Properties

Label 1224.2.bq.e.433.3
Level $1224$
Weight $2$
Character 1224.433
Analytic conductor $9.774$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(145,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.bq (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 466x^{12} + 2956x^{10} + 10049x^{8} + 18032x^{6} + 14800x^{4} + 3200x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 433.3
Root \(-1.94001i\) of defining polynomial
Character \(\chi\) \(=\) 1224.433
Dual form 1224.2.bq.e.865.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.868455 + 0.359726i) q^{5} +(-4.01891 + 1.66469i) q^{7} +(1.34442 + 3.24572i) q^{11} -4.92143i q^{13} +(3.09219 + 2.72733i) q^{17} +(-0.636406 + 0.636406i) q^{19} +(0.803224 + 1.93916i) q^{23} +(-2.91072 - 2.91072i) q^{25} +(-8.62731 - 3.57355i) q^{29} +(-4.14466 + 10.0061i) q^{31} -4.08907 q^{35} +(-2.55888 + 6.17767i) q^{37} +(-7.89980 + 3.27221i) q^{41} +(-4.95418 - 4.95418i) q^{43} +2.49767i q^{47} +(8.43070 - 8.43070i) q^{49} +(-6.01297 + 6.01297i) q^{53} +3.30238i q^{55} +(3.18160 + 3.18160i) q^{59} +(-5.55574 + 2.30126i) q^{61} +(1.77037 - 4.27404i) q^{65} +5.32216 q^{67} +(-0.905275 + 2.18553i) q^{71} +(9.08570 + 3.76342i) q^{73} +(-10.8062 - 10.8062i) q^{77} +(-3.16068 - 7.63055i) q^{79} +(-1.42580 + 1.42580i) q^{83} +(1.70434 + 3.48090i) q^{85} +2.95863i q^{89} +(8.19264 + 19.7788i) q^{91} +(-0.781621 + 0.323758i) q^{95} +(-7.53188 - 3.11981i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{11} - 8 q^{19} + 8 q^{23} - 8 q^{25} - 32 q^{29} + 8 q^{31} - 16 q^{35} + 8 q^{37} - 40 q^{41} - 24 q^{43} + 24 q^{49} + 24 q^{53} + 16 q^{59} + 64 q^{65} + 16 q^{71} + 24 q^{73} - 96 q^{79}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.868455 + 0.359726i 0.388385 + 0.160874i 0.568327 0.822803i \(-0.307591\pi\)
−0.179942 + 0.983677i \(0.557591\pi\)
\(6\) 0 0
\(7\) −4.01891 + 1.66469i −1.51900 + 0.629192i −0.977392 0.211436i \(-0.932186\pi\)
−0.541613 + 0.840628i \(0.682186\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.34442 + 3.24572i 0.405358 + 0.978621i 0.986343 + 0.164706i \(0.0526676\pi\)
−0.580985 + 0.813915i \(0.697332\pi\)
\(12\) 0 0
\(13\) 4.92143i 1.36496i −0.730904 0.682480i \(-0.760901\pi\)
0.730904 0.682480i \(-0.239099\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.09219 + 2.72733i 0.749967 + 0.661475i
\(18\) 0 0
\(19\) −0.636406 + 0.636406i −0.146002 + 0.146002i −0.776329 0.630328i \(-0.782921\pi\)
0.630328 + 0.776329i \(0.282921\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.803224 + 1.93916i 0.167484 + 0.404342i 0.985230 0.171238i \(-0.0547766\pi\)
−0.817746 + 0.575579i \(0.804777\pi\)
\(24\) 0 0
\(25\) −2.91072 2.91072i −0.582145 0.582145i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.62731 3.57355i −1.60205 0.663592i −0.610348 0.792134i \(-0.708970\pi\)
−0.991704 + 0.128542i \(0.958970\pi\)
\(30\) 0 0
\(31\) −4.14466 + 10.0061i −0.744404 + 1.79715i −0.157454 + 0.987526i \(0.550328\pi\)
−0.586950 + 0.809623i \(0.699672\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.08907 −0.691179
\(36\) 0 0
\(37\) −2.55888 + 6.17767i −0.420676 + 1.01560i 0.561472 + 0.827496i \(0.310235\pi\)
−0.982149 + 0.188107i \(0.939765\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.89980 + 3.27221i −1.23374 + 0.511033i −0.901753 0.432251i \(-0.857720\pi\)
−0.331989 + 0.943283i \(0.607720\pi\)
\(42\) 0 0
\(43\) −4.95418 4.95418i −0.755506 0.755506i 0.219995 0.975501i \(-0.429396\pi\)
−0.975501 + 0.219995i \(0.929396\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.49767i 0.364323i 0.983269 + 0.182162i \(0.0583094\pi\)
−0.983269 + 0.182162i \(0.941691\pi\)
\(48\) 0 0
\(49\) 8.43070 8.43070i 1.20439 1.20439i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.01297 + 6.01297i −0.825945 + 0.825945i −0.986953 0.161008i \(-0.948525\pi\)
0.161008 + 0.986953i \(0.448525\pi\)
\(54\) 0 0
\(55\) 3.30238i 0.445293i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.18160 + 3.18160i 0.414208 + 0.414208i 0.883202 0.468993i \(-0.155383\pi\)
−0.468993 + 0.883202i \(0.655383\pi\)
\(60\) 0 0
\(61\) −5.55574 + 2.30126i −0.711340 + 0.294647i −0.708859 0.705350i \(-0.750790\pi\)
−0.00248084 + 0.999997i \(0.500790\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.77037 4.27404i 0.219587 0.530129i
\(66\) 0 0
\(67\) 5.32216 0.650205 0.325102 0.945679i \(-0.394601\pi\)
0.325102 + 0.945679i \(0.394601\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.905275 + 2.18553i −0.107436 + 0.259374i −0.968450 0.249207i \(-0.919830\pi\)
0.861014 + 0.508582i \(0.169830\pi\)
\(72\) 0 0
\(73\) 9.08570 + 3.76342i 1.06340 + 0.440475i 0.844657 0.535307i \(-0.179804\pi\)
