Properties

Label 1216.2.n.f.639.4
Level $1216$
Weight $2$
Character 1216.639
Analytic conductor $9.710$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(255,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.255");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 6 x^{14} - 9 x^{13} + 12 x^{12} - 9 x^{11} + 3 x^{10} + 6 x^{9} - 10 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 76)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 639.4
Root \(1.16486 + 0.801943i\) of defining polynomial
Character \(\chi\) \(=\) 1216.639
Dual form 1216.2.n.f.255.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.305055 - 0.528371i) q^{3} +(-1.59295 - 2.75907i) q^{5} -2.36291i q^{7} +(1.31388 - 2.27571i) q^{9} -5.46750i q^{11} +(2.31924 + 1.33901i) q^{13} +(-0.971875 + 1.68334i) q^{15} +(-0.552780 - 0.957443i) q^{17} +(1.37952 + 4.13484i) q^{19} +(-1.24849 + 0.720818i) q^{21} +(-2.46168 - 1.42125i) q^{23} +(-2.57499 + 4.46001i) q^{25} -3.43356 q^{27} +(5.63736 + 3.25473i) q^{29} -1.01504 q^{31} +(-2.88887 + 1.66789i) q^{33} +(-6.51945 + 3.76400i) q^{35} +0.450315i q^{37} -1.63389i q^{39} +(0.336089 - 0.194041i) q^{41} +(-4.96197 + 2.86479i) q^{43} -8.37180 q^{45} +(-2.91563 - 1.68334i) q^{47} +1.41665 q^{49} +(-0.337257 + 0.584146i) q^{51} +(3.53036 + 2.03825i) q^{53} +(-15.0852 + 8.70946i) q^{55} +(1.76390 - 1.99025i) q^{57} +(-6.82450 - 11.8204i) q^{59} +(6.77885 - 11.7413i) q^{61} +(-5.37731 - 3.10459i) q^{63} -8.53193i q^{65} +(-4.27064 + 7.39696i) q^{67} +1.73424i q^{69} +(-1.07447 - 1.86103i) q^{71} +(3.91944 + 6.78867i) q^{73} +3.14205 q^{75} -12.9192 q^{77} +(5.57208 + 9.65112i) q^{79} +(-2.89422 - 5.01294i) q^{81} -4.14868i q^{83} +(-1.76110 + 3.05032i) q^{85} -3.97149i q^{87} +(4.19126 + 2.41982i) q^{89} +(3.16397 - 5.48016i) q^{91} +(0.309642 + 0.536316i) q^{93} +(9.21082 - 10.3928i) q^{95} +(-0.641491 + 0.370365i) q^{97} +(-12.4425 - 7.18366i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{5} - 4 q^{9} + 18 q^{13} + 2 q^{17} - 2 q^{25} + 6 q^{29} + 18 q^{33} - 48 q^{41} - 24 q^{45} + 16 q^{49} - 6 q^{53} - 26 q^{57} + 26 q^{61} + 16 q^{73} - 80 q^{77} + 12 q^{81} - 14 q^{85} + 18 q^{89}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.305055 0.528371i −0.176124 0.305055i 0.764426 0.644712i \(-0.223023\pi\)
−0.940550 + 0.339657i \(0.889689\pi\)
\(4\) 0 0
\(5\) −1.59295 2.75907i −0.712389 1.23389i −0.963958 0.266055i \(-0.914280\pi\)
0.251569 0.967839i \(-0.419054\pi\)
\(6\) 0 0
\(7\) 2.36291i 0.893097i −0.894759 0.446548i \(-0.852653\pi\)
0.894759 0.446548i \(-0.147347\pi\)
\(8\) 0 0
\(9\) 1.31388 2.27571i 0.437961 0.758571i
\(10\) 0 0
\(11\) 5.46750i 1.64851i −0.566216 0.824257i \(-0.691593\pi\)
0.566216 0.824257i \(-0.308407\pi\)
\(12\) 0 0
\(13\) 2.31924 + 1.33901i 0.643241 + 0.371375i 0.785862 0.618402i \(-0.212220\pi\)
−0.142621 + 0.989777i \(0.545553\pi\)
\(14\) 0 0
\(15\) −0.971875 + 1.68334i −0.250937 + 0.434636i
\(16\) 0 0
\(17\) −0.552780 0.957443i −0.134069 0.232214i 0.791173 0.611593i \(-0.209471\pi\)
−0.925241 + 0.379379i \(0.876138\pi\)
\(18\) 0 0
\(19\) 1.37952 + 4.13484i 0.316484 + 0.948598i
\(20\) 0 0
\(21\) −1.24849 + 0.720818i −0.272444 + 0.157295i
\(22\) 0 0
\(23\) −2.46168 1.42125i −0.513296 0.296352i 0.220891 0.975298i \(-0.429103\pi\)
−0.734187 + 0.678947i \(0.762437\pi\)
\(24\) 0 0
\(25\) −2.57499 + 4.46001i −0.514997 + 0.892001i
\(26\) 0 0
\(27\) −3.43356 −0.660788
\(28\) 0 0
\(29\) 5.63736 + 3.25473i 1.04683 + 0.604389i 0.921761 0.387759i \(-0.126751\pi\)
0.125071 + 0.992148i \(0.460084\pi\)
\(30\) 0 0
\(31\) −1.01504 −0.182306 −0.0911531 0.995837i \(-0.529055\pi\)
−0.0911531 + 0.995837i \(0.529055\pi\)
\(32\) 0 0
\(33\) −2.88887 + 1.66789i −0.502887 + 0.290342i
\(34\) 0 0
\(35\) −6.51945 + 3.76400i −1.10199 + 0.636233i
\(36\) 0 0
\(37\) 0.450315i 0.0740314i 0.999315 + 0.0370157i \(0.0117851\pi\)
−0.999315 + 0.0370157i \(0.988215\pi\)
\(38\) 0 0
\(39\) 1.63389i 0.261632i
\(40\) 0 0
\(41\) 0.336089 0.194041i 0.0524882 0.0303041i −0.473526 0.880780i \(-0.657019\pi\)
0.526014 + 0.850476i \(0.323686\pi\)
\(42\) 0 0
\(43\) −4.96197 + 2.86479i −0.756693 + 0.436877i −0.828107 0.560570i \(-0.810582\pi\)
0.0714141 + 0.997447i \(0.477249\pi\)
\(44\) 0 0
\(45\) −8.37180 −1.24799
\(46\) 0 0
\(47\) −2.91563 1.68334i −0.425288 0.245540i 0.272049 0.962283i \(-0.412299\pi\)
−0.697337 + 0.716743i \(0.745632\pi\)
\(48\) 0 0
\(49\) 1.41665 0.202378
\(50\) 0 0
\(51\) −0.337257 + 0.584146i −0.0472254 + 0.0817967i
\(52\) 0 0
\(53\) 3.53036 + 2.03825i 0.484932 + 0.279976i 0.722470 0.691403i \(-0.243007\pi\)
−0.237537 + 0.971378i \(0.576340\pi\)
\(54\) 0 0
\(55\) −15.0852 + 8.70946i −2.03409 + 1.17438i
\(56\) 0 0
\(57\) 1.76390 1.99025i 0.233634 0.263616i
\(58\) 0 0
\(59\) −6.82450 11.8204i −0.888474 1.53888i −0.841679 0.539978i \(-0.818433\pi\)
−0.0467951 0.998905i \(-0.514901\pi\)
\(60\) 0 0
\(61\) 6.77885 11.7413i 0.867943 1.50332i 0.00384839 0.999993i \(-0.498775\pi\)
0.864095 0.503329i \(-0.167892\pi\)
\(62\) 0 0
\(63\) −5.37731 3.10459i −0.677477 0.391142i
\(64\) 0 0
\(65\) 8.53193i 1.05826i
\(66\) 0 0
\(67\) −4.27064 + 7.39696i −0.521742 + 0.903683i 0.477939 + 0.878393i \(0.341384\pi\)
−0.999680 + 0.0252897i \(0.991949\pi\)
\(68\) 0 0
\(69\) 1.73424i 0.208778i
\(70\) 0 0
