Properties

Label 684.2.r.a.559.7
Level $684$
Weight $2$
Character 684.559
Analytic conductor $5.462$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(487,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.487");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 6 x^{14} - 9 x^{13} + 12 x^{12} - 9 x^{11} + 3 x^{10} + 6 x^{9} - 10 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 76)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.7
Root \(1.16486 + 0.801943i\) of defining polynomial
Character \(\chi\) \(=\) 684.559
Dual form 684.2.r.a.487.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16486 - 0.801943i) q^{2} +(0.713775 - 1.86829i) q^{4} +(-1.59295 + 2.75907i) q^{5} +2.36291i q^{7} +(-0.666820 - 2.74870i) q^{8} +(0.357061 + 4.49138i) q^{10} +5.46750i q^{11} +(-2.31924 + 1.33901i) q^{13} +(1.89492 + 2.75245i) q^{14} +(-2.98105 - 2.66709i) q^{16} +(0.552780 - 0.957443i) q^{17} +(-1.37952 + 4.13484i) q^{19} +(4.01775 + 4.94546i) q^{20} +(4.38462 + 6.36885i) q^{22} +(2.46168 - 1.42125i) q^{23} +(-2.57499 - 4.46001i) q^{25} +(-1.62777 + 3.41965i) q^{26} +(4.41462 + 1.68659i) q^{28} +(5.63736 - 3.25473i) q^{29} -1.01504 q^{31} +(-5.61134 - 0.716137i) q^{32} +(-0.123906 - 1.55858i) q^{34} +(-6.51945 - 3.76400i) q^{35} +0.450315i q^{37} +(1.70896 + 5.92279i) q^{38} +(8.64607 + 2.53874i) q^{40} +(-0.336089 - 0.194041i) q^{41} +(4.96197 + 2.86479i) q^{43} +(10.2149 + 3.90257i) q^{44} +(1.72774 - 3.62968i) q^{46} +(2.91563 - 1.68334i) q^{47} +1.41665 q^{49} +(-6.57616 - 3.13027i) q^{50} +(0.846255 + 5.28878i) q^{52} +(3.53036 - 2.03825i) q^{53} +(-15.0852 - 8.70946i) q^{55} +(6.49494 - 1.57564i) q^{56} +(3.95660 - 8.31213i) q^{58} +(-6.82450 + 11.8204i) q^{59} +(-6.77885 - 11.7413i) q^{61} +(-1.18237 + 0.814002i) q^{62} +(-7.11070 + 3.66578i) q^{64} -8.53193i q^{65} +(4.27064 + 7.39696i) q^{67} +(-1.39422 - 1.71616i) q^{68} +(-10.6127 + 0.843703i) q^{70} +(1.07447 - 1.86103i) q^{71} +(3.91944 - 6.78867i) q^{73} +(0.361127 + 0.524552i) q^{74} +(6.74043 + 5.52870i) q^{76} -12.9192 q^{77} +(5.57208 - 9.65112i) q^{79} +(12.1073 - 3.97639i) q^{80} +(-0.547104 + 0.0434943i) q^{82} +4.14868i q^{83} +(1.76110 + 3.05032i) q^{85} +(8.07738 - 0.642145i) q^{86} +(15.0285 - 3.64584i) q^{88} +(-4.19126 + 2.41982i) q^{89} +(-3.16397 - 5.48016i) q^{91} +(-0.898230 - 5.61360i) q^{92} +(2.04634 - 4.29901i) q^{94} +(-9.21082 - 10.3928i) q^{95} +(-0.641491 - 0.370365i) q^{97} +(1.65019 - 1.13607i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 3 q^{2} - 3 q^{4} + 2 q^{5} - 6 q^{10} - 18 q^{13} + 6 q^{14} - 3 q^{16} - 2 q^{17} - 4 q^{20} + 3 q^{22} - 2 q^{25} + 24 q^{26} - 4 q^{28} + 6 q^{29} - 27 q^{32} + 36 q^{34} + 24 q^{38} + 48 q^{40}+ \cdots - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.16486 0.801943i 0.823677 0.567059i
\(3\) 0 0
\(4\) 0.713775 1.86829i 0.356888 0.934147i
\(5\) −1.59295 + 2.75907i −0.712389 + 1.23389i 0.251569 + 0.967839i \(0.419054\pi\)
−0.963958 + 0.266055i \(0.914280\pi\)
\(6\) 0 0
\(7\) 2.36291i 0.893097i 0.894759 + 0.446548i \(0.147347\pi\)
−0.894759 + 0.446548i \(0.852653\pi\)
\(8\) −0.666820 2.74870i −0.235757 0.971812i
\(9\) 0 0
\(10\) 0.357061 + 4.49138i 0.112913 + 1.42030i
\(11\) 5.46750i 1.64851i 0.566216 + 0.824257i \(0.308407\pi\)
−0.566216 + 0.824257i \(0.691593\pi\)
\(12\) 0 0
\(13\) −2.31924 + 1.33901i −0.643241 + 0.371375i −0.785862 0.618402i \(-0.787780\pi\)
0.142621 + 0.989777i \(0.454447\pi\)
\(14\) 1.89492 + 2.75245i 0.506439 + 0.735623i
\(15\) 0 0
\(16\) −2.98105 2.66709i −0.745262 0.666771i
\(17\) 0.552780 0.957443i 0.134069 0.232214i −0.791173 0.611593i \(-0.790529\pi\)
0.925241 + 0.379379i \(0.123862\pi\)
\(18\) 0 0
\(19\) −1.37952 + 4.13484i −0.316484 + 0.948598i
\(20\) 4.01775 + 4.94546i 0.898396 + 1.10584i
\(21\) 0 0
\(22\) 4.38462 + 6.36885i 0.934805 + 1.35784i
\(23\) 2.46168 1.42125i 0.513296 0.296352i −0.220891 0.975298i \(-0.570897\pi\)
0.734187 + 0.678947i \(0.237563\pi\)
\(24\) 0 0
\(25\) −2.57499 4.46001i −0.514997 0.892001i
\(26\) −1.62777 + 3.41965i −0.319231 + 0.670649i
\(27\) 0 0
\(28\) 4.41462 + 1.68659i 0.834284 + 0.318735i
\(29\) 5.63736 3.25473i 1.04683 0.604389i 0.125071 0.992148i \(-0.460084\pi\)
0.921761 + 0.387759i \(0.126751\pi\)
\(30\) 0 0
\(31\) −1.01504 −0.182306 −0.0911531 0.995837i \(-0.529055\pi\)
−0.0911531 + 0.995837i \(0.529055\pi\)
\(32\) −5.61134 0.716137i −0.991954 0.126596i
\(33\) 0 0
\(34\) −0.123906 1.55858i −0.0212497 0.267294i
\(35\) −6.51945 3.76400i −1.10199 0.636233i
\(36\) 0 0
\(37\) 0.450315i 0.0740314i 0.999315 + 0.0370157i \(0.0117851\pi\)
−0.999315 + 0.0370157i \(0.988215\pi\)
\(38\) 1.70896 + 5.92279i 0.277231 + 0.960803i
\(39\) 0 0
\(40\) 8.64607 + 2.53874i 1.36706 + 0.401410i
\(41\) −0.336089 0.194041i −0.0524882 0.0303041i 0.473526 0.880780i \(-0.342981\pi\)
−0.526014 + 0.850476i \(0.676314\pi\)
\(42\) 0 0
\(43\) 4.96197 + 2.86479i 0.756693 + 0.436877i 0.828107 0.560570i \(-0.189418\pi\)
−0.0714141 + 0.997447i \(0.522751\pi\)
\(44\) 10.2149 + 3.90257i 1.53995 + 0.588334i
\(45\) 0 0
\(46\) 1.72774 3.62968i 0.254741 0.535167i
\(47\) 2.91563 1.68334i 0.425288 0.245540i −0.272049 0.962283i \(-0.587701\pi\)
0.697337 + 0.716743i \(0.254368\pi\)
\(48\) 0 0
\(49\) 1.41665 0.202378
\(50\) −6.57616 3.13027i −0.930009 0.442687i
\(51\) 0 0
\(52\) 0.846255 + 5.28878i 0.117355 + 0.733421i
\(53\) 3.53036 2.03825i 0.484932 0.279976i −0.237537 0.971378i \(-0.576340\pi\)
0.722470 + 0.691403i \(0.243007\pi\)
\(54\) 0 0
\(55\) −15.0852 8.70946i −2.03409 1.17438i
\(56\) 6.49494 1.57564i 0.867922 0.210553i
\(57\) 0 0
\(58\) 3.95660 8.31213i 0.519527 1.09144i
\(59\) −6.82450 + 11.8204i −0.888474 + 1.53888i −0.0467951 + 0.998905i \(0.514901\pi\)
−0.841679 + 0.539978i \(0.818433\pi\)
\(60\) 0 0
\(61\) −6.77885 11.7413i −0.867943 1.50332i −0.864095 0.503329i \(-0.832108\pi\)
−0.00384839 0.999993i \(-0.501225\pi\)
\(62\) −1.18237 + 0.814002i −0.150161 + 0.103378i
\(63\) 0 0
\(64\) −7.11070 + 3.66578i −0.888838 + 0.458222i
\(65\) 8.53193i 1.05826i
\(66\) 0 0
\(67\) 4.27064 + 7.39696i 0.521742 + 0.903683i 0.999680 + 0.0252897i \(0.00805083\pi\)
−0.477939 + 0.878393i \(0.658616\pi\)
\(68\) −1.39422 1.71616i −0.169075 0.208114i