0.218744 + 0.975782i \(0.429804\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.8062 10.8062i −1.23148 1.23148i
\(78\) 0 0
\(79\) −3.16068 7.63055i −0.355604 0.858504i −0.995907 0.0903815i \(-0.971191\pi\)
0.640303 0.768122i \(-0.278809\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.42580 + 1.42580i −0.156502 + 0.156502i −0.781015 0.624512i \(-0.785298\pi\)
0.624512 + 0.781015i \(0.285298\pi\)
\(84\) 0 0
\(85\) 1.70434 + 3.48090i 0.184861 + 0.377557i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.95863i 0.313614i 0.987629 + 0.156807i \(0.0501201\pi\)
−0.987629 + 0.156807i \(0.949880\pi\)
\(90\) 0 0
\(91\) 8.19264 + 19.7788i 0.858822 + 2.07338i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.781621 + 0.323758i −0.0801927 + 0.0332169i
\(96\) 0 0
\(97\) −7.53188 3.11981i −0.764746 0.316768i −0.0340040 0.999422i \(-0.510826\pi\)
−0.730742 + 0.682653i \(0.760826\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.1971 1.51217 0.756086 0.654472i \(-0.227109\pi\)
0.756086 + 0.654472i \(0.227109\pi\)
\(102\) 0 0
\(103\) 8.99999 0.886795 0.443398 0.896325i \(-0.353773\pi\)
0.443398 + 0.896325i \(0.353773\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.92909 2.04170i −0.476513 0.197378i 0.131483 0.991318i \(-0.458026\pi\)
−0.607996 + 0.793940i \(0.708026\pi\)
\(108\) 0 0
\(109\) 5.44645 2.25599i 0.521675 0.216085i −0.106277 0.994337i \(-0.533893\pi\)
0.627953 + 0.778252i \(0.283893\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.85081 + 14.1251i 0.550398 + 1.32878i 0.917181 + 0.398472i \(0.130459\pi\)
−0.366783 + 0.930307i \(0.619541\pi\)
\(114\) 0 0
\(115\) 1.97301i 0.183984i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −16.9674 5.81336i −1.55540 0.532910i
\(120\) 0 0
\(121\) −0.949045 + 0.949045i −0.0862769 + 0.0862769i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.27940 7.91717i −0.293318 0.708133i
\(126\) 0 0
\(127\) −10.1510 10.1510i −0.900758 0.900758i 0.0947441 0.995502i \(-0.469797\pi\)
−0.995502 + 0.0947441i \(0.969797\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −16.3173 6.75885i −1.42565 0.590523i −0.469376 0.882998i \(-0.655521\pi\)
−0.956273 + 0.292475i \(0.905521\pi\)
\(132\) 0 0
\(133\) 1.49824 3.61707i 0.129914 0.313640i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.1004 0.948370 0.474185 0.880425i \(-0.342743\pi\)
0.474185 + 0.880425i \(0.342743\pi\)
\(138\) 0 0
\(139\) −4.79347 + 11.5725i −0.406577 + 0.981564i 0.579454 + 0.815005i \(0.303266\pi\)
−0.986031 + 0.166559i \(0.946734\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 15.9736 6.61647i 1.33578 0.553297i
\(144\) 0 0
\(145\) −6.20693 6.20693i −0.515458 0.515458i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.87764i 0.399592i −0.979837 0.199796i \(-0.935972\pi\)
0.979837 0.199796i \(-0.0640280\pi\)
\(150\) 0 0
\(151\) −8.43921 + 8.43921i −0.686773 + 0.686773i −0.961517 0.274744i \(-0.911407\pi\)
0.274744 + 0.961517i \(0.411407\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −7.19891 + 7.19891i −0.578230 + 0.578230i
\(156\) 0 0
\(157\) 2.16966i 0.173158i −0.996245 0.0865788i \(-0.972407\pi\)
0.996245 0.0865788i \(-0.0275934\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.45617 6.45617i −0.508817 0.508817i
\(162\) 0 0
\(163\) 12.9053 5.34553i 1.01082 0.418695i 0.185065 0.982726i \(-0.440750\pi\)
0.825753 + 0.564032i \(0.190750\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.03158 + 12.1473i −0.389355 + 0.939987i 0.600721 + 0.799459i \(0.294880\pi\)
−0.990077 + 0.140529i \(0.955120\pi\)
\(168\) 0 0
\(169\) −11.2205 −0.863115
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.43489 3.46413i 0.109093 0.263373i −0.859900 0.510463i \(-0.829474\pi\)
0.968993 + 0.247090i \(0.0794742\pi\)
\(174\) 0 0
\(175\) 16.5434 + 6.85249i 1.25056 + 0.517999i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.8761 + 10.8761i 0.812920 + 0.812920i 0.985071 0.172151i \(-0.0550716\pi\)
−0.172151 + 0.985071i \(0.555072\pi\)
\(180\) 0 0
\(181\) −4.49806 10.8593i −0.334338 0.807163i −0.998238 0.0593418i \(-0.981100\pi\)
0.663900 0.747822i \(-0.268900\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.44453 + 4.44453i −0.326769 + 0.326769i
\(186\) 0 0
\(187\) −4.69494 + 13.7031i −0.343328 + 1.00207i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.2765i 0.815942i 0.912995 + 0.407971i \(0.133764\pi\)
−0.912995 + 0.407971i \(0.866236\pi\)
\(192\) 0 0
\(193\) 2.61738 + 6.31891i 0.188403 + 0.454845i 0.989652 0.143485i \(-0.0458310\pi\)
−0.801249 + 0.598330i \(0.795831\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.8719 6.16015i 1.05958 0.438893i 0.216278 0.976332i \(-0.430608\pi\)
0.843303 + 0.537439i \(0.180608\pi\)
\(198\) 0 0
\(199\) −22.1641 9.18068i −1.57117 0.650801i −0.584189 0.811618i \(-0.698587\pi\)
