Properties

Label 1216.2.m.a.303.5
Level $1216$
Weight $2$
Character 1216.303
Analytic conductor $9.710$
Analytic rank $0$
Dimension $76$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(303,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.303");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(76\)
Relative dimension: \(38\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 304)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 303.5
Character \(\chi\) \(=\) 1216.303
Dual form 1216.2.m.a.911.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.96187 - 1.96187i) q^{3} +(-3.06749 + 3.06749i) q^{5} -1.97168 q^{7} +4.69788i q^{9} +(2.40953 + 2.40953i) q^{11} +(0.283330 - 0.283330i) q^{13} +12.0360 q^{15} +3.37118 q^{17} +(-1.59086 + 4.05822i) q^{19} +(3.86818 + 3.86818i) q^{21} -3.47264 q^{23} -13.8190i q^{25} +(3.33103 - 3.33103i) q^{27} +(-6.28708 + 6.28708i) q^{29} +1.56762 q^{31} -9.45439i q^{33} +(6.04810 - 6.04810i) q^{35} +(-5.57107 - 5.57107i) q^{37} -1.11171 q^{39} +7.27782 q^{41} +(-3.73284 - 3.73284i) q^{43} +(-14.4107 - 14.4107i) q^{45} +0.0227383i q^{47} -3.11249 q^{49} +(-6.61383 - 6.61383i) q^{51} +(-3.97463 - 3.97463i) q^{53} -14.7824 q^{55} +(11.0828 - 4.84066i) q^{57} +(6.88318 - 6.88318i) q^{59} +(2.07562 + 2.07562i) q^{61} -9.26271i q^{63} +1.73822i q^{65} +(-1.41362 - 1.41362i) q^{67} +(6.81287 + 6.81287i) q^{69} -3.61576i q^{71} +6.11638i q^{73} +(-27.1111 + 27.1111i) q^{75} +(-4.75082 - 4.75082i) q^{77} +7.24446 q^{79} +1.02354 q^{81} +(-0.477010 + 0.477010i) q^{83} +(-10.3411 + 10.3411i) q^{85} +24.6689 q^{87} -11.8214 q^{89} +(-0.558635 + 0.558635i) q^{91} +(-3.07548 - 3.07548i) q^{93} +(-7.56862 - 17.3285i) q^{95} -7.89215i q^{97} +(-11.3197 + 11.3197i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q - 4 q^{5} + 8 q^{7} + 4 q^{11} - 8 q^{17} - 6 q^{19} + 8 q^{23} + 8 q^{39} + 4 q^{43} + 4 q^{45} + 44 q^{49} + 8 q^{55} + 28 q^{61} - 32 q^{77} - 52 q^{81} - 36 q^{83} - 56 q^{85} + 120 q^{87} - 16 q^{93}+ \cdots - 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.96187 1.96187i −1.13269 1.13269i −0.989729 0.142959i \(-0.954338\pi\)
−0.142959 0.989729i \(-0.545662\pi\)
\(4\) 0 0
\(5\) −3.06749 + 3.06749i −1.37182 + 1.37182i −0.514083 + 0.857741i \(0.671868\pi\)
−0.857741 + 0.514083i \(0.828132\pi\)
\(6\) 0 0
\(7\) −1.97168 −0.745224 −0.372612 0.927987i \(-0.621538\pi\)
−0.372612 + 0.927987i \(0.621538\pi\)
\(8\) 0 0
\(9\) 4.69788i 1.56596i
\(10\) 0 0
\(11\) 2.40953 + 2.40953i 0.726501 + 0.726501i 0.969921 0.243420i \(-0.0782693\pi\)
−0.243420 + 0.969921i \(0.578269\pi\)
\(12\) 0 0
\(13\) 0.283330 0.283330i 0.0785816 0.0785816i −0.666724 0.745305i \(-0.732304\pi\)
0.745305 + 0.666724i \(0.232304\pi\)
\(14\) 0 0
\(15\) 12.0360 3.10769
\(16\) 0 0
\(17\) 3.37118 0.817632 0.408816 0.912617i \(-0.365942\pi\)
0.408816 + 0.912617i \(0.365942\pi\)
\(18\) 0 0
\(19\) −1.59086 + 4.05822i −0.364968 + 0.931020i
\(20\) 0 0
\(21\) 3.86818 + 3.86818i 0.844105 + 0.844105i
\(22\) 0 0
\(23\) −3.47264 −0.724095 −0.362048 0.932160i \(-0.617922\pi\)
−0.362048 + 0.932160i \(0.617922\pi\)
\(24\) 0 0
\(25\) 13.8190i 2.76380i
\(26\) 0 0
\(27\) 3.33103 3.33103i 0.641057 0.641057i
\(28\) 0 0
\(29\) −6.28708 + 6.28708i −1.16748 + 1.16748i −0.184682 + 0.982798i \(0.559126\pi\)
−0.982798 + 0.184682i \(0.940874\pi\)
\(30\) 0 0
\(31\) 1.56762 0.281553 0.140777 0.990041i \(-0.455040\pi\)
0.140777 + 0.990041i \(0.455040\pi\)
\(32\) 0 0
\(33\) 9.45439i 1.64580i
\(34\) 0 0
\(35\) 6.04810 6.04810i 1.02232 1.02232i
\(36\) 0 0
\(37\) −5.57107 5.57107i −0.915878 0.915878i 0.0808488 0.996726i \(-0.474237\pi\)
−0.996726 + 0.0808488i \(0.974237\pi\)
\(38\) 0 0
\(39\) −1.11171 −0.178017
\(40\) 0 0
\(41\) 7.27782 1.13660 0.568302 0.822820i \(-0.307600\pi\)
0.568302 + 0.822820i \(0.307600\pi\)
\(42\) 0 0
\(43\) −3.73284 3.73284i −0.569252 0.569252i 0.362667 0.931919i \(-0.381866\pi\)
−0.931919 + 0.362667i \(0.881866\pi\)
\(44\) 0 0
\(45\) −14.4107 14.4107i −2.14822 2.14822i
\(46\) 0 0
\(47\) 0.0227383i 0.00331673i 0.999999 + 0.00165836i \(0.000527873\pi\)
−0.999999 + 0.00165836i \(0.999472\pi\)
\(48\) 0 0
\(49\) −3.11249 −0.444642
\(50\) 0 0
\(51\) −6.61383 6.61383i −0.926121 0.926121i
\(52\) 0 0
\(53\) −3.97463 3.97463i −0.545958 0.545958i 0.379311 0.925269i \(-0.376161\pi\)
−0.925269 + 0.379311i \(0.876161\pi\)
\(54\) 0 0
\(55\) −14.7824 −1.99326
\(56\) 0 0
\(57\) 11.0828 4.84066i 1.46795 0.641161i
\(58\) 0 0
\(59\) 6.88318 6.88318i 0.896114 0.896114i −0.0989760 0.995090i \(-0.531557\pi\)
0.995090 + 0.0989760i \(0.0315567\pi\)
\(60\) 0 0
\(61\) 2.07562 + 2.07562i 0.265756 + 0.265756i 0.827387 0.561632i \(-0.189826\pi\)
−0.561632 + 0.827387i \(0.689826\pi\)
\(62\) 0 0
\(63\) 9.26271i 1.16699i
\(64\) 0 0
\(65\) 1.73822i 0.215600i
\(66\) 0 0
\(67\) −1.41362 1.41362i −0.172701 0.172701i 0.615464 0.788165i \(-0.288969\pi\)
−0.788165 + 0.615464i \(0.788969\pi\)
\(68\) 0 0
\(69\) 6.81287 + 6.81287i 0.820174 + 0.820174i
\(70\) 0 0
