Properties

Label 1224.2.bq.b
Level $1224$
Weight $2$
Character orbit 1224.bq
Analytic conductor $9.774$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(145,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.bq (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{8}^{3} - \zeta_{8}^{2} + \cdots + 2) q^{5} + (\zeta_{8}^{3} + \zeta_{8}^{2} + \cdots + 1) q^{7} + (3 \zeta_{8}^{3} - \zeta_{8}^{2} + \cdots - 3) q^{11} + ( - \zeta_{8}^{3} - 4 \zeta_{8}^{2} - \zeta_{8}) q^{13}+ \cdots + ( - \zeta_{8}^{3} - \zeta_{8}^{2} + \cdots - 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{5} + 4 q^{7} - 12 q^{11} + 16 q^{19} - 4 q^{23} - 4 q^{25} + 12 q^{29} + 4 q^{31} + 24 q^{35} - 8 q^{37} + 20 q^{41} - 16 q^{43} - 8 q^{49} - 12 q^{53} - 8 q^{59} + 8 q^{61} - 28 q^{65} + 20 q^{71}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{8}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
145.1
0.707107 + 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
0 0 0 1.29289 3.12132i 0 1.00000 + 2.41421i 0 0 0
433.1 0 0 0 2.70711 + 1.12132i 0 1.00000 0.414214i 0 0 0
865.1 0 0 0 2.70711 1.12132i 0 1.00000 + 0.414214i 0 0 0
937.1 0 0 0 1.29289 + 3.12132i 0 1.00000 2.41421i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.d even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.2.bq.b 4
3.b odd 2 1 136.2.n.b 4
12.b even 2 1 272.2.v.a 4
17.d even 8 1 inner 1224.2.bq.b 4
51.g odd 8 1 136.2.n.b 4
51.i even 16 2 2312.2.a.t 4
51.i even 16 2 2312.2.b.i 4
204.p even 8 1 272.2.v.a 4
204.t odd 16 2 4624.2.a.bo 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.2.n.b 4 3.b odd 2 1
136.2.n.b 4 51.g odd 8 1
272.2.v.a 4 12.b even 2 1
272.2.v.a 4 204.p even 8 1
1224.2.bq.b 4 1.a even 1 1 trivial
1224.2.bq.b 4 17.d even 8 1 inner
2312.2.a.t 4 51.i even 16 2
2312.2.b.i 4 51.i even 16 2
4624.2.a.bo 4 204.t odd 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 8T_{5}^{3} + 34T_{5}^{2} - 84T_{5} + 98 \) acting on \(S_{2}^{\mathrm{new}}(1224, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 8 T^{3} + \cdots + 98 \) Copy content Toggle raw display
$7$ \( T^{4} - 4 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$11$ \( T^{4} + 12 T^{3} + \cdots + 392 \) Copy content Toggle raw display
$13$ \( T^{4} + 36T^{2} + 196 \) Copy content Toggle raw display
$17$ \( T^{4} + 2T^{2} + 289 \) Copy content Toggle raw display
$19$ \( T^{4} - 16 T^{3} + \cdots + 784 \) Copy content Toggle raw display
$23$ \( T^{4} + 4 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$29$ \( T^{4} - 12 T^{3} + \cdots + 162 \) Copy content Toggle raw display
$31$ \( T^{4} - 4 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$37$ \( T^{4} + 8 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$41$ \( T^{4} - 20 T^{3} + \cdots + 1250 \) Copy content Toggle raw display
$43$ \( T^{4} + 16 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$47$ \( T^{4} + 48T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{4} + 12 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$59$ \( T^{4} + 8 T^{3} + \cdots + 8464 \) Copy content Toggle raw display
$61$ \( T^{4} - 8 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$67$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 20 T^{3} + \cdots + 17672 \) Copy content Toggle raw display
$73$ \( T^{4} - 4 T^{3} + \cdots + 12482 \) Copy content Toggle raw display
$79$ \( T^{4} - 12 T^{3} + \cdots + 392 \) Copy content Toggle raw display
$83$ \( T^{4} - 8 T^{3} + \cdots + 8464 \) Copy content Toggle raw display
$89$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 8 T^{3} + \cdots + 2 \) Copy content Toggle raw display
show more
show less