\(71\) −1.07447 1.86103i −0.127516 0.220864i 0.795198 0.606350i \(-0.207367\pi\)
−0.922714 + 0.385486i \(0.874034\pi\)
\(72\) 0 0
\(73\) 3.91944 + 6.78867i 0.458736 + 0.794554i 0.998894 0.0470092i \(-0.0149690\pi\)
−0.540158 + 0.841563i \(0.681636\pi\)
\(74\) 0 0
\(75\) 3.14205 0.362813
\(76\) 0 0
\(77\) −12.9192 −1.47228
\(78\) 0 0
\(79\) 5.57208 + 9.65112i 0.626908 + 1.08584i 0.988169 + 0.153371i \(0.0490131\pi\)
−0.361261 + 0.932465i \(0.617654\pi\)
\(80\) 0 0
\(81\) −2.89422 5.01294i −0.321581 0.556994i
\(82\) 0 0
\(83\) 4.14868i 0.455376i −0.973734 0.227688i \(-0.926883\pi\)
0.973734 0.227688i \(-0.0731167\pi\)
\(84\) 0 0
\(85\) −1.76110 + 3.05032i −0.191018 + 0.330854i
\(86\) 0 0
\(87\) 3.97149i 0.425788i
\(88\) 0 0
\(89\) 4.19126 + 2.41982i 0.444272 + 0.256501i 0.705408 0.708801i \(-0.250764\pi\)
−0.261136 + 0.965302i \(0.584097\pi\)
\(90\) 0 0
\(91\) 3.16397 5.48016i 0.331674 0.574477i
\(92\) 0 0
\(93\) 0.309642 + 0.536316i 0.0321084 + 0.0556134i
\(94\) 0 0
\(95\) 9.21082 10.3928i 0.945010 1.06628i
\(96\) 0 0
\(97\) −0.641491 + 0.370365i −0.0651335 + 0.0376048i −0.532213 0.846610i \(-0.678639\pi\)
0.467080 + 0.884215i \(0.345306\pi\)
\(98\) 0 0
\(99\) −12.4425 7.18366i −1.25051 0.721985i
\(100\) 0 0
\(101\) −2.69851 + 4.67396i −0.268512 + 0.465076i −0.968478 0.249100i \(-0.919865\pi\)
0.699966 + 0.714176i \(0.253199\pi\)
\(102\) 0 0
\(103\) −7.54816 −0.743743 −0.371871 0.928284i \(-0.621284\pi\)
−0.371871 + 0.928284i \(0.621284\pi\)
\(104\) 0 0
\(105\) 3.97758 + 2.29646i 0.388172 + 0.224111i
\(106\) 0 0
\(107\) 18.4008 1.77887 0.889437 0.457058i \(-0.151097\pi\)
0.889437 + 0.457058i \(0.151097\pi\)
\(108\) 0 0
\(109\) −4.23847 + 2.44708i −0.405971 + 0.234388i −0.689057 0.724707i \(-0.741975\pi\)
0.283086 + 0.959095i \(0.408642\pi\)
\(110\) 0 0
\(111\) 0.237933 0.137371i 0.0225836 0.0130387i
\(112\) 0 0
\(113\) 17.8362i 1.67789i 0.544220 + 0.838943i \(0.316826\pi\)
−0.544220 + 0.838943i \(0.683174\pi\)
\(114\) 0 0
\(115\) 9.05594i 0.844471i
\(116\) 0 0
\(117\) 6.09442 3.51861i 0.563429 0.325296i
\(118\) 0 0
\(119\) −2.26235 + 1.30617i −0.207390 + 0.119736i
\(120\) 0 0
\(121\) −18.8936 −1.71760
\(122\) 0 0
\(123\) −0.205051 0.118386i −0.0184888 0.0106745i
\(124\) 0 0
\(125\) 0.477794 0.0427352
\(126\) 0 0
\(127\) 4.84855 8.39793i 0.430239 0.745196i −0.566655 0.823955i \(-0.691763\pi\)
0.996894 + 0.0787596i \(0.0250959\pi\)
\(128\) 0 0
\(129\) 3.02735 + 1.74784i 0.266543 + 0.153889i
\(130\) 0 0
\(131\) −6.81626 + 3.93537i −0.595539 + 0.343835i −0.767285 0.641307i \(-0.778393\pi\)
0.171745 + 0.985141i \(0.445059\pi\)
\(132\) 0 0
\(133\) 9.77027 3.25969i 0.847190 0.282651i
\(134\) 0 0
\(135\) 5.46949 + 9.47343i 0.470739 + 0.815343i
\(136\) 0 0
\(137\) 5.32438 9.22210i 0.454893 0.787897i −0.543790 0.839222i \(-0.683011\pi\)
0.998682 + 0.0513247i \(0.0163443\pi\)
\(138\) 0 0
\(139\) 3.86571 + 2.23187i 0.327885 + 0.189305i 0.654902 0.755714i \(-0.272710\pi\)
−0.327017 + 0.945019i \(0.606043\pi\)
\(140\) 0 0
\(141\) 2.05404i 0.172982i
\(142\) 0 0
\(143\) 7.32106 12.6804i 0.612218 1.06039i
\(144\) 0 0
\(145\) 20.7385i 1.72224i
\(146\) 0 0
\(147\) −0.432155 0.748514i −0.0356435 0.0617364i
\(148\) 0 0
\(149\) 4.00960 + 6.94483i 0.328479 + 0.568942i 0.982210 0.187785i \(-0.0601307\pi\)
−0.653731 + 0.756727i \(0.726797\pi\)
\(150\) 0 0
\(151\) 5.53975 0.450818 0.225409 0.974264i \(-0.427628\pi\)
0.225409 + 0.974264i \(0.427628\pi\)
\(152\) 0 0
\(153\) −2.90515 −0.234868
\(154\) 0 0
\(155\) 1.61691 + 2.80056i 0.129873 + 0.224947i
\(156\) 0 0
\(157\) −1.42480 2.46782i −0.113711 0.196954i 0.803553 0.595234i \(-0.202941\pi\)
−0.917264 + 0.398280i \(0.869607\pi\)
\(158\) 0 0
\(159\) 2.48712i 0.197241i
\(160\) 0 0
\(161\) −3.35829 + 5.81674i −0.264671 + 0.458423i
\(162\) 0 0
\(163\) 8.60401i 0.673918i −0.941519 0.336959i \(-0.890602\pi\)
0.941519 0.336959i \(-0.109398\pi\)
\(164\) 0 0
\(165\) 9.20365 + 5.31373i 0.716503 + 0.413673i
\(166\) 0 0
\(167\) −9.00563 + 15.5982i −0.696877 + 1.20703i 0.272667 + 0.962108i \(0.412094\pi\)
−0.969544 + 0.244918i \(0.921239\pi\)
\(168\) 0 0
\(169\) −2.91409 5.04735i −0.224161 0.388257i
\(170\) 0 0
\(171\) 11.2222 + 2.29330i 0.858186 + 0.175373i
\(172\) 0 0
\(173\) 15.3081 8.83813i 1.16385 0.671951i 0.211629 0.977350i \(-0.432123\pi\)
0.952224 + 0.305399i \(0.0987899\pi\)
\(174\) 0 0
\(175\) 10.5386 + 6.08447i 0.796644 + 0.459942i
\(176\) 0 0
\(177\) −4.16370 + 7.21173i −0.312963 + 0.542067i
\(178\) 0 0
\(179\) 14.9607 1.11822 0.559108 0.829095i \(-0.311144\pi\)
0.559108 + 0.829095i \(0.311144\pi\)
\(180\) 0 0
\(181\) −15.1591 8.75213i −1.12677 0.650541i −0.183649 0.982992i \(-0.558791\pi\)
−0.943121 + 0.332451i \(0.892124\pi\)
\(182\) 0 0
\(183\) −8.27169 −0.611461
\(184\) 0 0
\(185\) 1.24245 0.717330i 0.0913469 0.0527392i
\(186\) 0 0
\(187\) −5.23482 + 3.02233i −0.382808 + 0.221014i
\(188\) 0 0
\(189\) 8.11319i 0.590148i
\(190\) 0 0
\(191\) 18.6529i 1.34967i −0.737967 0.674837i \(-0.764214\pi\)
0.737967 0.674837i \(-0.235786\pi\)
\(192\) 0 0
\(193\) −6.44722 + 3.72230i −0.464081 + 0.267937i −0.713759 0.700392i \(-0.753009\pi\)
0.249678 + 0.968329i \(0.419675\pi\)
\(194\) 0 0
\(195\) −4.50802 + 2.60271i −0.322826 + 0.186384i
\(196\) 0 0
\(197\) −14.1748 −1.00991 −0.504955 0.863146i \(-0.668491\pi\)