−0.986984 + 0.160816i \(0.948587\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 40.6212 2.85105
\(204\) 0 0
\(205\) −8.03772 −0.561378
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.92119 1.21000i −0.202063 0.0836973i
\(210\) 0 0
\(211\) 18.2289 7.55068i 1.25493 0.519810i 0.346582 0.938020i \(-0.387342\pi\)
0.908350 + 0.418210i \(0.137342\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.52034 6.08463i −0.171885 0.414968i
\(216\) 0 0
\(217\) 47.1132i 3.19825i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.4224 15.2180i 0.902887 1.02367i
\(222\) 0 0
\(223\) 6.27382 6.27382i 0.420126 0.420126i −0.465121 0.885247i \(-0.653989\pi\)
0.885247 + 0.465121i \(0.153989\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.67367 + 13.6974i 0.376575 + 0.909131i 0.992603 + 0.121407i \(0.0387407\pi\)
−0.616028 + 0.787724i \(0.711259\pi\)
\(228\) 0 0
\(229\) 5.40014 + 5.40014i 0.356851 + 0.356851i 0.862651 0.505800i \(-0.168802\pi\)
−0.505800 + 0.862651i \(0.668802\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 23.8414 + 9.87542i 1.56190 + 0.646960i 0.985418 0.170150i \(-0.0544253\pi\)
0.576481 + 0.817110i \(0.304425\pi\)
\(234\) 0 0
\(235\) −0.898478 + 2.16912i −0.0586102 + 0.141498i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −13.5008 −0.873292 −0.436646 0.899633i \(-0.643834\pi\)
−0.436646 + 0.899633i \(0.643834\pi\)
\(240\) 0 0
\(241\) 1.52678 3.68596i 0.0983483 0.237434i −0.867046 0.498228i \(-0.833984\pi\)
0.965394 + 0.260794i \(0.0839843\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.3544 4.28894i 0.661519 0.274010i
\(246\) 0 0
\(247\) 3.13203 + 3.13203i 0.199286 + 0.199286i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.78794i 0.302212i −0.988518 0.151106i \(-0.951716\pi\)
0.988518 0.151106i \(-0.0482835\pi\)
\(252\) 0 0
\(253\) −5.21408 + 5.21408i −0.327806 + 0.327806i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.77007 6.77007i 0.422305 0.422305i −0.463692 0.885997i \(-0.653475\pi\)
0.885997 + 0.463692i \(0.153475\pi\)
\(258\) 0 0
\(259\) 29.0872i 1.80739i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.0252 11.0252i −0.679845 0.679845i 0.280120 0.959965i \(-0.409626\pi\)
−0.959965 + 0.280120i \(0.909626\pi\)
\(264\) 0 0
\(265\) −7.38501 + 3.05897i −0.453657 + 0.187911i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.56471 15.8486i 0.400258 0.966307i −0.587346 0.809336i \(-0.699827\pi\)
0.987603 0.156971i \(-0.0501729\pi\)
\(270\) 0 0
\(271\) −6.08385 −0.369567 −0.184784 0.982779i \(-0.559158\pi\)
−0.184784 + 0.982779i \(0.559158\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.53415 13.3606i 0.333722 0.805676i
\(276\) 0 0
\(277\) 22.1354 + 9.16879i 1.32999 + 0.550899i 0.930652 0.365905i \(-0.119241\pi\)
0.399336 + 0.916804i \(0.369241\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.88621 8.88621i −0.530107 0.530107i 0.390497 0.920604i \(-0.372303\pi\)
−0.920604 + 0.390497i \(0.872303\pi\)
\(282\) 0 0
\(283\) −1.53709 3.71085i −0.0913703 0.220587i 0.871587 0.490240i \(-0.163091\pi\)
−0.962958 + 0.269653i \(0.913091\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26.3014 26.3014i 1.55252 1.55252i
\(288\) 0 0
\(289\) 2.12332 + 16.8669i 0.124901 + 0.992169i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.51320i 0.205243i 0.994720 + 0.102622i \(0.0327231\pi\)
−0.994720 + 0.102622i \(0.967277\pi\)
\(294\) 0 0
\(295\) 1.61857 + 3.90757i 0.0942368 + 0.227508i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.54342 3.95301i 0.551910 0.228609i
\(300\) 0 0
\(301\) 28.1576 + 11.6632i 1.62298 + 0.672258i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.65273 −0.323674
\(306\) 0 0
\(307\) 23.4675 1.33936 0.669680 0.742650i \(-0.266431\pi\)
0.669680 + 0.742650i \(0.266431\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.16053 0.480705i −0.0658074 0.0272583i 0.349537 0.936923i \(-0.386339\pi\)
−0.415344 + 0.909664i \(0.636339\pi\)
\(312\) 0 0
\(313\) −19.1009 + 7.91185i −1.07965 + 0.447204i −0.850385 0.526161i \(-0.823631\pi\)
−0.229261 + 0.973365i \(0.573631\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.0766 + 31.5696i 0.734453 + 1.77313i 0.627148 + 0.778900i \(0.284222\pi\)
0.107304 + 0.994226i \(0.465778\pi\)
\(318\) 0 0
\(319\) 32.8062i 1.83679i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.70358 + 0.232200i −0.206073 + 0.0129200i
\(324\) 0 0
\(325\) −14.3249 + 14.3249i −0.794604 + 0.794604i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.15784 10.0379i −0.229229 0.553409i
\(330\) 0 0
\(331\) 0.159721 + 0.159721i 0.00877908 + 0.00877908i 0.711483 0.702704i \(-0.248024\pi\)
−0.702704 + 0.711483i \(0.748024\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.62205 + 1.91452i 0.252530 + 0.104601i