\(71\) 3.61576i 0.429112i −0.976712 0.214556i \(-0.931170\pi\)
0.976712 0.214556i \(-0.0688304\pi\)
\(72\) 0 0
\(73\) 6.11638i 0.715869i 0.933747 + 0.357934i \(0.116519\pi\)
−0.933747 + 0.357934i \(0.883481\pi\)
\(74\) 0 0
\(75\) −27.1111 + 27.1111i −3.13052 + 3.13052i
\(76\) 0 0
\(77\) −4.75082 4.75082i −0.541406 0.541406i
\(78\) 0 0
\(79\) 7.24446 0.815066 0.407533 0.913191i \(-0.366389\pi\)
0.407533 + 0.913191i \(0.366389\pi\)
\(80\) 0 0
\(81\) 1.02354 0.113727
\(82\) 0 0
\(83\) −0.477010 + 0.477010i −0.0523586 + 0.0523586i −0.732801 0.680443i \(-0.761788\pi\)
0.680443 + 0.732801i \(0.261788\pi\)
\(84\) 0 0
\(85\) −10.3411 + 10.3411i −1.12165 + 1.12165i
\(86\) 0 0
\(87\) 24.6689 2.64478
\(88\) 0 0
\(89\) −11.8214 −1.25307 −0.626536 0.779393i \(-0.715528\pi\)
−0.626536 + 0.779393i \(0.715528\pi\)
\(90\) 0 0
\(91\) −0.558635 + 0.558635i −0.0585609 + 0.0585609i
\(92\) 0 0
\(93\) −3.07548 3.07548i −0.318912 0.318912i
\(94\) 0 0
\(95\) −7.56862 17.3285i −0.776524 1.77787i
\(96\) 0 0
\(97\) 7.89215i 0.801327i −0.916225 0.400663i \(-0.868780\pi\)
0.916225 0.400663i \(-0.131220\pi\)
\(98\) 0 0
\(99\) −11.3197 + 11.3197i −1.13767 + 1.13767i
\(100\) 0 0
\(101\) −0.219113 + 0.219113i −0.0218026 + 0.0218026i −0.717924 0.696121i \(-0.754908\pi\)
0.696121 + 0.717924i \(0.254908\pi\)
\(102\) 0 0
\(103\) 10.4281i 1.02751i −0.857938 0.513754i \(-0.828255\pi\)
0.857938 0.513754i \(-0.171745\pi\)
\(104\) 0 0
\(105\) −23.7312 −2.31593
\(106\) 0 0
\(107\) 6.75806 6.75806i 0.653326 0.653326i −0.300466 0.953793i \(-0.597142\pi\)
0.953793 + 0.300466i \(0.0971422\pi\)
\(108\) 0 0
\(109\) 2.04303 2.04303i 0.195686 0.195686i −0.602461 0.798148i \(-0.705813\pi\)
0.798148 + 0.602461i \(0.205813\pi\)
\(110\) 0 0
\(111\) 21.8594i 2.07481i
\(112\) 0 0
\(113\) 2.80340i 0.263722i 0.991268 + 0.131861i \(0.0420953\pi\)
−0.991268 + 0.131861i \(0.957905\pi\)
\(114\) 0 0
\(115\) 10.6523 10.6523i 0.993331 0.993331i
\(116\) 0 0
\(117\) 1.33105 + 1.33105i 0.123056 + 0.123056i
\(118\) 0 0
\(119\) −6.64688 −0.609319
\(120\) 0 0
\(121\) 0.611687i 0.0556079i
\(122\) 0 0
\(123\) −14.2782 14.2782i −1.28742 1.28742i
\(124\) 0 0
\(125\) 27.0522 + 27.0522i 2.41962 + 2.41962i
\(126\) 0 0
\(127\) −9.16238 −0.813030 −0.406515 0.913644i \(-0.633256\pi\)
−0.406515 + 0.913644i \(0.633256\pi\)
\(128\) 0 0
\(129\) 14.6467i 1.28957i
\(130\) 0 0
\(131\) 10.3848 10.3848i 0.907325 0.907325i −0.0887304 0.996056i \(-0.528281\pi\)
0.996056 + 0.0887304i \(0.0282810\pi\)
\(132\) 0 0
\(133\) 3.13666 8.00150i 0.271983 0.693818i
\(134\) 0 0
\(135\) 20.4358i 1.75883i
\(136\) 0 0
\(137\) 8.79209i 0.751159i −0.926790 0.375580i \(-0.877444\pi\)
0.926790 0.375580i \(-0.122556\pi\)
\(138\) 0 0
\(139\) −1.36950 1.36950i −0.116159 0.116159i 0.646638 0.762797i \(-0.276175\pi\)
−0.762797 + 0.646638i \(0.776175\pi\)
\(140\) 0 0
\(141\) 0.0446097 0.0446097i 0.00375681 0.00375681i
\(142\) 0 0
\(143\) 1.36539 0.114179
\(144\) 0 0
\(145\) 38.5711i 3.20315i
\(146\) 0 0
\(147\) 6.10631 + 6.10631i 0.503640 + 0.503640i
\(148\) 0 0
\(149\) 13.1672 13.1672i 1.07870 1.07870i 0.0820697 0.996627i \(-0.473847\pi\)
0.996627 0.0820697i \(-0.0261530\pi\)
\(150\) 0 0
\(151\) 9.50133i 0.773207i −0.922246 0.386604i \(-0.873648\pi\)
0.922246 0.386604i \(-0.126352\pi\)
\(152\) 0 0
\(153\) 15.8374i 1.28038i
\(154\) 0 0
\(155\) −4.80867 + 4.80867i −0.386241 + 0.386241i
\(156\) 0 0
\(157\) −2.53872 2.53872i −0.202612 0.202612i 0.598506 0.801118i \(-0.295761\pi\)
−0.801118 + 0.598506i \(0.795761\pi\)
\(158\) 0 0
\(159\) 15.5954i 1.23680i
\(160\) 0 0
\(161\) 6.84692 0.539613
\(162\) 0 0
\(163\) −12.8620 + 12.8620i −1.00743 + 1.00743i −0.00745526 + 0.999972i \(0.502373\pi\)
−0.999972 + 0.00745526i \(0.997627\pi\)
\(164\) 0 0
\(165\) 29.0012 + 29.0012i 2.25774 + 2.25774i
\(166\) 0 0
\(167\) 7.86509i 0.608619i 0.952573 + 0.304310i \(0.0984257\pi\)
−0.952573 + 0.304310i \(0.901574\pi\)
\(168\) 0 0
\(169\) 12.8394i 0.987650i
\(170\) 0 0
\(171\) −19.0651 7.47366i −1.45794 0.571525i
\(172\) 0 0
\(173\) 17.1920 17.1920i 1.30708 1.30708i 0.383571 0.923511i \(-0.374694\pi\)
0.923511 0.383571i \(-0.125306\pi\)
\(174\) 0 0
\(175\) 27.2466i 2.05965i
\(176\) 0 0
\(177\) −27.0078 −2.03003
\(178\) 0 0
\(179\) −8.82567 8.82567i −0.659661 0.659661i 0.295639 0.955300i \(-0.404468\pi\)
−0.955300 + 0.295639i \(0.904468\pi\)
\(180\) 0 0
\(181\) 7.44516 + 7.44516i 0.553395 + 0.553395i 0.927419 0.374024i \(-0.122022\pi\)
−0.374024 + 0.927419i \(0.622022\pi\)
\(182\) 0 0
\(183\) 8.14419i 0.602036i
\(184\) 0 0
\(185\) 34.1784 2.51284
\(186\) 0 0
\(187\) 8.12297 + 8.12297i 0.594011 + 0.594011i
\(188\) 0 0
\(189\) −6.56771 + 6.56771i −0.477731 + 0.477731i
\(190\) 0 0
\(191\) 14.1870i 1.02653i 0.858229 + 0.513267i \(0.171565\pi\)
−0.858229 + 0.513267i \(0.828435\pi\)
\(192\) 0 0
\(193\) 1.10407i 0.0794728i 0.999210 + 0.0397364i \(0.0126518\pi\)
−0.999210 + 0.0397364i \(0.987348\pi\)
\(194\) 0 0
\(195\) 3.41017 3.41017i 0.244208 0.244208i
\(196\) 0 0
