001 + 1.10001i
\(862\) 0 0
\(863\) −13.1563 −0.447844 −0.223922 0.974607i \(-0.571886\pi\)
−0.223922 + 0.974607i \(0.571886\pi\)
\(864\) 0 0
\(865\) 23.6606i 0.804486i
\(866\) 0 0
\(867\) −7.04901 7.04901i −0.239397 0.239397i
\(868\) 0 0
\(869\) 5.37612 + 5.37612i 0.182372 + 0.182372i
\(870\) 0 0
\(871\) 13.7806 0.466937
\(872\) 0 0
\(873\) 72.1620 2.44231
\(874\) 0 0
\(875\) −40.5435 40.5435i −1.37062 1.37062i
\(876\) 0 0
\(877\) −2.59841 + 2.59841i −0.0877419 + 0.0877419i −0.749615 0.661874i \(-0.769762\pi\)
0.661874 + 0.749615i \(0.269762\pi\)
\(878\) 0 0
\(879\) 6.16341i 0.207887i
\(880\) 0 0
\(881\) 39.7570 1.33945 0.669724 0.742610i \(-0.266412\pi\)
0.669724 + 0.742610i \(0.266412\pi\)
\(882\) 0 0
\(883\) 30.0827 30.0827i 1.01236 1.01236i 0.0124409 0.999923i \(-0.496040\pi\)
0.999923 0.0124409i \(-0.00396016\pi\)
\(884\) 0 0
\(885\) −6.71694 + 6.71694i −0.225787 + 0.225787i
\(886\) 0 0
\(887\) 51.4632i 1.72796i 0.503523 + 0.863982i \(0.332037\pi\)
−0.503523 + 0.863982i \(0.667963\pi\)
\(888\) 0 0
\(889\) −3.77277 −0.126535
\(890\) 0 0
\(891\) 23.8455 + 23.8455i 0.798854 + 0.798854i
\(892\) 0 0
\(893\) 8.55372 + 14.8213i 0.286239 + 0.495975i
\(894\) 0 0
\(895\) 32.2115 1.07671
\(896\) 0 0
\(897\) −5.55979 −0.185636
\(898\) 0 0
\(899\) 36.1603 36.1603i 1.20601 1.20601i
\(900\) 0 0
\(901\) −6.13602 6.13602i −0.204420 0.204420i
\(902\) 0 0
\(903\) 46.6708i 1.55311i
\(904\) 0 0
\(905\) 19.9627 0.663584
\(906\) 0 0
\(907\) 39.2649 39.2649i 1.30377 1.30377i 0.377939 0.925831i \(-0.376633\pi\)
0.925831 0.377939i \(-0.123367\pi\)
\(908\) 0 0
\(909\) −59.6103 59.6103i −1.97715 1.97715i
\(910\) 0 0
\(911\) 50.2183 1.66381 0.831903 0.554921i \(-0.187251\pi\)
0.831903 + 0.554921i \(0.187251\pi\)
\(912\) 0 0
\(913\) 25.5337 0.845042
\(914\) 0 0
\(915\) 35.6631 + 35.6631i 1.17899 + 1.17899i
\(916\) 0 0
\(917\) 22.7778 22.7778i 0.752189 0.752189i
\(918\) 0 0
\(919\) −17.5959 −0.580434 −0.290217 0.956961i \(-0.593728\pi\)
−0.290217 + 0.956961i \(0.593728\pi\)
\(920\) 0 0
\(921\) 5.29686i 0.174537i
\(922\) 0 0
\(923\) 2.95688 + 2.95688i 0.0973270 + 0.0973270i
\(924\) 0 0
\(925\) −6.76364 + 6.76364i −0.222387 + 0.222387i
\(926\) 0 0
\(927\) −78.0874 −2.56473
\(928\) 0 0
\(929\) −33.6911 −1.10537 −0.552685 0.833390i \(-0.686397\pi\)
−0.552685 + 0.833390i \(0.686397\pi\)
\(930\) 0 0
\(931\) −57.3586 + 33.1031i −1.87985 + 1.08491i
\(932\) 0 0
\(933\) 42.5449 + 42.5449i 1.39286 + 1.39286i
\(934\) 0 0
\(935\) −18.5010 −0.605046
\(936\) 0 0
\(937\) 39.7834i 1.29967i 0.760077 + 0.649833i \(0.225161\pi\)
−0.760077 + 0.649833i \(0.774839\pi\)
\(938\) 0 0
\(939\) 30.1854 30.1854i 0.985064 0.985064i
\(940\) 0 0
\(941\) 24.1141 24.1141i 0.786099 0.786099i −0.194754 0.980852i \(-0.562391\pi\)