−0.504955 + 0.863146i \(0.668491\pi\)
\(198\) 0 0
\(199\) 5.81457 + 3.35704i 0.412184 + 0.237974i 0.691728 0.722159i \(-0.256850\pi\)
−0.279544 + 0.960133i \(0.590183\pi\)
\(200\) 0 0
\(201\) 5.21112 0.367564
\(202\) 0 0
\(203\) 7.69065 13.3206i 0.539778 0.934922i
\(204\) 0 0
\(205\) −1.07075 0.618195i −0.0747841 0.0431766i
\(206\) 0 0
\(207\) −6.46872 + 3.73472i −0.449607 + 0.259581i
\(208\) 0 0
\(209\) 22.6073 7.54254i 1.56378 0.521728i
\(210\) 0 0
\(211\) 3.81983 + 6.61614i 0.262968 + 0.455474i 0.967029 0.254665i \(-0.0819653\pi\)
−0.704061 + 0.710139i \(0.748632\pi\)
\(212\) 0 0
\(213\) −0.655543 + 1.13543i −0.0449171 + 0.0777986i
\(214\) 0 0
\(215\) 15.8083 + 9.12695i 1.07812 + 0.622453i
\(216\) 0 0
\(217\) 2.39845i 0.162817i
\(218\) 0 0
\(219\) 2.39129 4.14184i 0.161589 0.279880i
\(220\) 0 0
\(221\) 2.96072i 0.199160i
\(222\) 0 0
\(223\) 0.858455 + 1.48689i 0.0574864 + 0.0995693i 0.893336 0.449388i \(-0.148358\pi\)
−0.835850 + 0.548958i \(0.815025\pi\)
\(224\) 0 0
\(225\) 6.76646 + 11.7199i 0.451097 + 0.781323i
\(226\) 0 0
\(227\) −17.2724 −1.14641 −0.573203 0.819413i \(-0.694299\pi\)
−0.573203 + 0.819413i \(0.694299\pi\)
\(228\) 0 0
\(229\) −16.7940 −1.10978 −0.554891 0.831923i \(-0.687240\pi\)
−0.554891 + 0.831923i \(0.687240\pi\)
\(230\) 0 0
\(231\) 3.94108 + 6.82614i 0.259304 + 0.449127i
\(232\) 0 0
\(233\) −1.66348 2.88123i −0.108978 0.188756i 0.806378 0.591400i \(-0.201425\pi\)
−0.915357 + 0.402644i \(0.868091\pi\)
\(234\) 0 0
\(235\) 10.7259i 0.699680i
\(236\) 0 0
\(237\) 3.39958 5.88825i 0.220827 0.382483i
\(238\) 0 0
\(239\) 4.83178i 0.312542i 0.987714 + 0.156271i \(0.0499473\pi\)
−0.987714 + 0.156271i \(0.950053\pi\)
\(240\) 0 0
\(241\) 23.1768 + 13.3811i 1.49295 + 0.861954i 0.999967 0.00808705i \(-0.00257422\pi\)
0.492980 + 0.870041i \(0.335908\pi\)
\(242\) 0 0
\(243\) −6.91613 + 11.9791i −0.443670 + 0.768459i
\(244\) 0 0
\(245\) −2.25665 3.90863i −0.144172 0.249713i
\(246\) 0 0
\(247\) −2.33717 + 11.4369i −0.148710 + 0.727712i
\(248\) 0 0
\(249\) −2.19204 + 1.26557i −0.138915 + 0.0802025i
\(250\) 0 0
\(251\) 12.7393 + 7.35502i 0.804096 + 0.464245i 0.844901 0.534922i \(-0.179659\pi\)
−0.0408056 + 0.999167i \(0.512992\pi\)
\(252\) 0 0
\(253\) −7.77070 + 13.4592i −0.488540 + 0.846176i
\(254\) 0 0
\(255\) 2.14893 0.134571
\(256\) 0 0
\(257\) −8.75454 5.05443i −0.546093 0.315287i 0.201452 0.979498i \(-0.435434\pi\)
−0.747545 + 0.664212i \(0.768767\pi\)
\(258\) 0 0
\(259\) 1.06406 0.0661172
\(260\) 0 0
\(261\) 14.8137 8.55268i 0.916943 0.529397i
\(262\) 0 0
\(263\) 13.6702 7.89252i 0.842943 0.486673i −0.0153204 0.999883i \(-0.504877\pi\)
0.858264 + 0.513209i \(0.171543\pi\)
\(264\) 0 0
\(265\) 12.9874i 0.797807i
\(266\) 0 0
\(267\) 2.95272i 0.180703i
\(268\) 0 0
\(269\) 0.0632774 0.0365332i 0.00385809 0.00222747i −0.498070 0.867137i \(-0.665958\pi\)
0.501928 + 0.864910i \(0.332624\pi\)
\(270\) 0 0
\(271\) 6.48453 3.74384i 0.393907 0.227422i −0.289945 0.957043i \(-0.593637\pi\)
0.683852 + 0.729621i \(0.260304\pi\)
\(272\) 0 0
\(273\) −3.86074 −0.233663
\(274\) 0 0
\(275\) 24.3851 + 14.0787i 1.47048 + 0.848980i
\(276\) 0 0
\(277\) 19.0585 1.14511 0.572557 0.819865i \(-0.305952\pi\)
0.572557 + 0.819865i \(0.305952\pi\)
\(278\) 0 0
\(279\) −1.33364 + 2.30993i −0.0798430 + 0.138292i
\(280\) 0 0
\(281\) −7.58314 4.37813i −0.452372 0.261177i 0.256459 0.966555i \(-0.417444\pi\)
−0.708832 + 0.705378i \(0.750777\pi\)
\(282\) 0 0
\(283\) 17.9331 10.3537i 1.06601 0.615461i 0.138921 0.990303i \(-0.455637\pi\)
0.927088 + 0.374843i \(0.122303\pi\)
\(284\) 0 0
\(285\) −8.30106 1.69635i −0.491712 0.100483i
\(286\) 0 0
\(287\) −0.458501 0.794148i −0.0270645 0.0468771i
\(288\) 0 0
\(289\) 7.88887 13.6639i 0.464051 0.803760i
\(290\) 0 0
\(291\) 0.391380 + 0.225963i 0.0229431 + 0.0132462i
\(292\) 0 0
\(293\) 19.7950i 1.15643i −0.815883 0.578217i \(-0.803749\pi\)
0.815883 0.578217i \(-0.196251\pi\)
\(294\) 0 0
\(295\) −21.7422 + 37.6586i −1.26588 + 2.19257i
\(296\) 0 0
\(297\) 18.7730i 1.08932i
\(298\) 0 0
\(299\) −3.80615 6.59245i −0.220115 0.381251i
\(300\) 0 0
\(301\) 6.76926 + 11.7247i 0.390173 + 0.675800i
\(302\) 0 0
\(303\) 3.29278 0.189165
\(304\) 0 0
\(305\) −43.1935 −2.47325
\(306\) 0 0
\(307\) −4.47582 7.75235i −0.255449 0.442450i 0.709569 0.704636i \(-0.248890\pi\)
−0.965017 + 0.262186i \(0.915556\pi\)
\(308\) 0 0
\(309\) 2.30260 + 3.98823i 0.130991 + 0.226882i
\(310\) 0 0
\(311\) 0.249429i 0.0141438i −0.999975 0.00707191i \(-0.997749\pi\)
0.999975 0.00707191i \(-0.00225108\pi\)
\(312\) 0 0
\(313\) 11.8686 20.5570i 0.670852 1.16195i −0.306811 0.951770i \(-0.599262\pi\)
0.977663 0.210179i \(-0.0674046\pi\)
\(314\) 0 0
\(315\) 19.7818i 1.11458i
\(316\) 0 0
\(317\) 14.6359 + 8.45005i 0.822035 + 0.474602i 0.851118 0.524975i \(-0.175925\pi\)
−0.0290826 + 0.999577i \(0.509259\pi\)
\(318\) 0 0
\(319\) 17.7953 30.8223i 0.996343 1.72572i
\(320\) 0 0
\(321\) −5.61326 9.72245i −0.313302 0.542654i
\(322\) 0 0
\(323\) 3.19630 3.60647i 0.177847 0.200669i
\(324\) 0 0
\(325\) −11.9440 + 6.89588i −0.662535 + 0.382515i
\(326\) 0 0
\(327\) 2.58593 + 1.49299i 0.143002 + 0.0825624i
\(328\) 0 0
\(329\) −3.97758 + 6.88937i −0.219291 + 0.379823i
\(330\) 0 0
\(331\) −9.72419 −0.534490 −0.267245 0.963629i \(-0.586113\pi\)