\(197\) 5.11692 5.11692i 0.364566 0.364566i −0.500925 0.865491i \(-0.667007\pi\)
0.865491 + 0.500925i \(0.167007\pi\)
\(198\) 0 0
\(199\) −9.39942 −0.666307 −0.333154 0.942873i \(-0.608113\pi\)
−0.333154 + 0.942873i \(0.608113\pi\)
\(200\) 0 0
\(201\) 5.54667i 0.391232i
\(202\) 0 0
\(203\) 12.3961 12.3961i 0.870034 0.870034i
\(204\) 0 0
\(205\) −22.3246 + 22.3246i −1.55922 + 1.55922i
\(206\) 0 0
\(207\) 16.3141i 1.13391i
\(208\) 0 0
\(209\) −13.6116 + 5.94520i −0.941537 + 0.411238i
\(210\) 0 0
\(211\) −17.8880 17.8880i −1.23146 1.23146i −0.963403 0.268055i \(-0.913619\pi\)
−0.268055 0.963403i \(-0.586381\pi\)
\(212\) 0 0
\(213\) −7.09366 + 7.09366i −0.486050 + 0.486050i
\(214\) 0 0
\(215\) 22.9009 1.56183
\(216\) 0 0
\(217\) −3.09084 −0.209820
\(218\) 0 0
\(219\) 11.9996 11.9996i 0.810855 0.810855i
\(220\) 0 0
\(221\) 0.955158 0.955158i 0.0642509 0.0642509i
\(222\) 0 0
\(223\) 17.0885 1.14433 0.572166 0.820138i \(-0.306103\pi\)
0.572166 + 0.820138i \(0.306103\pi\)
\(224\) 0 0
\(225\) 64.9200 4.32800
\(226\) 0 0
\(227\) 12.4738 + 12.4738i 0.827912 + 0.827912i 0.987228 0.159315i \(-0.0509287\pi\)
−0.159315 + 0.987228i \(0.550929\pi\)
\(228\) 0 0
\(229\) −0.928431 + 0.928431i −0.0613524 + 0.0613524i −0.737117 0.675765i \(-0.763813\pi\)
0.675765 + 0.737117i \(0.263813\pi\)
\(230\) 0 0
\(231\) 18.6410i 1.22649i
\(232\) 0 0
\(233\) 4.56392i 0.298992i 0.988762 + 0.149496i \(0.0477651\pi\)
−0.988762 + 0.149496i \(0.952235\pi\)
\(234\) 0 0
\(235\) −0.0697496 0.0697496i −0.00454996 0.00454996i
\(236\) 0 0
\(237\) −14.2127 14.2127i −0.923214 0.923214i
\(238\) 0 0
\(239\) 17.3712i 1.12365i −0.827255 0.561826i \(-0.810099\pi\)
0.827255 0.561826i \(-0.189901\pi\)
\(240\) 0 0
\(241\) 22.1998i 1.43001i −0.699118 0.715006i \(-0.746424\pi\)
0.699118 0.715006i \(-0.253576\pi\)
\(242\) 0 0
\(243\) −12.0011 12.0011i −0.769874 0.769874i
\(244\) 0 0
\(245\) 9.54754 9.54754i 0.609970 0.609970i
\(246\) 0 0
\(247\) 0.699079 + 1.60055i 0.0444813 + 0.101841i
\(248\) 0 0
\(249\) 1.87166 0.118612
\(250\) 0 0
\(251\) 7.63703 + 7.63703i 0.482045 + 0.482045i 0.905784 0.423739i \(-0.139283\pi\)
−0.423739 + 0.905784i \(0.639283\pi\)
\(252\) 0 0
\(253\) −8.36743 8.36743i −0.526056 0.526056i
\(254\) 0 0
\(255\) 40.5757 2.54095
\(256\) 0 0
\(257\) 14.0081i 0.873803i 0.899509 + 0.436902i \(0.143924\pi\)
−0.899509 + 0.436902i \(0.856076\pi\)
\(258\) 0 0
\(259\) 10.9843 + 10.9843i 0.682534 + 0.682534i
\(260\) 0 0
\(261\) −29.5360 29.5360i −1.82823 1.82823i
\(262\) 0 0
\(263\) 23.6906 1.46083 0.730414 0.683005i \(-0.239327\pi\)
0.730414 + 0.683005i \(0.239327\pi\)
\(264\) 0 0
\(265\) 24.3843 1.49792
\(266\) 0 0
\(267\) 23.1922 + 23.1922i 1.41934 + 1.41934i
\(268\) 0 0
\(269\) −3.14908 + 3.14908i −0.192003 + 0.192003i −0.796561 0.604558i \(-0.793350\pi\)
0.604558 + 0.796561i \(0.293350\pi\)
\(270\) 0 0
\(271\) 13.1346i 0.797873i 0.916979 + 0.398937i \(0.130621\pi\)
−0.916979 + 0.398937i \(0.869379\pi\)
\(272\) 0 0
\(273\) 2.19194 0.132662
\(274\) 0 0
\(275\) 33.2973 33.2973i 2.00790 2.00790i
\(276\) 0 0
\(277\) 9.24323 9.24323i 0.555372 0.555372i −0.372615 0.927986i \(-0.621539\pi\)
0.927986 + 0.372615i \(0.121539\pi\)
\(278\) 0 0
\(279\) 7.36451i 0.440902i
\(280\) 0 0
\(281\) −21.1029 −1.25889 −0.629447 0.777043i \(-0.716719\pi\)
−0.629447 + 0.777043i \(0.716719\pi\)
\(282\) 0 0
\(283\) −4.11095 4.11095i −0.244371 0.244371i 0.574285 0.818655i \(-0.305280\pi\)
−0.818655 + 0.574285i \(0.805280\pi\)
\(284\) 0 0
\(285\) −19.1476 + 48.8450i −1.13421 + 2.89333i
\(286\) 0 0
\(287\) −14.3495 −0.847025
\(288\) 0 0
\(289\) −5.63513 −0.331478
\(290\) 0 0
\(291\) −15.4834 + 15.4834i −0.907652 + 0.907652i
\(292\) 0 0
\(293\) −8.24133 8.24133i −0.481464 0.481464i 0.424135 0.905599i \(-0.360578\pi\)
−0.905599 + 0.424135i \(0.860578\pi\)
\(294\) 0 0
\(295\) 42.2282i 2.45862i
\(296\) 0 0
\(297\) 16.0524 0.931457
\(298\) 0 0
\(299\) −0.983903 + 0.983903i −0.0569006 + 0.0569006i
\(300\) 0 0
\(301\) 7.35995 + 7.35995i 0.424220 + 0.424220i
\(302\) 0 0
\(303\) 0.859745 0.0493911
\(304\) 0 0
\(305\) −12.7339 −0.729140
\(306\) 0 0
\(307\) −4.69111 4.69111i −0.267736 0.267736i 0.560451 0.828187i \(-0.310628\pi\)
−0.828187 + 0.560451i \(0.810628\pi\)
\(308\) 0 0
\(309\) −20.4585 + 20.4585i −1.16384 + 1.16384i
\(310\) 0 0
\(311\) −21.7357 −1.23252 −0.616258 0.787544i \(-0.711352\pi\)
−0.616258 + 0.787544i \(0.711352\pi\)
\(312\) 0 0
\(313\) 14.1098i 0.797534i 0.917052 + 0.398767i \(0.130562\pi\)
−0.917052 + 0.398767i \(0.869438\pi\)
\(314\) 0 0
\(315\) 28.4133 + 28.4133i 1.60091 + 1.60091i
\(316\) 0 0
\(317\) 1.71710 1.71710i 0.0964419 0.0964419i −0.657240 0.753682i \(-0.728276\pi\)
0.753682 + 0.657240i \(0.228276\pi\)
\(318\) 0 0
\(319\) −30.2978 −1.69635
\(320\) 0 0
\(321\) −26.5169 −1.48003
\(322\) 0 0
\(323\) −5.36307 + 13.6810i −0.298409 + 0.761232i
\(324\) 0 0
\(325\) −3.91534 3.91534i −0.217184 0.217184i
\(326\) 0 0
\(327\) −8.01631 −0.443303
\(328\) 0 0
\(329\) 0.0448326i 0.00247170i
\(330\) 0 0
\(331\) 4.38508 4.38508i 0.241026 0.241026i −0.576249 0.817274i \(-0.695484\pi\)
