Properties

Label 1216.2.s.g.31.3
Level $1216$
Weight $2$
Character 1216.31
Analytic conductor $9.710$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(31,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 18 x^{10} - 18 x^{9} + 11 x^{8} - 36 x^{7} + 180 x^{6} - 120 x^{5} + 31 x^{4} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.3
Root \(1.64901 - 1.64901i\) of defining polynomial
Character \(\chi\) \(=\) 1216.31
Dual form 1216.2.s.g.863.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.121621 + 0.0702177i) q^{3} +(-1.50000 + 0.866025i) q^{5} +2.00000i q^{7} +(-1.49014 + 2.58100i) q^{9} +(2.13057 - 3.69026i) q^{13} +(0.121621 - 0.210653i) q^{15} +(1.99014 + 3.44702i) q^{17} +(4.31305 - 0.630574i) q^{19} +(-0.140435 - 0.243241i) q^{21} +(-6.40996 - 3.70079i) q^{23} +(-1.00000 + 1.73205i) q^{25} -0.839843i q^{27} +(-1.99014 + 3.44702i) q^{29} -8.62609 q^{31} +(-1.73205 - 3.00000i) q^{35} -7.26115 q^{37} +0.598416i q^{39} +(-6.39172 + 3.69026i) q^{41} +(-6.16672 - 10.6811i) q^{43} -5.16199i q^{45} +(0.364862 + 0.210653i) q^{47} +3.00000 q^{49} +(-0.484084 - 0.279486i) q^{51} +(-5.48028 + 9.49212i) q^{53} +(-0.480278 + 0.379543i) q^{57} +(1.21381 - 0.700792i) q^{59} +(1.92131 + 1.10927i) q^{61} +(-5.16199 - 2.98028i) q^{63} +7.38053i q^{65} +(1.81951 + 1.05050i) q^{67} +1.03944 q^{69} +(-0.970566 - 1.68107i) q^{71} +(2.50000 + 4.33013i) q^{73} -0.280871i q^{75} +(2.70262 + 4.68107i) q^{79} +(-4.41145 - 7.64085i) q^{81} -8.62609 q^{83} +(-5.97042 - 3.44702i) q^{85} -0.558972i q^{87} +(14.5491 + 8.39993i) q^{89} +(7.38053 + 4.26115i) q^{91} +(1.04911 - 0.605704i) q^{93} +(-5.92348 + 4.68107i) q^{95} +(-6.39172 + 3.69026i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 18 q^{5} + 12 q^{9} - 2 q^{13} - 6 q^{17} - 4 q^{21} - 12 q^{25} + 6 q^{29} - 32 q^{37} + 6 q^{41} + 36 q^{49} - 6 q^{53} + 54 q^{57} + 30 q^{61} + 132 q^{69} + 30 q^{73} - 30 q^{81} + 18 q^{85}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.121621 + 0.0702177i −0.0702177 + 0.0405402i −0.534698 0.845043i \(-0.679575\pi\)
0.464480 + 0.885584i \(0.346241\pi\)
\(4\) 0 0
\(5\) −1.50000 + 0.866025i −0.670820 + 0.387298i −0.796387 0.604787i \(-0.793258\pi\)
0.125567 + 0.992085i \(0.459925\pi\)
\(6\) 0 0
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 0 0
\(9\) −1.49014 + 2.58100i −0.496713 + 0.860332i
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 2.13057 3.69026i 0.590915 1.02349i −0.403194 0.915114i \(-0.632100\pi\)
0.994109 0.108380i \(-0.0345665\pi\)
\(14\) 0 0
\(15\) 0.121621 0.210653i 0.0314023 0.0543904i
\(16\) 0 0
\(17\) 1.99014 + 3.44702i 0.482680 + 0.836026i 0.999802 0.0198857i \(-0.00633024\pi\)
−0.517123 + 0.855911i \(0.672997\pi\)
\(18\) 0 0
\(19\) 4.31305 0.630574i 0.989481 0.144664i
\(20\) 0 0
\(21\) −0.140435 0.243241i −0.0306455 0.0530796i
\(22\) 0 0
\(23\) −6.40996 3.70079i −1.33657 0.771668i −0.350272 0.936648i \(-0.613911\pi\)
−0.986297 + 0.164980i \(0.947244\pi\)
\(24\) 0 0
\(25\) −1.00000 + 1.73205i −0.200000 + 0.346410i
\(26\) 0 0
\(27\) 0.839843i 0.161628i
\(28\) 0 0
\(29\) −1.99014 + 3.44702i −0.369560 + 0.640096i −0.989497 0.144556i \(-0.953825\pi\)
0.619937 + 0.784651i \(0.287158\pi\)
\(30\) 0 0
\(31\) −8.62609 −1.54929 −0.774646 0.632395i \(-0.782072\pi\)
−0.774646 + 0.632395i \(0.782072\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.73205 3.00000i −0.292770 0.507093i
\(36\) 0 0
\(37\) −7.26115 −1.19373 −0.596863 0.802343i \(-0.703586\pi\)
−0.596863 + 0.802343i \(0.703586\pi\)
\(38\) 0 0
\(39\) 0.598416i 0.0958232i
\(40\) 0 0
\(41\) −6.39172 + 3.69026i −0.998219 + 0.576322i −0.907721 0.419574i \(-0.862179\pi\)
−0.0904984 + 0.995897i \(0.528846\pi\)
\(42\) 0 0
\(43\) −6.16672 10.6811i −0.940416 1.62885i −0.764680 0.644411i \(-0.777103\pi\)
−0.175736 0.984437i \(-0.556231\pi\)
\(44\) 0 0
\(45\) 5.16199i 0.769504i
\(46\) 0 0
\(47\) 0.364862 + 0.210653i 0.0532206 + 0.0307269i 0.526374 0.850253i \(-0.323551\pi\)
−0.473154 + 0.880980i \(0.656884\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) −0.484084 0.279486i −0.0677853 0.0391359i
\(52\) 0 0
\(53\) −5.48028 + 9.49212i −0.752774 + 1.30384i 0.193699 + 0.981061i \(0.437951\pi\)
−0.946473 + 0.322782i \(0.895382\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.480278 + 0.379543i −0.0636144 + 0.0502717i
\(58\) 0 0
\(59\) 1.21381 0.700792i 0.158024 0.0912353i −0.418903 0.908031i \(-0.637585\pi\)
0.576927 + 0.816796i \(0.304252\pi\)
\(60\) 0 0
\(61\) 1.92131 + 1.10927i 0.245998 + 0.142027i 0.617930 0.786233i \(-0.287971\pi\)
−0.371932 + 0.928260i \(0.621305\pi\)
\(62\) 0 0
\(63\) −5.16199 2.98028i −0.650350 0.375480i
\(64\) 0 0
\(65\) 7.38053i 0.915442i
\(66\) 0 0
\(67\) 1.81951 + 1.05050i 0.222289 + 0.128338i 0.607010 0.794695i \(-0.292369\pi\)
−0.384721 + 0.923033i \(0.625702\pi\)
\(68\) 0 0
\(69\) 1.03944 0.125134
\(70\) 0 0
\(71\) −0.970566 1.68107i −0.115185 0.199506i 0.802669 0.596425i \(-0.203413\pi\)
−0.917854 + 0.396919i \(0.870079\pi\)
\(72\) 0 0
\(73\) 2.50000 + 4.33013i 0.292603 + 0.506803i 0.974424 0.224716i \(-0.0721453\pi\)
−0.681822 + 0.731519i \(0.738812\pi\)