\(69\) 0 0
\(70\) −10.6127 + 0.843703i −1.26846 + 0.100842i
\(71\) 1.07447 1.86103i 0.127516 0.220864i −0.795198 0.606350i \(-0.792633\pi\)
0.922714 + 0.385486i \(0.125966\pi\)
\(72\) 0 0
\(73\) 3.91944 6.78867i 0.458736 0.794554i −0.540158 0.841563i \(-0.681636\pi\)
0.998894 + 0.0470092i \(0.0149690\pi\)
\(74\) 0.361127 + 0.524552i 0.0419802 + 0.0609779i
\(75\) 0 0
\(76\) 6.74043 + 5.52870i 0.773181 + 0.634186i
\(77\) −12.9192 −1.47228
\(78\) 0 0
\(79\) 5.57208 9.65112i 0.626908 1.08584i −0.361261 0.932465i \(-0.617654\pi\)
0.988169 0.153371i \(-0.0490131\pi\)
\(80\) 12.1073 3.97639i 1.35364 0.444574i
\(81\) 0 0
\(82\) −0.547104 + 0.0434943i −0.0604176 + 0.00480315i
\(83\) 4.14868i 0.455376i 0.973734 + 0.227688i \(0.0731167\pi\)
−0.973734 + 0.227688i \(0.926883\pi\)
\(84\) 0 0
\(85\) 1.76110 + 3.05032i 0.191018 + 0.330854i
\(86\) 8.07738 0.642145i 0.871006 0.0692443i
\(87\) 0 0
\(88\) 15.0285 3.64584i 1.60205 0.388648i
\(89\) −4.19126 + 2.41982i −0.444272 + 0.256501i −0.705408 0.708801i \(-0.749236\pi\)
0.261136 + 0.965302i \(0.415903\pi\)
\(90\) 0 0
\(91\) −3.16397 5.48016i −0.331674 0.574477i
\(92\) −0.898230 5.61360i −0.0936470 0.585258i
\(93\) 0 0
\(94\) 2.04634 4.29901i 0.211064 0.443409i
\(95\) −9.21082 10.3928i −0.945010 1.06628i
\(96\) 0 0
\(97\) −0.641491 0.370365i −0.0651335 0.0376048i 0.467080 0.884215i \(-0.345306\pi\)
−0.532213 + 0.846610i \(0.678639\pi\)
\(98\) 1.65019 1.13607i 0.166694 0.114760i
\(99\) 0 0
\(100\) −10.1706 + 1.62739i −1.01706 + 0.162739i
\(101\) −2.69851 4.67396i −0.268512 0.465076i 0.699966 0.714176i \(-0.253199\pi\)
−0.968478 + 0.249100i \(0.919865\pi\)
\(102\) 0 0
\(103\) −7.54816 −0.743743 −0.371871 0.928284i \(-0.621284\pi\)
−0.371871 + 0.928284i \(0.621284\pi\)
\(104\) 5.22706 + 5.48201i 0.512556 + 0.537555i
\(105\) 0 0
\(106\) 2.47779 5.20542i 0.240665 0.505595i
\(107\) 18.4008 1.77887 0.889437 0.457058i \(-0.151097\pi\)
0.889437 + 0.457058i \(0.151097\pi\)
\(108\) 0 0
\(109\) 4.23847 + 2.44708i 0.405971 + 0.234388i 0.689057 0.724707i \(-0.258025\pi\)
−0.283086 + 0.959095i \(0.591358\pi\)
\(110\) −24.5566 + 1.95223i −2.34138 + 0.186138i
\(111\) 0 0
\(112\) 6.30209 7.04396i 0.595491 0.665591i
\(113\) 17.8362i 1.67789i 0.544220 + 0.838943i \(0.316826\pi\)
−0.544220 + 0.838943i \(0.683174\pi\)
\(114\) 0 0
\(115\) 9.05594i 0.844471i
\(116\) −2.05699 12.8554i −0.190987 1.19359i
\(117\) 0 0
\(118\) 1.52972 + 19.2419i 0.140822 + 1.77136i
\(119\) 2.26235 + 1.30617i 0.207390 + 0.119736i
\(120\) 0 0
\(121\) −18.8936 −1.71760
\(122\) −17.3122 8.24068i −1.56738 0.746076i
\(123\) 0 0
\(124\) −0.724509 + 1.89639i −0.0650628 + 0.170301i
\(125\) 0.477794 0.0427352
\(126\) 0 0
\(127\) 4.84855 + 8.39793i 0.430239 + 0.745196i 0.996894 0.0787596i \(-0.0250959\pi\)
−0.566655 + 0.823955i \(0.691763\pi\)
\(128\) −5.34319 + 9.97248i −0.472276 + 0.881451i
\(129\) 0 0
\(130\) −6.84212 9.93846i −0.600094 0.871661i
\(131\) −6.81626 3.93537i −0.595539 0.343835i 0.171745 0.985141i \(-0.445059\pi\)
−0.767285 + 0.641307i \(0.778393\pi\)
\(132\) 0 0
\(133\) −9.77027 3.25969i −0.847190 0.282651i
\(134\) 10.9066 + 5.19158i 0.942188 + 0.448485i
\(135\) 0 0
\(136\) −3.00033 0.880984i −0.257276 0.0755437i
\(137\) −5.32438 9.22210i −0.454893 0.787897i 0.543790 0.839222i \(-0.316989\pi\)
−0.998682 + 0.0513247i \(0.983656\pi\)
\(138\) 0 0
\(139\) −3.86571 + 2.23187i −0.327885 + 0.189305i −0.654902 0.755714i \(-0.727290\pi\)
0.327017 + 0.945019i \(0.393957\pi\)
\(140\) −11.6857 + 9.49359i −0.987621 + 0.802355i
\(141\) 0 0
\(142\) −0.240842 3.02949i −0.0202110 0.254229i
\(143\) −7.32106 12.6804i −0.612218 1.06039i
\(144\) 0 0
\(145\) 20.7385i 1.72224i
\(146\) −0.878545 11.0510i −0.0727089 0.914587i
\(147\) 0 0
\(148\) 0.841321 + 0.321424i 0.0691562 + 0.0264209i
\(149\) 4.00960 6.94483i 0.328479 0.568942i −0.653731 0.756727i \(-0.726797\pi\)
0.982210 + 0.187785i \(0.0601307\pi\)
\(150\) 0 0
\(151\) 5.53975 0.450818 0.225409 0.974264i \(-0.427628\pi\)
0.225409 + 0.974264i \(0.427628\pi\)
\(152\) 12.2853 + 1.03469i 0.996472 + 0.0839247i
\(153\) 0 0
\(154\) −15.0490 + 10.3605i −1.21269 + 0.834871i
\(155\) 1.61691 2.80056i 0.129873 0.224947i
\(156\) 0 0
\(157\) 1.42480 2.46782i 0.113711 0.196954i −0.803553 0.595234i \(-0.797059\pi\)
0.917264 + 0.398280i \(0.130393\pi\)
\(158\) −1.24898 15.7106i −0.0993638 1.24987i
\(159\) 0 0
\(160\) 10.9145 14.3413i 0.862864 1.13378i
\(161\) 3.35829 + 5.81674i 0.264671 + 0.458423i
\(162\) 0 0
\(163\) 8.60401i 0.673918i −0.941519 0.336959i \(-0.890602\pi\)
0.941519 0.336959i \(-0.109398\pi\)
\(164\) −0.602417 + 0.489411i −0.0470409 + 0.0382166i
\(165\) 0 0
\(166\) 3.32700 + 4.83261i 0.258225 + 0.375083i
\(167\) 9.00563 + 15.5982i 0.696877 + 1.20703i 0.969544 + 0.244918i \(0.0787610\pi\)
−0.272667 + 0.962108i \(0.587906\pi\)
\(168\) 0 0
\(169\) −2.91409 + 5.04735i −0.224161 + 0.388257i
\(170\) 4.49761 + 2.14088i 0.344951 + 0.164198i
\(171\) 0 0
\(172\) 8.89401 7.22560i 0.678162 0.550947i
\(173\) 15.3081 + 8.83813i 1.16385 + 0.671951i 0.952224 0.305399i \(-0.0987899\pi\)
0.211629 + 0.977350i \(0.432123\pi\)
\(174\) 0 0
\(175\) 10.5386 6.08447i 0.796644 0.459942i
\(176\) 14.5823 16.2989i 1.09918 1.22858i
\(177\) 0 0
\(178\) −2.94165 + 6.17989i −0.220486 + 0.463203i
\(179\) 14.9607 1.11822 0.559108 0.829095i \(-0.311144\pi\)
0.559108 + 0.829095i \(0.311144\pi\)
\(180\) 0 0
\(181\) 15.1591 8.75213i 1.12677 0.650541i 0.183649 0.982992i \(-0.441209\pi\)
0.943121 + 0.332451i \(0.107876\pi\)
\(182\) −8.08034 3.84627i −0.598955 0.285104i
\(183\) 0 0
\(184\) −5.54809 5.81870i −0.409011 0.428960i
\(185\) −1.24245 0.717330i −0.0913469 0.0527392i
\(186\) 0 0
\(187\) 5.23482 + 3.02233i 0.382808 + 0.221014i
\(188\) −1.06387 6.64877i −0.0775906 0.484912i
\(189\) 0 0
\(190\) −19.0637 4.71956i −1.38303 0.342393i
\(191\) 18.6529i 1.34967i −0.737967 0.674837i \(-0.764214\pi\)
0.737967 0.674837i \(-0.235786\pi\)
\(192\) 0 0
\(193\) −6.44722 3.72230i −0.464081 0.267937i 0.249678 0.968329i \(-0.419675\pi\)
−0.713759 + 0.700392i \(0.753009\pi\)
\(194\) −1.04425 + 0.0830174i −0.0749731 + 0.00596030i
\(195\) 0 0
\(196\) 1.01117 2.64671i 0.0722262 0.189051i
\(197\) −14.1748 −1.00991 −0.504955 0.863146i \(-0.668491\pi\)