0.817274 + 0.576249i \(0.195484\pi\)
\(332\) 0 0
\(333\) 26.1722 26.1722i 1.43423 1.43423i
\(334\) 0 0
\(335\) 8.67250 0.473830
\(336\) 0 0
\(337\) 26.5372i 1.44557i 0.691071 + 0.722787i \(0.257139\pi\)
−0.691071 + 0.722787i \(0.742861\pi\)
\(338\) 0 0
\(339\) 5.49992 5.49992i 0.298715 0.298715i
\(340\) 0 0
\(341\) 3.77724 + 3.77724i 0.204549 + 0.204549i
\(342\) 0 0
\(343\) 19.9386 1.07658
\(344\) 0 0
\(345\) −41.7968 −2.25027
\(346\) 0 0
\(347\) −15.9182 15.9182i −0.854536 0.854536i 0.136152 0.990688i \(-0.456526\pi\)
−0.990688 + 0.136152i \(0.956526\pi\)
\(348\) 0 0
\(349\) 9.28048 + 9.28048i 0.496773 + 0.496773i 0.910432 0.413659i \(-0.135749\pi\)
−0.413659 + 0.910432i \(0.635749\pi\)
\(350\) 0 0
\(351\) 1.88756i 0.100751i
\(352\) 0 0
\(353\) 3.56073 0.189519 0.0947593 0.995500i \(-0.469792\pi\)
0.0947593 + 0.995500i \(0.469792\pi\)
\(354\) 0 0
\(355\) 11.0913 + 11.0913i 0.588666 + 0.588666i
\(356\) 0 0
\(357\) 13.0403 + 13.0403i 0.690167 + 0.690167i
\(358\) 0 0
\(359\) −1.99352 −0.105214 −0.0526070 0.998615i \(-0.516753\pi\)
−0.0526070 + 0.998615i \(0.516753\pi\)
\(360\) 0 0
\(361\) −13.9383 12.9121i −0.733597 0.679584i
\(362\) 0 0
\(363\) 1.20005 1.20005i 0.0629863 0.0629863i
\(364\) 0 0
\(365\) −18.7619 18.7619i −0.982045 0.982045i
\(366\) 0 0
\(367\) 0.994011i 0.0518869i −0.999663 0.0259435i \(-0.991741\pi\)
0.999663 0.0259435i \(-0.00825899\pi\)
\(368\) 0 0
\(369\) 34.1904i 1.77988i
\(370\) 0 0
\(371\) 7.83669 + 7.83669i 0.406861 + 0.406861i
\(372\) 0 0
\(373\) −19.5869 19.5869i −1.01417 1.01417i −0.999898 0.0142735i \(-0.995456\pi\)
−0.0142735 0.999898i \(-0.504544\pi\)
\(374\) 0 0
\(375\) 106.146i 5.48135i
\(376\) 0 0
\(377\) 3.56264i 0.183485i
\(378\) 0 0
\(379\) −12.0558 + 12.0558i −0.619264 + 0.619264i −0.945343 0.326079i \(-0.894272\pi\)
0.326079 + 0.945343i \(0.394272\pi\)
\(380\) 0 0
\(381\) 17.9754 + 17.9754i 0.920909 + 0.920909i
\(382\) 0 0
\(383\) −28.3361 −1.44791 −0.723954 0.689848i \(-0.757677\pi\)
−0.723954 + 0.689848i \(0.757677\pi\)
\(384\) 0 0
\(385\) 29.1462 1.48543
\(386\) 0 0
\(387\) 17.5364 17.5364i 0.891427 0.891427i
\(388\) 0 0
\(389\) −10.5559 + 10.5559i −0.535206 + 0.535206i −0.922117 0.386911i \(-0.873542\pi\)
0.386911 + 0.922117i \(0.373542\pi\)
\(390\) 0 0
\(391\) −11.7069 −0.592043
\(392\) 0 0
\(393\) −40.7473 −2.05543
\(394\) 0 0
\(395\) −22.2223 + 22.2223i −1.11813 + 1.11813i
\(396\) 0 0
\(397\) 15.7916 + 15.7916i 0.792558 + 0.792558i 0.981909 0.189351i \(-0.0606385\pi\)
−0.189351 + 0.981909i \(0.560639\pi\)
\(398\) 0 0
\(399\) −21.8516 + 9.54421i −1.09395 + 0.477808i
\(400\) 0 0
\(401\) 19.7805i 0.987793i −0.869521 0.493897i \(-0.835572\pi\)
0.869521 0.493897i \(-0.164428\pi\)
\(402\) 0 0
\(403\) 0.444155 0.444155i 0.0221249 0.0221249i
\(404\) 0 0
\(405\) −3.13970 + 3.13970i −0.156013 + 0.156013i
\(406\) 0 0
\(407\) 26.8473i 1.33077i
\(408\) 0 0
\(409\) −2.52435 −0.124821 −0.0624105 0.998051i \(-0.519879\pi\)
−0.0624105 + 0.998051i \(0.519879\pi\)
\(410\) 0 0
\(411\) −17.2490 + 17.2490i −0.850828 + 0.850828i
\(412\) 0 0
\(413\) −13.5714 + 13.5714i −0.667805 + 0.667805i
\(414\) 0 0
\(415\) 2.92644i 0.143654i
\(416\) 0 0
\(417\) 5.37357i 0.263145i
\(418\) 0 0
\(419\) −16.8455 + 16.8455i −0.822957 + 0.822957i −0.986531 0.163574i \(-0.947698\pi\)
0.163574 + 0.986531i \(0.447698\pi\)
\(420\) 0 0
\(421\) −23.6174 23.6174i −1.15104 1.15104i −0.986344 0.164698i \(-0.947335\pi\)
−0.164698 0.986344i \(-0.552665\pi\)
\(422\) 0 0
\(423\) −0.106822 −0.00519386
\(424\) 0 0
\(425\) 46.5863i 2.25977i
\(426\) 0 0
\(427\) −4.09245 4.09245i −0.198047 0.198047i
\(428\) 0 0
\(429\) −2.67871 2.67871i −0.129329 0.129329i
\(430\) 0 0
\(431\) 27.2068 1.31051 0.655253 0.755409i \(-0.272562\pi\)
0.655253 + 0.755409i \(0.272562\pi\)
\(432\) 0 0
\(433\) 21.1651i 1.01713i 0.861024 + 0.508564i \(0.169823\pi\)
−0.861024 + 0.508564i \(0.830177\pi\)
\(434\) 0 0
\(435\) −75.6715 + 75.6715i −3.62817 + 3.62817i
\(436\) 0 0
\(437\) 5.52447 14.0927i 0.264271 0.674147i
\(438\) 0 0
\(439\) 36.9150i 1.76186i 0.473249 + 0.880929i \(0.343081\pi\)
−0.473249 + 0.880929i \(0.656919\pi\)
\(440\) 0 0
\(441\) 14.6221i 0.696292i
\(442\) 0 0
\(443\) 2.68182 + 2.68182i 0.127417 + 0.127417i 0.767940 0.640522i \(-0.221282\pi\)
−0.640522 + 0.767940i \(0.721282\pi\)
\(444\) 0 0
\(445\) 36.2622 36.2622i 1.71899 1.71899i
\(446\) 0 0
\(447\) −51.6646 −2.44365
\(448\) 0 0
\(449\) 30.7631i 1.45180i 0.687799 + 0.725901i \(0.258577\pi\)
−0.687799 + 0.725901i \(0.741423\pi\)
\(450\) 0 0
\(451\) 17.5361 + 17.5361i 0.825744 + 0.825744i
\(452\) 0 0
\(453\) −18.6404 + 18.6404i −0.875802 + 0.875802i
\(454\) 0 0
\(455\) 3.42722i 0.160670i
\(456\) 0 0
\(457\) 10.8846i 0.509161i −0.967052 0.254581i \(-0.918063\pi\)
0.967052 0.254581i \(-0.0819374\pi\)
\(458\) 0 0
\(459\) 11.2295 11.2295i 0.524149 0.524149i
\(460\) 0 0
\(461\) −13.6547 13.6547i −0.635963 0.635963i 0.313594 0.949557i \(-0.398467\pi\)
−0.949557 + 0.313594i \(0.898467\pi\)