\(74\) 0 0
\(75\) 0.280871i 0.0324322i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.70262 + 4.68107i 0.304068 + 0.526662i 0.977053 0.212994i \(-0.0683216\pi\)
−0.672985 + 0.739656i \(0.734988\pi\)
\(80\) 0 0
\(81\) −4.41145 7.64085i −0.490161 0.848983i
\(82\) 0 0
\(83\) −8.62609 −0.946837 −0.473418 0.880838i \(-0.656980\pi\)
−0.473418 + 0.880838i \(0.656980\pi\)
\(84\) 0 0
\(85\) −5.97042 3.44702i −0.647583 0.373882i
\(86\) 0 0
\(87\) 0.558972i 0.0599281i
\(88\) 0 0
\(89\) 14.5491 + 8.39993i 1.54220 + 0.890391i 0.998699 + 0.0509840i \(0.0162358\pi\)
0.543503 + 0.839407i \(0.317098\pi\)
\(90\) 0 0
\(91\) 7.38053 + 4.26115i 0.773689 + 0.446690i
\(92\) 0 0
\(93\) 1.04911 0.605704i 0.108788 0.0628086i
\(94\) 0 0
\(95\) −5.92348 + 4.68107i −0.607736 + 0.480268i
\(96\) 0 0
\(97\) −6.39172 + 3.69026i −0.648981 + 0.374689i −0.788066 0.615591i \(-0.788917\pi\)
0.139085 + 0.990280i \(0.455584\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.0295831 + 0.0170798i 0.00294363 + 0.00169951i 0.501471 0.865174i \(-0.332792\pi\)
−0.498527 + 0.866874i \(0.666126\pi\)
\(102\) 0 0
\(103\) −3.95058 −0.389263 −0.194631 0.980876i \(-0.562351\pi\)
−0.194631 + 0.980876i \(0.562351\pi\)
\(104\) 0 0
\(105\) 0.421306 + 0.243241i 0.0411153 + 0.0237379i
\(106\) 0 0
\(107\) 7.96056i 0.769576i 0.923005 + 0.384788i \(0.125725\pi\)
−0.923005 + 0.384788i \(0.874275\pi\)
\(108\) 0 0
\(109\) −7.70927 13.3528i −0.738414 1.27897i −0.953209 0.302311i \(-0.902242\pi\)
0.214795 0.976659i \(-0.431092\pi\)
\(110\) 0 0
\(111\) 0.883105 0.509861i 0.0838206 0.0483939i
\(112\) 0 0
\(113\) 13.0632i 1.22888i 0.788964 + 0.614439i \(0.210618\pi\)
−0.788964 + 0.614439i \(0.789382\pi\)
\(114\) 0 0
\(115\) 12.8199 1.19546
\(116\) 0 0
\(117\) 6.34970 + 10.9980i 0.587030 + 1.01677i
\(118\) 0 0
\(119\) −6.89404 + 3.98028i −0.631976 + 0.364871i
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0.518243 0.897624i 0.0467284 0.0809360i
\(124\) 0 0
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) 6.40996 11.1024i 0.568792 0.985177i −0.427894 0.903829i \(-0.640744\pi\)
0.996686 0.0813476i \(-0.0259224\pi\)
\(128\) 0 0
\(129\) 1.50000 + 0.866025i 0.132068 + 0.0762493i
\(130\) 0 0
\(131\) −8.99096 15.5728i −0.785543 1.36060i −0.928674 0.370897i \(-0.879050\pi\)
0.143130 0.989704i \(-0.454283\pi\)
\(132\) 0 0
\(133\) 1.26115 + 8.62609i 0.109355 + 0.747977i
\(134\) 0 0
\(135\) 0.727325 + 1.25976i 0.0625982 + 0.108423i
\(136\) 0 0
\(137\) 7.99014 13.8393i 0.682644 1.18237i −0.291527 0.956562i \(-0.594163\pi\)
0.974171 0.225811i \(-0.0725032\pi\)
\(138\) 0 0
\(139\) −2.45938 + 4.25976i −0.208602 + 0.361308i −0.951274 0.308346i \(-0.900225\pi\)
0.742673 + 0.669655i \(0.233558\pi\)
\(140\) 0 0
\(141\) −0.0591663 −0.00498270
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.89404i 0.572519i
\(146\) 0 0
\(147\) −0.364862 + 0.210653i −0.0300933 + 0.0173744i
\(148\) 0 0
\(149\) 0.0295831 0.0170798i 0.00242355 0.00139923i −0.498788 0.866724i \(-0.666221\pi\)
0.501211 + 0.865325i \(0.332888\pi\)
\(150\) 0 0
\(151\) 9.90582 0.806124 0.403062 0.915173i \(-0.367946\pi\)
0.403062 + 0.915173i \(0.367946\pi\)
\(152\) 0 0
\(153\) −11.8623 −0.959013
\(154\) 0 0
\(155\) 12.9391 7.47042i 1.03930 0.600038i
\(156\) 0 0
\(157\) 16.8621 9.73536i 1.34575 0.776966i 0.358102 0.933683i \(-0.383424\pi\)
0.987644 + 0.156716i \(0.0500908\pi\)
\(158\) 0 0
\(159\) 1.53925i 0.122070i
\(160\) 0 0
\(161\) 7.40158 12.8199i 0.583327 1.01035i
\(162\) 0 0
\(163\) 2.97762 0.233225 0.116613 0.993177i \(-0.462796\pi\)
0.116613 + 0.993177i \(0.462796\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.121621 0.210653i 0.00941128 0.0163008i −0.861281 0.508128i \(-0.830338\pi\)
0.870693 + 0.491827i \(0.163671\pi\)
\(168\) 0 0
\(169\) −2.57869 4.46643i −0.198361 0.343571i
\(170\) 0 0
\(171\) −4.79953 + 12.0716i −0.367029 + 0.923139i
\(172\) 0 0
\(173\) 1.50000 + 2.59808i 0.114043 + 0.197528i 0.917397 0.397974i \(-0.130287\pi\)
−0.803354 + 0.595502i \(0.796953\pi\)
\(174\) 0 0
\(175\) −3.46410 2.00000i −0.261861 0.151186i
\(176\) 0 0
\(177\) −0.0984160 + 0.170461i −0.00739740 + 0.0128127i
\(178\) 0 0
\(179\) 11.1574i 0.833942i 0.908920 + 0.416971i \(0.136908\pi\)
−0.908920 + 0.416971i \(0.863092\pi\)
\(180\) 0 0
\(181\) −5.76115 + 9.97860i −0.428223 + 0.741704i −0.996715 0.0809848i \(-0.974193\pi\)
0.568493 + 0.822688i \(0.307527\pi\)
\(182\) 0 0
\(183\) −0.311561 −0.0230312
\(184\) 0 0
\(185\) 10.8917 6.28834i 0.800775 0.462328i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.67969 0.122179
\(190\) 0 0
\(191\) 13.1179i 0.949181i 0.880207 + 0.474591i \(0.157404\pi\)
−0.880207 + 0.474591i \(0.842596\pi\)
\(192\) 0 0
\(193\) 2.34261 1.35251i 0.168625 0.0973556i −0.413312 0.910589i \(-0.635628\pi\)
0.581937 + 0.813234i \(0.302295\pi\)
\(194\) 0 0
\(195\) −0.518243 0.897624i −0.0371122 0.0642802i
\(196\) 0 0
\(197\) 12.0902i 0.861391i 0.902497 + 0.430695i \(0.141732\pi\)
−0.902497 + 0.430695i \(0.858268\pi\)
\(198\) 0 0
\(199\) −0.637465 0.368041i −0.0451887 0.0260897i 0.477235 0.878775i \(-0.341639\pi\)