−0.504955 + 0.863146i \(0.668491\pi\)
\(198\) 0 0
\(199\) 5.81457 3.35704i 0.412184 0.237974i −0.279544 0.960133i \(-0.590183\pi\)
0.691728 + 0.722159i \(0.256850\pi\)
\(200\) −10.5422 + 10.0519i −0.745444 + 0.710776i
\(201\) 0 0
\(202\) −6.89162 3.28043i −0.484893 0.230810i
\(203\) 7.69065 + 13.3206i 0.539778 + 0.934922i
\(204\) 0 0
\(205\) 1.07075 0.618195i 0.0747841 0.0431766i
\(206\) −8.79252 + 6.05319i −0.612604 + 0.421746i
\(207\) 0 0
\(208\) 10.4850 + 2.19394i 0.727006 + 0.152123i
\(209\) −22.6073 7.54254i −1.56378 0.521728i
\(210\) 0 0
\(211\) −3.81983 + 6.61614i −0.262968 + 0.455474i −0.967029 0.254665i \(-0.918035\pi\)
0.704061 + 0.710139i \(0.251368\pi\)
\(212\) −1.28817 8.05061i −0.0884722 0.552918i
\(213\) 0 0
\(214\) 21.4343 14.7564i 1.46522 1.00873i
\(215\) −15.8083 + 9.12695i −1.07812 + 0.622453i
\(216\) 0 0
\(217\) 2.39845i 0.162817i
\(218\) 6.89962 0.548514i 0.467301 0.0371501i
\(219\) 0 0
\(220\) −27.0393 + 21.9671i −1.82299 + 1.48102i
\(221\) 2.96072i 0.199160i
\(222\) 0 0
\(223\) 0.858455 1.48689i 0.0574864 0.0995693i −0.835850 0.548958i \(-0.815025\pi\)
0.893336 + 0.449388i \(0.148358\pi\)
\(224\) 1.69217 13.2591i 0.113063 0.885911i
\(225\) 0 0
\(226\) 14.3036 + 20.7766i 0.951460 + 1.38204i
\(227\) −17.2724 −1.14641 −0.573203 0.819413i \(-0.694299\pi\)
−0.573203 + 0.819413i \(0.694299\pi\)
\(228\) 0 0
\(229\) 16.7940 1.10978 0.554891 0.831923i \(-0.312760\pi\)
0.554891 + 0.831923i \(0.312760\pi\)
\(230\) 7.26235 + 10.5489i 0.478865 + 0.695571i
\(231\) 0 0
\(232\) −12.7054 13.3251i −0.834150 0.874835i
\(233\) 1.66348 2.88123i 0.108978 0.188756i −0.806378 0.591400i \(-0.798575\pi\)
0.915357 + 0.402644i \(0.131909\pi\)
\(234\) 0 0
\(235\) 10.7259i 0.699680i
\(236\) 17.2128 + 21.1873i 1.12046 + 1.37917i
\(237\) 0 0
\(238\) 3.68279 0.292779i 0.238720 0.0189780i
\(239\) 4.83178i 0.312542i 0.987714 + 0.156271i \(0.0499473\pi\)
−0.987714 + 0.156271i \(0.950053\pi\)
\(240\) 0 0
\(241\) 23.1768 13.3811i 1.49295 0.861954i 0.492980 0.870041i \(-0.335908\pi\)
0.999967 + 0.00808705i \(0.00257422\pi\)
\(242\) −22.0083 + 15.1516i −1.41475 + 0.973980i
\(243\) 0 0
\(244\) −26.7748 + 4.28423i −1.71408 + 0.274270i
\(245\) −2.25665 + 3.90863i −0.144172 + 0.249713i
\(246\) 0 0
\(247\) −2.33717 11.4369i −0.148710 0.727712i
\(248\) 0.676848 + 2.79003i 0.0429799 + 0.177167i
\(249\) 0 0
\(250\) 0.556561 0.383164i 0.0352000 0.0242334i
\(251\) 12.7393 7.35502i 0.804096 0.464245i −0.0408056 0.999167i \(-0.512992\pi\)
0.844901 + 0.534922i \(0.179659\pi\)
\(252\) 0 0
\(253\) 7.77070 + 13.4592i 0.488540 + 0.846176i
\(254\) 12.3825 + 5.89412i 0.776948 + 0.369830i
\(255\) 0 0
\(256\) 1.77331 + 15.9014i 0.110832 + 0.993839i
\(257\) 8.75454 5.05443i 0.546093 0.315287i −0.201452 0.979498i \(-0.564566\pi\)
0.747545 + 0.664212i \(0.231233\pi\)
\(258\) 0 0
\(259\) −1.06406 −0.0661172
\(260\) −15.9402 6.08988i −0.988567 0.377678i
\(261\) 0 0
\(262\) −11.0959 + 0.882115i −0.685507 + 0.0544972i
\(263\) −13.6702 7.89252i −0.842943 0.486673i 0.0153204 0.999883i \(-0.495123\pi\)
−0.858264 + 0.513209i \(0.828457\pi\)
\(264\) 0 0
\(265\) 12.9874i 0.797807i
\(266\) −13.9950 + 4.03813i −0.858091 + 0.247594i
\(267\) 0 0
\(268\) 16.8680 2.69904i 1.03038 0.164870i
\(269\) 0.0632774 + 0.0365332i 0.00385809 + 0.00222747i 0.501928 0.864910i \(-0.332624\pi\)
−0.498070 + 0.867137i \(0.665958\pi\)
\(270\) 0 0
\(271\) 6.48453 + 3.74384i 0.393907 + 0.227422i 0.683852 0.729621i \(-0.260304\pi\)
−0.289945 + 0.957043i \(0.593637\pi\)
\(272\) −4.20145 + 1.37987i −0.254750 + 0.0836671i
\(273\) 0 0
\(274\) −13.5977 6.47256i −0.821469 0.391022i
\(275\) 24.3851 14.0787i 1.47048 0.848980i
\(276\) 0 0
\(277\) −19.0585 −1.14511 −0.572557 0.819865i \(-0.694048\pi\)
−0.572557 + 0.819865i \(0.694048\pi\)
\(278\) −2.71316 + 5.69988i −0.162725 + 0.341856i
\(279\) 0 0
\(280\) −5.99882 + 20.4299i −0.358498 + 1.22092i
\(281\) 7.58314 4.37813i 0.452372 0.261177i −0.256459 0.966555i \(-0.582556\pi\)
0.708832 + 0.705378i \(0.249223\pi\)
\(282\) 0 0
\(283\) −17.9331 10.3537i −1.06601 0.615461i −0.138921 0.990303i \(-0.544363\pi\)
−0.927088 + 0.374843i \(0.877697\pi\)
\(284\) −2.71003 3.33578i −0.160810 0.197942i
\(285\) 0 0
\(286\) −18.6970 8.89981i −1.10557 0.526257i
\(287\) 0.458501 0.794148i 0.0270645 0.0468771i
\(288\) 0 0
\(289\) 7.88887 + 13.6639i 0.464051 + 0.803760i
\(290\) 16.6311 + 24.1574i 0.976612 + 1.41857i
\(291\) 0 0
\(292\) −9.88564 12.1683i −0.578513 0.712094i
\(293\) 19.7950i 1.15643i 0.815883 + 0.578217i \(0.196251\pi\)
−0.815883 + 0.578217i \(0.803749\pi\)
\(294\) 0 0
\(295\) −21.7422 37.6586i −1.26588 2.19257i
\(296\) 1.23778 0.300279i 0.0719446 0.0174534i
\(297\) 0 0
\(298\) −0.898753 11.3052i −0.0520634 0.654892i
\(299\) −3.80615 + 6.59245i −0.220115 + 0.381251i
\(300\) 0 0
\(301\) −6.76926 + 11.7247i −0.390173 + 0.675800i
\(302\) 6.45300 4.44256i 0.371329 0.255641i
\(303\) 0 0
\(304\) 15.1404 8.64687i 0.868361 0.495932i
\(305\) 43.1935 2.47325
\(306\) 0 0
\(307\) 4.47582 7.75235i 0.255449 0.442450i −0.709569 0.704636i \(-0.751110\pi\)
0.965017 + 0.262186i \(0.0844435\pi\)
\(308\) −9.22143 + 24.1369i −0.525440 + 1.37533i
\(309\) 0 0
\(310\) −0.362430 4.55892i −0.0205846 0.258929i
\(311\) 0.249429i 0.0141438i −0.999975 0.00707191i \(-0.997749\pi\)
0.999975 0.00707191i \(-0.00225108\pi\)
\(312\) 0 0
\(313\) 11.8686 + 20.5570i 0.670852 + 1.16195i 0.977663 + 0.210179i \(0.0674046\pi\)
−0.306811 + 0.951770i \(0.599262\pi\)
\(314\) −0.319369 4.01727i −0.0180231 0.226707i
\(315\) 0 0
\(316\) −14.0539 17.2990i −0.790595 0.973146i
\(317\) 14.6359 8.45005i 0.822035 0.474602i −0.0290826 0.999577i \(-0.509259\pi\)
0.851118 + 0.524975i \(0.175925\pi\)
\(318\) 0 0
\(319\) 17.7953 + 30.8223i 0.996343 + 1.72572i
\(320\) 1.21285 25.4583i 0.0678005 1.42316i
\(321\) 0 0
\(322\) 8.57662 + 4.08250i 0.477956 + 0.227509i
\(323\) 3.19630 + 3.60647i 0.177847 + 0.200669i
\(324\) 0 0
\(325\) 11.9440 + 6.89588i 0.662535 + 0.382515i
\(326\) −6.89993 10.0224i −0.382152 0.555091i
\(327\) 0 0
\(328\) −0.309249 + 1.05320i −0.0170754 + 0.0581531i
\(329\) 3.97758 + 6.88937i 0.219291 + 0.379823i
\(330\) 0 0
\(331\) 9.72419 0.534490 0.267245 0.963629i \(-0.413887\pi\)