0.980852 + 0.194754i \(0.0623907\pi\)
\(942\) 0 0
\(943\) −3.43722 −0.111931
\(944\) 0 0
\(945\) 97.3786i 3.16773i
\(946\) 0 0
\(947\) −36.4084 + 36.4084i −1.18311 + 1.18311i −0.204182 + 0.978933i \(0.565453\pi\)
−0.978933 + 0.204182i \(0.934547\pi\)
\(948\) 0 0
\(949\) 8.92300 + 8.92300i 0.289653 + 0.289653i
\(950\) 0 0
\(951\) 58.3426 1.89189
\(952\) 0 0
\(953\) 7.29438 0.236288 0.118144 0.992996i \(-0.462306\pi\)
0.118144 + 0.992996i \(0.462306\pi\)
\(954\) 0 0
\(955\) −4.00677 4.00677i −0.129656 0.129656i
\(956\) 0 0
\(957\) −23.6367 23.6367i −0.764066 0.764066i
\(958\) 0 0
\(959\) 65.0142i 2.09942i
\(960\) 0 0
\(961\) 82.1805 2.65098
\(962\) 0 0
\(963\) −80.2872 80.2872i −2.58722 2.58722i
\(964\) 0 0
\(965\) 12.3883 + 12.3883i 0.398793 + 0.398793i
\(966\) 0 0
\(967\) 33.4855 1.07682 0.538410 0.842683i \(-0.319025\pi\)
0.538410 + 0.842683i \(0.319025\pi\)
\(968\) 0 0
\(969\) −58.7331 15.7481i −1.88678 0.505903i
\(970\) 0 0
\(971\) 20.2658 20.2658i 0.650360 0.650360i −0.302719 0.953080i \(-0.597895\pi\)
0.953080 + 0.302719i \(0.0978945\pi\)
\(972\) 0 0
\(973\) 42.1668 + 42.1668i 1.35180 + 1.35180i
\(974\) 0 0
\(975\) 8.22577i 0.263435i
\(976\) 0 0
\(977\) 4.46381i 0.142810i 0.997447 + 0.0714050i \(0.0227483\pi\)
−0.997447 + 0.0714050i \(0.977252\pi\)
\(978\) 0 0
\(979\) −1.14447 1.14447i −0.0365775 0.0365775i
\(980\) 0 0
\(981\) 6.02108 + 6.02108i 0.192238 + 0.192238i
\(982\) 0 0
\(983\) 2.33954i 0.0746198i −0.999304 0.0373099i \(-0.988121\pi\)
0.999304 0.0373099i \(-0.0118789\pi\)
\(984\) 0 0
\(985\) 29.4444i 0.938176i
\(986\) 0 0
\(987\) −40.5789 + 40.5789i −1.29164 + 1.29164i
\(988\) 0 0
\(989\) −2.48500 2.48500i −0.0790185 0.0790185i
\(990\) 0 0
\(991\) 50.7347 1.61164 0.805820 0.592160i \(-0.201725\pi\)
0.805820 + 0.592160i \(0.201725\pi\)
\(992\) 0 0
\(993\) −49.5555 −1.57260
\(994\) 0 0
\(995\) 20.6435 20.6435i 0.654444 0.654444i
\(996\) 0 0
\(997\) 4.14003 4.14003i 0.131116 0.131116i −0.638503 0.769619i \(-0.720446\pi\)
0.769619 + 0.638503i \(0.220446\pi\)
\(998\) 0 0
\(999\) 66.1219 2.09201
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.m.a.303.2 76
4.3 odd 2 304.2.m.a.227.6 yes 76
16.5 even 4 304.2.m.a.75.33 yes 76
16.11 odd 4 inner 1216.2.m.a.911.37 76
19.18 odd 2 inner 1216.2.m.a.303.37 76
76.75 even 2 304.2.m.a.227.33 yes 76
304.37 odd 4 304.2.m.a.75.6 76
304.75 even 4 inner 1216.2.m.a.911.2 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
304.2.m.a.75.6 76 304.37 odd 4
304.2.m.a.75.33 yes 76 16.5 even 4
304.2.m.a.227.6 yes 76 4.3 odd 2
304.2.m.a.227.33 yes 76 76.75 even 2
1216.2.m.a.303.2 76 1.1 even 1 trivial
1216.2.m.a.303.37 76 19.18 odd 2 inner
1216.2.m.a.911.2 76 304.75 even 4 inner
1216.2.m.a.911.37 76 16.11 odd 4 inner