−0.267245 + 0.963629i \(0.586113\pi\)
\(332\) 0 0
\(333\) 1.02479 + 0.591661i 0.0561580 + 0.0324228i
\(334\) 0 0
\(335\) 27.2117 1.48673
\(336\) 0 0
\(337\) 8.24404 4.75970i 0.449081 0.259277i −0.258361 0.966049i \(-0.583182\pi\)
0.707442 + 0.706771i \(0.249849\pi\)
\(338\) 0 0
\(339\) 9.42411 5.44101i 0.511847 0.295515i
\(340\) 0 0
\(341\) 5.54972i 0.300534i
\(342\) 0 0
\(343\) 19.8878i 1.07384i
\(344\) 0 0
\(345\) 4.78489 2.76256i 0.257610 0.148731i
\(346\) 0 0
\(347\) 15.9269 9.19538i 0.854999 0.493634i −0.00733524 0.999973i \(-0.502335\pi\)
0.862334 + 0.506339i \(0.169002\pi\)
\(348\) 0 0
\(349\) −5.86074 −0.313718 −0.156859 0.987621i \(-0.550137\pi\)
−0.156859 + 0.987621i \(0.550137\pi\)
\(350\) 0 0
\(351\) −7.96324 4.59758i −0.425046 0.245401i
\(352\) 0 0
\(353\) −12.9828 −0.691006 −0.345503 0.938418i \(-0.612292\pi\)
−0.345503 + 0.938418i \(0.612292\pi\)
\(354\) 0 0
\(355\) −3.42315 + 5.92906i −0.181682 + 0.314682i
\(356\) 0 0
\(357\) 1.38028 + 0.796908i 0.0730524 + 0.0421768i
\(358\) 0 0
\(359\) 29.5172 17.0418i 1.55786 0.899430i 0.560396 0.828225i \(-0.310649\pi\)
0.997462 0.0712049i \(-0.0226844\pi\)
\(360\) 0 0
\(361\) −15.1938 + 11.4082i −0.799676 + 0.600432i
\(362\) 0 0
\(363\) 5.76358 + 9.98282i 0.302510 + 0.523962i
\(364\) 0 0
\(365\) 12.4870 21.6281i 0.653597 1.13206i
\(366\) 0 0
\(367\) 11.3161 + 6.53337i 0.590697 + 0.341039i 0.765373 0.643587i \(-0.222554\pi\)
−0.174676 + 0.984626i \(0.555888\pi\)
\(368\) 0 0
\(369\) 1.01979i 0.0530880i
\(370\) 0 0
\(371\) 4.81621 8.34193i 0.250045 0.433091i
\(372\) 0 0
\(373\) 11.8954i 0.615922i −0.951399 0.307961i \(-0.900353\pi\)
0.951399 0.307961i \(-0.0996466\pi\)
\(374\) 0 0
\(375\) −0.145754 0.252453i −0.00752668 0.0130366i
\(376\) 0 0
\(377\) 8.71626 + 15.0970i 0.448910 + 0.777535i
\(378\) 0 0
\(379\) 8.93709 0.459068 0.229534 0.973301i \(-0.426280\pi\)
0.229534 + 0.973301i \(0.426280\pi\)
\(380\) 0 0
\(381\) −5.91630 −0.303101
\(382\) 0 0
\(383\) −6.14400 10.6417i −0.313944 0.543767i 0.665269 0.746604i \(-0.268317\pi\)
−0.979212 + 0.202838i \(0.934984\pi\)
\(384\) 0 0
\(385\) 20.5797 + 35.6451i 1.04884 + 1.81664i
\(386\) 0 0
\(387\) 15.0560i 0.765340i
\(388\) 0 0
\(389\) 3.61961 6.26935i 0.183522 0.317869i −0.759556 0.650442i \(-0.774584\pi\)
0.943077 + 0.332573i \(0.107917\pi\)
\(390\) 0 0
\(391\) 3.14256i 0.158926i
\(392\) 0 0
\(393\) 4.15867 + 2.40101i 0.209777 + 0.121115i
\(394\) 0 0
\(395\) 17.7521 30.7475i 0.893205 1.54708i
\(396\) 0 0
\(397\) 14.7425 + 25.5347i 0.739904 + 1.28155i 0.952538 + 0.304420i \(0.0984627\pi\)
−0.212633 + 0.977132i \(0.568204\pi\)
\(398\) 0 0
\(399\) −4.70279 4.16794i −0.235434 0.208658i
\(400\) 0 0
\(401\) 3.17820 1.83494i 0.158712 0.0916323i −0.418541 0.908198i \(-0.637458\pi\)
0.577252 + 0.816566i \(0.304125\pi\)
\(402\) 0 0
\(403\) −2.35412 1.35915i −0.117267 0.0677040i
\(404\) 0 0
\(405\) −9.22072 + 15.9707i −0.458181 + 0.793593i
\(406\) 0 0
\(407\) 2.46210 0.122042
\(408\) 0 0
\(409\) 0.913849 + 0.527611i 0.0451869 + 0.0260887i 0.522423 0.852686i \(-0.325028\pi\)
−0.477236 + 0.878775i \(0.658361\pi\)
\(410\) 0 0
\(411\) −6.49692 −0.320469
\(412\) 0 0
\(413\) −27.9305 + 16.1257i −1.37437 + 0.793494i
\(414\) 0 0
\(415\) −11.4465 + 6.60864i −0.561886 + 0.324405i
\(416\) 0 0
\(417\) 2.72337i 0.133364i
\(418\) 0 0
\(419\) 12.9932i 0.634757i −0.948299 0.317379i \(-0.897197\pi\)
0.948299 0.317379i \(-0.102803\pi\)
\(420\) 0 0
\(421\) −28.8014 + 16.6285i −1.40369 + 0.810424i −0.994770 0.102144i \(-0.967430\pi\)
−0.408925 + 0.912568i \(0.634096\pi\)
\(422\) 0 0
\(423\) −7.66158 + 4.42342i −0.372519 + 0.215074i
\(424\) 0 0
\(425\) 5.69360 0.276180
\(426\) 0 0
\(427\) −27.7437 16.0178i −1.34261 0.775157i
\(428\) 0 0
\(429\) −8.93330 −0.431304
\(430\) 0 0
\(431\) −4.67046 + 8.08948i −0.224968 + 0.389656i −0.956310 0.292355i \(-0.905561\pi\)
0.731342 + 0.682011i \(0.238894\pi\)
\(432\) 0 0
\(433\) −11.4412 6.60558i −0.549829 0.317444i 0.199224 0.979954i \(-0.436158\pi\)
−0.749053 + 0.662510i \(0.769491\pi\)
\(434\) 0 0
\(435\) −10.9576 + 6.32639i −0.525378 + 0.303327i
\(436\) 0 0
\(437\) 2.48071 12.1393i 0.118669 0.580702i
\(438\) 0 0
\(439\) −9.90270 17.1520i −0.472630 0.818619i 0.526879 0.849940i \(-0.323362\pi\)
−0.999509 + 0.0313210i \(0.990029\pi\)
\(440\) 0 0
\(441\) 1.86131 3.22388i 0.0886336 0.153518i
\(442\) 0 0
\(443\) −8.86172 5.11632i −0.421033 0.243084i 0.274486 0.961591i \(-0.411492\pi\)
−0.695519 + 0.718508i \(0.744826\pi\)
\(444\) 0 0
\(445\) 15.4186i 0.730914i
\(446\) 0 0
\(447\) 2.44630 4.23711i 0.115706 0.200408i
\(448\) 0 0
\(449\) 9.69618i 0.457591i −0.973475 0.228795i \(-0.926521\pi\)
0.973475 0.228795i \(-0.0734787\pi\)
\(450\) 0 0
\(451\) −1.06092 1.83757i −0.0499567 0.0865276i
\(452\) 0 0
\(453\) −1.68993 2.92704i −0.0793997 0.137524i
\(454\) 0 0
\(455\) −20.1602 −0.945125
\(456\) 0 0
\(457\) −8.85003 −0.413987 −0.206993 0.978342i \(-0.566368\pi\)
−0.206993 + 0.978342i \(0.566368\pi\)
\(458\) 0 0
\(459\) 1.89800 + 3.28743i 0.0885911 + 0.153444i
\(460\) 0 0
\(461\) 4.85595 + 8.41075i 0.226164 + 0.391728i 0.956668 0.291181i \(-0.0940481\pi\)
−0.730504 + 0.682909i \(0.760715\pi\)
\(462\) 0 0
\(463\) 38.4094i 1.78504i 0.451013 + 0.892518i \(0.351063\pi\)
−0.451013 + 0.892518i \(0.648937\pi\)
\(464\) 0 0