0.267245 + 0.963629i \(0.413887\pi\)
\(332\) 7.75095 + 2.96122i 0.425388 + 0.162518i
\(333\) 0 0
\(334\) 22.9991 + 10.9477i 1.25846 + 0.599029i
\(335\) −27.2117 −1.48673
\(336\) 0 0
\(337\) 8.24404 + 4.75970i 0.449081 + 0.259277i 0.707442 0.706771i \(-0.249849\pi\)
−0.258361 + 0.966049i \(0.583182\pi\)
\(338\) 0.653194 + 8.21636i 0.0355291 + 0.446911i
\(339\) 0 0
\(340\) 6.95593 1.11302i 0.377238 0.0603618i
\(341\) 5.54972i 0.300534i
\(342\) 0 0
\(343\) 19.8878i 1.07384i
\(344\) 4.56572 15.5493i 0.246167 0.838360i
\(345\) 0 0
\(346\) 24.9194 1.98107i 1.33967 0.106503i
\(347\) 15.9269 + 9.19538i 0.854999 + 0.493634i 0.862334 0.506339i \(-0.169002\pi\)
−0.00733524 + 0.999973i \(0.502335\pi\)
\(348\) 0 0
\(349\) 5.86074 0.313718 0.156859 0.987621i \(-0.449863\pi\)
0.156859 + 0.987621i \(0.449863\pi\)
\(350\) 7.39655 15.5389i 0.395362 0.830588i
\(351\) 0 0
\(352\) 3.91548 30.6800i 0.208696 1.63525i
\(353\) 12.9828 0.691006 0.345503 0.938418i \(-0.387708\pi\)
0.345503 + 0.938418i \(0.387708\pi\)
\(354\) 0 0
\(355\) 3.42315 + 5.92906i 0.181682 + 0.314682i
\(356\) 1.52933 + 9.55772i 0.0810542 + 0.506558i
\(357\) 0 0
\(358\) 17.4271 11.9976i 0.921049 0.634095i
\(359\) −29.5172 17.0418i −1.55786 0.899430i −0.997462 0.0712049i \(-0.977316\pi\)
−0.560396 0.828225i \(-0.689351\pi\)
\(360\) 0 0
\(361\) −15.1938 11.4082i −0.799676 0.600432i
\(362\) 10.6395 22.3517i 0.559199 1.17478i
\(363\) 0 0
\(364\) −12.4969 + 1.99963i −0.655016 + 0.104809i
\(365\) 12.4870 + 21.6281i 0.653597 + 1.13206i
\(366\) 0 0
\(367\) 11.3161 6.53337i 0.590697 0.341039i −0.174676 0.984626i \(-0.555888\pi\)
0.765373 + 0.643587i \(0.222554\pi\)
\(368\) −11.1290 2.32869i −0.580139 0.121391i
\(369\) 0 0
\(370\) −2.02253 + 0.160790i −0.105147 + 0.00835907i
\(371\) 4.81621 + 8.34193i 0.250045 + 0.433091i
\(372\) 0 0
\(373\) 11.8954i 0.615922i −0.951399 0.307961i \(-0.900353\pi\)
0.951399 0.307961i \(-0.0996466\pi\)
\(374\) 8.52154 0.677456i 0.440638 0.0350304i
\(375\) 0 0
\(376\) −6.57119 6.89170i −0.338883 0.355412i
\(377\) −8.71626 + 15.0970i −0.448910 + 0.777535i
\(378\) 0 0
\(379\) −8.93709 −0.459068 −0.229534 0.973301i \(-0.573720\pi\)
−0.229534 + 0.973301i \(0.573720\pi\)
\(380\) −25.9913 + 9.79039i −1.33332 + 0.502237i
\(381\) 0 0
\(382\) −14.9585 21.7279i −0.765345 1.11169i
\(383\) 6.14400 10.6417i 0.313944 0.543767i −0.665269 0.746604i \(-0.731683\pi\)
0.979212 + 0.202838i \(0.0650163\pi\)
\(384\) 0 0
\(385\) 20.5797 35.6451i 1.04884 1.81664i
\(386\) −10.4952 + 0.834356i −0.534189 + 0.0424676i
\(387\) 0 0
\(388\) −1.14983 + 0.934136i −0.0583738 + 0.0474236i
\(389\) 3.61961 + 6.26935i 0.183522 + 0.317869i 0.943077 0.332573i \(-0.107917\pi\)
−0.759556 + 0.650442i \(0.774584\pi\)
\(390\) 0 0
\(391\) 3.14256i 0.158926i
\(392\) −0.944648 3.89393i −0.0477119 0.196673i
\(393\) 0 0
\(394\) −16.5115 + 11.3673i −0.831839 + 0.572679i
\(395\) 17.7521 + 30.7475i 0.893205 + 1.54708i
\(396\) 0 0
\(397\) −14.7425 + 25.5347i −0.739904 + 1.28155i 0.212633 + 0.977132i \(0.431796\pi\)
−0.952538 + 0.304420i \(0.901537\pi\)
\(398\) 4.08097 8.57342i 0.204561 0.429747i
\(399\) 0 0
\(400\) −4.21906 + 20.1632i −0.210953 + 1.00816i
\(401\) −3.17820 1.83494i −0.158712 0.0916323i 0.418541 0.908198i \(-0.362542\pi\)
−0.577252 + 0.816566i \(0.695875\pi\)
\(402\) 0 0
\(403\) 2.35412 1.35915i 0.117267 0.0677040i
\(404\) −10.6585 + 1.70546i −0.530278 + 0.0848497i
\(405\) 0 0
\(406\) 19.6408 + 9.34910i 0.974759 + 0.463988i
\(407\) −2.46210 −0.122042
\(408\) 0 0
\(409\) 0.913849 0.527611i 0.0451869 0.0260887i −0.477236 0.878775i \(-0.658361\pi\)
0.522423 + 0.852686i \(0.325028\pi\)
\(410\) 0.751506 1.57878i 0.0371142 0.0779706i
\(411\) 0 0
\(412\) −5.38769 + 14.1022i −0.265433 + 0.694765i
\(413\) −27.9305 16.1257i −1.37437 0.793494i
\(414\) 0 0
\(415\) −11.4465 6.60864i −0.561886 0.324405i
\(416\) 13.9730 5.85277i 0.685081 0.286955i
\(417\) 0 0
\(418\) −32.3829 + 9.34376i −1.58390 + 0.457018i
\(419\) 12.9932i 0.634757i 0.948299 + 0.317379i \(0.102803\pi\)
−0.948299 + 0.317379i \(0.897197\pi\)
\(420\) 0 0
\(421\) 28.8014 + 16.6285i 1.40369 + 0.810424i 0.994770 0.102144i \(-0.0325704\pi\)
0.408925 + 0.912568i \(0.365904\pi\)
\(422\) 0.856217 + 10.7701i 0.0416800 + 0.524282i
\(423\) 0 0
\(424\) −7.95666 8.34475i −0.386410 0.405257i
\(425\) −5.69360 −0.276180
\(426\) 0 0
\(427\) 27.7437 16.0178i 1.34261 0.775157i
\(428\) 13.1340 34.3781i 0.634858 1.66173i
\(429\) 0 0
\(430\) −11.0951 + 23.3090i −0.535055 + 1.12406i
\(431\) 4.67046 + 8.08948i 0.224968 + 0.389656i 0.956310 0.292355i \(-0.0944388\pi\)
−0.731342 + 0.682011i \(0.761106\pi\)
\(432\) 0 0
\(433\) −11.4412 + 6.60558i −0.549829 + 0.317444i −0.749053 0.662510i \(-0.769491\pi\)
0.199224 + 0.979954i \(0.436158\pi\)
\(434\) −1.92342 2.79384i −0.0923269 0.134109i
\(435\) 0 0
\(436\) 7.59718 6.17204i 0.363839 0.295587i
\(437\) 2.48071 + 12.1393i 0.118669 + 0.580702i
\(438\) 0 0
\(439\) −9.90270 + 17.1520i −0.472630 + 0.818619i −0.999509 0.0313210i \(-0.990029\pi\)
0.526879 + 0.849940i \(0.323362\pi\)
\(440\) −13.8806 + 47.2724i −0.661730 + 2.25362i
\(441\) 0 0
\(442\) 2.37433 + 3.44881i 0.112935 + 0.164043i
\(443\) −8.86172 + 5.11632i −0.421033 + 0.243084i −0.695519 0.718508i \(-0.744826\pi\)
0.274486 + 0.961591i \(0.411492\pi\)
\(444\) 0 0
\(445\) 15.4186i 0.730914i
\(446\) −0.192423 2.42044i −0.00911150 0.114611i
\(447\) 0 0
\(448\) −8.66191 16.8020i −0.409237 0.793818i
\(449\) 9.69618i 0.457591i −0.973475 0.228795i \(-0.926521\pi\)
0.973475 0.228795i \(-0.0734787\pi\)
\(450\) 0 0
\(451\) 1.06092 1.83757i 0.0499567 0.0865276i
\(452\) 33.3232 + 12.7310i 1.56739 + 0.598817i
\(453\) 0 0
\(454\) −20.1198 + 13.8514i −0.944269 + 0.650080i
\(455\) 20.1602 0.945125
\(456\) 0 0
\(457\) −8.85003 −0.413987 −0.206993 0.978342i \(-0.566368\pi\)
−0.206993 + 0.978342i \(0.566368\pi\)
\(458\) 19.5626 13.4679i 0.914102 0.629312i
\(459\) 0 0
\(460\) 16.9192 + 6.46391i 0.788860 + 0.301381i
\(461\) 4.85595 8.41075i 0.226164 0.391728i −0.730504 0.682909i \(-0.760715\pi\)
0.956668 + 0.291181i \(0.0940481\pi\)
\(462\) 0 0
\(463\) 38.4094i 1.78504i −0.451013 0.892518i \(-0.648937\pi\)
0.451013 0.892518i \(-0.351063\pi\)
\(464\) −25.4859 5.33281i −1.18315 0.247569i