−0.522424 + 0.852686i \(0.674972\pi\)
\(200\) 0 0
\(201\) −0.295053 −0.0208115
\(202\) 0 0
\(203\) −6.89404 3.98028i −0.483867 0.279361i
\(204\) 0 0
\(205\) 6.39172 11.0708i 0.446417 0.773217i
\(206\) 0 0
\(207\) 19.1035 11.0294i 1.32778 0.766596i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −18.1377 + 10.4718i −1.24865 + 0.720909i −0.970840 0.239727i \(-0.922942\pi\)
−0.277810 + 0.960636i \(0.589609\pi\)
\(212\) 0 0
\(213\) 0.236082 + 0.136302i 0.0161760 + 0.00933925i
\(214\) 0 0
\(215\) 18.5002 + 10.6811i 1.26170 + 0.728443i
\(216\) 0 0
\(217\) 17.2522i 1.17115i
\(218\) 0 0
\(219\) −0.608103 0.351088i −0.0410918 0.0237244i
\(220\) 0 0
\(221\) 16.9606 1.14089
\(222\) 0 0
\(223\) 5.52685 + 9.57279i 0.370106 + 0.641042i 0.989581 0.143974i \(-0.0459882\pi\)
−0.619476 + 0.785016i \(0.712655\pi\)
\(224\) 0 0
\(225\) −2.98028 5.16199i −0.198685 0.344133i
\(226\) 0 0
\(227\) 19.9606i 1.32483i 0.749138 + 0.662414i \(0.230468\pi\)
−0.749138 + 0.662414i \(0.769532\pi\)
\(228\) 0 0
\(229\) 11.1172i 0.734647i 0.930093 + 0.367324i \(0.119726\pi\)
−0.930093 + 0.367324i \(0.880274\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.39172 + 11.0708i 0.418736 + 0.725271i 0.995813 0.0914183i \(-0.0291400\pi\)
−0.577077 + 0.816690i \(0.695807\pi\)
\(234\) 0 0
\(235\) −0.729724 −0.0476019
\(236\) 0 0
\(237\) −0.657388 0.379543i −0.0427019 0.0246540i
\(238\) 0 0
\(239\) 17.7440i 1.14776i 0.818938 + 0.573882i \(0.194563\pi\)
−0.818938 + 0.573882i \(0.805437\pi\)
\(240\) 0 0
\(241\) −3.81303 2.20145i −0.245619 0.141808i 0.372138 0.928178i \(-0.378625\pi\)
−0.617756 + 0.786369i \(0.711958\pi\)
\(242\) 0 0
\(243\) 3.25502 + 1.87929i 0.208810 + 0.120556i
\(244\) 0 0
\(245\) −4.50000 + 2.59808i −0.287494 + 0.165985i
\(246\) 0 0
\(247\) 6.86228 17.2598i 0.436637 1.09821i
\(248\) 0 0
\(249\) 1.04911 0.605704i 0.0664847 0.0383850i
\(250\) 0 0
\(251\) 8.14201 14.1024i 0.513919 0.890134i −0.485950 0.873986i \(-0.661526\pi\)
0.999870 0.0161477i \(-0.00514021\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.968168 0.0606290
\(256\) 0 0
\(257\) −13.0787 7.55099i −0.815827 0.471018i 0.0331486 0.999450i \(-0.489447\pi\)
−0.848975 + 0.528433i \(0.822780\pi\)
\(258\) 0 0
\(259\) 14.5223i 0.902372i
\(260\) 0 0
\(261\) −5.93117 10.2731i −0.367130 0.635888i
\(262\) 0 0
\(263\) 10.0274 5.78935i 0.618319 0.356986i −0.157895 0.987456i \(-0.550471\pi\)
0.776214 + 0.630469i \(0.217138\pi\)
\(264\) 0 0
\(265\) 18.9842i 1.16619i
\(266\) 0 0
\(267\) −2.35930 −0.144387
\(268\) 0 0
\(269\) 9.39172 + 16.2669i 0.572623 + 0.991813i 0.996295 + 0.0859972i \(0.0274076\pi\)
−0.423672 + 0.905816i \(0.639259\pi\)
\(270\) 0 0
\(271\) 24.5111 14.1515i 1.48894 0.859642i 0.489023 0.872271i \(-0.337354\pi\)
0.999920 + 0.0126295i \(0.00402019\pi\)
\(272\) 0 0
\(273\) −1.19683 −0.0724356
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.15734i 0.189706i 0.995491 + 0.0948530i \(0.0302381\pi\)
−0.995491 + 0.0948530i \(0.969762\pi\)
\(278\) 0 0
\(279\) 12.8541 22.2639i 0.769554 1.33291i
\(280\) 0 0
\(281\) −5.34261 3.08456i −0.318714 0.184009i 0.332105 0.943242i \(-0.392241\pi\)
−0.650819 + 0.759233i \(0.725574\pi\)
\(282\) 0 0
\(283\) 7.25891 + 12.5728i 0.431497 + 0.747375i 0.997002 0.0773697i \(-0.0246522\pi\)
−0.565505 + 0.824745i \(0.691319\pi\)
\(284\) 0 0
\(285\) 0.391723 0.985247i 0.0232037 0.0583610i
\(286\) 0 0
\(287\) −7.38053 12.7834i −0.435659 0.754583i
\(288\) 0 0
\(289\) 0.578694 1.00233i 0.0340408 0.0589604i
\(290\) 0 0
\(291\) 0.518243 0.897624i 0.0303800 0.0526196i
\(292\) 0 0
\(293\) −30.5866 −1.78689 −0.893445 0.449174i \(-0.851718\pi\)
−0.893445 + 0.449174i \(0.851718\pi\)
\(294\) 0 0
\(295\) −1.21381 + 2.10238i −0.0706706 + 0.122405i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −27.3138 + 15.7696i −1.57960 + 0.911981i
\(300\) 0 0
\(301\) 21.3621 12.3334i 1.23129 0.710888i
\(302\) 0 0
\(303\) −0.00479723 −0.000275593
\(304\) 0 0
\(305\) −3.84261 −0.220027
\(306\) 0 0
\(307\) 14.8611 8.58008i 0.848170 0.489691i −0.0118632 0.999930i \(-0.503776\pi\)
0.860033 + 0.510239i \(0.170443\pi\)
\(308\) 0 0
\(309\) 0.480472 0.277401i 0.0273331 0.0157808i
\(310\) 0 0
\(311\) 29.7440i 1.68663i 0.537421 + 0.843314i \(0.319398\pi\)
−0.537421 + 0.843314i \(0.680602\pi\)
\(312\) 0 0
\(313\) 5.81303 10.0685i 0.328572 0.569103i −0.653657 0.756791i \(-0.726766\pi\)
0.982229 + 0.187688i \(0.0600994\pi\)
\(314\) 0 0
\(315\) 10.3240 0.581691
\(316\) 0 0
\(317\) 8.41145 14.5691i 0.472434 0.818279i −0.527069 0.849823i \(-0.676709\pi\)
0.999502 + 0.0315434i \(0.0100422\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −0.558972 0.968168i −0.0311988 0.0540378i
\(322\) 0 0
\(323\) 10.7572 + 13.6122i 0.598545 + 0.757405i
\(324\) 0 0
\(325\) 4.26115 + 7.38053i 0.236366 + 0.409398i
\(326\) 0 0
\(327\) 1.87521 + 1.08265i 0.103699 + 0.0598709i
\(328\) 0 0
\(329\) −0.421306 + 0.729724i −0.0232274 + 0.0402310i
\(330\) 0 0
\(331\) 33.3594i 1.83360i 0.399350 + 0.916798i \(0.369236\pi\)
−0.399350 + 0.916798i \(0.630764\pi\)
\(332\) 0 0
\(333\) 10.8201 18.7410i 0.592939 1.02700i
\(334\) 0 0
\(335\) −3.63902 −0.198821
