Properties

Label 1224.2.bq.b
Level 12241224
Weight 22
Character orbit 1224.bq
Analytic conductor 9.7749.774
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(145,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1224=233217 1224 = 2^{3} \cdot 3^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1224.bq (of order 88, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.773689207409.77368920740
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: SU(2)[C8]\mathrm{SU}(2)[C_{8}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ8\zeta_{8}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ83ζ82++2)q5+(ζ83+ζ82++1)q7+(3ζ83ζ82+3)q11+(ζ834ζ82ζ8)q13++(ζ83ζ82+2)q97+O(q100) q + ( - \zeta_{8}^{3} - \zeta_{8}^{2} + \cdots + 2) q^{5} + (\zeta_{8}^{3} + \zeta_{8}^{2} + \cdots + 1) q^{7} + (3 \zeta_{8}^{3} - \zeta_{8}^{2} + \cdots - 3) q^{11} + ( - \zeta_{8}^{3} - 4 \zeta_{8}^{2} - \zeta_{8}) q^{13}+ \cdots + ( - \zeta_{8}^{3} - \zeta_{8}^{2} + \cdots - 2) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+8q5+4q712q11+16q194q234q25+12q29+4q31+24q358q37+20q4116q438q4912q538q59+8q6128q65+20q71+8q97+O(q100) 4 q + 8 q^{5} + 4 q^{7} - 12 q^{11} + 16 q^{19} - 4 q^{23} - 4 q^{25} + 12 q^{29} + 4 q^{31} + 24 q^{35} - 8 q^{37} + 20 q^{41} - 16 q^{43} - 8 q^{49} - 12 q^{53} - 8 q^{59} + 8 q^{61} - 28 q^{65} + 20 q^{71}+ \cdots - 8 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1224Z)×\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times.

nn 137137 613613 649649 919919
χ(n)\chi(n) 11 11 ζ8\zeta_{8} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
145.1
0.707107 + 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
0 0 0 1.29289 3.12132i 0 1.00000 + 2.41421i 0 0 0
433.1 0 0 0 2.70711 + 1.12132i 0 1.00000 0.414214i 0 0 0
865.1 0 0 0 2.70711 1.12132i 0 1.00000 + 0.414214i 0 0 0
937.1 0 0 0 1.29289 + 3.12132i 0 1.00000 2.41421i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.d even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.2.bq.b 4
3.b odd 2 1 136.2.n.b 4
12.b even 2 1 272.2.v.a 4
17.d even 8 1 inner 1224.2.bq.b 4
51.g odd 8 1 136.2.n.b 4
51.i even 16 2 2312.2.a.t 4
51.i even 16 2 2312.2.b.i 4
204.p even 8 1 272.2.v.a 4
204.t odd 16 2 4624.2.a.bo 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.2.n.b 4 3.b odd 2 1
136.2.n.b 4 51.g odd 8 1
272.2.v.a 4 12.b even 2 1
272.2.v.a 4 204.p even 8 1
1224.2.bq.b 4 1.a even 1 1 trivial
1224.2.bq.b 4 17.d even 8 1 inner
2312.2.a.t 4 51.i even 16 2
2312.2.b.i 4 51.i even 16 2
4624.2.a.bo 4 204.t odd 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T548T53+34T5284T5+98 T_{5}^{4} - 8T_{5}^{3} + 34T_{5}^{2} - 84T_{5} + 98 acting on S2new(1224,[χ])S_{2}^{\mathrm{new}}(1224, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T48T3++98 T^{4} - 8 T^{3} + \cdots + 98 Copy content Toggle raw display
77 T44T3++8 T^{4} - 4 T^{3} + \cdots + 8 Copy content Toggle raw display
1111 T4+12T3++392 T^{4} + 12 T^{3} + \cdots + 392 Copy content Toggle raw display
1313 T4+36T2+196 T^{4} + 36T^{2} + 196 Copy content Toggle raw display
1717 T4+2T2+289 T^{4} + 2T^{2} + 289 Copy content Toggle raw display
1919 T416T3++784 T^{4} - 16 T^{3} + \cdots + 784 Copy content Toggle raw display
2323 T4+4T3++8 T^{4} + 4 T^{3} + \cdots + 8 Copy content Toggle raw display
2929 T412T3++162 T^{4} - 12 T^{3} + \cdots + 162 Copy content Toggle raw display
3131 T44T3++8 T^{4} - 4 T^{3} + \cdots + 8 Copy content Toggle raw display
3737 T4+8T3++2 T^{4} + 8 T^{3} + \cdots + 2 Copy content Toggle raw display
4141 T420T3++1250 T^{4} - 20 T^{3} + \cdots + 1250 Copy content Toggle raw display
4343 T4+16T3++16 T^{4} + 16 T^{3} + \cdots + 16 Copy content Toggle raw display
4747 T4+48T2+64 T^{4} + 48T^{2} + 64 Copy content Toggle raw display
5353 T4+12T3++4 T^{4} + 12 T^{3} + \cdots + 4 Copy content Toggle raw display
5959 T4+8T3++8464 T^{4} + 8 T^{3} + \cdots + 8464 Copy content Toggle raw display
6161 T48T3++2 T^{4} - 8 T^{3} + \cdots + 2 Copy content Toggle raw display
6767 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
7171 T420T3++17672 T^{4} - 20 T^{3} + \cdots + 17672 Copy content Toggle raw display
7373 T44T3++12482 T^{4} - 4 T^{3} + \cdots + 12482 Copy content Toggle raw display
7979 T412T3++392 T^{4} - 12 T^{3} + \cdots + 392 Copy content Toggle raw display
8383 T48T3++8464 T^{4} - 8 T^{3} + \cdots + 8464 Copy content Toggle raw display
8989 (T2+18)2 (T^{2} + 18)^{2} Copy content Toggle raw display
9797 T4+8T3++2 T^{4} + 8 T^{3} + \cdots + 2 Copy content Toggle raw display
show more
show less