\(465\) 0 0
\(466\) −0.372870 4.69024i −0.0172729 0.217271i
\(467\) 21.7838i 1.00803i −0.863694 0.504016i \(-0.831855\pi\)
0.863694 0.504016i \(-0.168145\pi\)
\(468\) 0 0
\(469\) −17.4784 + 10.0911i −0.807076 + 0.465966i
\(470\) 8.60156 + 12.4941i 0.396760 + 0.576311i
\(471\) 0 0
\(472\) 37.0414 + 10.8764i 1.70497 + 0.500628i
\(473\) −15.6633 + 27.1296i −0.720198 + 1.24742i
\(474\) 0 0
\(475\) 21.9937 4.49448i 1.00914 0.206221i
\(476\) 4.05512 3.29443i 0.185866 0.151000i
\(477\) 0 0
\(478\) 3.87481 + 5.62833i 0.177230 + 0.257434i
\(479\) 10.5544 6.09359i 0.482243 0.278423i −0.239108 0.970993i \(-0.576855\pi\)
0.721351 + 0.692570i \(0.243522\pi\)
\(480\) 0 0
\(481\) −0.602978 1.04439i −0.0274934 0.0476200i
\(482\) 16.2667 34.1735i 0.740928 1.55656i
\(483\) 0 0
\(484\) −13.4858 + 35.2988i −0.612990 + 1.60449i
\(485\) 2.04373 1.17995i 0.0928008 0.0535786i
\(486\) 0 0
\(487\) −27.8697 −1.26290 −0.631448 0.775418i \(-0.717539\pi\)
−0.631448 + 0.775418i \(0.717539\pi\)
\(488\) −27.7531 + 26.4624i −1.25632 + 1.19790i
\(489\) 0 0
\(490\) 0.505829 + 6.36269i 0.0228510 + 0.287437i
\(491\) 14.9996 + 8.66002i 0.676922 + 0.390821i 0.798694 0.601737i \(-0.205524\pi\)
−0.121772 + 0.992558i \(0.538858\pi\)
\(492\) 0 0
\(493\) 7.19660i 0.324119i
\(494\) −11.8942 11.4480i −0.535145 0.515072i
\(495\) 0 0
\(496\) 3.02588 + 2.70719i 0.135866 + 0.121557i
\(497\) 4.39745 + 2.53887i 0.197253 + 0.113884i
\(498\) 0 0
\(499\) −1.00693 0.581349i −0.0450762 0.0260248i 0.477293 0.878744i \(-0.341618\pi\)
−0.522369 + 0.852720i \(0.674952\pi\)
\(500\) 0.341038 0.892660i 0.0152517 0.0399210i
\(501\) 0 0
\(502\) 8.94110 18.7837i 0.399061 0.838358i
\(503\) −11.1928 + 6.46214i −0.499060 + 0.288133i −0.728325 0.685231i \(-0.759701\pi\)
0.229265 + 0.973364i \(0.426368\pi\)
\(504\) 0 0
\(505\) 17.1944 0.765140
\(506\) 19.8453 + 9.44642i 0.882231 + 0.419944i
\(507\) 0 0
\(508\) 19.1506 3.06428i 0.849670 0.135955i
\(509\) −25.6884 + 14.8312i −1.13862 + 0.657381i −0.946088 0.323910i \(-0.895002\pi\)
−0.192530 + 0.981291i \(0.561669\pi\)
\(510\) 0 0
\(511\) 16.0410 + 9.26130i 0.709614 + 0.409696i
\(512\) 14.8177 + 17.1008i 0.654855 + 0.755754i
\(513\) 0 0
\(514\) 6.14440 12.9083i 0.271018 0.569362i
\(515\) 12.0239 20.8259i 0.529834 0.917700i
\(516\) 0 0
\(517\) 9.20365 + 15.9412i 0.404776 + 0.701093i
\(518\) −1.23947 + 0.853312i −0.0544592 + 0.0374924i
\(519\) 0 0
\(520\) −23.4517 + 5.68927i −1.02843 + 0.249491i
\(521\) 35.2430i 1.54402i −0.635608 0.772012i \(-0.719251\pi\)
0.635608 0.772012i \(-0.280749\pi\)
\(522\) 0 0
\(523\) 11.4242 + 19.7872i 0.499543 + 0.865234i 1.00000 0.000527203i \(-0.000167814\pi\)
−0.500457 + 0.865762i \(0.666834\pi\)
\(524\) −12.2177 + 9.92581i −0.533733 + 0.433611i
\(525\) 0 0
\(526\) −22.2532 + 1.76911i −0.970286 + 0.0771369i
\(527\) −0.561093 + 0.971841i −0.0244416 + 0.0423341i
\(528\) 0 0
\(529\) −7.46008 + 12.9212i −0.324351 + 0.561793i
\(530\) 10.4151 + 15.1284i 0.452404 + 0.657135i
\(531\) 0 0
\(532\) −13.0638 + 15.9271i −0.566389 + 0.690525i
\(533\) 1.03929 0.0450168
\(534\) 0 0
\(535\) −29.3116 + 50.7692i −1.26725 + 2.19494i
\(536\) 17.4843 16.6712i 0.755206 0.720084i
\(537\) 0 0
\(538\) 0.103007 0.00818894i 0.00444093 0.000353050i
\(539\) 7.74551i 0.333623i
\(540\) 0 0
\(541\) −18.2188 31.5560i −0.783289 1.35670i −0.930016 0.367520i \(-0.880207\pi\)
0.146727 0.989177i \(-0.453126\pi\)
\(542\) 10.5559 0.839184i 0.453414 0.0360460i
\(543\) 0 0
\(544\) −3.78750 + 4.97667i −0.162388 + 0.213373i
\(545\) −13.5033 + 7.79616i −0.578420 + 0.333951i
\(546\) 0 0
\(547\) 14.8588 + 25.7362i 0.635317 + 1.10040i 0.986448 + 0.164075i \(0.0524638\pi\)
−0.351131 + 0.936326i \(0.614203\pi\)
\(548\) −21.0300 + 3.36500i −0.898357 + 0.143746i
\(549\) 0 0
\(550\) 17.1148 35.9551i 0.729776 1.53313i
\(551\) 5.68094 + 27.7996i 0.242016 + 1.18430i
\(552\) 0 0
\(553\) 22.8048 + 13.1663i 0.969757 + 0.559889i
\(554\) −22.2004 + 15.2838i −0.943204 + 0.649347i
\(555\) 0 0
\(556\) 1.41054 + 8.81534i 0.0598202 + 0.373854i
\(557\) 2.98070 + 5.16273i 0.126296 + 0.218752i 0.922239 0.386620i \(-0.126358\pi\)
−0.795943 + 0.605372i \(0.793024\pi\)
\(558\) 0 0
\(559\) −15.3440 −0.648982
\(560\) 9.39587 + 28.6086i 0.397048 + 1.20893i
\(561\) 0 0
\(562\) 5.32225 11.1811i 0.224506 0.471647i
\(563\) −35.3916 −1.49158 −0.745789 0.666182i \(-0.767927\pi\)
−0.745789 + 0.666182i \(0.767927\pi\)
\(564\) 0 0
\(565\) −49.2113 28.4121i −2.07033 1.19531i
\(566\) −29.1925 + 2.32078i −1.22705 + 0.0975495i
\(567\) 0 0
\(568\) −5.83189 1.71241i −0.244701 0.0718512i
\(569\) 30.2541i 1.26832i −0.773203 0.634158i \(-0.781347\pi\)
0.773203 0.634158i \(-0.218653\pi\)
\(570\) 0 0
\(571\) 25.4945i 1.06691i −0.845828 0.533456i \(-0.820893\pi\)
0.845828 0.533456i \(-0.179107\pi\)
\(572\) −28.9164 + 4.62690i −1.20906 + 0.193461i
\(573\) 0 0
\(574\) −0.102773 1.29276i −0.00428968 0.0539587i
\(575\) −12.6776 7.31941i −0.528692 0.305240i
\(576\) 0 0
\(577\) −12.0785 −0.502836 −0.251418 0.967879i \(-0.580897\pi\)
−0.251418 + 0.967879i \(0.580897\pi\)
\(578\) 20.1471 + 9.59007i 0.838008 + 0.398894i
\(579\) 0 0
\(580\) 38.7457 + 14.8026i 1.60883 + 0.614646i
\(581\) −9.80296 −0.406695
\(582\) 0 0
\(583\) 11.1442 + 19.3022i 0.461544 + 0.799417i
\(584\) −21.2736 6.24655i −0.880307 0.258484i
\(585\) 0 0
\(586\) 15.8744 + 23.0583i 0.655766 + 0.952528i
\(587\) −18.8754 10.8977i −0.779070 0.449796i 0.0570304 0.998372i \(-0.481837\pi\)
−0.836101 + 0.548576i \(0.815170\pi\)
\(588\) 0 0
\(589\) 1.40027 4.19702i 0.0576970 0.172935i
\(590\) −55.5265 26.4308i −2.28599 1.08814i
\(591\) 0 0
\(592\) 1.20103 1.34241i 0.0493620 0.0551728i
\(593\) 10.3212 + 17.8768i 0.423839 + 0.734111i 0.996311 0.0858135i \(-0.0273489\pi\)
−0.572472 + 0.819924i \(0.694016\pi\)
\(594\) 0 0
\(595\) −7.20764 + 4.16133i −0.295484 + 0.170598i
\(596\) −10.1130 12.4482i −0.414246 0.509896i
\(597\) 0 0
\(598\) 0.853151 + 10.7316i 0.0348879 + 0.438846i
\(599\) −18.6426 32.2900i −0.761717 1.31933i −0.941965 0.335711i \(-0.891023\pi\)
0.180248 0.983621i \(-0.442310\pi\)
\(600\) 0 0
\(601\) 32.9087i 1.34238i −0.741287 0.671188i \(-0.765784\pi\)
0.741287 0.671188i \(-0.234216\pi\)
\(602\) 1.51733 + 19.0861i 0.0618418 + 0.777893i