\(336\) 0 0
\(337\) 7.72983 18.6615i 0.421071 1.01655i −0.560962 0.827842i \(-0.689568\pi\)
0.982032 0.188713i \(-0.0604316\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −38.0492 −2.06048
\(342\) 0 0
\(343\) −8.19492 + 19.7843i −0.442484 + 1.06825i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.518566 0.214797i 0.0278381 0.0115309i −0.368721 0.929540i \(-0.620204\pi\)
0.396559 + 0.918009i \(0.370204\pi\)
\(348\) 0 0
\(349\) 17.9352 + 17.9352i 0.960050 + 0.960050i 0.999232 0.0391825i \(-0.0124754\pi\)
−0.0391825 + 0.999232i \(0.512475\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.8321i 0.789434i −0.918803 0.394717i \(-0.870843\pi\)
0.918803 0.394717i \(-0.129157\pi\)
\(354\) 0 0
\(355\) −1.57238 + 1.57238i −0.0834533 + 0.0834533i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −22.2821 + 22.2821i −1.17601 + 1.17601i −0.195253 + 0.980753i \(0.562553\pi\)
−0.980753 + 0.195253i \(0.937447\pi\)
\(360\) 0 0
\(361\) 18.1900i 0.957367i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.53672 + 6.53672i 0.342148 + 0.342148i
\(366\) 0 0
\(367\) −32.8281 + 13.5978i −1.71361 + 0.709801i −0.713654 + 0.700499i \(0.752961\pi\)
−0.999957 + 0.00930206i \(0.997039\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14.1559 34.1753i 0.734936 1.77429i
\(372\) 0 0
\(373\) 20.8339 1.07874 0.539370 0.842069i \(-0.318662\pi\)
0.539370 + 0.842069i \(0.318662\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −17.5870 + 42.4587i −0.905776 + 2.18674i
\(378\) 0 0
\(379\) −10.3816 4.30021i −0.533268 0.220887i 0.0997659 0.995011i \(-0.468191\pi\)
−0.633034 + 0.774124i \(0.718191\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.98948 + 7.98948i 0.408244 + 0.408244i 0.881126 0.472882i \(-0.156786\pi\)
−0.472882 + 0.881126i \(0.656786\pi\)
\(384\) 0 0
\(385\) −5.49743 13.2720i −0.280175 0.676402i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.9386 + 18.9386i −0.960223 + 0.960223i −0.999239 0.0390153i \(-0.987578\pi\)
0.0390153 + 0.999239i \(0.487578\pi\)
\(390\) 0 0
\(391\) −2.80499 + 8.18690i −0.141855 + 0.414029i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.76376i 0.390637i
\(396\) 0 0
\(397\) −5.14245 12.4150i −0.258092 0.623090i 0.740720 0.671814i \(-0.234485\pi\)
−0.998812 + 0.0487238i \(0.984485\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.96722 3.71434i 0.447802 0.185485i −0.147375 0.989081i \(-0.547082\pi\)
0.595176 + 0.803595i \(0.297082\pi\)
\(402\) 0 0
\(403\) 49.2444 + 20.3977i 2.45304 + 1.01608i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −23.4912 −1.16441
\(408\) 0 0
\(409\) 6.94609 0.343462 0.171731 0.985144i \(-0.445064\pi\)
0.171731 + 0.985144i \(0.445064\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −18.0829 7.49018i −0.889801 0.368568i
\(414\) 0 0
\(415\) −1.75115 + 0.725348i −0.0859603 + 0.0356059i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.57653 20.7056i −0.418991 1.01153i −0.982641 0.185519i \(-0.940603\pi\)
0.563650 0.826014i \(-0.309397\pi\)
\(420\) 0 0
\(421\) 2.41829i 0.117860i −0.998262 0.0589302i \(-0.981231\pi\)
0.998262 0.0589302i \(-0.0187689\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.06201 16.9390i −0.0515152 0.821664i
\(426\) 0 0
\(427\) 18.4971 18.4971i 0.895139 0.895139i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.34790 15.3252i −0.305768 0.738188i −0.999833 0.0182762i \(-0.994182\pi\)
0.694065 0.719912i \(-0.255818\pi\)
\(432\) 0 0
\(433\) 3.10517 + 3.10517i 0.149225 + 0.149225i 0.777772 0.628547i \(-0.216350\pi\)
−0.628547 + 0.777772i \(0.716350\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.74527 0.722913i −0.0834874 0.0345816i
\(438\) 0 0
\(439\) 9.61095 23.2029i 0.458706 1.10741i −0.510216 0.860046i \(-0.670435\pi\)
0.968922 0.247367i \(-0.0795655\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.9896 0.664668 0.332334 0.943162i \(-0.392164\pi\)
0.332334 + 0.943162i \(0.392164\pi\)
\(444\) 0 0
\(445\) −1.06430 + 2.56944i −0.0504525 + 0.121803i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −23.8707 + 9.88756i −1.12653 + 0.466623i −0.866599 0.499005i \(-0.833699\pi\)
−0.259928 + 0.965628i \(0.583699\pi\)
\(450\) 0 0
\(451\) −21.2413 21.2413i −1.00021 1.00021i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 20.1241i 0.943431i
\(456\) 0 0
\(457\) −25.7263 + 25.7263i −1.20343 + 1.20343i −0.230307 + 0.973118i \(0.573973\pi\)
−0.973118 + 0.230307i \(0.926027\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.93178 + 4.93178i −0.229696 + 0.229696i −0.812566 0.582870i \(-0.801930\pi\)
0.582870 + 0.812566i \(0.301930\pi\)
\(462\) 0 0
\(463\) 10.5659i 0.491039i −0.969392 0.245519i \(-0.921042\pi\)