\(336\) 0 0
\(337\) −11.5491 + 6.66788i −0.629120 + 0.363223i −0.780411 0.625267i \(-0.784990\pi\)
0.151291 + 0.988489i \(0.451657\pi\)
\(338\) 0 0
\(339\) −0.917265 1.58875i −0.0498190 0.0862890i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) −1.55917 + 0.900185i −0.0839427 + 0.0484643i
\(346\) 0 0
\(347\) −3.98235 6.89762i −0.213783 0.370284i 0.739112 0.673582i \(-0.235245\pi\)
−0.952896 + 0.303299i \(0.901912\pi\)
\(348\) 0 0
\(349\) 6.13496i 0.328397i 0.986427 + 0.164198i \(0.0525037\pi\)
−0.986427 + 0.164198i \(0.947496\pi\)
\(350\) 0 0
\(351\) −3.09924 1.78935i −0.165425 0.0955083i
\(352\) 0 0
\(353\) 12.9803 0.690870 0.345435 0.938443i \(-0.387731\pi\)
0.345435 + 0.938443i \(0.387731\pi\)
\(354\) 0 0
\(355\) 2.91170 + 1.68107i 0.154537 + 0.0892219i
\(356\) 0 0
\(357\) 0.558972 0.968168i 0.0295839 0.0512409i
\(358\) 0 0
\(359\) −23.4746 + 13.5531i −1.23894 + 0.715304i −0.968878 0.247539i \(-0.920378\pi\)
−0.270064 + 0.962842i \(0.587045\pi\)
\(360\) 0 0
\(361\) 18.2048 5.43939i 0.958145 0.286284i
\(362\) 0 0
\(363\) 1.33783 0.772395i 0.0702177 0.0405402i
\(364\) 0 0
\(365\) −7.50000 4.33013i −0.392568 0.226649i
\(366\) 0 0
\(367\) 3.82896 + 2.21065i 0.199870 + 0.115395i 0.596595 0.802542i \(-0.296520\pi\)
−0.396725 + 0.917938i \(0.629853\pi\)
\(368\) 0 0
\(369\) 21.9960i 1.14507i
\(370\) 0 0
\(371\) −18.9842 10.9606i −0.985613 0.569044i
\(372\) 0 0
\(373\) 13.6797 0.708307 0.354154 0.935187i \(-0.384769\pi\)
0.354154 + 0.935187i \(0.384769\pi\)
\(374\) 0 0
\(375\) 0.851344 + 1.47457i 0.0439632 + 0.0761465i
\(376\) 0 0
\(377\) 8.48028 + 14.6883i 0.436757 + 0.756485i
\(378\) 0 0
\(379\) 23.0446i 1.18372i −0.806040 0.591861i \(-0.798394\pi\)
0.806040 0.591861i \(-0.201606\pi\)
\(380\) 0 0
\(381\) 1.80037i 0.0922358i
\(382\) 0 0
\(383\) 3.98235 + 6.89762i 0.203488 + 0.352452i 0.949650 0.313313i \(-0.101439\pi\)
−0.746162 + 0.665765i \(0.768105\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 36.7571 1.86847
\(388\) 0 0
\(389\) 17.7048 + 10.2218i 0.897667 + 0.518268i 0.876442 0.481507i \(-0.159910\pi\)
0.0212242 + 0.999775i \(0.493244\pi\)
\(390\) 0 0
\(391\) 29.4604i 1.48987i
\(392\) 0 0
\(393\) 2.18697 + 1.26265i 0.110318 + 0.0636922i
\(394\) 0 0
\(395\) −8.10785 4.68107i −0.407950 0.235530i
\(396\) 0 0
\(397\) 13.0787 7.55099i 0.656401 0.378973i −0.134503 0.990913i \(-0.542944\pi\)
0.790904 + 0.611940i \(0.209611\pi\)
\(398\) 0 0
\(399\) −0.759086 0.960556i −0.0380018 0.0480879i
\(400\) 0 0
\(401\) 26.9113 15.5372i 1.34388 0.775892i 0.356509 0.934292i \(-0.383967\pi\)
0.987375 + 0.158400i \(0.0506337\pi\)
\(402\) 0 0
\(403\) −18.3785 + 31.8326i −0.915500 + 1.58569i
\(404\) 0 0
\(405\) 13.2343 + 7.64085i 0.657619 + 0.379677i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.13786 + 0.656944i 0.0562636 + 0.0324838i 0.527868 0.849326i \(-0.322992\pi\)
−0.471604 + 0.881810i \(0.656325\pi\)
\(410\) 0 0
\(411\) 2.24420i 0.110698i
\(412\) 0 0
\(413\) 1.40158 + 2.42761i 0.0689674 + 0.119455i
\(414\) 0 0
\(415\) 12.9391 7.47042i 0.635157 0.366708i
\(416\) 0 0
\(417\) 0.690767i 0.0338270i
\(418\) 0 0
\(419\) 15.2475 0.744891 0.372445 0.928054i \(-0.378519\pi\)
0.372445 + 0.928054i \(0.378519\pi\)
\(420\) 0 0
\(421\) 6.23885 + 10.8060i 0.304063 + 0.526653i 0.977052 0.213000i \(-0.0683233\pi\)
−0.672989 + 0.739652i \(0.734990\pi\)
\(422\) 0 0
\(423\) −1.08739 + 0.627805i −0.0528707 + 0.0305249i
\(424\) 0 0
\(425\) −7.96056 −0.386144
\(426\) 0 0
\(427\) −2.21853 + 3.84261i −0.107362 + 0.185957i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.8175 + 22.2006i −0.617398 + 1.06937i 0.372560 + 0.928008i \(0.378480\pi\)
−0.989959 + 0.141357i \(0.954853\pi\)
\(432\) 0 0
\(433\) −2.76392 1.59575i −0.132825 0.0766868i 0.432115 0.901819i \(-0.357767\pi\)
−0.564940 + 0.825132i \(0.691101\pi\)
\(434\) 0 0
\(435\) 0.484084 + 0.838458i 0.0232100 + 0.0402010i
\(436\) 0 0
\(437\) −29.9801 11.9197i −1.43414 0.570198i
\(438\) 0 0
\(439\) −1.24797 2.16154i −0.0595622 0.103165i 0.834707 0.550695i \(-0.185637\pi\)
−0.894269 + 0.447530i \(0.852304\pi\)
\(440\) 0 0
\(441\) −4.47042 + 7.74299i −0.212877 + 0.368714i
\(442\) 0 0
\(443\) 14.3063 24.7793i 0.679714 1.17730i −0.295353 0.955388i \(-0.595437\pi\)
0.975067 0.221911i \(-0.0712296\pi\)
\(444\) 0 0
\(445\) −29.0982 −1.37939
\(446\) 0 0
\(447\) −0.00239861 + 0.00415452i −0.000113450 + 0.000196502i
\(448\) 0 0
\(449\) 5.58016i 0.263344i 0.991293 + 0.131672i \(0.0420345\pi\)
−0.991293 + 0.131672i \(0.957965\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −1.20475 + 0.695564i −0.0566042 + 0.0326804i
\(454\) 0 0
\(455\) −14.7611 −0.692009
\(456\) 0 0
\(457\) −38.7243 −1.81145 −0.905723 0.423871i \(-0.860671\pi\)
−0.905723 + 0.423871i \(0.860671\pi\)
\(458\) 0 0
\(459\) 2.89496 1.67140i 0.135125 0.0780144i
\(460\) 0 0
\(461\) −13.1752 + 7.60669i −0.613629 + 0.354279i −0.774384 0.632716i \(-0.781940\pi\)
0.160756 + 0.986994i \(0.448607\pi\)
\(462\) 0 0
\(463\) 11.7834i 0.547623i −0.961783 0.273812i \(-0.911716\pi\)
0.961783 0.273812i \(-0.0882845\pi\)
\(464\) 0 0
\(465\) −1.04911 + 1.81711i −0.0486513 + 0.0842666i