\(465\) 0.986490 1.70865i 0.0457474 0.0792368i
\(466\) 0 0
\(467\) 21.7838i 1.00803i 0.863694 + 0.504016i \(0.168145\pi\)
−0.863694 + 0.504016i \(0.831855\pi\)
\(468\) 0 0
\(469\) 17.4784 + 10.0911i 0.807076 + 0.465966i
\(470\) 0 0
\(471\) −0.869284 + 1.50564i −0.0400545 + 0.0693764i
\(472\) 0 0
\(473\) 15.6633 + 27.1296i 0.720198 + 1.24742i
\(474\) 0 0
\(475\) −21.9937 4.49448i −1.00914 0.206221i
\(476\) 0 0
\(477\) 9.27696 5.35605i 0.424763 0.245237i
\(478\) 0 0
\(479\) −10.5544 6.09359i −0.482243 0.278423i 0.239108 0.970993i \(-0.423145\pi\)
−0.721351 + 0.692570i \(0.756478\pi\)
\(480\) 0 0
\(481\) −0.602978 + 1.04439i −0.0274934 + 0.0476200i
\(482\) 0 0
\(483\) 4.09786 0.186459
\(484\) 0 0
\(485\) 2.04373 + 1.17995i 0.0928008 + 0.0535786i
\(486\) 0 0
\(487\) −27.8697 −1.26290 −0.631448 0.775418i \(-0.717539\pi\)
−0.631448 + 0.775418i \(0.717539\pi\)
\(488\) 0 0
\(489\) −4.54611 + 2.62470i −0.205582 + 0.118693i
\(490\) 0 0
\(491\) 14.9996 8.66002i 0.676922 0.390821i −0.121772 0.992558i \(-0.538858\pi\)
0.798694 + 0.601737i \(0.205524\pi\)
\(492\) 0 0
\(493\) 7.19660i 0.324119i
\(494\) 0 0
\(495\) 45.7729i 2.05734i
\(496\) 0 0
\(497\) −4.39745 + 2.53887i −0.197253 + 0.113884i
\(498\) 0 0
\(499\) 1.00693 0.581349i 0.0450762 0.0260248i −0.477293 0.878744i \(-0.658382\pi\)
0.522369 + 0.852720i \(0.325048\pi\)
\(500\) 0 0
\(501\) 10.9889 0.490946
\(502\) 0 0
\(503\) 11.1928 + 6.46214i 0.499060 + 0.288133i 0.728325 0.685231i \(-0.240299\pi\)
−0.229265 + 0.973364i \(0.573632\pi\)
\(504\) 0 0
\(505\) 17.1944 0.765140
\(506\) 0 0
\(507\) −1.77791 + 3.07944i −0.0789599 + 0.136763i
\(508\) 0 0
\(509\) −25.6884 14.8312i −1.13862 0.657381i −0.192530 0.981291i \(-0.561669\pi\)
−0.946088 + 0.323910i \(0.895002\pi\)
\(510\) 0 0
\(511\) 16.0410 9.26130i 0.709614 0.409696i
\(512\) 0 0
\(513\) −4.73667 14.1972i −0.209129 0.626822i
\(514\) 0 0
\(515\) 12.0239 + 20.8259i 0.529834 + 0.917700i
\(516\) 0 0
\(517\) −9.20365 + 15.9412i −0.404776 + 0.701093i
\(518\) 0 0
\(519\) −9.33962 5.39223i −0.409964 0.236693i
\(520\) 0 0
\(521\) 35.2430i 1.54402i −0.635608 0.772012i \(-0.719251\pi\)
0.635608 0.772012i \(-0.280749\pi\)
\(522\) 0 0
\(523\) −11.4242 + 19.7872i −0.499543 + 0.865234i −1.00000 0.000527203i \(-0.999832\pi\)
0.500457 + 0.865762i \(0.333166\pi\)
\(524\) 0 0
\(525\) 7.42439i 0.324027i
\(526\) 0 0
\(527\) 0.561093 + 0.971841i 0.0244416 + 0.0423341i
\(528\) 0 0
\(529\) −7.46008 12.9212i −0.324351 0.561793i
\(530\) 0 0
\(531\) −35.8664 −1.55647
\(532\) 0 0
\(533\) 1.03929 0.0450168
\(534\) 0 0
\(535\) −29.3116 50.7692i −1.26725 2.19494i
\(536\) 0 0
\(537\) −4.56384 7.90481i −0.196944 0.341118i
\(538\) 0 0
\(539\) 7.74551i 0.333623i
\(540\) 0 0
\(541\) 18.2188 31.5560i 0.783289 1.35670i −0.146727 0.989177i \(-0.546874\pi\)
0.930016 0.367520i \(-0.119793\pi\)
\(542\) 0 0
\(543\) 10.6795i 0.458302i
\(544\) 0 0
\(545\) 13.5033 + 7.79616i 0.578420 + 0.333951i
\(546\) 0 0
\(547\) −14.8588 + 25.7362i −0.635317 + 1.10040i 0.351131 + 0.936326i \(0.385797\pi\)
−0.986448 + 0.164075i \(0.947536\pi\)
\(548\) 0 0
\(549\) −17.8132 30.8534i −0.760250 1.31679i
\(550\) 0 0
\(551\) −5.68094 + 27.7996i −0.242016 + 1.18430i
\(552\) 0 0
\(553\) 22.8048 13.1663i 0.969757 0.559889i
\(554\) 0 0
\(555\) −0.758033 0.437650i −0.0321767 0.0185772i
\(556\) 0 0
\(557\) 2.98070 5.16273i 0.126296 0.218752i −0.795943 0.605372i \(-0.793024\pi\)
0.922239 + 0.386620i \(0.126358\pi\)
\(558\) 0 0
\(559\) −15.3440 −0.648982
\(560\) 0 0
\(561\) 3.19382 + 1.84395i 0.134843 + 0.0778517i
\(562\) 0 0
\(563\) −35.3916 −1.49158 −0.745789 0.666182i \(-0.767927\pi\)
−0.745789 + 0.666182i \(0.767927\pi\)
\(564\) 0 0
\(565\) 49.2113 28.4121i 2.07033 1.19531i
\(566\) 0 0
\(567\) −11.8451 + 6.83880i −0.497449 + 0.287203i
\(568\) 0 0
\(569\) 30.2541i 1.26832i −0.773203 0.634158i \(-0.781347\pi\)
0.773203 0.634158i \(-0.218653\pi\)
\(570\) 0 0
\(571\) 25.4945i 1.06691i −0.845828 0.533456i \(-0.820893\pi\)
0.845828 0.533456i \(-0.179107\pi\)
\(572\) 0 0
\(573\) −9.85562 + 5.69015i −0.411725 + 0.237709i
\(574\) 0 0
\(575\) 12.6776 7.31941i 0.528692 0.305240i
\(576\) 0 0
\(577\) −12.0785 −0.502836 −0.251418 0.967879i \(-0.580897\pi\)
−0.251418 + 0.967879i \(0.580897\pi\)
\(578\) 0 0
\(579\) 3.93351 + 2.27102i 0.163471 + 0.0943802i
\(580\) 0 0
\(581\) −9.80296 −0.406695
\(582\) 0 0
\(583\) 11.1442 19.3022i 0.461544 0.799417i
\(584\) 0 0
\(585\) −19.4162 11.2100i −0.802762 0.463475i
\(586\) 0 0
\(587\) −18.8754 + 10.8977i −0.779070 + 0.449796i −0.836101 0.548576i \(-0.815170\pi\)
0.0570304 + 0.998372i \(0.481837\pi\)
\(588\) 0 0
\(589\) −1.40027 4.19702i −0.0576970 0.172935i
\(590\) 0 0
\(591\) 4.32408 + 7.48953i 0.177869 + 0.308078i
\(592\) 0 0
\(593\) −10.3212 + 17.8768i −0.423839 + 0.734111i −0.996311 0.0858135i \(-0.972651\pi\)
0.572472 + 0.819924i \(0.305984\pi\)
\(594\) 0 0
\(595\) 7.20764 + 4.16133i 0.295484 + 0.170598i
\(596\) 0 0
\(597\) 4.09633i 0.167652i
\(598\) 0 0
\(599\) 18.6426 32.2900i 0.761717 1.31933i −0.180248 0.983621i \(-0.557690\pi\)
0.941965 0.335711i \(-0.108977\pi\)
\(600\) 0 0
\(601\) 32.9087i 1.34238i 0.741287 + 0.671188i \(0.234216\pi\)
−0.741287 + 0.671188i \(0.765784\pi\)
\(602\) 0 0
\(603\) 11.2222 + 19.4375i 0.457005 + 0.791556i
\(604\) 0 0