\(603\) 0 0
\(604\) 3.95413 10.3499i 0.160891 0.421131i
\(605\) 30.0965 52.1287i 1.22360 2.11933i
\(606\) 0 0
\(607\) −43.4094 −1.76193 −0.880966 0.473180i \(-0.843106\pi\)
−0.880966 + 0.473180i \(0.843106\pi\)
\(608\) 10.7021 22.2141i 0.434027 0.900900i
\(609\) 0 0
\(610\) 50.3142 34.6387i 2.03716 1.40248i
\(611\) −4.50802 + 7.80813i −0.182375 + 0.315883i
\(612\) 0 0
\(613\) −23.0269 + 39.8838i −0.930048 + 1.61089i −0.146814 + 0.989164i \(0.546902\pi\)
−0.783234 + 0.621727i \(0.786431\pi\)
\(614\) −1.00326 12.6197i −0.0404882 0.509290i
\(615\) 0 0
\(616\) 8.61480 + 35.5111i 0.347100 + 1.43078i
\(617\) 4.97177 + 8.61136i 0.200156 + 0.346680i 0.948579 0.316542i \(-0.102522\pi\)
−0.748423 + 0.663222i \(0.769188\pi\)
\(618\) 0 0
\(619\) 4.75114i 0.190964i −0.995431 0.0954822i \(-0.969561\pi\)
0.995431 0.0954822i \(-0.0304393\pi\)
\(620\) −4.07817 5.01983i −0.163783 0.201601i
\(621\) 0 0
\(622\) −0.200028 0.290549i −0.00802038 0.0116499i
\(623\) −5.71783 9.90358i −0.229080 0.396778i
\(624\) 0 0
\(625\) 12.1138 20.9818i 0.484553 0.839270i
\(626\) 30.3107 + 14.4280i 1.21146 + 0.576658i
\(627\) 0 0
\(628\) −3.59364 4.42342i −0.143402 0.176514i
\(629\) 0.431151 + 0.248925i 0.0171911 + 0.00992530i
\(630\) 0 0
\(631\) −17.8068 + 10.2807i −0.708876 + 0.409270i −0.810645 0.585538i \(-0.800883\pi\)
0.101769 + 0.994808i \(0.467550\pi\)
\(632\) −30.2436 8.88041i −1.20303 0.353244i
\(633\) 0 0
\(634\) 10.2723 21.5803i 0.407964 0.857062i
\(635\) −30.8940 −1.22599
\(636\) 0 0
\(637\) −3.28554 + 1.89691i −0.130178 + 0.0751582i
\(638\) 45.4466 + 21.6327i 1.79925 + 0.856448i
\(639\) 0 0
\(640\) −19.0033 30.6279i −0.751173 1.21067i
\(641\) −33.0540 19.0838i −1.30556 0.753763i −0.324205 0.945987i \(-0.605097\pi\)
−0.981351 + 0.192223i \(0.938430\pi\)
\(642\) 0 0
\(643\) −18.5705 10.7217i −0.732350 0.422822i 0.0869313 0.996214i \(-0.472294\pi\)
−0.819281 + 0.573392i \(0.805627\pi\)
\(644\) 13.2644 2.12244i 0.522692 0.0836358i
\(645\) 0 0
\(646\) 6.61542 + 1.63776i 0.260280 + 0.0644370i
\(647\) 23.8222i 0.936547i 0.883583 + 0.468274i \(0.155124\pi\)
−0.883583 + 0.468274i \(0.844876\pi\)
\(648\) 0 0
\(649\) −64.6280 37.3130i −2.53687 1.46466i
\(650\) 19.4432 1.54571i 0.762623 0.0606279i
\(651\) 0 0
\(652\) −16.0748 6.14133i −0.629539 0.240513i
\(653\) −16.6726 −0.652450 −0.326225 0.945292i \(-0.605777\pi\)
−0.326225 + 0.945292i \(0.605777\pi\)
\(654\) 0 0
\(655\) 21.7159 12.5377i 0.848512 0.489888i
\(656\) 0.484373 + 1.47482i 0.0189116 + 0.0575821i
\(657\) 0 0
\(658\) 10.1582 + 4.83533i 0.396007 + 0.188501i
\(659\) 7.26163 + 12.5775i 0.282873 + 0.489950i 0.972091 0.234604i \(-0.0753792\pi\)
−0.689218 + 0.724554i \(0.742046\pi\)
\(660\) 0 0
\(661\) 19.7070 11.3778i 0.766513 0.442547i −0.0651162 0.997878i \(-0.520742\pi\)
0.831629 + 0.555331i \(0.187408\pi\)
\(662\) 11.3273 7.79825i 0.440247 0.303087i
\(663\) 0 0
\(664\) 11.4035 2.76642i 0.442540 0.107358i
\(665\) 24.5573 21.7644i 0.952290 0.843985i
\(666\) 0 0
\(667\) 9.25159 16.0242i 0.358223 0.620461i
\(668\) 35.5701 5.69155i 1.37625 0.220213i
\(669\) 0 0
\(670\) −31.6977 + 21.8222i −1.22459 + 0.843065i
\(671\) 64.1957 37.0634i 2.47825 1.43082i
\(672\) 0 0
\(673\) 11.1598i 0.430180i 0.976594 + 0.215090i \(0.0690044\pi\)
−0.976594 + 0.215090i \(0.930996\pi\)
\(674\) 13.4201 1.06689i 0.516924 0.0410950i
\(675\) 0 0
\(676\) 7.34993 + 9.04704i 0.282689 + 0.347963i
\(677\) 36.0612i 1.38594i −0.720965 0.692972i \(-0.756301\pi\)
0.720965 0.692972i \(-0.243699\pi\)
\(678\) 0 0
\(679\) 0.875139 1.51579i 0.0335848 0.0581705i
\(680\) 7.21007 6.87476i 0.276494 0.263635i
\(681\) 0 0
\(682\) −4.45056 6.46462i −0.170421 0.247543i
\(683\) 15.5917 0.596598 0.298299 0.954472i \(-0.403581\pi\)
0.298299 + 0.954472i \(0.403581\pi\)
\(684\) 0 0
\(685\) 33.9259 1.29624
\(686\) 15.9489 + 23.1664i 0.608931 + 0.884497i
\(687\) 0 0
\(688\) −7.15122 21.7741i −0.272638 0.830129i
\(689\) −5.45850 + 9.45440i −0.207952 + 0.360184i
\(690\) 0 0
\(691\) 22.9437i 0.872818i −0.899748 0.436409i \(-0.856250\pi\)
0.899748 0.436409i \(-0.143750\pi\)
\(692\) 27.4388 22.2916i 1.04307 0.847399i
\(693\) 0 0
\(694\) 25.9267 2.06115i 0.984163 0.0782402i
\(695\) 14.2210i 0.539435i
\(696\) 0 0
\(697\) −0.371566 + 0.214524i −0.0140741 + 0.00812567i
\(698\) 6.82691 4.69998i 0.258403 0.177897i
\(699\) 0 0
\(700\) −3.84538 24.0322i −0.145342 0.908330i
\(701\) 9.13435 15.8212i 0.345000 0.597557i −0.640354 0.768080i \(-0.721212\pi\)
0.985354 + 0.170523i \(0.0545457\pi\)
\(702\) 0 0
\(703\) −1.86198 0.621220i −0.0702260 0.0234297i
\(704\) −20.0427 38.8778i −0.755386 1.46526i
\(705\) 0 0
\(706\) 15.1231 10.4115i 0.569166 0.391842i
\(707\) 11.0442 6.37634i 0.415358 0.239807i
\(708\) 0 0
\(709\) −17.4758 30.2690i −0.656318 1.13678i −0.981562 0.191146i \(-0.938780\pi\)
0.325244 0.945630i \(-0.394554\pi\)
\(710\) 8.74224 + 4.16133i 0.328090 + 0.156172i
\(711\) 0 0
\(712\) 9.44619 + 9.90692i 0.354011 + 0.371278i
\(713\) −2.49870 + 1.44262i −0.0935770 + 0.0540267i
\(714\) 0 0
\(715\) 46.6483 1.74455
\(716\) 10.6786 27.9510i 0.399078 1.04458i
\(717\) 0 0
\(718\) −48.0498 + 3.81992i −1.79320 + 0.142558i
\(719\) −3.07635 1.77613i −0.114728 0.0662385i 0.441538 0.897243i \(-0.354433\pi\)
−0.556266 + 0.831004i \(0.687766\pi\)
\(720\) 0 0
\(721\) 17.8356i 0.664234i
\(722\) −26.8474 1.10432i −0.999155 0.0410985i
\(723\) 0 0
\(724\) −5.53134 34.5688i −0.205571 1.28474i
\(725\) −29.0323 16.7618i −1.07823 0.622517i
\(726\) 0 0
\(727\) −6.15483 3.55349i −0.228270 0.131792i 0.381504 0.924367i \(-0.375406\pi\)
−0.609774 + 0.792576i \(0.708740\pi\)
\(728\) −12.9535 + 12.3511i −0.480089 + 0.457762i
\(729\) 0 0
\(730\) 31.8900 + 15.1797i 1.18030 + 0.561827i
\(731\) 5.48575 3.16720i 0.202898 0.117143i
\(732\) 0 0
\(733\) −15.8748 −0.586350 −0.293175 0.956059i \(-0.594712\pi\)
−0.293175 + 0.956059i \(0.594712\pi\)
\(734\) 7.94226 16.6853i 0.293154 0.615866i
\(735\) 0 0
\(736\) −14.8311 + 6.21223i −0.546683 + 0.228986i
\(737\) −40.4429 + 23.3497i −1.48973 + 0.860098i
\(738\) 0 0
\(739\) −16.0186 9.24836i −0.589255 0.340206i 0.175548 0.984471i \(-0.443830\pi\)
−0.764803 + 0.644264i \(0.777164\pi\)
\(740\) −2.22702 + 1.80925i −0.0818667 + 0.0665095i