\(462\) 0 0
\(463\) 32.9847i 1.53293i −0.642287 0.766464i \(-0.722014\pi\)
0.642287 0.766464i \(-0.277986\pi\)
\(464\) 0 0
\(465\) 18.8680 0.874982
\(466\) 0 0
\(467\) 12.6894 12.6894i 0.587194 0.587194i −0.349677 0.936870i \(-0.613709\pi\)
0.936870 + 0.349677i \(0.113709\pi\)
\(468\) 0 0
\(469\) 2.78719 + 2.78719i 0.128701 + 0.128701i
\(470\) 0 0
\(471\) 9.96130i 0.458993i
\(472\) 0 0
\(473\) 17.9888i 0.827125i
\(474\) 0 0
\(475\) 56.0806 + 21.9840i 2.57315 + 1.00870i
\(476\) 0 0
\(477\) 18.6724 18.6724i 0.854949 0.854949i
\(478\) 0 0
\(479\) 25.4874i 1.16455i −0.812993 0.582274i \(-0.802163\pi\)
0.812993 0.582274i \(-0.197837\pi\)
\(480\) 0 0
\(481\) −3.15690 −0.143942
\(482\) 0 0
\(483\) −13.4328 13.4328i −0.611213 0.611213i
\(484\) 0 0
\(485\) 24.2091 + 24.2091i 1.09928 + 1.09928i
\(486\) 0 0
\(487\) 13.9190i 0.630732i −0.948970 0.315366i \(-0.897873\pi\)
0.948970 0.315366i \(-0.102127\pi\)
\(488\) 0 0
\(489\) 50.4671 2.28220
\(490\) 0 0
\(491\) 12.0480 + 12.0480i 0.543717 + 0.543717i 0.924616 0.380900i \(-0.124386\pi\)
−0.380900 + 0.924616i \(0.624386\pi\)
\(492\) 0 0
\(493\) −21.1949 + 21.1949i −0.954569 + 0.954569i
\(494\) 0 0
\(495\) 69.4461i 3.12137i
\(496\) 0 0
\(497\) 7.12911i 0.319784i
\(498\) 0 0
\(499\) 15.3835 15.3835i 0.688662 0.688662i −0.273274 0.961936i \(-0.588107\pi\)
0.961936 + 0.273274i \(0.0881066\pi\)
\(500\) 0 0
\(501\) 15.4303 15.4303i 0.689375 0.689375i
\(502\) 0 0
\(503\) 16.3820 0.730436 0.365218 0.930922i \(-0.380995\pi\)
0.365218 + 0.930922i \(0.380995\pi\)
\(504\) 0 0
\(505\) 1.34426i 0.0598186i
\(506\) 0 0
\(507\) 25.1894 25.1894i 1.11870 1.11870i
\(508\) 0 0
\(509\) 14.5621 14.5621i 0.645453 0.645453i −0.306438 0.951891i \(-0.599137\pi\)
0.951891 + 0.306438i \(0.0991372\pi\)
\(510\) 0 0
\(511\) 12.0595i 0.533482i
\(512\) 0 0
\(513\) 8.21887 + 18.8173i 0.362872 + 0.830802i
\(514\) 0 0
\(515\) 31.9880 + 31.9880i 1.40956 + 1.40956i
\(516\) 0 0
\(517\) −0.0547887 + 0.0547887i −0.00240960 + 0.00240960i
\(518\) 0 0
\(519\) −67.4569 −2.96103
\(520\) 0 0
\(521\) 27.5768 1.20816 0.604082 0.796922i \(-0.293540\pi\)
0.604082 + 0.796922i \(0.293540\pi\)
\(522\) 0 0
\(523\) 4.27047 4.27047i 0.186735 0.186735i −0.607548 0.794283i \(-0.707847\pi\)
0.794283 + 0.607548i \(0.207847\pi\)
\(524\) 0 0
\(525\) 53.4543 53.4543i 2.33294 2.33294i
\(526\) 0 0
\(527\) 5.28474 0.230207
\(528\) 0 0
\(529\) −10.9408 −0.475686
\(530\) 0 0
\(531\) 32.3364 + 32.3364i 1.40328 + 1.40328i
\(532\) 0 0
\(533\) 2.06203 2.06203i 0.0893162 0.0893162i
\(534\) 0 0
\(535\) 41.4606i 1.79250i
\(536\) 0 0
\(537\) 34.6297i 1.49438i
\(538\) 0 0
\(539\) −7.49965 7.49965i −0.323033 0.323033i
\(540\) 0 0
\(541\) −9.91814 9.91814i −0.426414 0.426414i 0.460991 0.887405i \(-0.347494\pi\)
−0.887405 + 0.460991i \(0.847494\pi\)
\(542\) 0 0
\(543\) 29.2129i 1.25365i
\(544\) 0 0
\(545\) 12.5339i 0.536895i
\(546\) 0 0
\(547\) −4.55774 4.55774i −0.194875 0.194875i 0.602924 0.797799i \(-0.294002\pi\)
−0.797799 + 0.602924i \(0.794002\pi\)
\(548\) 0 0
\(549\) −9.75101 + 9.75101i −0.416163 + 0.416163i
\(550\) 0 0
\(551\) −15.5125 35.5162i −0.660855 1.51304i
\(552\) 0 0
\(553\) −14.2837 −0.607406
\(554\) 0 0
\(555\) −67.0536 67.0536i −2.84627 2.84627i
\(556\) 0 0
\(557\) −0.433432 0.433432i −0.0183651 0.0183651i 0.697865 0.716230i \(-0.254134\pi\)
−0.716230 + 0.697865i \(0.754134\pi\)
\(558\) 0 0
\(559\) −2.11525 −0.0894656
\(560\) 0 0
\(561\) 31.8725i 1.34566i
\(562\) 0 0
\(563\) −23.2442 23.2442i −0.979626 0.979626i 0.0201710 0.999797i \(-0.493579\pi\)
−0.999797 + 0.0201710i \(0.993579\pi\)
\(564\) 0 0
\(565\) −8.59941 8.59941i −0.361780 0.361780i
\(566\) 0 0
\(567\) −2.01809 −0.0847518
\(568\) 0 0
\(569\) −15.7971 −0.662248 −0.331124 0.943587i \(-0.607428\pi\)
−0.331124 + 0.943587i \(0.607428\pi\)
\(570\) 0 0
\(571\) −2.55691 2.55691i −0.107003 0.107003i 0.651578 0.758582i \(-0.274107\pi\)
−0.758582 + 0.651578i \(0.774107\pi\)
\(572\) 0 0
\(573\) 27.8330 27.8330i 1.16274 1.16274i
\(574\) 0 0
\(575\) 47.9884i 2.00125i
\(576\) 0 0
\(577\) 10.7687 0.448307 0.224153 0.974554i \(-0.428038\pi\)
0.224153 + 0.974554i \(0.428038\pi\)
\(578\) 0 0
\(579\) 2.16605 2.16605i 0.0900178 0.0900178i
\(580\) 0 0
\(581\) 0.940509 0.940509i 0.0390189 0.0390189i
\(582\) 0 0
\(583\) 19.1540i 0.793278i
\(584\) 0 0
\(585\) −8.16598 −0.337622
\(586\) 0 0
\(587\) 8.58004 + 8.58004i 0.354136 + 0.354136i 0.861646 0.507510i \(-0.169434\pi\)
−0.507510 + 0.861646i \(0.669434\pi\)
\(588\) 0 0
\(589\) −2.49386 + 6.36176i −0.102758 + 0.262132i
\(590\) 0 0
\(591\) −20.0775 −0.825878
\(592\) 0 0
\(593\) 10.1128 0.415283 0.207641 0.978205i \(-0.433421\pi\)
0.207641 + 0.978205i \(0.433421\pi\)
\(594\) 0 0
\(595\) 20.3892 20.3892i 0.835878 0.835878i
\(596\) 0 0
\(597\) 18.4405 + 18.4405i 0.754718 + 0.754718i
\(598\) 0 0
\(599\) 35.6436i 1.45636i 0.685388 + 0.728179i \(0.259633\pi\)
−0.685388 + 0.728179i \(0.740367\pi\)
\(600\) 0 0
\(601\) 33.4257 1.36346 0.681731 0.731603i \(-0.261228\pi\)