\(605\) 30.0965 + 52.1287i 1.22360 + 2.11933i
\(606\) 0 0
\(607\) −43.4094 −1.76193 −0.880966 0.473180i \(-0.843106\pi\)
−0.880966 + 0.473180i \(0.843106\pi\)
\(608\) 0 0
\(609\) −9.38428 −0.380270
\(610\) 0 0
\(611\) −4.50802 7.80813i −0.182375 0.315883i
\(612\) 0 0
\(613\) 23.0269 + 39.8838i 0.930048 + 1.61089i 0.783234 + 0.621727i \(0.213569\pi\)
0.146814 + 0.989164i \(0.453098\pi\)
\(614\) 0 0
\(615\) 0.754334i 0.0304177i
\(616\) 0 0
\(617\) −4.97177 + 8.61136i −0.200156 + 0.346680i −0.948579 0.316542i \(-0.897478\pi\)
0.748423 + 0.663222i \(0.230812\pi\)
\(618\) 0 0
\(619\) 4.75114i 0.190964i −0.995431 0.0954822i \(-0.969561\pi\)
0.995431 0.0954822i \(-0.0304393\pi\)
\(620\) 0 0
\(621\) 8.45232 + 4.87995i 0.339180 + 0.195826i
\(622\) 0 0
\(623\) 5.71783 9.90358i 0.229080 0.396778i
\(624\) 0 0
\(625\) 12.1138 + 20.9818i 0.484553 + 0.839270i
\(626\) 0 0
\(627\) −10.8817 9.64413i −0.434574 0.385149i
\(628\) 0 0
\(629\) 0.431151 0.248925i 0.0171911 0.00992530i
\(630\) 0 0
\(631\) −17.8068 10.2807i −0.708876 0.409270i 0.101769 0.994808i \(-0.467550\pi\)
−0.810645 + 0.585538i \(0.800883\pi\)
\(632\) 0 0
\(633\) 2.33052 4.03657i 0.0926297 0.160439i
\(634\) 0 0
\(635\) −30.8940 −1.22599
\(636\) 0 0
\(637\) 3.28554 + 1.89691i 0.130178 + 0.0751582i
\(638\) 0 0
\(639\) −5.64689 −0.223388
\(640\) 0 0
\(641\) 33.0540 19.0838i 1.30556 0.753763i 0.324205 0.945987i \(-0.394903\pi\)
0.981351 + 0.192223i \(0.0615698\pi\)
\(642\) 0 0
\(643\) 18.5705 10.7217i 0.732350 0.422822i −0.0869313 0.996214i \(-0.527706\pi\)
0.819281 + 0.573392i \(0.194373\pi\)
\(644\) 0 0
\(645\) 11.1369i 0.438515i
\(646\) 0 0
\(647\) 23.8222i 0.936547i 0.883583 + 0.468274i \(0.155124\pi\)
−0.883583 + 0.468274i \(0.844876\pi\)
\(648\) 0 0
\(649\) −64.6280 + 37.3130i −2.53687 + 1.46466i
\(650\) 0 0
\(651\) 1.26727 0.731658i 0.0496682 0.0286759i
\(652\) 0 0
\(653\) −16.6726 −0.652450 −0.326225 0.945292i \(-0.605777\pi\)
−0.326225 + 0.945292i \(0.605777\pi\)
\(654\) 0 0
\(655\) 21.7159 + 12.5377i 0.848512 + 0.489888i
\(656\) 0 0
\(657\) 20.5988 0.803634
\(658\) 0 0
\(659\) 7.26163 12.5775i 0.282873 0.489950i −0.689218 0.724554i \(-0.742046\pi\)
0.972091 + 0.234604i \(0.0753792\pi\)
\(660\) 0 0
\(661\) −19.7070 11.3778i −0.766513 0.442547i 0.0651162 0.997878i \(-0.479258\pi\)
−0.831629 + 0.555331i \(0.812592\pi\)
\(662\) 0 0
\(663\) −1.56436 + 0.903182i −0.0607546 + 0.0350767i
\(664\) 0 0
\(665\) −24.5573 21.7644i −0.952290 0.843985i
\(666\) 0 0
\(667\) −9.25159 16.0242i −0.358223 0.620461i
\(668\) 0 0
\(669\) 0.523752 0.907165i 0.0202494 0.0350730i
\(670\) 0 0
\(671\) −64.1957 37.0634i −2.47825 1.43082i
\(672\) 0 0
\(673\) 11.1598i 0.430180i −0.976594 0.215090i \(-0.930996\pi\)
0.976594 0.215090i \(-0.0690044\pi\)
\(674\) 0 0
\(675\) 8.84136 15.3137i 0.340304 0.589424i
\(676\) 0 0
\(677\) 36.0612i 1.38594i 0.720965 + 0.692972i \(0.243699\pi\)
−0.720965 + 0.692972i \(0.756301\pi\)
\(678\) 0 0
\(679\) 0.875139 + 1.51579i 0.0335848 + 0.0581705i
\(680\) 0 0
\(681\) 5.26902 + 9.12621i 0.201909 + 0.349717i
\(682\) 0 0
\(683\) 15.5917 0.596598 0.298299 0.954472i \(-0.403581\pi\)
0.298299 + 0.954472i \(0.403581\pi\)
\(684\) 0 0
\(685\) −33.9259 −1.29624
\(686\) 0 0
\(687\) 5.12311 + 8.87348i 0.195459 + 0.338544i
\(688\) 0 0
\(689\) 5.45850 + 9.45440i 0.207952 + 0.360184i
\(690\) 0 0
\(691\) 22.9437i 0.872818i −0.899748 0.436409i \(-0.856250\pi\)
0.899748 0.436409i \(-0.143750\pi\)
\(692\) 0 0
\(693\) −16.9744 + 29.4004i −0.644802 + 1.11683i
\(694\) 0 0
\(695\) 14.2210i 0.539435i
\(696\) 0 0
\(697\) −0.371566 0.214524i −0.0140741 0.00812567i
\(698\) 0 0
\(699\) −1.01491 + 1.75787i −0.0383873 + 0.0664887i
\(700\) 0 0
\(701\) 9.13435 + 15.8212i 0.345000 + 0.597557i 0.985354 0.170523i \(-0.0545457\pi\)
−0.640354 + 0.768080i \(0.721212\pi\)
\(702\) 0 0
\(703\) −1.86198 + 0.621220i −0.0702260 + 0.0234297i
\(704\) 0 0
\(705\) 5.66725 3.27199i 0.213441 0.123230i
\(706\) 0 0
\(707\) 11.0442 + 6.37634i 0.415358 + 0.239807i
\(708\) 0 0
\(709\) 17.4758 30.2690i 0.656318 1.13678i −0.325244 0.945630i \(-0.605446\pi\)
0.981562 0.191146i \(-0.0612204\pi\)
\(710\) 0 0
\(711\) 29.2842 1.09824
\(712\) 0 0
\(713\) 2.49870 + 1.44262i 0.0935770 + 0.0540267i
\(714\) 0 0
\(715\) −46.6483 −1.74455
\(716\) 0 0
\(717\) 2.55297 1.47396i 0.0953425 0.0550460i
\(718\) 0 0
\(719\) 3.07635 1.77613i 0.114728 0.0662385i −0.441538 0.897243i \(-0.645567\pi\)
0.556266 + 0.831004i \(0.312234\pi\)
\(720\) 0 0
\(721\) 17.8356i 0.664234i
\(722\) 0 0
\(723\) 16.3279i 0.607241i
\(724\) 0 0
\(725\) −29.0323 + 16.7618i −1.07823 + 0.622517i
\(726\) 0 0
\(727\) −6.15483 + 3.55349i −0.228270 + 0.131792i −0.609774 0.792576i \(-0.708740\pi\)
0.381504 + 0.924367i \(0.375406\pi\)
\(728\) 0 0
\(729\) −8.92615 −0.330598
\(730\) 0 0
\(731\) 5.48575 + 3.16720i 0.202898 + 0.117143i
\(732\) 0 0
\(733\) 15.8748 0.586350 0.293175 0.956059i \(-0.405288\pi\)
0.293175 + 0.956059i \(0.405288\pi\)
\(734\) 0 0
\(735\) −1.37680 + 2.38469i −0.0507842 + 0.0879607i
\(736\) 0 0
\(737\) 40.4429 + 23.3497i 1.48973 + 0.860098i
\(738\) 0 0
\(739\) 16.0186 9.24836i 0.589255 0.340206i −0.175548 0.984471i \(-0.556170\pi\)
0.764803 + 0.644264i \(0.222836\pi\)
\(740\) 0 0
\(741\) 6.75588 2.25399i 0.248184 0.0828023i
\(742\) 0 0