\(741\) 0 0
\(742\) 12.2999 + 5.85481i 0.451545 + 0.214937i
\(743\) 7.00831 12.1387i 0.257110 0.445328i −0.708357 0.705855i \(-0.750563\pi\)
0.965466 + 0.260527i \(0.0838964\pi\)
\(744\) 0 0
\(745\) 12.7742 + 22.1255i 0.468010 + 0.810617i
\(746\) −9.53945 13.8565i −0.349264 0.507321i
\(747\) 0 0
\(748\) 9.38308 7.62293i 0.343079 0.278722i
\(749\) 43.4795i 1.58871i
\(750\) 0 0
\(751\) −10.3122 17.8612i −0.376297 0.651765i 0.614223 0.789132i \(-0.289469\pi\)
−0.990520 + 0.137367i \(0.956136\pi\)
\(752\) −13.1812 2.75811i −0.480670 0.100578i
\(753\) 0 0
\(754\) 1.95375 + 24.5758i 0.0711515 + 0.894997i
\(755\) −8.82454 + 15.2846i −0.321158 + 0.556262i
\(756\) 0 0
\(757\) 12.5598 21.7543i 0.456495 0.790672i −0.542278 0.840199i \(-0.682438\pi\)
0.998773 + 0.0495268i \(0.0157713\pi\)
\(758\) −10.4104 + 7.16704i −0.378123 + 0.260319i
\(759\) 0 0
\(760\) −22.4247 + 32.2479i −0.813430 + 1.16975i
\(761\) −7.58718 −0.275035 −0.137518 0.990499i \(-0.543912\pi\)
−0.137518 + 0.990499i \(0.543912\pi\)
\(762\) 0 0
\(763\) −5.78224 + 10.0151i −0.209331 + 0.362572i
\(764\) −34.8490 13.3139i −1.26079 0.481682i
\(765\) 0 0
\(766\) −1.37718 17.3232i −0.0497596 0.625913i
\(767\) 36.5524i 1.31983i
\(768\) 0 0
\(769\) −10.2413 17.7384i −0.369309 0.639663i 0.620148 0.784485i \(-0.287072\pi\)
−0.989458 + 0.144822i \(0.953739\pi\)
\(770\) −4.61295 58.0251i −0.166239 2.09108i
\(771\) 0 0
\(772\) −11.5562 + 9.38842i −0.415918 + 0.337897i
\(773\) −16.5528 + 9.55676i −0.595363 + 0.343733i −0.767215 0.641390i \(-0.778358\pi\)
0.171852 + 0.985123i \(0.445025\pi\)
\(774\) 0 0
\(775\) 2.61371 + 4.52707i 0.0938872 + 0.162617i
\(776\) −0.590262 + 2.01023i −0.0211892 + 0.0721631i
\(777\) 0 0
\(778\) 9.24399 + 4.40017i 0.331413 + 0.157754i
\(779\) 1.26597 1.12199i 0.0453581 0.0401995i
\(780\) 0 0
\(781\) 10.1752 + 5.87465i 0.364097 + 0.210211i
\(782\) −2.52015 3.66063i −0.0901205 0.130904i
\(783\) 0 0
\(784\) −4.22309 3.77832i −0.150825 0.134940i
\(785\) 4.53927 + 7.86225i 0.162014 + 0.280616i
\(786\) 0 0
\(787\) 15.1750 0.540931 0.270465 0.962730i \(-0.412822\pi\)
0.270465 + 0.962730i \(0.412822\pi\)
\(788\) −10.1176 + 26.4826i −0.360424 + 0.943404i
\(789\) 0 0
\(790\) 45.3364 + 21.5803i 1.61300 + 0.767791i
\(791\) −42.1453 −1.49851
\(792\) 0 0
\(793\) 31.4436 + 18.1539i 1.11659 + 0.644666i
\(794\) 3.30454 + 41.5669i 0.117274 + 1.47515i
\(795\) 0 0
\(796\) −2.12165 13.2595i −0.0751998 0.469971i
\(797\) 46.7518i 1.65603i 0.560704 + 0.828017i \(0.310531\pi\)
−0.560704 + 0.828017i \(0.689469\pi\)
\(798\) 0 0
\(799\) 3.72206i 0.131677i
\(800\) 11.2551 + 26.8707i 0.397929 + 0.950021i
\(801\) 0 0
\(802\) −5.17366 + 0.411302i −0.182688 + 0.0145236i
\(803\) 37.1171 + 21.4296i 1.30983 + 0.756233i
\(804\) 0 0
\(805\) −21.3984 −0.754194
\(806\) 1.65224 3.47108i 0.0581978 0.122264i
\(807\) 0 0
\(808\) −11.0479 + 10.5341i −0.388663 + 0.370588i
\(809\) −29.0772 −1.02230 −0.511151 0.859491i \(-0.670781\pi\)
−0.511151 + 0.859491i \(0.670781\pi\)
\(810\) 0 0
\(811\) 23.7677 + 41.1669i 0.834597 + 1.44556i 0.894358 + 0.447352i \(0.147633\pi\)
−0.0597609 + 0.998213i \(0.519034\pi\)
\(812\) 30.3762 4.86048i 1.06600 0.170570i
\(813\) 0 0
\(814\) −2.86799 + 1.97446i −0.100523 + 0.0692049i
\(815\) 23.7391 + 13.7058i 0.831544 + 0.480092i
\(816\) 0 0
\(817\) −18.6906 + 16.5649i −0.653902 + 0.579533i
\(818\) 0.641388 1.34744i 0.0224256 0.0471123i
\(819\) 0 0
\(820\) −0.390699 2.44172i −0.0136438 0.0852686i
\(821\) −18.3351 31.7574i −0.639900 1.10834i −0.985454 0.169940i \(-0.945642\pi\)
0.345554 0.938399i \(-0.387691\pi\)
\(822\) 0 0
\(823\) 39.9324 23.0550i 1.39196 0.803647i 0.398425 0.917201i \(-0.369557\pi\)
0.993532 + 0.113554i \(0.0362236\pi\)
\(824\) 5.03327 + 20.7476i 0.175342 + 0.722778i
\(825\) 0 0
\(826\) −45.4669 + 3.61458i −1.58200 + 0.125767i
\(827\) −3.93836 6.82143i −0.136950 0.237205i 0.789391 0.613891i \(-0.210397\pi\)
−0.926341 + 0.376687i \(0.877063\pi\)
\(828\) 0 0
\(829\) 2.15631i 0.0748918i −0.999299 0.0374459i \(-0.988078\pi\)
0.999299 0.0374459i \(-0.0119222\pi\)
\(830\) −18.6333 + 1.48133i −0.646770 + 0.0514177i
\(831\) 0 0
\(832\) 11.5829 18.0231i 0.401564 0.624840i
\(833\) 0.783093 1.35636i 0.0271326 0.0469950i
\(834\) 0 0
\(835\) −57.3821 −1.98579
\(836\) −30.2282 + 36.8533i −1.04546 + 1.27460i
\(837\) 0 0
\(838\) 10.4198 + 15.1351i 0.359945 + 0.522835i
\(839\) −16.4564 + 28.5033i −0.568137 + 0.984043i 0.428613 + 0.903488i \(0.359002\pi\)
−0.996750 + 0.0805545i \(0.974331\pi\)
\(840\) 0 0
\(841\) 6.68657 11.5815i 0.230571 0.399361i
\(842\) 46.8846 3.72729i 1.61575 0.128451i
\(843\) 0 0
\(844\) 9.63440 + 11.8590i 0.331630 + 0.408204i
\(845\) −9.28399 16.0803i −0.319379 0.553181i
\(846\) 0 0
\(847\) 44.6439i 1.53398i
\(848\) −15.9604 3.33963i −0.548081 0.114684i
\(849\) 0 0
\(850\) −6.63222 + 4.56594i −0.227483 + 0.156611i
\(851\) 0.640011 + 1.10853i 0.0219393 + 0.0380000i
\(852\) 0 0
\(853\) 2.93070 5.07612i 0.100345 0.173803i −0.811482 0.584378i \(-0.801339\pi\)
0.911827 + 0.410575i \(0.134672\pi\)
\(854\) 19.4720 40.9073i 0.666318 1.39982i
\(855\) 0 0
\(856\) −12.2700 50.5783i −0.419381 1.72873i
\(857\) −1.57854 0.911371i −0.0539219 0.0311318i 0.472797 0.881172i \(-0.343245\pi\)
−0.526719 + 0.850040i \(0.676578\pi\)
\(858\) 0 0
\(859\) −36.6465 + 21.1578i −1.25036 + 0.721896i −0.971181 0.238342i \(-0.923396\pi\)
−0.279180 + 0.960239i \(0.590063\pi\)
\(860\) 5.76823 + 36.0492i 0.196695 + 1.22927i
\(861\) 0 0
\(862\) 11.9277 + 5.67763i 0.406259 + 0.193381i
\(863\) −32.8925 −1.11967 −0.559836 0.828603i \(-0.689136\pi\)
−0.559836 + 0.828603i \(0.689136\pi\)
\(864\) 0 0
\(865\) −48.7701 + 28.1574i −1.65823 + 0.957381i
\(866\) −8.03004 + 16.8697i −0.272872 + 0.573257i
\(867\) 0 0
\(868\) −4.48100 1.71195i −0.152095 0.0581074i
\(869\) 52.7675 + 30.4654i 1.79002 + 1.03347i
\(870\) 0 0
\(871\) −19.8093 11.4369i −0.671211 0.387524i
\(872\) 3.89999 13.2820i 0.132070 0.449786i
\(873\) 0 0
\(874\) 12.6247 + 12.1512i 0.427037 + 0.411019i
\(875\) 1.12899i 0.0381667i
\(876\) 0 0
\(877\) 37.4930 + 21.6466i 1.26605 + 0.730954i 0.974238 0.225522i \(-0.0724088\pi\)
0.291811 + 0.956476i \(0.405742\pi\)
\(878\) 2.21969 + 27.9210i 0.0749110 + 0.942287i
\(879\) 0 0