0.681731 + 0.731603i \(0.261228\pi\)
\(602\) 0 0
\(603\) 6.64100 6.64100i 0.270443 0.270443i
\(604\) 0 0
\(605\) −1.87634 1.87634i −0.0762842 0.0762842i
\(606\) 0 0
\(607\) −31.9197 −1.29558 −0.647791 0.761818i \(-0.724307\pi\)
−0.647791 + 0.761818i \(0.724307\pi\)
\(608\) 0 0
\(609\) −48.6390 −1.97095
\(610\) 0 0
\(611\) 0.00644245 + 0.00644245i 0.000260634 + 0.000260634i
\(612\) 0 0
\(613\) 5.35841 5.35841i 0.216424 0.216424i −0.590565 0.806990i \(-0.701095\pi\)
0.806990 + 0.590565i \(0.201095\pi\)
\(614\) 0 0
\(615\) 87.5962 3.53222
\(616\) 0 0
\(617\) 46.8728i 1.88703i −0.331332 0.943514i \(-0.607498\pi\)
0.331332 0.943514i \(-0.392502\pi\)
\(618\) 0 0
\(619\) −8.55781 8.55781i −0.343967 0.343967i 0.513889 0.857857i \(-0.328204\pi\)
−0.857857 + 0.513889i \(0.828204\pi\)
\(620\) 0 0
\(621\) −11.5675 + 11.5675i −0.464186 + 0.464186i
\(622\) 0 0
\(623\) 23.3081 0.933818
\(624\) 0 0
\(625\) −96.8696 −3.87478
\(626\) 0 0
\(627\) 38.3680 + 15.0406i 1.53227 + 0.600663i
\(628\) 0 0
\(629\) −18.7811 18.7811i −0.748851 0.748851i
\(630\) 0 0
\(631\) −43.3565 −1.72599 −0.862997 0.505210i \(-0.831415\pi\)
−0.862997 + 0.505210i \(0.831415\pi\)
\(632\) 0 0
\(633\) 70.1878i 2.78972i
\(634\) 0 0
\(635\) 28.1055 28.1055i 1.11533 1.11533i
\(636\) 0 0
\(637\) −0.881863 + 0.881863i −0.0349407 + 0.0349407i
\(638\) 0 0
\(639\) 16.9864 0.671973
\(640\) 0 0
\(641\) 36.9181i 1.45818i −0.684420 0.729088i \(-0.739944\pi\)
0.684420 0.729088i \(-0.260056\pi\)
\(642\) 0 0
\(643\) 25.0873 25.0873i 0.989345 0.989345i −0.0105987 0.999944i \(-0.503374\pi\)
0.999944 + 0.0105987i \(0.00337374\pi\)
\(644\) 0 0
\(645\) −44.9286 44.9286i −1.76906 1.76906i
\(646\) 0 0
\(647\) 3.74333 0.147166 0.0735828 0.997289i \(-0.476557\pi\)
0.0735828 + 0.997289i \(0.476557\pi\)
\(648\) 0 0
\(649\) 33.1705 1.30206
\(650\) 0 0
\(651\) 6.06384 + 6.06384i 0.237661 + 0.237661i
\(652\) 0 0
\(653\) 22.2848 + 22.2848i 0.872073 + 0.872073i 0.992698 0.120625i \(-0.0384900\pi\)
−0.120625 + 0.992698i \(0.538490\pi\)
\(654\) 0 0
\(655\) 63.7106i 2.48938i
\(656\) 0 0
\(657\) −28.7341 −1.12102
\(658\) 0 0
\(659\) −11.3228 11.3228i −0.441074 0.441074i 0.451299 0.892373i \(-0.350961\pi\)
−0.892373 + 0.451299i \(0.850961\pi\)
\(660\) 0 0
\(661\) 2.14571 + 2.14571i 0.0834583 + 0.0834583i 0.747604 0.664145i \(-0.231204\pi\)
−0.664145 + 0.747604i \(0.731204\pi\)
\(662\) 0 0
\(663\) −3.74779 −0.145552
\(664\) 0 0
\(665\) 14.9229 + 34.1662i 0.578684 + 1.32491i
\(666\) 0 0
\(667\) 21.8327 21.8327i 0.845367 0.845367i
\(668\) 0 0
\(669\) −33.5255 33.5255i −1.29617 1.29617i
\(670\) 0 0
\(671\) 10.0025i 0.386144i
\(672\) 0 0
\(673\) 1.49471i 0.0576167i 0.999585 + 0.0288083i \(0.00917125\pi\)
−0.999585 + 0.0288083i \(0.990829\pi\)
\(674\) 0 0
\(675\) −46.0315 46.0315i −1.77175 1.77175i
\(676\) 0 0
\(677\) 3.08165 + 3.08165i 0.118438 + 0.118438i 0.763841 0.645404i \(-0.223311\pi\)
−0.645404 + 0.763841i \(0.723311\pi\)
\(678\) 0 0
\(679\) 15.5608i 0.597167i
\(680\) 0 0
\(681\) 48.9438i 1.87553i
\(682\) 0 0
\(683\) −18.2706 + 18.2706i −0.699106 + 0.699106i −0.964218 0.265112i \(-0.914591\pi\)
0.265112 + 0.964218i \(0.414591\pi\)
\(684\) 0 0
\(685\) 26.9697 + 26.9697i 1.03046 + 1.03046i
\(686\) 0 0
\(687\) 3.64292 0.138986
\(688\) 0 0
\(689\) −2.25227 −0.0858046
\(690\) 0 0
\(691\) −18.4458 + 18.4458i −0.701712 + 0.701712i −0.964778 0.263066i \(-0.915266\pi\)
0.263066 + 0.964778i \(0.415266\pi\)
\(692\) 0 0
\(693\) 22.3188 22.3188i 0.847821 0.847821i
\(694\) 0 0
\(695\) 8.40186 0.318701
\(696\) 0 0
\(697\) 24.5349 0.929324
\(698\) 0 0
\(699\) 8.95382 8.95382i 0.338665 0.338665i
\(700\) 0 0
\(701\) 24.7360 + 24.7360i 0.934266 + 0.934266i 0.997969 0.0637026i \(-0.0202909\pi\)
−0.0637026 + 0.997969i \(0.520291\pi\)
\(702\) 0 0
\(703\) 31.4714 13.7459i 1.18697 0.518435i
\(704\) 0 0
\(705\) 0.273680i 0.0103074i
\(706\) 0 0
\(707\) 0.432021 0.432021i 0.0162478 0.0162478i
\(708\) 0 0
\(709\) −6.98219 + 6.98219i −0.262222 + 0.262222i −0.825956 0.563734i \(-0.809364\pi\)
0.563734 + 0.825956i \(0.309364\pi\)
\(710\) 0 0
\(711\) 34.0336i 1.27636i
\(712\) 0 0
\(713\) −5.44379 −0.203871
\(714\) 0 0
\(715\) −4.18831 + 4.18831i −0.156634 + 0.156634i
\(716\) 0 0
\(717\) −34.0802 + 34.0802i −1.27275 + 1.27275i
\(718\) 0 0
\(719\) 30.9143i 1.15291i 0.817129 + 0.576455i \(0.195564\pi\)
−0.817129 + 0.576455i \(0.804436\pi\)
\(720\) 0 0
\(721\) 20.5608i 0.765723i
\(722\) 0 0
\(723\) −43.5531 + 43.5531i −1.61976 + 1.61976i
\(724\) 0 0
\(725\) 86.8811 + 86.8811i 3.22668 + 3.22668i
\(726\) 0 0
\(727\) −37.9913 −1.40902 −0.704510 0.709694i \(-0.748833\pi\)
−0.704510 + 0.709694i \(0.748833\pi\)
\(728\) 0 0
\(729\) 44.0188i 1.63033i
\(730\) 0 0
\(731\) −12.5841 12.5841i −0.465439 0.465439i
\(732\) 0 0
\(733\) −24.6552 24.6552i −0.910660 0.910660i 0.0856642 0.996324i \(-0.472699\pi\)
−0.996324 + 0.0856642i \(0.972699\pi\)
\(734\) 0 0
\(735\) −37.4621 −1.38181
\(736\) 0 0
\(737\) 6.81230i 0.250934i
\(738\) 0 0
\(739\) −10.1897 + 10.1897i −0.374834 + 0.374834i −0.869234 0.494400i \(-0.835388\pi\)