0.969392 0.245519i \(-0.0789585\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.96529 + 2.96529i 0.137217 + 0.137217i 0.772379 0.635162i \(-0.219067\pi\)
−0.635162 + 0.772379i \(0.719067\pi\)
\(468\) 0 0
\(469\) −21.3893 + 8.85972i −0.987664 + 0.409104i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.41938 22.7404i 0.433103 1.04560i
\(474\) 0 0
\(475\) 3.70480 0.169988
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.07464 17.0797i 0.323249 0.780392i −0.675813 0.737073i \(-0.736207\pi\)
0.999061 0.0433180i \(-0.0137929\pi\)
\(480\) 0 0
\(481\) 30.4030 + 12.5933i 1.38626 + 0.574206i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.41882 5.41882i −0.246056 0.246056i
\(486\) 0 0
\(487\) −3.19288 7.70828i −0.144683 0.349296i 0.834880 0.550431i \(-0.185537\pi\)
−0.979563 + 0.201136i \(0.935537\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.7693 + 15.7693i −0.711657 + 0.711657i −0.966882 0.255225i \(-0.917851\pi\)
0.255225 + 0.966882i \(0.417851\pi\)
\(492\) 0 0
\(493\) −16.9311 34.5797i −0.762537 1.55739i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.2904i 0.461589i
\(498\) 0 0
\(499\) 11.3604 + 27.4263i 0.508559 + 1.22777i 0.944713 + 0.327898i \(0.106340\pi\)
−0.436154 + 0.899872i \(0.643660\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 37.9651 15.7257i 1.69278 0.701173i 0.692976 0.720960i \(-0.256299\pi\)
0.999804 + 0.0197879i \(0.00629910\pi\)
\(504\) 0 0
\(505\) 13.1980 + 5.46680i 0.587305 + 0.243270i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 25.2428 1.11887 0.559434 0.828875i \(-0.311018\pi\)
0.559434 + 0.828875i \(0.311018\pi\)
\(510\) 0 0
\(511\) −42.7795 −1.89245
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.81608 + 3.23753i 0.344418 + 0.142662i
\(516\) 0 0
\(517\) −8.10675 + 3.35793i −0.356534 + 0.147681i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.15751 + 5.20868i 0.0945221 + 0.228197i 0.964068 0.265656i \(-0.0855884\pi\)
−0.869546 + 0.493852i \(0.835588\pi\)
\(522\) 0 0
\(523\) 0.995064i 0.0435111i 0.999763 + 0.0217556i \(0.00692555\pi\)
−0.999763 + 0.0217556i \(0.993074\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −40.1061 + 19.6369i −1.74705 + 0.855399i
\(528\) 0 0
\(529\) 13.1483 13.1483i 0.571665 0.571665i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.1039 + 38.8783i 0.697539 + 1.68401i
\(534\) 0 0
\(535\) −3.54624 3.54624i −0.153317 0.153317i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 38.6981 + 16.0293i 1.66684 + 0.690429i
\(540\) 0 0
\(541\) 2.40389 5.80350i 0.103351 0.249512i −0.863742 0.503934i \(-0.831885\pi\)
0.967093 + 0.254422i \(0.0818854\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.54153 0.237373
\(546\) 0 0
\(547\) −3.09833 + 7.48004i −0.132475 + 0.319823i −0.976173 0.216996i \(-0.930374\pi\)
0.843697 + 0.536819i \(0.180374\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.76470 3.21625i 0.330787 0.137017i
\(552\) 0 0
\(553\) 25.4049 + 25.4049i 1.08033 + 1.08033i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 36.7684i 1.55793i 0.627069 + 0.778963i \(0.284254\pi\)
−0.627069 + 0.778963i \(0.715746\pi\)
\(558\) 0 0
\(559\) −24.3817 + 24.3817i −1.03124 + 1.03124i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.6765 + 20.6765i −0.871413 + 0.871413i −0.992626 0.121214i \(-0.961321\pi\)
0.121214 + 0.992626i \(0.461321\pi\)
\(564\) 0 0
\(565\) 14.3717i 0.604622i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.522498 0.522498i −0.0219043 0.0219043i 0.696070 0.717974i \(-0.254930\pi\)
−0.717974 + 0.696070i \(0.754930\pi\)
\(570\) 0 0
\(571\) 2.45322 1.01616i 0.102664 0.0425249i −0.330760 0.943715i \(-0.607305\pi\)
0.433424 + 0.901190i \(0.357305\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.30638 7.98231i 0.137886 0.332885i
\(576\) 0 0
\(577\) 5.39898 0.224762 0.112381 0.993665i \(-0.464152\pi\)
0.112381 + 0.993665i \(0.464152\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.35666 8.10370i 0.139258 0.336198i
\(582\) 0 0
\(583\) −27.6004 11.4324i −1.14309 0.473483i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.70079 6.70079i −0.276571 0.276571i 0.555168 0.831739i \(-0.312654\pi\)
−0.831739 + 0.555168i \(0.812654\pi\)
\(588\) 0 0
\(589\) −3.73026 9.00564i −0.153703 0.371071i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11.3803 + 11.3803i −0.467334 + 0.467334i −0.901050 0.433715i \(-0.857202\pi\)
0.433715 + 0.901050i \(0.357202\pi\)
\(594\) 0 0
\(595\) −12.6442 11.1522i −0.518361 0.457198i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 6.05959i 0.247588i 0.992308 + 0.123794i \(0.0395062\pi\)
−0.992308 + 0.123794i \(0.960494\pi\)
\(600\) 0 0
\(601\) 12.0483 + 29.0871i 0.491459 + 1.18649i 0.953978 + 0.299878i \(0.0969459\pi\)