\(466\) 0 0
\(467\) −36.0321 −1.66737 −0.833684 0.552241i \(-0.813773\pi\)
−0.833684 + 0.552241i \(0.813773\pi\)
\(468\) 0 0
\(469\) −2.10099 + 3.63902i −0.0970148 + 0.168034i
\(470\) 0 0
\(471\) −1.36719 + 2.36804i −0.0629967 + 0.109114i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −3.22086 + 8.10099i −0.147783 + 0.371699i
\(476\) 0 0
\(477\) −16.3328 28.2892i −0.747825 1.29527i
\(478\) 0 0
\(479\) 9.29772 + 5.36804i 0.424824 + 0.245272i 0.697139 0.716936i \(-0.254456\pi\)
−0.272315 + 0.962208i \(0.587789\pi\)
\(480\) 0 0
\(481\) −15.4704 + 26.7955i −0.705390 + 1.22177i
\(482\) 0 0
\(483\) 2.07889i 0.0945927i
\(484\) 0 0
\(485\) 6.39172 11.0708i 0.290233 0.502699i
\(486\) 0 0
\(487\) 28.5491 1.29368 0.646842 0.762624i \(-0.276089\pi\)
0.646842 + 0.762624i \(0.276089\pi\)
\(488\) 0 0
\(489\) −0.362140 + 0.209082i −0.0163765 + 0.00945499i
\(490\) 0 0
\(491\) −17.6171 30.5136i −0.795046 1.37706i −0.922810 0.385256i \(-0.874113\pi\)
0.127763 0.991805i \(-0.459220\pi\)
\(492\) 0 0
\(493\) −15.8426 −0.713515
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.36214 1.94113i 0.150813 0.0870717i
\(498\) 0 0
\(499\) −6.16672 10.6811i −0.276060 0.478150i 0.694342 0.719645i \(-0.255696\pi\)
−0.970402 + 0.241495i \(0.922362\pi\)
\(500\) 0 0
\(501\) 0.0341597i 0.00152614i
\(502\) 0 0
\(503\) −20.1980 11.6613i −0.900586 0.519954i −0.0231960 0.999731i \(-0.507384\pi\)
−0.877390 + 0.479777i \(0.840718\pi\)
\(504\) 0 0
\(505\) −0.0591663 −0.00263286
\(506\) 0 0
\(507\) 0.627245 + 0.362140i 0.0278569 + 0.0160832i
\(508\) 0 0
\(509\) −17.5491 + 30.3960i −0.777851 + 1.34728i 0.155328 + 0.987863i \(0.450357\pi\)
−0.933178 + 0.359414i \(0.882977\pi\)
\(510\) 0 0
\(511\) −8.66025 + 5.00000i −0.383107 + 0.221187i
\(512\) 0 0
\(513\) −0.529583 3.62228i −0.0233817 0.159928i
\(514\) 0 0
\(515\) 5.92588 3.42131i 0.261125 0.150761i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.364862 0.210653i −0.0160157 0.00924664i
\(520\) 0 0
\(521\) 29.5221i 1.29339i 0.762750 + 0.646693i \(0.223849\pi\)
−0.762750 + 0.646693i \(0.776151\pi\)
\(522\) 0 0
\(523\) 1.19227 + 0.688356i 0.0521342 + 0.0300997i 0.525841 0.850583i \(-0.323751\pi\)
−0.473706 + 0.880683i \(0.657084\pi\)
\(524\) 0 0
\(525\) 0.561741 0.0245164
\(526\) 0 0
\(527\) −17.1671 29.7343i −0.747812 1.29525i
\(528\) 0 0
\(529\) 15.8917 + 27.5253i 0.690944 + 1.19675i
\(530\) 0 0
\(531\) 4.17711i 0.181271i
\(532\) 0 0
\(533\) 31.4495i 1.36223i
\(534\) 0 0
\(535\) −6.89404 11.9408i −0.298055 0.516247i
\(536\) 0 0
\(537\) −0.783446 1.35697i −0.0338082 0.0585575i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.450889 0.260321i −0.0193852 0.0111921i 0.490276 0.871567i \(-0.336896\pi\)
−0.509661 + 0.860375i \(0.670229\pi\)
\(542\) 0 0
\(543\) 1.61814i 0.0694410i
\(544\) 0 0
\(545\) 23.1278 + 13.3528i 0.990686 + 0.571973i
\(546\) 0 0
\(547\) 9.66498 + 5.58008i 0.413245 + 0.238587i 0.692183 0.721722i \(-0.256649\pi\)
−0.278938 + 0.960309i \(0.589982\pi\)
\(548\) 0 0
\(549\) −5.72603 + 3.30592i −0.244381 + 0.141093i
\(550\) 0 0
\(551\) −6.40996 + 16.1221i −0.273073 + 0.686824i
\(552\) 0 0
\(553\) −9.36214 + 5.40523i −0.398119 + 0.229854i
\(554\) 0 0
\(555\) −0.883105 + 1.52958i −0.0374857 + 0.0649272i
\(556\) 0 0
\(557\) 27.1769 + 15.6906i 1.15152 + 0.664832i 0.949258 0.314499i \(-0.101836\pi\)
0.202265 + 0.979331i \(0.435170\pi\)
\(558\) 0 0
\(559\) −52.5546 −2.22282
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 42.7243i 1.80061i −0.435256 0.900307i \(-0.643342\pi\)
0.435256 0.900307i \(-0.356658\pi\)
\(564\) 0 0
\(565\) −11.3130 19.5947i −0.475943 0.824357i
\(566\) 0 0
\(567\) 15.2817 8.82289i 0.641771 0.370527i
\(568\) 0 0
\(569\) 19.8547i 0.832353i 0.909284 + 0.416177i \(0.136630\pi\)
−0.909284 + 0.416177i \(0.863370\pi\)
\(570\) 0 0
\(571\) 39.0098 1.63251 0.816254 0.577693i \(-0.196047\pi\)
0.816254 + 0.577693i \(0.196047\pi\)
\(572\) 0 0
\(573\) −0.921112 1.59541i −0.0384800 0.0666493i
\(574\) 0 0
\(575\) 12.8199 7.40158i 0.534628 0.308667i
\(576\) 0 0
\(577\) −12.0982 −0.503656 −0.251828 0.967772i \(-0.581032\pi\)
−0.251828 + 0.967772i \(0.581032\pi\)
\(578\) 0 0
\(579\) −0.189940 + 0.328986i −0.00789363 + 0.0136722i
\(580\) 0 0
\(581\) 17.2522i 0.715741i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −19.0491 10.9980i −0.787584 0.454712i
\(586\) 0 0
\(587\) 6.56334 + 11.3680i 0.270898 + 0.469209i 0.969092 0.246699i \(-0.0793460\pi\)
−0.698194 + 0.715909i \(0.746013\pi\)
\(588\) 0 0
\(589\) −37.2048 + 5.43939i −1.53300 + 0.224126i
\(590\) 0 0
\(591\) −0.848946 1.47042i −0.0349210 0.0604849i
\(592\) 0 0
\(593\) −3.39172 + 5.87464i −0.139281 + 0.241242i −0.927225 0.374505i \(-0.877813\pi\)
0.787943 + 0.615748i \(0.211146\pi\)
\(594\) 0 0
\(595\) 6.89404 11.9408i 0.282628 0.489526i
\(596\) 0 0
\(597\) 0.103372 0.00423073
\(598\) 0 0
\(599\) −11.1196 + 19.2598i −0.454336 + 0.786933i −0.998650 0.0519490i \(-0.983457\pi\)
0.544314 + 0.838882i \(0.316790\pi\)
\(600\) 0 0
\(601\) 25.9466i 1.05838i 0.848502 + 0.529192i \(0.177505\pi\)
−0.848502 + 0.529192i \(0.822495\pi\)
\(602\) 0 0