0.494400 + 0.869234i \(0.335388\pi\)
\(740\) 0 0
\(741\) 1.76858 4.51159i 0.0649704 0.165737i
\(742\) 0 0
\(743\) 4.34278i 0.159321i −0.996822 0.0796605i \(-0.974616\pi\)
0.996822 0.0796605i \(-0.0253836\pi\)
\(744\) 0 0
\(745\) 80.7803i 2.95956i
\(746\) 0 0
\(747\) −2.24094 2.24094i −0.0819915 0.0819915i
\(748\) 0 0
\(749\) −13.3247 + 13.3247i −0.486874 + 0.486874i
\(750\) 0 0
\(751\) 18.9926 0.693049 0.346524 0.938041i \(-0.387362\pi\)
0.346524 + 0.938041i \(0.387362\pi\)
\(752\) 0 0
\(753\) 29.9658i 1.09201i
\(754\) 0 0
\(755\) 29.1452 + 29.1452i 1.06070 + 1.06070i
\(756\) 0 0
\(757\) 12.3994 12.3994i 0.450664 0.450664i −0.444911 0.895575i \(-0.646765\pi\)
0.895575 + 0.444911i \(0.146765\pi\)
\(758\) 0 0
\(759\) 32.8317i 1.19171i
\(760\) 0 0
\(761\) 18.6209i 0.675006i −0.941324 0.337503i \(-0.890418\pi\)
0.941324 0.337503i \(-0.109582\pi\)
\(762\) 0 0
\(763\) −4.02819 + 4.02819i −0.145830 + 0.145830i
\(764\) 0 0
\(765\) −48.5811 48.5811i −1.75645 1.75645i
\(766\) 0 0
\(767\) 3.90043i 0.140836i
\(768\) 0 0
\(769\) 41.5054 1.49672 0.748361 0.663292i \(-0.230841\pi\)
0.748361 + 0.663292i \(0.230841\pi\)
\(770\) 0 0
\(771\) 27.4822 27.4822i 0.989746 0.989746i
\(772\) 0 0
\(773\) −20.2128 20.2128i −0.727003 0.727003i 0.243019 0.970022i \(-0.421862\pi\)
−0.970022 + 0.243019i \(0.921862\pi\)
\(774\) 0 0
\(775\) 21.6630i 0.778157i
\(776\) 0 0
\(777\) 43.0997i 1.54619i
\(778\) 0 0
\(779\) −11.5780 + 29.5350i −0.414824 + 1.05820i
\(780\) 0 0
\(781\) 8.71229 8.71229i 0.311750 0.311750i
\(782\) 0 0
\(783\) 41.8849i 1.49684i
\(784\) 0 0
\(785\) 15.5750 0.555896
\(786\) 0 0
\(787\) −34.9721 34.9721i −1.24662 1.24662i −0.957202 0.289420i \(-0.906538\pi\)
−0.289420 0.957202i \(-0.593462\pi\)
\(788\) 0 0
\(789\) −46.4780 46.4780i −1.65466 1.65466i
\(790\) 0 0
\(791\) 5.52741i 0.196532i
\(792\) 0 0
\(793\) 1.17617 0.0417670
\(794\) 0 0
\(795\) −47.8389 47.8389i −1.69667 1.69667i
\(796\) 0 0
\(797\) 0.792356 0.792356i 0.0280667 0.0280667i −0.692934 0.721001i \(-0.743682\pi\)
0.721001 + 0.692934i \(0.243682\pi\)
\(798\) 0 0
\(799\) 0.0766550i 0.00271186i
\(800\) 0 0
\(801\) 55.5358i 1.96226i
\(802\) 0 0
\(803\) −14.7376 + 14.7376i −0.520079 + 0.520079i
\(804\) 0 0
\(805\) −21.0029 + 21.0029i −0.740254 + 0.740254i
\(806\) 0 0
\(807\) 12.3562 0.434958
\(808\) 0 0
\(809\) 12.8181i 0.450662i −0.974282 0.225331i \(-0.927654\pi\)
0.974282 0.225331i \(-0.0723463\pi\)
\(810\) 0 0
\(811\) 25.1956 25.1956i 0.884736 0.884736i −0.109276 0.994012i \(-0.534853\pi\)
0.994012 + 0.109276i \(0.0348531\pi\)
\(812\) 0 0
\(813\) 25.7685 25.7685i 0.903741 0.903741i
\(814\) 0 0
\(815\) 78.9080i 2.76403i
\(816\) 0 0
\(817\) 21.0871 9.21027i 0.737744 0.322227i
\(818\) 0 0
\(819\) −2.62440 2.62440i −0.0917041 0.0917041i
\(820\) 0 0
\(821\) 7.30455 7.30455i 0.254930 0.254930i −0.568058 0.822989i \(-0.692305\pi\)
0.822989 + 0.568058i \(0.192305\pi\)
\(822\) 0 0
\(823\) 8.95159 0.312033 0.156016 0.987754i \(-0.450135\pi\)
0.156016 + 0.987754i \(0.450135\pi\)
\(824\) 0 0
\(825\) −130.650 −4.54865
\(826\) 0 0
\(827\) −37.1550 + 37.1550i −1.29201 + 1.29201i −0.358462 + 0.933544i \(0.616699\pi\)
−0.933544 + 0.358462i \(0.883301\pi\)
\(828\) 0 0
\(829\) −34.6202 + 34.6202i −1.20241 + 1.20241i −0.228980 + 0.973431i \(0.573539\pi\)
−0.973431 + 0.228980i \(0.926461\pi\)
\(830\) 0 0
\(831\) −36.2681 −1.25812
\(832\) 0 0
\(833\) −10.4928 −0.363553
\(834\) 0 0
\(835\) −24.1261 24.1261i −0.834918 0.834918i
\(836\) 0 0
\(837\) 5.22180 5.22180i 0.180492 0.180492i
\(838\) 0 0
\(839\) 38.8966i 1.34286i −0.741069 0.671429i \(-0.765681\pi\)
0.741069 0.671429i \(-0.234319\pi\)
\(840\) 0 0
\(841\) 50.0546i 1.72602i
\(842\) 0 0
\(843\) 41.4012 + 41.4012i 1.42593 + 1.42593i
\(844\) 0 0
\(845\) −39.3849 39.3849i −1.35488 1.35488i
\(846\) 0 0
\(847\) 1.20605i 0.0414403i
\(848\) 0 0
\(849\) 16.1303i 0.553591i
\(850\) 0 0
\(851\) 19.3463 + 19.3463i 0.663183 + 0.663183i
\(852\) 0 0
\(853\) 6.98168 6.98168i 0.239048 0.239048i −0.577408 0.816456i \(-0.695936\pi\)
0.816456 + 0.577408i \(0.195936\pi\)
\(854\) 0 0
\(855\) 81.4073 35.5565i 2.78407 1.21601i
\(856\) 0 0
\(857\) −5.73913 −0.196045 −0.0980225 0.995184i \(-0.531252\pi\)
−0.0980225 + 0.995184i \(0.531252\pi\)
\(858\) 0 0
\(859\) 22.8096 + 22.8096i 0.778253 + 0.778253i 0.979534 0.201280i \(-0.0645102\pi\)
−0.201280 + 0.979534i \(0.564510\pi\)
\(860\) 0 0
\(861\) 28.1519 + 28.1519i 0.959414 + 0.959414i
\(862\) 0 0
\(863\) −26.5805 −0.904812 −0.452406 0.891812i \(-0.649434\pi\)
−0.452406 + 0.891812i \(0.649434\pi\)
\(864\) 0 0
\(865\) 105.472i 3.58617i
\(866\) 0 0
\(867\) 11.0554 + 11.0554i 0.375461 + 0.375461i
\(868\) 0 0
\(869\) 17.4558 + 17.4558i 0.592146 + 0.592146i
\(870\) 0 0
\(871\) −0.801040 −0.0271422
\(872\) 0 0
\(873\) 37.0764 1.25485
\(874\) 0 0
\(875\) −53.3381 53.3381i −1.80316 1.80316i
\(876\) 0 0
\(877\) −4.70057 + 4.70057i −0.158727 + 0.158727i −0.782002 0.623276i \(-0.785802\pi\)
0.623276 + 0.782002i \(0.285802\pi\)