−0.462518 + 0.886610i \(0.653054\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.16560 + 0.482807i −0.0473883 + 0.0196289i
\(606\) 0 0
\(607\) −5.88706 2.43850i −0.238948 0.0989757i 0.259996 0.965610i \(-0.416279\pi\)
−0.498944 + 0.866634i \(0.666279\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.2921 0.497287
\(612\) 0 0
\(613\) 2.80845 0.113432 0.0567161 0.998390i \(-0.481937\pi\)
0.0567161 + 0.998390i \(0.481937\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.8330 + 4.48716i 0.436119 + 0.180646i 0.589931 0.807454i \(-0.299155\pi\)
−0.153812 + 0.988100i \(0.549155\pi\)
\(618\) 0 0
\(619\) −17.0624 + 7.06746i −0.685794 + 0.284065i −0.698247 0.715857i \(-0.746036\pi\)
0.0124526 + 0.999922i \(0.496036\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.92520 11.8905i −0.197324 0.476382i
\(624\) 0 0
\(625\) 12.5265i 0.501062i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −24.7611 + 12.1237i −0.987290 + 0.483402i
\(630\) 0 0
\(631\) 25.3372 25.3372i 1.00866 1.00866i 0.00869728 0.999962i \(-0.497232\pi\)
0.999962 0.00869728i \(-0.00276846\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.16412 12.4673i −0.204932 0.494749i
\(636\) 0 0
\(637\) −41.4911 41.4911i −1.64394 1.64394i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −29.4216 12.1868i −1.16208 0.481351i −0.283516 0.958967i \(-0.591501\pi\)
−0.878569 + 0.477616i \(0.841501\pi\)
\(642\) 0 0
\(643\) 9.99336 24.1261i 0.394100 0.951440i −0.594937 0.803772i \(-0.702823\pi\)
0.989037 0.147668i \(-0.0471768\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −38.0869 −1.49735 −0.748675 0.662937i \(-0.769310\pi\)
−0.748675 + 0.662937i \(0.769310\pi\)
\(648\) 0 0
\(649\) −6.04916 + 14.6040i −0.237450 + 0.573256i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.38304 + 2.64394i −0.249787 + 0.103465i −0.504064 0.863666i \(-0.668163\pi\)
0.254277 + 0.967131i \(0.418163\pi\)
\(654\) 0 0
\(655\) −11.7395 11.7395i −0.458700 0.458700i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.6022i 1.58164i 0.612050 + 0.790819i \(0.290345\pi\)
−0.612050 + 0.790819i \(0.709655\pi\)
\(660\) 0 0
\(661\) −21.8362 + 21.8362i −0.849331 + 0.849331i −0.990050 0.140719i \(-0.955059\pi\)
0.140719 + 0.990050i \(0.455059\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.60231 2.60231i 0.100913 0.100913i
\(666\) 0 0
\(667\) 19.6001i 0.758917i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −14.9385 14.9385i −0.576694 0.576694i
\(672\) 0 0
\(673\) −36.1846 + 14.9881i −1.39481 + 0.577750i −0.948400 0.317077i \(-0.897299\pi\)
−0.446413 + 0.894827i \(0.647299\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.82043 + 9.22334i −0.146831 + 0.354482i −0.980134 0.198334i \(-0.936447\pi\)
0.833303 + 0.552816i \(0.186447\pi\)
\(678\) 0 0
\(679\) 35.4634 1.36096
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.9930 + 26.5395i −0.420637 + 1.01551i 0.561523 + 0.827461i \(0.310215\pi\)
−0.982160 + 0.188046i \(0.939785\pi\)
\(684\) 0 0
\(685\) 9.64018 + 3.99309i 0.368332 + 0.152568i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 29.5924 + 29.5924i 1.12738 + 1.12738i
\(690\) 0 0
\(691\) −12.8432 31.0062i −0.488578 1.17953i −0.955436 0.295199i \(-0.904614\pi\)
0.466858 0.884332i \(-0.345386\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.32583 + 8.32583i −0.315817 + 0.315817i
\(696\) 0 0
\(697\) −33.3521 11.4271i −1.26330 0.432832i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.8627i 1.16567i −0.812592 0.582833i \(-0.801944\pi\)
0.812592 0.582833i \(-0.198056\pi\)
\(702\) 0 0
\(703\) −2.30302 5.55999i −0.0868602 0.209699i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −61.0759 + 25.2985i −2.29700 + 0.951447i
\(708\) 0 0
\(709\) −43.1783 17.8850i −1.62160 0.671687i −0.627343 0.778743i \(-0.715858\pi\)
−0.994253 + 0.107056i \(0.965858\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −22.7325 −0.851338
\(714\) 0 0
\(715\) 16.2524 0.607807
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 41.7644 + 17.2994i 1.55755 + 0.645158i 0.984662 0.174475i \(-0.0558230\pi\)
0.572888 + 0.819634i \(0.305823\pi\)
\(720\) 0 0
\(721\) −36.1701 + 14.9822i −1.34705 + 0.557965i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.7101 + 35.5133i 0.546320 + 1.31893i
\(726\) 0 0
\(727\) 16.0428i 0.594995i 0.954723 + 0.297497i \(0.0961519\pi\)
−0.954723 + 0.297497i \(0.903848\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.80759 28.8310i −0.0668562 1.06635i
\(732\) 0 0
\(733\) −1.64615 + 1.64615i −0.0608018 + 0.0608018i −0.736854 0.676052i \(-0.763689\pi\)
0.676052 + 0.736854i \(0.263689\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.15522 + 17.2742i 0.263566 + 0.636304i
\(738\) 0 0
\(739\) 18.3855 + 18.3855i 0.676321 + 0.676321i 0.959166 0.282845i \(-0.0912781\pi\)