\(603\) −5.42265 + 3.13077i −0.220827 + 0.127495i
\(604\) 0 0
\(605\) 16.5000 9.52628i 0.670820 0.387298i
\(606\) 0 0
\(607\) −12.8834 −0.522923 −0.261461 0.965214i \(-0.584204\pi\)
−0.261461 + 0.965214i \(0.584204\pi\)
\(608\) 0 0
\(609\) 1.11794 0.0453014
\(610\) 0 0
\(611\) 1.55473 0.897624i 0.0628977 0.0363140i
\(612\) 0 0
\(613\) 26.9704 15.5714i 1.08932 0.628922i 0.155928 0.987768i \(-0.450163\pi\)
0.933397 + 0.358846i \(0.116830\pi\)
\(614\) 0 0
\(615\) 1.79525i 0.0723914i
\(616\) 0 0
\(617\) −8.54911 + 14.8075i −0.344174 + 0.596127i −0.985203 0.171389i \(-0.945174\pi\)
0.641029 + 0.767517i \(0.278508\pi\)
\(618\) 0 0
\(619\) −42.4055 −1.70442 −0.852211 0.523198i \(-0.824739\pi\)
−0.852211 + 0.523198i \(0.824739\pi\)
\(620\) 0 0
\(621\) −3.10808 + 5.38336i −0.124723 + 0.216027i
\(622\) 0 0
\(623\) −16.7999 + 29.0982i −0.673072 + 1.16580i
\(624\) 0 0
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −14.4507 25.0293i −0.576187 0.997985i
\(630\) 0 0
\(631\) −29.4346 16.9941i −1.17177 0.676524i −0.217677 0.976021i \(-0.569848\pi\)
−0.954097 + 0.299496i \(0.903181\pi\)
\(632\) 0 0
\(633\) 1.47061 2.54717i 0.0584516 0.101241i
\(634\) 0 0
\(635\) 22.2048i 0.881169i
\(636\) 0 0
\(637\) 6.39172 11.0708i 0.253249 0.438641i
\(638\) 0 0
\(639\) 5.78511 0.228856
\(640\) 0 0
\(641\) 25.8621 14.9315i 1.02149 0.589759i 0.106957 0.994264i \(-0.465889\pi\)
0.914536 + 0.404504i \(0.132556\pi\)
\(642\) 0 0
\(643\) −22.7233 39.3580i −0.896121 1.55213i −0.832411 0.554159i \(-0.813040\pi\)
−0.0637103 0.997968i \(-0.520293\pi\)
\(644\) 0 0
\(645\) −3.00000 −0.118125
\(646\) 0 0
\(647\) 2.35422i 0.0925539i 0.998929 + 0.0462770i \(0.0147357\pi\)
−0.998929 + 0.0462770i \(0.985264\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 1.21141 + 2.09822i 0.0474789 + 0.0822358i
\(652\) 0 0
\(653\) 27.9513i 1.09382i 0.837192 + 0.546909i \(0.184195\pi\)
−0.837192 + 0.546909i \(0.815805\pi\)
\(654\) 0 0
\(655\) 26.9729 + 15.5728i 1.05392 + 0.608479i
\(656\) 0 0
\(657\) −14.9014 −0.581359
\(658\) 0 0
\(659\) −16.9215 9.76962i −0.659168 0.380571i 0.132792 0.991144i \(-0.457606\pi\)
−0.791960 + 0.610573i \(0.790939\pi\)
\(660\) 0 0
\(661\) −1.29073 + 2.23561i −0.0502036 + 0.0869553i −0.890035 0.455892i \(-0.849320\pi\)
0.839832 + 0.542847i \(0.182654\pi\)
\(662\) 0 0
\(663\) −2.06275 + 1.19093i −0.0801107 + 0.0462519i
\(664\) 0 0
\(665\) −9.36214 11.8470i −0.363048 0.459405i
\(666\) 0 0
\(667\) 25.5134 14.7302i 0.987884 0.570355i
\(668\) 0 0
\(669\) −1.34436 0.776166i −0.0519759 0.0300083i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 36.8254i 1.41951i −0.704446 0.709757i \(-0.748805\pi\)
0.704446 0.709757i \(-0.251195\pi\)
\(674\) 0 0
\(675\) 1.45465 + 0.839843i 0.0559895 + 0.0323256i
\(676\) 0 0
\(677\) −31.8229 −1.22305 −0.611527 0.791224i \(-0.709444\pi\)
−0.611527 + 0.791224i \(0.709444\pi\)
\(678\) 0 0
\(679\) −7.38053 12.7834i −0.283239 0.490584i
\(680\) 0 0
\(681\) −1.40158 2.42761i −0.0537088 0.0930264i
\(682\) 0 0
\(683\) 27.7834i 1.06310i 0.847026 + 0.531552i \(0.178391\pi\)
−0.847026 + 0.531552i \(0.821609\pi\)
\(684\) 0 0
\(685\) 27.6787i 1.05755i
\(686\) 0 0
\(687\) −0.780626 1.35208i −0.0297827 0.0515852i
\(688\) 0 0
\(689\) 23.3523 + 40.4473i 0.889651 + 1.54092i
\(690\) 0 0
\(691\) 20.7846 0.790684 0.395342 0.918534i \(-0.370626\pi\)
0.395342 + 0.918534i \(0.370626\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.51953i 0.323164i
\(696\) 0 0
\(697\) −25.4408 14.6883i −0.963640 0.556358i
\(698\) 0 0
\(699\) −1.55473 0.897624i −0.0588053 0.0339513i
\(700\) 0 0
\(701\) −23.4391 + 13.5326i −0.885282 + 0.511118i −0.872396 0.488799i \(-0.837435\pi\)
−0.0128857 + 0.999917i \(0.504102\pi\)
\(702\) 0 0
\(703\) −31.3177 + 4.57869i −1.18117 + 0.172689i
\(704\) 0 0
\(705\) 0.0887494 0.0512395i 0.00334250 0.00192979i
\(706\) 0 0
\(707\) −0.0341597 + 0.0591663i −0.00128471 + 0.00222518i
\(708\) 0 0
\(709\) 10.8621 + 6.27126i 0.407936 + 0.235522i 0.689903 0.723902i \(-0.257653\pi\)
−0.281966 + 0.959424i \(0.590987\pi\)
\(710\) 0 0
\(711\) −16.1091 −0.604138
\(712\) 0 0
\(713\) 55.2929 + 31.9234i 2.07074 + 1.19554i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.24594 2.15804i −0.0465306 0.0805933i
\(718\) 0 0
\(719\) −14.1529 + 8.17121i −0.527816 + 0.304735i −0.740127 0.672468i \(-0.765234\pi\)
0.212311 + 0.977202i \(0.431901\pi\)
\(720\) 0 0
\(721\) 7.90117i 0.294255i
\(722\) 0 0
\(723\) 0.618324 0.0229957
\(724\) 0 0
\(725\) −3.98028 6.89404i −0.147824 0.256038i
\(726\) 0 0
\(727\) −34.6308 + 19.9941i −1.28439 + 0.741540i −0.977647 0.210254i \(-0.932571\pi\)
−0.306738 + 0.951794i \(0.599238\pi\)
\(728\) 0 0
\(729\) 25.9408 0.960772
\(730\) 0 0
\(731\) 24.5453 42.5136i 0.907839 1.57242i
\(732\) 0 0
\(733\) 6.55312i 0.242045i −0.992650 0.121023i \(-0.961383\pi\)
0.992650 0.121023i \(-0.0386173\pi\)
\(734\) 0 0
\(735\) 0.364862 0.631959i 0.0134581 0.0233102i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 2.66846 + 4.62190i 0.0981608 + 0.170019i 0.910923 0.412576i \(-0.135371\pi\)
−0.812763 + 0.582595i \(0.802037\pi\)
\(740\) 0 0