\(878\) 0 0
\(879\) 32.3369i 1.09070i
\(880\) 0 0
\(881\) 42.9256 1.44620 0.723099 0.690744i \(-0.242717\pi\)
0.723099 + 0.690744i \(0.242717\pi\)
\(882\) 0 0
\(883\) 3.21289 3.21289i 0.108123 0.108123i −0.650976 0.759098i \(-0.725640\pi\)
0.759098 + 0.650976i \(0.225640\pi\)
\(884\) 0 0
\(885\) 82.8463 82.8463i 2.78485 2.78485i
\(886\) 0 0
\(887\) 3.19152i 0.107161i −0.998564 0.0535804i \(-0.982937\pi\)
0.998564 0.0535804i \(-0.0170633\pi\)
\(888\) 0 0
\(889\) 18.0653 0.605889
\(890\) 0 0
\(891\) 2.46625 + 2.46625i 0.0826226 + 0.0826226i
\(892\) 0 0
\(893\) −0.0922772 0.0361734i −0.00308794 0.00121050i
\(894\) 0 0
\(895\) 54.1453 1.80988
\(896\) 0 0
\(897\) 3.86058 0.128901
\(898\) 0 0
\(899\) −9.85576 + 9.85576i −0.328708 + 0.328708i
\(900\) 0 0
\(901\) −13.3992 13.3992i −0.446393 0.446393i
\(902\) 0 0
\(903\) 28.8785i 0.961018i
\(904\) 0 0
\(905\) −45.6759 −1.51832
\(906\) 0 0
\(907\) −2.28293 + 2.28293i −0.0758035 + 0.0758035i −0.743992 0.668189i \(-0.767070\pi\)
0.668189 + 0.743992i \(0.267070\pi\)
\(908\) 0 0
\(909\) −1.02937 1.02937i −0.0341420 0.0341420i
\(910\) 0 0
\(911\) −31.5176 −1.04422 −0.522112 0.852877i \(-0.674856\pi\)
−0.522112 + 0.852877i \(0.674856\pi\)
\(912\) 0 0
\(913\) −2.29874 −0.0760772
\(914\) 0 0
\(915\) 24.9822 + 24.9822i 0.825887 + 0.825887i
\(916\) 0 0
\(917\) −20.4755 + 20.4755i −0.676160 + 0.676160i
\(918\) 0 0
\(919\) −5.00086 −0.164963 −0.0824815 0.996593i \(-0.526285\pi\)
−0.0824815 + 0.996593i \(0.526285\pi\)
\(920\) 0 0
\(921\) 18.4067i 0.606522i
\(922\) 0 0
\(923\) −1.02445 1.02445i −0.0337203 0.0337203i
\(924\) 0 0
\(925\) −76.9865 + 76.9865i −2.53130 + 2.53130i
\(926\) 0 0
\(927\) 48.9898 1.60904
\(928\) 0 0
\(929\) −53.9392 −1.76969 −0.884843 0.465889i \(-0.845735\pi\)
−0.884843 + 0.465889i \(0.845735\pi\)
\(930\) 0 0
\(931\) 4.95153 12.6312i 0.162280 0.413970i
\(932\) 0 0
\(933\) 42.6426 + 42.6426i 1.39605 + 1.39605i
\(934\) 0 0
\(935\) −49.8343 −1.62975
\(936\) 0 0
\(937\) 28.6384i 0.935574i −0.883841 0.467787i \(-0.845051\pi\)
0.883841 0.467787i \(-0.154949\pi\)
\(938\) 0 0
\(939\) 27.6816 27.6816i 0.903356 0.903356i
\(940\) 0 0
\(941\) 7.68798 7.68798i 0.250621 0.250621i −0.570604 0.821225i \(-0.693291\pi\)
0.821225 + 0.570604i \(0.193291\pi\)
\(942\) 0 0
\(943\) −25.2732 −0.823010
\(944\) 0 0
\(945\) 40.2928i 1.31072i
\(946\) 0 0
\(947\) 14.8820 14.8820i 0.483599 0.483599i −0.422680 0.906279i \(-0.638911\pi\)
0.906279 + 0.422680i \(0.138911\pi\)
\(948\) 0 0
\(949\) 1.73296 + 1.73296i 0.0562541 + 0.0562541i
\(950\) 0 0
\(951\) −6.73746 −0.218477
\(952\) 0 0
\(953\) −37.2259 −1.20587 −0.602933 0.797792i \(-0.706001\pi\)
−0.602933 + 0.797792i \(0.706001\pi\)
\(954\) 0 0
\(955\) −43.5184 43.5184i −1.40822 1.40822i
\(956\) 0 0
\(957\) 59.4404 + 59.4404i 1.92144 + 1.92144i
\(958\) 0 0
\(959\) 17.3352i 0.559781i
\(960\) 0 0
\(961\) −28.5426 −0.920728
\(962\) 0 0
\(963\) 31.7486 + 31.7486i 1.02308 + 1.02308i
\(964\) 0 0
\(965\) −3.38673 3.38673i −0.109023 0.109023i
\(966\) 0 0
\(967\) 11.4725 0.368929 0.184465 0.982839i \(-0.440945\pi\)
0.184465 + 0.982839i \(0.440945\pi\)
\(968\) 0 0
\(969\) 37.3620 16.3187i 1.20024 0.524233i
\(970\) 0 0
\(971\) −12.8634 + 12.8634i −0.412808 + 0.412808i −0.882715 0.469908i \(-0.844287\pi\)
0.469908 + 0.882715i \(0.344287\pi\)
\(972\) 0 0
\(973\) 2.70021 + 2.70021i 0.0865648 + 0.0865648i
\(974\) 0 0
\(975\) 15.3628i 0.492003i
\(976\) 0 0
\(977\) 4.12323i 0.131914i 0.997822 + 0.0659569i \(0.0210100\pi\)
−0.997822 + 0.0659569i \(0.978990\pi\)
\(978\) 0 0
\(979\) −28.4842 28.4842i −0.910358 0.910358i
\(980\) 0 0
\(981\) 9.59790 + 9.59790i 0.306437 + 0.306437i
\(982\) 0 0
\(983\) 43.7990i 1.39697i 0.715624 + 0.698485i \(0.246142\pi\)
−0.715624 + 0.698485i \(0.753858\pi\)
\(984\) 0 0
\(985\) 31.3922i 1.00024i
\(986\) 0 0
\(987\) −0.0879559 + 0.0879559i −0.00279967 + 0.00279967i
\(988\) 0 0
\(989\) 12.9628 + 12.9628i 0.412193 + 0.412193i
\(990\) 0 0
\(991\) −3.63673 −0.115525 −0.0577623 0.998330i \(-0.518397\pi\)
−0.0577623 + 0.998330i \(0.518397\pi\)
\(992\) 0 0
\(993\) −17.2059 −0.546014
\(994\) 0 0
\(995\) 28.8326 28.8326i 0.914056 0.914056i
\(996\) 0 0
\(997\) −36.6874 + 36.6874i −1.16190 + 1.16190i −0.177842 + 0.984059i \(0.556911\pi\)
−0.984059 + 0.177842i \(0.943089\pi\)
\(998\) 0 0
\(999\) −37.1148 −1.17426
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.m.a.303.5 76
4.3 odd 2 304.2.m.a.227.32 yes 76
16.5 even 4 304.2.m.a.75.7 76
16.11 odd 4 inner 1216.2.m.a.911.34 76
19.18 odd 2 inner 1216.2.m.a.303.34 76
76.75 even 2 304.2.m.a.227.7 yes 76
304.37 odd 4 304.2.m.a.75.32 yes 76
304.75 even 4 inner 1216.2.m.a.911.5 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
304.2.m.a.75.7 76 16.5 even 4
304.2.m.a.75.32 yes 76 304.37 odd 4
304.2.m.a.227.7 yes 76 76.75 even 2
304.2.m.a.227.32 yes 76 4.3 odd 2
1216.2.m.a.303.5 76 1.1 even 1 trivial
1216.2.m.a.303.34 76 19.18 odd 2 inner
1216.2.m.a.911.5 76 304.75 even 4 inner
1216.2.m.a.911.34 76 16.11 odd 4 inner