\(743\) −7.00831 12.1387i −0.257110 0.445328i 0.708357 0.705855i \(-0.249437\pi\)
−0.965466 + 0.260527i \(0.916104\pi\)
\(744\) 0 0
\(745\) 12.7742 22.1255i 0.468010 0.810617i
\(746\) 0 0
\(747\) −9.44119 5.45087i −0.345435 0.199437i
\(748\) 0 0
\(749\) 43.4795i 1.58871i
\(750\) 0 0
\(751\) −10.3122 + 17.8612i −0.376297 + 0.651765i −0.990520 0.137367i \(-0.956136\pi\)
0.614223 + 0.789132i \(0.289469\pi\)
\(752\) 0 0
\(753\) 8.97475i 0.327058i
\(754\) 0 0
\(755\) −8.82454 15.2846i −0.321158 0.556262i
\(756\) 0 0
\(757\) −12.5598 21.7543i −0.456495 0.790672i 0.542278 0.840199i \(-0.317562\pi\)
−0.998773 + 0.0495268i \(0.984229\pi\)
\(758\) 0 0
\(759\) 9.48196 0.344173
\(760\) 0 0
\(761\) 7.58718 0.275035 0.137518 0.990499i \(-0.456088\pi\)
0.137518 + 0.990499i \(0.456088\pi\)
\(762\) 0 0
\(763\) 5.78224 + 10.0151i 0.209331 + 0.362572i
\(764\) 0 0
\(765\) 4.62777 + 8.01553i 0.167317 + 0.289802i
\(766\) 0 0
\(767\) 36.5524i 1.31983i
\(768\) 0 0
\(769\) −10.2413 + 17.7384i −0.369309 + 0.639663i −0.989458 0.144822i \(-0.953739\pi\)
0.620148 + 0.784485i \(0.287072\pi\)
\(770\) 0 0
\(771\) 6.16752i 0.222118i
\(772\) 0 0
\(773\) −16.5528 9.55676i −0.595363 0.343733i 0.171852 0.985123i \(-0.445025\pi\)
−0.767215 + 0.641390i \(0.778358\pi\)
\(774\) 0 0
\(775\) 2.61371 4.52707i 0.0938872 0.162617i
\(776\) 0 0
\(777\) −0.324595 0.562216i −0.0116448 0.0201694i
\(778\) 0 0
\(779\) 1.26597 + 1.12199i 0.0453581 + 0.0401995i
\(780\) 0 0
\(781\) −10.1752 + 5.87465i −0.364097 + 0.210211i
\(782\) 0 0
\(783\) −19.3562 11.1753i −0.691734 0.399373i
\(784\) 0 0
\(785\) −4.53927 + 7.86225i −0.162014 + 0.280616i
\(786\) 0 0
\(787\) −15.1750 −0.540931 −0.270465 0.962730i \(-0.587178\pi\)
−0.270465 + 0.962730i \(0.587178\pi\)
\(788\) 0 0
\(789\) −8.34035 4.81530i −0.296924 0.171429i
\(790\) 0 0
\(791\) 42.1453 1.49851
\(792\) 0 0
\(793\) 31.4436 18.1539i 1.11659 0.644666i
\(794\) 0 0
\(795\) −6.86214 + 3.96186i −0.243375 + 0.140513i
\(796\) 0 0
\(797\) 46.7518i 1.65603i −0.560704 0.828017i \(-0.689469\pi\)
0.560704 0.828017i \(-0.310531\pi\)
\(798\) 0 0
\(799\) 3.72206i 0.131677i
\(800\) 0 0
\(801\) 11.0136 6.35873i 0.389148 0.224675i
\(802\) 0 0
\(803\) 37.1171 21.4296i 1.30983 0.756233i
\(804\) 0 0
\(805\) 21.3984 0.754194
\(806\) 0 0
\(807\) −0.0386062 0.0222893i −0.00135900 0.000784620i
\(808\) 0 0
\(809\) 29.0772 1.02230 0.511151 0.859491i \(-0.329219\pi\)
0.511151 + 0.859491i \(0.329219\pi\)
\(810\) 0 0
\(811\) −23.7677 + 41.1669i −0.834597 + 1.44556i 0.0597609 + 0.998213i \(0.480966\pi\)
−0.894358 + 0.447352i \(0.852367\pi\)
\(812\) 0 0
\(813\) −3.95627 2.28416i −0.138753 0.0801088i
\(814\) 0 0
\(815\) −23.7391 + 13.7058i −0.831544 + 0.480092i
\(816\) 0 0
\(817\) −18.6906 16.5649i −0.653902 0.579533i
\(818\) 0 0
\(819\) −8.31417 14.4006i −0.290521 0.503197i
\(820\) 0 0
\(821\) −18.3351 + 31.7574i −0.639900 + 1.10834i 0.345554 + 0.938399i \(0.387691\pi\)
−0.985454 + 0.169940i \(0.945642\pi\)
\(822\) 0 0
\(823\) 39.9324 + 23.0550i 1.39196 + 0.803647i 0.993532 0.113554i \(-0.0362236\pi\)
0.398425 + 0.917201i \(0.369557\pi\)
\(824\) 0 0
\(825\) 17.1792i 0.598102i
\(826\) 0 0
\(827\) −3.93836 + 6.82143i −0.136950 + 0.237205i −0.926341 0.376687i \(-0.877063\pi\)
0.789391 + 0.613891i \(0.210397\pi\)
\(828\) 0 0
\(829\) 2.15631i 0.0748918i −0.999299 0.0374459i \(-0.988078\pi\)
0.999299 0.0374459i \(-0.0119222\pi\)
\(830\) 0 0
\(831\) −5.81389 10.0699i −0.201682 0.349323i
\(832\) 0 0
\(833\) −0.783093 1.35636i −0.0271326 0.0469950i
\(834\) 0 0
\(835\) 57.3821 1.98579
\(836\) 0 0
\(837\) 3.48519 0.120466
\(838\) 0 0
\(839\) 16.4564 + 28.5033i 0.568137 + 0.984043i 0.996750 + 0.0805545i \(0.0256691\pi\)
−0.428613 + 0.903488i \(0.640998\pi\)
\(840\) 0 0
\(841\) 6.68657 + 11.5815i 0.230571 + 0.399361i
\(842\) 0 0
\(843\) 5.34228i 0.183998i
\(844\) 0 0
\(845\) −9.28399 + 16.0803i −0.319379 + 0.553181i
\(846\) 0 0
\(847\) 44.6439i 1.53398i
\(848\) 0 0
\(849\) −10.9411 6.31687i −0.375499 0.216794i
\(850\) 0 0
\(851\) 0.640011 1.10853i 0.0219393 0.0380000i
\(852\) 0 0
\(853\) −2.93070 5.07612i −0.100345 0.173803i 0.811482 0.584378i \(-0.198661\pi\)
−0.911827 + 0.410575i \(0.865328\pi\)
\(854\) 0 0
\(855\) −11.5491 34.6161i −0.394970 1.18385i
\(856\) 0 0
\(857\) 1.57854 0.911371i 0.0539219 0.0311318i −0.472797 0.881172i \(-0.656755\pi\)
0.526719 + 0.850040i \(0.323422\pi\)
\(858\) 0 0
\(859\) 36.6465 + 21.1578i 1.25036 + 0.721896i 0.971181 0.238342i \(-0.0766041\pi\)
0.279180 + 0.960239i \(0.409937\pi\)
\(860\) 0 0
\(861\) −0.279736 + 0.484518i −0.00953339 + 0.0165123i
\(862\) 0 0
\(863\) 32.8925 1.11967 0.559836 0.828603i \(-0.310864\pi\)
0.559836 + 0.828603i \(0.310864\pi\)
\(864\) 0 0
\(865\) −48.7701 28.1574i −1.65823 0.957381i
\(866\) 0 0
\(867\) −9.62616 −0.326921
\(868\) 0 0
\(869\) 52.7675 30.4654i 1.79002 1.03347i
\(870\) 0 0
\(871\) −19.8093 + 11.4369i −0.671211 + 0.387524i
\(872\) 0 0
\(873\) 1.94646i 0.0658778i
\(874\) 0 0
\(875\) 1.12899i 0.0381667i
\(876\) 0 0
\(877\) −37.4930 + 21.6466i −1.26605 + 0.730954i −0.974238 0.225522i \(-0.927591\pi\)
−0.291811 + 0.956476i \(0.594258\pi\)
\(878\) 0 0
\(879\) −10.4591 + 6.03855i −0.352776 + 0.203675i
\(880\) 0 0
\(881\) −10.1569 −0.342193 −0.171097 0.985254i \(-0.554731\pi\)
−0.171097 + 0.985254i \(0.554731\pi\)