\(741\) 0.377346 + 2.58100i 0.0138621 + 0.0948153i
\(742\) 0 0
\(743\) 10.2707 + 17.7893i 0.376795 + 0.652628i 0.990594 0.136834i \(-0.0436928\pi\)
−0.613799 + 0.789462i \(0.710360\pi\)
\(744\) 0 0
\(745\) −0.0295831 + 0.0512395i −0.00108384 + 0.00187727i
\(746\) 0 0
\(747\) 12.8541 22.2639i 0.470306 0.814594i
\(748\) 0 0
\(749\) −15.9211 −0.581745
\(750\) 0 0
\(751\) 15.5225 26.8858i 0.566425 0.981078i −0.430490 0.902595i \(-0.641659\pi\)
0.996916 0.0784823i \(-0.0250074\pi\)
\(752\) 0 0
\(753\) 2.28685i 0.0833375i
\(754\) 0 0
\(755\) −14.8587 + 8.57869i −0.540765 + 0.312211i
\(756\) 0 0
\(757\) 44.1651 25.4987i 1.60521 0.926767i 0.614786 0.788694i \(-0.289242\pi\)
0.990422 0.138074i \(-0.0440911\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.7046 0.496790 0.248395 0.968659i \(-0.420097\pi\)
0.248395 + 0.968659i \(0.420097\pi\)
\(762\) 0 0
\(763\) 26.7057 15.4185i 0.966811 0.558188i
\(764\) 0 0
\(765\) 17.7935 10.2731i 0.643325 0.371424i
\(766\) 0 0
\(767\) 5.97236i 0.215649i
\(768\) 0 0
\(769\) −21.8621 + 37.8663i −0.788369 + 1.36550i 0.138597 + 0.990349i \(0.455741\pi\)
−0.926966 + 0.375146i \(0.877593\pi\)
\(770\) 0 0
\(771\) 2.12085 0.0763806
\(772\) 0 0
\(773\) 21.4606 37.1708i 0.771883 1.33694i −0.164648 0.986352i \(-0.552649\pi\)
0.936530 0.350587i \(-0.114018\pi\)
\(774\) 0 0
\(775\) 8.62609 14.9408i 0.309858 0.536691i
\(776\) 0 0
\(777\) 1.01972 + 1.76621i 0.0365823 + 0.0633624i
\(778\) 0 0
\(779\) −25.2408 + 19.9467i −0.904346 + 0.714666i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.89496 + 1.67140i 0.103457 + 0.0597311i
\(784\) 0 0
\(785\) −16.8621 + 29.2061i −0.601836 + 1.04241i
\(786\) 0 0
\(787\) 25.6797i 0.915382i 0.889111 + 0.457691i \(0.151323\pi\)
−0.889111 + 0.457691i \(0.848677\pi\)
\(788\) 0 0
\(789\) −0.813029 + 1.40821i −0.0289446 + 0.0501335i
\(790\) 0 0
\(791\) −26.1263 −0.928945
\(792\) 0 0
\(793\) 8.18697 4.72675i 0.290728 0.167852i
\(794\) 0 0
\(795\) 1.33303 + 2.30887i 0.0472777 + 0.0818873i
\(796\) 0 0
\(797\) −1.70456 −0.0603785 −0.0301893 0.999544i \(-0.509611\pi\)
−0.0301893 + 0.999544i \(0.509611\pi\)
\(798\) 0 0
\(799\) 1.67692i 0.0593250i
\(800\) 0 0
\(801\) −43.3604 + 25.0341i −1.53206 + 0.884538i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 25.6398i 0.903686i
\(806\) 0 0
\(807\) −2.28445 1.31893i −0.0804166 0.0464285i
\(808\) 0 0
\(809\) 4.17711 0.146859 0.0734297 0.997300i \(-0.476606\pi\)
0.0734297 + 0.997300i \(0.476606\pi\)
\(810\) 0 0
\(811\) −42.6590 24.6292i −1.49796 0.864848i −0.497963 0.867198i \(-0.665919\pi\)
−0.999997 + 0.00235039i \(0.999252\pi\)
\(812\) 0 0
\(813\) −1.98737 + 3.44222i −0.0697001 + 0.120724i
\(814\) 0 0
\(815\) −4.46643 + 2.57869i −0.156452 + 0.0903277i
\(816\) 0 0
\(817\) −33.3326 42.1794i −1.16616 1.47567i
\(818\) 0 0
\(819\) −21.9960 + 12.6994i −0.768603 + 0.443753i
\(820\) 0 0
\(821\) −43.1752 24.9272i −1.50682 0.869965i −0.999969 0.00793394i \(-0.997475\pi\)
−0.506855 0.862031i \(-0.669192\pi\)
\(822\) 0 0
\(823\) 24.6136 + 14.2107i 0.857975 + 0.495352i 0.863334 0.504633i \(-0.168372\pi\)
−0.00535850 + 0.999986i \(0.501706\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.0498 + 18.5040i 1.11448 + 0.643446i 0.939986 0.341212i \(-0.110838\pi\)
0.174494 + 0.984658i \(0.444171\pi\)
\(828\) 0 0
\(829\) −23.0446 −0.800372 −0.400186 0.916434i \(-0.631054\pi\)
−0.400186 + 0.916434i \(0.631054\pi\)
\(830\) 0 0
\(831\) −0.221701 0.383997i −0.00769072 0.0133207i
\(832\) 0 0
\(833\) 5.97042 + 10.3411i 0.206863 + 0.358297i
\(834\) 0 0
\(835\) 0.421306i 0.0145799i
\(836\) 0 0
\(837\) 7.24456i 0.250409i
\(838\) 0 0
\(839\) 24.5453 + 42.5136i 0.847396 + 1.46773i 0.883524 + 0.468386i \(0.155164\pi\)
−0.0361276 + 0.999347i \(0.511502\pi\)
\(840\) 0 0
\(841\) 6.57869 + 11.3946i 0.226852 + 0.392918i
\(842\) 0 0
\(843\) 0.866362 0.0298391
\(844\) 0 0
\(845\) 7.73608 + 4.46643i 0.266129 + 0.153650i
\(846\) 0 0
\(847\) 22.0000i 0.755929i
\(848\) 0 0
\(849\) −1.76566 1.01941i −0.0605975 0.0349860i
\(850\) 0 0
\(851\) 46.5437 + 26.8720i 1.59550 + 0.921160i
\(852\) 0 0
\(853\) 7.92131 4.57337i 0.271220 0.156589i −0.358222 0.933637i \(-0.616617\pi\)
0.629442 + 0.777047i \(0.283283\pi\)
\(854\) 0 0
\(855\) −3.25502 22.2639i −0.111319 0.761410i
\(856\) 0 0
\(857\) −4.50000 + 2.59808i −0.153717 + 0.0887486i −0.574886 0.818234i \(-0.694953\pi\)
0.421168 + 0.906982i \(0.361620\pi\)
\(858\) 0 0
\(859\) 1.85367 3.21065i 0.0632465 0.109546i −0.832668 0.553772i \(-0.813188\pi\)
0.895915 + 0.444226i \(0.146521\pi\)
\(860\) 0 0
\(861\) 1.79525 + 1.03649i 0.0611819 + 0.0353234i
\(862\) 0 0
\(863\) 2.67086 0.0909170 0.0454585 0.998966i \(-0.485525\pi\)
0.0454585 + 0.998966i \(0.485525\pi\)
\(864\) 0 0
\(865\) −4.50000 2.59808i −0.153005 0.0883372i
\(866\) 0 0
\(867\) 0.162538i 0.00552009i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 7.75321 4.47632i 0.262707 0.151674i
\(872\) 0 0
\(873\) 21.9960i 0.744452i
\(874\) 0 0
\(875\) 24.2487 0.819756
\(876\) 0 0
\(877\) 7.71204 + 13.3576i 0.260417 + 0.451056i 0.966353 0.257220i \(-0.0828066\pi\)
−0.705936 + 0.708276i \(0.749473\pi\)
\(878\) 0 0