\(880\) 21.7409 + 66.1969i 0.732887 + 2.23150i
\(881\) 10.1569 0.342193 0.171097 0.985254i \(-0.445269\pi\)
0.171097 + 0.985254i \(0.445269\pi\)
\(882\) 0 0
\(883\) 31.8465 18.3866i 1.07172 0.618757i 0.143068 0.989713i \(-0.454303\pi\)
0.928651 + 0.370956i \(0.120970\pi\)
\(884\) 5.53150 + 2.11329i 0.186044 + 0.0710776i
\(885\) 0 0
\(886\) −6.21963 + 13.0664i −0.208952 + 0.438973i
\(887\) 19.3619 + 33.5357i 0.650108 + 1.12602i 0.983096 + 0.183089i \(0.0586095\pi\)
−0.332989 + 0.942931i \(0.608057\pi\)
\(888\) 0 0
\(889\) −19.8436 + 11.4567i −0.665532 + 0.384245i
\(890\) −12.3649 17.9605i −0.414471 0.602037i
\(891\) 0 0
\(892\) −2.16520 2.66515i −0.0724962 0.0892358i
\(893\) 2.93817 + 14.3779i 0.0983220 + 0.481137i
\(894\) 0 0
\(895\) −23.8317 + 41.2777i −0.796606 + 1.37976i
\(896\) −23.5641 12.6255i −0.787221 0.421788i
\(897\) 0 0
\(898\) −7.77578 11.2946i −0.259481 0.376907i
\(899\) −5.72214 + 3.30368i −0.190844 + 0.110184i
\(900\) 0 0
\(901\) 4.50682i 0.150144i
\(902\) −0.237805 2.99129i −0.00791805 0.0995992i
\(903\) 0 0
\(904\) 49.0263 11.8935i 1.63059 0.395573i
\(905\) 55.7669i 1.85375i
\(906\) 0 0
\(907\) −27.5458 + 47.7107i −0.914643 + 1.58421i −0.107220 + 0.994235i \(0.534195\pi\)
−0.807423 + 0.589973i \(0.799138\pi\)
\(908\) −12.3286 + 32.2698i −0.409138 + 1.07091i
\(909\) 0 0
\(910\) 23.4837 16.1673i 0.778478 0.535942i
\(911\) −3.72616 −0.123453 −0.0617266 0.998093i \(-0.519661\pi\)
−0.0617266 + 0.998093i \(0.519661\pi\)
\(912\) 0 0
\(913\) −22.6829 −0.750694
\(914\) −10.3090 + 7.09722i −0.340991 + 0.234755i
\(915\) 0 0
\(916\) 11.9872 31.3762i 0.396067 1.03670i
\(917\) 9.29893 16.1062i 0.307078 0.531874i
\(918\) 0 0
\(919\) 17.4986i 0.577224i 0.957446 + 0.288612i \(0.0931938\pi\)
−0.957446 + 0.288612i \(0.906806\pi\)
\(920\) 24.8921 6.03869i 0.820667 0.199090i
\(921\) 0 0
\(922\) −1.08846 13.6915i −0.0358466 0.450906i
\(923\) 5.75490i 0.189425i
\(924\) 0 0
\(925\) 2.00841 1.15956i 0.0660361 0.0381259i
\(926\) −30.8021 44.7414i −1.01222 1.47029i
\(927\) 0 0
\(928\) −33.9640 + 14.2263i −1.11492 + 0.467001i
\(929\) 7.98584 13.8319i 0.262007 0.453810i −0.704768 0.709438i \(-0.748949\pi\)
0.966775 + 0.255628i \(0.0822823\pi\)
\(930\) 0 0
\(931\) −1.95429 + 5.85761i −0.0640494 + 0.191975i
\(932\) −4.19564 5.16443i −0.137433 0.169166i
\(933\) 0 0
\(934\) −17.4693 25.3749i −0.571614 0.830293i
\(935\) −16.6776 + 9.62883i −0.545417 + 0.314897i
\(936\) 0 0
\(937\) 0.674194 + 1.16774i 0.0220249 + 0.0381483i 0.876828 0.480805i \(-0.159655\pi\)
−0.854803 + 0.518953i \(0.826322\pi\)
\(938\) −12.2673 + 25.7714i −0.400540 + 0.841465i
\(939\) 0 0
\(940\) 20.0391 + 7.65588i 0.653605 + 0.249707i
\(941\) 41.2979 23.8434i 1.34627 0.777271i 0.358553 0.933509i \(-0.383270\pi\)
0.987719 + 0.156238i \(0.0499367\pi\)
\(942\) 0 0
\(943\) −1.10312 −0.0359227
\(944\) 51.8701 17.0356i 1.68823 0.554462i
\(945\) 0 0
\(946\) 3.51093 + 44.1631i 0.114150 + 1.43587i
\(947\) −22.7091 13.1111i −0.737946 0.426053i 0.0833759 0.996518i \(-0.473430\pi\)
−0.821322 + 0.570465i \(0.806763\pi\)
\(948\) 0 0
\(949\) 20.9927i 0.681453i
\(950\) 22.0151 22.8731i 0.714265 0.742101i
\(951\) 0 0
\(952\) 2.08169 7.08951i 0.0674679 0.229772i
\(953\) 23.7784 + 13.7285i 0.770257 + 0.444708i 0.832966 0.553324i \(-0.186641\pi\)
−0.0627090 + 0.998032i \(0.519974\pi\)
\(954\) 0 0
\(955\) 51.4646 + 29.7131i 1.66535 + 0.961493i
\(956\) 9.02719 + 3.44881i 0.291960 + 0.111542i
\(957\) 0 0
\(958\) 7.40765 15.5622i 0.239330 0.502791i
\(959\) 21.7910 12.5810i 0.703668 0.406263i
\(960\) 0 0
\(961\) −29.9697 −0.966764
\(962\) −1.53992 0.733008i −0.0496491 0.0236331i
\(963\) 0 0
\(964\) −8.45686 52.8522i −0.272377 1.70225i
\(965\) 20.5402 11.8589i 0.661213 0.381751i
\(966\) 0 0
\(967\) 14.9005 + 8.60278i 0.479166 + 0.276647i 0.720069 0.693902i \(-0.244110\pi\)
−0.240903 + 0.970549i \(0.577443\pi\)
\(968\) 12.5986 + 51.9328i 0.404935 + 1.66918i
\(969\) 0 0
\(970\) 1.43440 3.01342i 0.0460557 0.0967550i
\(971\) −6.50590 + 11.2685i −0.208784 + 0.361625i −0.951332 0.308168i \(-0.900284\pi\)
0.742548 + 0.669793i \(0.233617\pi\)
\(972\) 0 0
\(973\) −5.27371 9.13434i −0.169067 0.292833i
\(974\) −32.4642 + 22.3499i −1.04022 + 0.716137i
\(975\) 0 0
\(976\) −11.1070 + 53.0812i −0.355527 + 1.69909i
\(977\) 38.1644i 1.22099i −0.792021 0.610494i \(-0.790971\pi\)
0.792021 0.610494i \(-0.209029\pi\)
\(978\) 0 0
\(979\) −13.2304 22.9157i −0.422845 0.732389i
\(980\) 5.69173 + 7.00596i 0.181816 + 0.223797i
\(981\) 0 0
\(982\) 24.4172 1.94115i 0.779184 0.0619445i
\(983\) −11.7428 + 20.3391i −0.374536 + 0.648715i −0.990257 0.139249i \(-0.955531\pi\)
0.615722 + 0.787964i \(0.288865\pi\)
\(984\) 0 0
\(985\) 22.5797 39.1092i 0.719449 1.24612i
\(986\) −5.77127 8.38300i −0.183795 0.266969i
\(987\) 0 0
\(988\) −23.0357 3.79685i −0.732863 0.120794i
\(989\) 16.2864 0.517877
\(990\) 0 0
\(991\) 13.8156 23.9293i 0.438866 0.760139i −0.558736 0.829346i \(-0.688714\pi\)
0.997602 + 0.0692069i \(0.0220469\pi\)
\(992\) 5.69572 + 0.726907i 0.180839 + 0.0230793i
\(993\) 0 0
\(994\) 7.15842 0.569089i 0.227051 0.0180504i
\(995\) 21.3904i 0.678122i
\(996\) 0 0
\(997\) 11.8340 + 20.4970i 0.374786 + 0.649148i 0.990295 0.138982i \(-0.0443829\pi\)
−0.615509 + 0.788130i \(0.711050\pi\)
\(998\) −1.63913 + 0.130310i −0.0518858 + 0.00412488i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.r.a.559.7 16
3.2 odd 2 76.2.f.a.27.2 16
4.3 odd 2 inner 684.2.r.a.559.4 16
12.11 even 2 76.2.f.a.27.5 yes 16
19.12 odd 6 inner 684.2.r.a.487.4 16
24.5 odd 2 1216.2.n.f.255.4 16
24.11 even 2 1216.2.n.f.255.5 16
57.50 even 6 76.2.f.a.31.5 yes 16
76.31 even 6 inner 684.2.r.a.487.7 16
228.107 odd 6 76.2.f.a.31.2 yes 16
456.107 odd 6 1216.2.n.f.639.4 16
456.221 even 6 1216.2.n.f.639.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
76.2.f.a.27.2 16 3.2 odd 2
76.2.f.a.27.5 yes 16 12.11 even 2
76.2.f.a.31.2 yes 16 228.107 odd 6
76.2.f.a.31.5 yes 16 57.50 even 6
684.2.r.a.487.4 16 19.12 odd 6 inner
684.2.r.a.487.7 16 76.31 even 6 inner
684.2.r.a.559.4 16 4.3 odd 2 inner
684.2.r.a.559.7 16 1.1 even 1 trivial
1216.2.n.f.255.4 16 24.5 odd 2
1216.2.n.f.255.5 16 24.11 even 2
1216.2.n.f.639.4 16 456.107 odd 6
1216.2.n.f.639.5 16 456.221 even 6