\(882\) 0 0
\(883\) −31.8465 18.3866i −1.07172 0.618757i −0.143068 0.989713i \(-0.545697\pi\)
−0.928651 + 0.370956i \(0.879030\pi\)
\(884\) 0 0
\(885\) 26.5303 0.891805
\(886\) 0 0
\(887\) −19.3619 + 33.5357i −0.650108 + 1.12602i 0.332989 + 0.942931i \(0.391943\pi\)
−0.983096 + 0.183089i \(0.941390\pi\)
\(888\) 0 0
\(889\) −19.8436 11.4567i −0.665532 0.384245i
\(890\) 0 0
\(891\) −27.4083 + 15.8242i −0.918212 + 0.530130i
\(892\) 0 0
\(893\) 2.93817 14.3779i 0.0983220 0.481137i
\(894\) 0 0
\(895\) −23.8317 41.2777i −0.796606 1.37976i
\(896\) 0 0
\(897\) −2.32217 + 4.02212i −0.0775350 + 0.134295i
\(898\) 0 0
\(899\) −5.72214 3.30368i −0.190844 0.110184i
\(900\) 0 0
\(901\) 4.50682i 0.150144i
\(902\) 0 0
\(903\) 4.12999 7.15335i 0.137438 0.238049i
\(904\) 0 0
\(905\) 55.7669i 1.85375i
\(906\) 0 0
\(907\) 27.5458 + 47.7107i 0.914643 + 1.58421i 0.807423 + 0.589973i \(0.200862\pi\)
0.107220 + 0.994235i \(0.465805\pi\)
\(908\) 0 0
\(909\) 7.09105 + 12.2821i 0.235195 + 0.407370i
\(910\) 0 0
\(911\) 3.72616 0.123453 0.0617266 0.998093i \(-0.480339\pi\)
0.0617266 + 0.998093i \(0.480339\pi\)
\(912\) 0 0
\(913\) −22.6829 −0.750694
\(914\) 0 0
\(915\) 13.1764 + 22.8222i 0.435598 + 0.754479i
\(916\) 0 0
\(917\) 9.29893 + 16.1062i 0.307078 + 0.531874i
\(918\) 0 0
\(919\) 17.4986i 0.577224i −0.957446 0.288612i \(-0.906806\pi\)
0.957446 0.288612i \(-0.0931938\pi\)
\(920\) 0 0
\(921\) −2.73074 + 4.72979i −0.0899811 + 0.155852i
\(922\) 0 0
\(923\) 5.75490i 0.189425i
\(924\) 0 0
\(925\) −2.00841 1.15956i −0.0660361 0.0381259i
\(926\) 0 0
\(927\) −9.91740 + 17.1774i −0.325730 + 0.564181i
\(928\) 0 0
\(929\) −7.98584 13.8319i −0.262007 0.453810i 0.704768 0.709438i \(-0.251051\pi\)
−0.966775 + 0.255628i \(0.917718\pi\)
\(930\) 0 0
\(931\) 1.95429 + 5.85761i 0.0640494 + 0.191975i
\(932\) 0 0
\(933\) −0.131791 + 0.0760896i −0.00431464 + 0.00249106i
\(934\) 0 0
\(935\) 16.6776 + 9.62883i 0.545417 + 0.314897i
\(936\) 0 0
\(937\) 0.674194 1.16774i 0.0220249 0.0381483i −0.854803 0.518953i \(-0.826322\pi\)
0.876828 + 0.480805i \(0.159655\pi\)
\(938\) 0 0
\(939\) −14.4823 −0.472611
\(940\) 0 0
\(941\) 41.2979 + 23.8434i 1.34627 + 0.777271i 0.987719 0.156238i \(-0.0499367\pi\)
0.358553 + 0.933509i \(0.383270\pi\)
\(942\) 0 0
\(943\) −1.10312 −0.0359227
\(944\) 0 0
\(945\) 22.3849 12.9239i 0.728180 0.420415i
\(946\) 0 0
\(947\) −22.7091 + 13.1111i −0.737946 + 0.426053i −0.821322 0.570465i \(-0.806763\pi\)
0.0833759 + 0.996518i \(0.473430\pi\)
\(948\) 0 0
\(949\) 20.9927i 0.681453i
\(950\) 0 0
\(951\) 10.3109i 0.334355i
\(952\) 0 0
\(953\) −23.7784 + 13.7285i −0.770257 + 0.444708i −0.832966 0.553324i \(-0.813359\pi\)
0.0627090 + 0.998032i \(0.480026\pi\)
\(954\) 0 0
\(955\) −51.4646 + 29.7131i −1.66535 + 0.961493i
\(956\) 0 0
\(957\) −21.7141 −0.701918
\(958\) 0 0
\(959\) −21.7910 12.5810i −0.703668 0.406263i
\(960\) 0 0
\(961\) −29.9697 −0.966764
\(962\) 0 0
\(963\) 24.1765 41.8749i 0.779077 1.34940i
\(964\) 0 0
\(965\) 20.5402 + 11.8589i 0.661213 + 0.381751i
\(966\) 0 0
\(967\) 14.9005 8.60278i 0.479166 0.276647i −0.240903 0.970549i \(-0.577443\pi\)
0.720069 + 0.693902i \(0.244110\pi\)
\(968\) 0 0
\(969\) −2.88060 0.588661i −0.0925383 0.0189105i
\(970\) 0 0
\(971\) −6.50590 11.2685i −0.208784 0.361625i 0.742548 0.669793i \(-0.233617\pi\)
−0.951332 + 0.308168i \(0.900284\pi\)
\(972\) 0 0
\(973\) 5.27371 9.13434i 0.169067 0.292833i
\(974\) 0 0
\(975\) 7.28716 + 4.20725i 0.233376 + 0.134740i
\(976\) 0 0
\(977\) 38.1644i 1.22099i −0.792021 0.610494i \(-0.790971\pi\)
0.792021 0.610494i \(-0.209029\pi\)
\(978\) 0 0
\(979\) 13.2304 22.9157i 0.422845 0.732389i
\(980\) 0 0
\(981\) 12.8607i 0.410611i
\(982\) 0 0
\(983\) 11.7428 + 20.3391i 0.374536 + 0.648715i 0.990257 0.139249i \(-0.0444688\pi\)
−0.615722 + 0.787964i \(0.711135\pi\)
\(984\) 0 0
\(985\) 22.5797 + 39.1092i 0.719449 + 1.24612i
\(986\) 0 0
\(987\) 4.85352 0.154489
\(988\) 0 0
\(989\) 16.2864 0.517877
\(990\) 0 0
\(991\) 13.8156 + 23.9293i 0.438866 + 0.760139i 0.997602 0.0692069i \(-0.0220469\pi\)
−0.558736 + 0.829346i \(0.688714\pi\)
\(992\) 0 0
\(993\) 2.96641 + 5.13798i 0.0941363 + 0.163049i
\(994\) 0 0
\(995\) 21.3904i 0.678122i
\(996\) 0 0
\(997\) −11.8340 + 20.4970i −0.374786 + 0.649148i −0.990295 0.138982i \(-0.955617\pi\)
0.615509 + 0.788130i \(0.288950\pi\)
\(998\) 0 0
\(999\) 1.54618i 0.0489191i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.n.f.639.4 16
4.3 odd 2 inner 1216.2.n.f.639.5 16
8.3 odd 2 76.2.f.a.31.5 yes 16
8.5 even 2 76.2.f.a.31.2 yes 16
19.8 odd 6 inner 1216.2.n.f.255.5 16
24.5 odd 2 684.2.r.a.487.7 16
24.11 even 2 684.2.r.a.487.4 16
76.27 even 6 inner 1216.2.n.f.255.4 16
152.27 even 6 76.2.f.a.27.2 16
152.141 odd 6 76.2.f.a.27.5 yes 16
456.179 odd 6 684.2.r.a.559.7 16
456.293 even 6 684.2.r.a.559.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
76.2.f.a.27.2 16 152.27 even 6
76.2.f.a.27.5 yes 16 152.141 odd 6
76.2.f.a.31.2 yes 16 8.5 even 2
76.2.f.a.31.5 yes 16 8.3 odd 2
684.2.r.a.487.4 16 24.11 even 2
684.2.r.a.487.7 16 24.5 odd 2
684.2.r.a.559.4 16 456.293 even 6
684.2.r.a.559.7 16 456.179 odd 6
1216.2.n.f.255.4 16 76.27 even 6 inner
1216.2.n.f.255.5 16 19.8 odd 6 inner
1216.2.n.f.639.4 16 1.1 even 1 trivial
1216.2.n.f.639.5 16 4.3 odd 2 inner