\(879\) 3.71996 2.14772i 0.125471 0.0724408i
\(880\) 0 0
\(881\) −11.4687 −0.386389 −0.193195 0.981160i \(-0.561885\pi\)
−0.193195 + 0.981160i \(0.561885\pi\)
\(882\) 0 0
\(883\) −19.9890 + 34.6219i −0.672682 + 1.16512i 0.304458 + 0.952526i \(0.401525\pi\)
−0.977141 + 0.212594i \(0.931809\pi\)
\(884\) 0 0
\(885\) 0.340923i 0.0114600i
\(886\) 0 0
\(887\) 29.2549 50.6710i 0.982284 1.70137i 0.328851 0.944382i \(-0.393339\pi\)
0.653433 0.756984i \(-0.273328\pi\)
\(888\) 0 0
\(889\) 22.2048 + 12.8199i 0.744723 + 0.429966i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.70650 + 0.678484i 0.0571058 + 0.0227046i
\(894\) 0 0
\(895\) −9.66258 16.7361i −0.322984 0.559426i
\(896\) 0 0
\(897\) 2.21461 3.83582i 0.0739438 0.128074i
\(898\) 0 0
\(899\) 17.1671 29.7343i 0.572556 0.991696i
\(900\) 0 0
\(901\) −43.6261 −1.45339
\(902\) 0 0
\(903\) −1.73205 + 3.00000i −0.0576390 + 0.0998337i
\(904\) 0 0
\(905\) 19.9572i 0.663400i
\(906\) 0 0
\(907\) −45.9356 + 26.5209i −1.52527 + 0.880612i −0.525714 + 0.850661i \(0.676202\pi\)
−0.999551 + 0.0299511i \(0.990465\pi\)
\(908\) 0 0
\(909\) −0.0881660 + 0.0509027i −0.00292428 + 0.00168833i
\(910\) 0 0
\(911\) −30.6904 −1.01682 −0.508410 0.861115i \(-0.669766\pi\)
−0.508410 + 0.861115i \(0.669766\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0.467341 0.269819i 0.0154498 0.00891995i
\(916\) 0 0
\(917\) 31.1456 17.9819i 1.02852 0.593815i
\(918\) 0 0
\(919\) 32.8426i 1.08338i 0.840579 + 0.541689i \(0.182215\pi\)
−0.840579 + 0.541689i \(0.817785\pi\)
\(920\) 0 0
\(921\) −1.20495 + 2.08703i −0.0397043 + 0.0687699i
\(922\) 0 0
\(923\) −8.27145 −0.272258
\(924\) 0 0
\(925\) 7.26115 12.5767i 0.238745 0.413519i
\(926\) 0 0
\(927\) 5.88692 10.1964i 0.193352 0.334895i
\(928\) 0 0
\(929\) −6.88186 11.9197i −0.225787 0.391074i 0.730769 0.682625i \(-0.239162\pi\)
−0.956555 + 0.291551i \(0.905829\pi\)
\(930\) 0 0
\(931\) 12.9391 1.89172i 0.424063 0.0619987i
\(932\) 0 0
\(933\) −2.08855 3.61748i −0.0683762 0.118431i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21.2243 36.7615i 0.693367 1.20095i −0.277361 0.960766i \(-0.589460\pi\)
0.970728 0.240181i \(-0.0772068\pi\)
\(938\) 0 0
\(939\) 1.63271i 0.0532815i
\(940\) 0 0
\(941\) −28.2440 + 48.9200i −0.920728 + 1.59475i −0.122437 + 0.992476i \(0.539071\pi\)
−0.798291 + 0.602272i \(0.794262\pi\)
\(942\) 0 0
\(943\) 54.6276 1.77892
\(944\) 0 0
\(945\) −2.51953 + 1.45465i −0.0819602 + 0.0473198i
\(946\) 0 0
\(947\) −19.5366 33.8385i −0.634856 1.09960i −0.986546 0.163486i \(-0.947726\pi\)
0.351690 0.936116i \(-0.385607\pi\)
\(948\) 0 0
\(949\) 21.3057 0.691614
\(950\) 0 0
\(951\) 2.36253i 0.0766102i
\(952\) 0 0
\(953\) −15.1769 + 8.76240i −0.491629 + 0.283842i −0.725250 0.688486i \(-0.758276\pi\)
0.233621 + 0.972328i \(0.424942\pi\)
\(954\) 0 0
\(955\) −11.3605 19.6769i −0.367616 0.636730i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 27.6787 + 15.9803i 0.893790 + 0.516030i
\(960\) 0 0
\(961\) 43.4095 1.40031
\(962\) 0 0
\(963\) −20.5462 11.8623i −0.662091 0.382258i
\(964\) 0 0
\(965\) −2.34261 + 4.05752i −0.0754114 + 0.130616i
\(966\) 0 0
\(967\) 18.1251 10.4645i 0.582863 0.336516i −0.179407 0.983775i \(-0.557418\pi\)
0.762270 + 0.647259i \(0.224085\pi\)
\(968\) 0 0
\(969\) −2.26411 0.900185i −0.0727338 0.0289181i
\(970\) 0 0
\(971\) −41.3715 + 23.8858i −1.32767 + 0.766533i −0.984939 0.172900i \(-0.944686\pi\)
−0.342734 + 0.939433i \(0.611353\pi\)
\(972\) 0 0
\(973\) −8.51953 4.91875i −0.273124 0.157688i
\(974\) 0 0
\(975\) −1.03649 0.598416i −0.0331941 0.0191646i
\(976\) 0 0
\(977\) 48.1223i 1.53957i −0.638303 0.769785i \(-0.720363\pi\)
0.638303 0.769785i \(-0.279637\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 45.9515 1.46712
\(982\) 0 0
\(983\) −18.9866 32.8858i −0.605580 1.04889i −0.991960 0.126555i \(-0.959608\pi\)
0.386380 0.922340i \(-0.373725\pi\)
\(984\) 0 0
\(985\) −10.4704 18.1353i −0.333615 0.577839i
\(986\) 0 0
\(987\) 0.118333i 0.00376657i
\(988\) 0 0
\(989\) 91.2870i 2.90276i
\(990\) 0 0
\(991\) 22.4166 + 38.8267i 0.712086 + 1.23337i 0.964073 + 0.265639i \(0.0855828\pi\)
−0.251987 + 0.967731i \(0.581084\pi\)
\(992\) 0 0
\(993\) −2.34242 4.05719i −0.0743344 0.128751i
\(994\) 0 0
\(995\) 1.27493 0.0404180
\(996\) 0 0
\(997\) −12.6574 7.30775i −0.400863 0.231439i 0.285993 0.958232i \(-0.407677\pi\)
−0.686856 + 0.726793i \(0.741010\pi\)
\(998\) 0 0
\(999\) 6.09822i 0.192939i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.s.g.31.3 12
4.3 odd 2 inner 1216.2.s.g.31.4 yes 12
8.3 odd 2 1216.2.s.h.31.3 yes 12
8.5 even 2 1216.2.s.h.31.4 yes 12
19.8 odd 6 1216.2.s.h.863.3 yes 12
76.27 even 6 1216.2.s.h.863.4 yes 12
152.27 even 6 inner 1216.2.s.g.863.3 yes 12
152.141 odd 6 inner 1216.2.s.g.863.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1216.2.s.g.31.3 12 1.1 even 1 trivial
1216.2.s.g.31.4 yes 12 4.3 odd 2 inner
1216.2.s.g.863.3 yes 12 152.27 even 6 inner
1216.2.s.g.863.4 yes 12 152.141 odd 6 inner
1216.2.s.h.31.3 yes 12 8.3 odd 2
1216.2.s.h.31.4 yes 12 8.5 even 2
1216.2.s.h.863.3 yes 12 19.8 odd 6
1216.2.s.h.863.4 yes 12 76.27 even 6