−0.282845 + 0.959166i \(0.591278\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.98172 + 2.47771i 0.219448 + 0.0908983i 0.489699 0.871892i \(-0.337107\pi\)
−0.270251 + 0.962790i \(0.587107\pi\)
\(744\) 0 0
\(745\) 1.75461 4.23601i 0.0642841 0.155195i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 23.2083 0.848014
\(750\) 0 0
\(751\) −10.3783 + 25.0555i −0.378711 + 0.914288i 0.613498 + 0.789697i \(0.289762\pi\)
−0.992208 + 0.124592i \(0.960238\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10.3649 + 4.29327i −0.377216 + 0.156248i
\(756\) 0 0
\(757\) 18.6848 + 18.6848i 0.679110 + 0.679110i 0.959799 0.280689i \(-0.0905629\pi\)
−0.280689 + 0.959799i \(0.590563\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 51.5814i 1.86983i −0.354878 0.934913i \(-0.615478\pi\)
0.354878 0.934913i \(-0.384522\pi\)
\(762\) 0 0
\(763\) −18.1333 + 18.1333i −0.656468 + 0.656468i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.6580 15.6580i 0.565378 0.565378i
\(768\) 0 0
\(769\) 3.17588i 0.114525i 0.998359 + 0.0572625i \(0.0182372\pi\)
−0.998359 + 0.0572625i \(0.981763\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.10858 8.10858i −0.291645 0.291645i 0.546085 0.837730i \(-0.316118\pi\)
−0.837730 + 0.546085i \(0.816118\pi\)
\(774\) 0 0
\(775\) 41.1890 17.0610i 1.47955 0.612850i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.94503 7.10993i 0.105517 0.254740i
\(780\) 0 0
\(781\) −8.31068 −0.297379
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.780482 1.88425i 0.0278566 0.0672518i
\(786\) 0 0
\(787\) 44.7759 + 18.5468i 1.59609 + 0.661121i 0.990855 0.134928i \(-0.0430803\pi\)
0.605232 + 0.796049i \(0.293080\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −47.0278 47.0278i −1.67211 1.67211i
\(792\) 0 0
\(793\) 11.3255 + 27.3422i 0.402181 + 0.970950i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24.7797 + 24.7797i −0.877743 + 0.877743i −0.993301 0.115558i \(-0.963135\pi\)
0.115558 + 0.993301i \(0.463135\pi\)
\(798\) 0 0
\(799\) −6.81199 + 7.72329i −0.240991 + 0.273230i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 34.5493i 1.21922i
\(804\) 0 0
\(805\) −3.28444 7.92934i −0.115761 0.279473i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −37.6761 + 15.6059i −1.32462 + 0.548676i −0.929116 0.369788i \(-0.879430\pi\)
−0.395505 + 0.918464i \(0.629430\pi\)
\(810\) 0 0
\(811\) 38.5122 + 15.9523i 1.35235 + 0.560160i 0.936945 0.349478i \(-0.113641\pi\)
0.415402 + 0.909638i \(0.363641\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 13.1306 0.459943
\(816\) 0 0
\(817\) 6.30574 0.220610
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −29.2465 12.1143i −1.02071 0.422791i −0.191358 0.981520i \(-0.561289\pi\)
−0.829350 + 0.558729i \(0.811289\pi\)
\(822\) 0 0
\(823\) 2.75434 1.14088i 0.0960103 0.0397687i −0.334161 0.942516i \(-0.608453\pi\)
0.430172 + 0.902747i \(0.358453\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.7218 45.1985i −0.651022 1.57171i −0.811297 0.584634i \(-0.801238\pi\)
0.160275 0.987072i \(-0.448762\pi\)
\(828\) 0 0
\(829\) 10.0212i 0.348049i −0.984741 0.174025i \(-0.944323\pi\)
0.984741 0.174025i \(-0.0556772\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 49.0626 3.07604i 1.69992 0.106578i
\(834\) 0 0
\(835\) −8.73940 + 8.73940i −0.302439 + 0.302439i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 11.1965 + 27.0306i 0.386544 + 0.933201i 0.990666 + 0.136309i \(0.0435240\pi\)
−0.604122 + 0.796892i \(0.706476\pi\)
\(840\) 0 0
\(841\) 41.1542 + 41.1542i 1.41911 + 1.41911i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −9.74449 4.03630i −0.335221 0.138853i
\(846\) 0 0
\(847\) 2.23426 5.39399i 0.0767702 0.185340i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −14.0348 −0.481107
\(852\) 0 0
\(853\) −5.35358 + 12.9247i −0.183303 + 0.442533i −0.988644 0.150280i \(-0.951983\pi\)
0.805340 + 0.592813i \(0.201983\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 42.4058 17.5651i 1.44856 0.600011i 0.486700 0.873569i \(-0.338201\pi\)
0.961855 + 0.273558i \(0.0882006\pi\)
\(858\) 0 0
\(859\) −17.1914 17.1914i −0.586562 0.586562i 0.350136 0.936699i \(-0.386135\pi\)
−0.936699 + 0.350136i \(0.886135\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.14634i 0.243264i 0.992575 + 0.121632i \(0.0388128\pi\)
−0.992575 + 0.121632i \(0.961187\pi\)
\(864\) 0 0
\(865\) 2.49227 2.49227i 0.0847399 0.0847399i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 20.5173 20.5173i 0.696003 0.696003i
\(870\) 0 0
\(871\) 26.1926i 0.887503i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 26.3592 + 26.3592i 0.891103 + 0.891103i
\(876\) 0 0
\(877\) 19.2719 7.98267i 0.650765 0.269556i −0.0327817 0.999463i \(-0.510437\pi\)
0.683547 + 0.729907i \(0.260437\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.5058 + 35.0201i −0.488712 + 1.17986i 0.466656 + 0.884439i \(0.345459\pi\)
−0.955368 + 0.295417i \(0.904541\pi\)
\(882\) 0 0
\(883\) 42.2764 1.42271 0.711357 0.702831i \(-0.248081\pi\)
0.711357 + 0.702831i \(0.248081\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.149217 0.360242i 0.00501022 0.0120957i −0.921355 0.388723i \(-0.872916\pi\)
0.926365 + 0.376627i \(0.122916\pi\)
\(888\) 0 0
\(889\) 57.6943 + 23.8978i 1.93500 + 0.801505i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.58954 1.58954i −0.0531918 0.0531918i
\(894\) 0 0
\(895\) 5.53300 + 13.3578i 0.184948 + 0.446504i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 71.5146 71.5146i 2.38515 2.38515i
\(900\) 0 0
\(901\) −34.9926 + 2.19390i −1.16577 + 0.0730895i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.0489i 0.367276i
\(906\) 0 0
\(907\) −2.41165 5.82224i −0.0800776 0.193324i 0.878770 0.477245i \(-0.158365\pi\)
−0.958848 + 0.283921i \(0.908365\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −36.8163 + 15.2498i −1.21978 + 0.505249i −0.897339 0.441342i \(-0.854503\pi\)
−0.322439 + 0.946590i \(0.604503\pi\)
\(912\) 0 0
\(913\) −6.54464 2.71088i −0.216596 0.0897170i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 76.8291 2.53712
\(918\) 0 0
\(919\) −25.8983 −0.854306 −0.427153 0.904179i \(-0.640483\pi\)
−0.427153 + 0.904179i \(0.640483\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.7559 + 4.45525i 0.354036 + 0.146646i
\(924\) 0 0
\(925\) 25.4297 10.5333i 0.836122 0.346333i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19.4982 47.0729i −0.639716 1.54441i −0.827058 0.562117i \(-0.809987\pi\)
0.187342 0.982295i \(-0.440013\pi\)
\(930\) 0 0
\(931\) 10.7307i 0.351684i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −9.00669 + 10.2116i −0.294550 + 0.333955i
\(936\) 0 0
\(937\) 19.9910 19.9910i 0.653077 0.653077i −0.300656 0.953733i \(-0.597206\pi\)
0.953733 + 0.300656i \(0.0972056\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −13.6144 32.8680i −0.443815 1.07147i −0.974599 0.223958i \(-0.928102\pi\)
0.530783 0.847507i \(-0.321898\pi\)
\(942\) 0 0
\(943\) −12.6906 12.6906i −0.413264 0.413264i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.94931 + 2.46428i 0.193327 + 0.0800785i 0.477246 0.878770i \(-0.341635\pi\)
−0.283920 + 0.958848i \(0.591635\pi\)
\(948\) 0 0
\(949\) 18.5214 44.7147i 0.601231 1.45150i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −9.04100 −0.292867 −0.146433 0.989221i \(-0.546779\pi\)
−0.146433 + 0.989221i \(0.546779\pi\)
\(954\) 0 0
\(955\) −4.05646 + 9.79317i −0.131264 + 0.316899i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −44.6114 + 18.4787i −1.44058 + 0.596707i
\(960\) 0 0
\(961\) −61.0236 61.0236i −1.96850 1.96850i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.42922i 0.206964i
\(966\) 0 0
\(967\) 5.38948 5.38948i 0.173314 0.173314i −0.615120 0.788434i \(-0.710892\pi\)
0.788434 + 0.615120i \(0.210892\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 21.8198 21.8198i 0.700230 0.700230i −0.264230 0.964460i \(-0.585118\pi\)
0.964460 + 0.264230i \(0.0851178\pi\)
\(972\) 0 0
\(973\) 54.4883i 1.74682i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −36.8161 36.8161i −1.17785 1.17785i −0.980291 0.197561i \(-0.936698\pi\)
−0.197561 0.980291i \(-0.563302\pi\)
\(978\) 0 0
\(979\) −9.60289 + 3.97765i −0.306910 + 0.127126i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.47857 5.98379i 0.0790541 0.190853i −0.879411 0.476063i \(-0.842063\pi\)
0.958465 + 0.285210i \(0.0920633\pi\)
\(984\) 0 0
\(985\) 15.1316 0.482131
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.62761 13.5863i 0.178948 0.432018i
\(990\) 0 0
\(991\) 8.51296 + 3.52618i 0.270423 + 0.112013i 0.513774 0.857925i \(-0.328247\pi\)
−0.243351 + 0.969938i \(0.578247\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −15.9460 15.9460i −0.505523 0.505523i
\(996\) 0 0
\(997\) 12.3401 + 29.7916i 0.390814 + 0.943508i 0.989763 + 0.142721i \(0.0455852\pi\)
−0.598949 + 0.800787i \(0.704415\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.bq.e.433.3 16
3.2 odd 2 408.2.ba.a.25.3 16
12.11 even 2 816.2.bq.f.433.1 16
17.15 even 8 inner 1224.2.bq.e.865.3 16
51.32 odd 8 408.2.ba.a.49.3 yes 16
51.41 even 16 6936.2.a.bl.1.6 8
51.44 even 16 6936.2.a.bo.1.3 8
204.83 even 8 816.2.bq.f.49.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.ba.a.25.3 16 3.2 odd 2
408.2.ba.a.49.3 yes 16 51.32 odd 8
816.2.bq.f.49.1 16 204.83 even 8
816.2.bq.f.433.1 16 12.11 even 2
1224.2.bq.e.433.3 16 1.1 even 1 trivial
1224.2.bq.e.865.3 16 17.15 even 8 inner
6936.2.a.bl.1.6 8 51.41 even 16
6936.2.a.bo.1.3 8 51.44 even 16