Properties

Label 1224.2.w.i
Level 12241224
Weight 22
Character orbit 1224.w
Analytic conductor 9.7749.774
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(217,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.217");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1224=233217 1224 = 2^{3} \cdot 3^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1224.w (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.773689207409.77368920740
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(i)\Q(i)
Coefficient field: 6.0.269485056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x68x3+81x272x+32 x^{6} - 8x^{3} + 81x^{2} - 72x + 32 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q5+(β41)q7+(2β4+β12)q11+(β3β2β1)q13+(β3β2+1)q17+(β5+2β4+β1)q19++(β5+β4β3+1)q97+O(q100) q + \beta_{2} q^{5} + ( - \beta_{4} - 1) q^{7} + ( - 2 \beta_{4} + \beta_1 - 2) q^{11} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{13} + ( - \beta_{3} - \beta_{2} + 1) q^{17} + ( - \beta_{5} + 2 \beta_{4} + \cdots - \beta_1) q^{19}+ \cdots + ( - \beta_{5} + \beta_{4} - \beta_{3} + \cdots - 1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q6q712q11+6q17+6q23+6q31+12q37+6q41+12q47+36q55+12q6124q6524q6718q7118q7318q79+12q85+72q89+6q97+O(q100) 6 q - 6 q^{7} - 12 q^{11} + 6 q^{17} + 6 q^{23} + 6 q^{31} + 12 q^{37} + 6 q^{41} + 12 q^{47} + 36 q^{55} + 12 q^{61} - 24 q^{65} - 24 q^{67} - 18 q^{71} - 18 q^{73} - 18 q^{79} + 12 q^{85} + 72 q^{89}+ \cdots - 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x68x3+81x272x+32 x^{6} - 8x^{3} + 81x^{2} - 72x + 32 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (9ν54ν481ν3+36ν2713ν+648)/713 ( -9\nu^{5} - 4\nu^{4} - 81\nu^{3} + 36\nu^{2} - 713\nu + 648 ) / 713 Copy content Toggle raw display
β3\beta_{3}== (13ν5+85ν4+117ν352ν2+3342)/713 ( 13\nu^{5} + 85\nu^{4} + 117\nu^{3} - 52\nu^{2} + 3342 ) / 713 Copy content Toggle raw display
β4\beta_{4}== (81ν5+36ν4+16ν3324ν2+6417ν2980)/2852 ( 81\nu^{5} + 36\nu^{4} + 16\nu^{3} - 324\nu^{2} + 6417\nu - 2980 ) / 2852 Copy content Toggle raw display
β5\beta_{5}== (225ν5100ν4+114ν3+2326ν216399ν+7644)/1426 ( -225\nu^{5} - 100\nu^{4} + 114\nu^{3} + 2326\nu^{2} - 16399\nu + 7644 ) / 1426 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5+6β4+β2β1 \beta_{5} + 6\beta_{4} + \beta_{2} - \beta_1 Copy content Toggle raw display
ν3\nu^{3}== 4β49β2+4 -4\beta_{4} - 9\beta_{2} + 4 Copy content Toggle raw display
ν4\nu^{4}== 9β3+13β2+13β154 9\beta_{3} + 13\beta_{2} + 13\beta _1 - 54 Copy content Toggle raw display
ν5\nu^{5}== 4β5+60β44β389β1+60 4\beta_{5} + 60\beta_{4} - 4\beta_{3} - 89\beta _1 + 60 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1224Z)×\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times.

nn 137137 613613 649649 919919
χ(n)\chi(n) 11 11 β4-\beta_{4} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
217.1
−2.31594 + 2.31594i
0.467090 0.467090i
1.84885 1.84885i
−2.31594 2.31594i
0.467090 + 0.467090i
1.84885 + 1.84885i
0 0 0 −2.31594 2.31594i 0 −1.00000 + 1.00000i 0 0 0
217.2 0 0 0 0.467090 + 0.467090i 0 −1.00000 + 1.00000i 0 0 0
217.3 0 0 0 1.84885 + 1.84885i 0 −1.00000 + 1.00000i 0 0 0
361.1 0 0 0 −2.31594 + 2.31594i 0 −1.00000 1.00000i 0 0 0
361.2 0 0 0 0.467090 0.467090i 0 −1.00000 1.00000i 0 0 0
361.3 0 0 0 1.84885 1.84885i 0 −1.00000 1.00000i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 217.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.2.w.i 6
3.b odd 2 1 1224.2.w.j yes 6
4.b odd 2 1 2448.2.be.w 6
12.b even 2 1 2448.2.be.v 6
17.c even 4 1 inner 1224.2.w.i 6
51.f odd 4 1 1224.2.w.j yes 6
68.f odd 4 1 2448.2.be.w 6
204.l even 4 1 2448.2.be.v 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1224.2.w.i 6 1.a even 1 1 trivial
1224.2.w.i 6 17.c even 4 1 inner
1224.2.w.j yes 6 3.b odd 2 1
1224.2.w.j yes 6 51.f odd 4 1
2448.2.be.v 6 12.b even 2 1
2448.2.be.v 6 204.l even 4 1
2448.2.be.w 6 4.b odd 2 1
2448.2.be.w 6 68.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1224,[χ])S_{2}^{\mathrm{new}}(1224, [\chi]):

T568T53+81T5272T5+32 T_{5}^{6} - 8T_{5}^{3} + 81T_{5}^{2} - 72T_{5} + 32 Copy content Toggle raw display
T116+12T115+72T114+176T113+225T112+60T11+8 T_{11}^{6} + 12T_{11}^{5} + 72T_{11}^{4} + 176T_{11}^{3} + 225T_{11}^{2} + 60T_{11} + 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 T68T3++32 T^{6} - 8 T^{3} + \cdots + 32 Copy content Toggle raw display
77 (T2+2T+2)3 (T^{2} + 2 T + 2)^{3} Copy content Toggle raw display
1111 T6+12T5++8 T^{6} + 12 T^{5} + \cdots + 8 Copy content Toggle raw display
1313 (T327T+22)2 (T^{3} - 27 T + 22)^{2} Copy content Toggle raw display
1717 T66T5++4913 T^{6} - 6 T^{5} + \cdots + 4913 Copy content Toggle raw display
1919 T6+114T4++53824 T^{6} + 114 T^{4} + \cdots + 53824 Copy content Toggle raw display
2323 T66T5++1682 T^{6} - 6 T^{5} + \cdots + 1682 Copy content Toggle raw display
2929 T6 T^{6} Copy content Toggle raw display
3131 T66T5++18432 T^{6} - 6 T^{5} + \cdots + 18432 Copy content Toggle raw display
3737 T612T5++36992 T^{6} - 12 T^{5} + \cdots + 36992 Copy content Toggle raw display
4141 T66T5++2 T^{6} - 6 T^{5} + \cdots + 2 Copy content Toggle raw display
4343 T6+114T4++1936 T^{6} + 114 T^{4} + \cdots + 1936 Copy content Toggle raw display
4747 (T36T2++144)2 (T^{3} - 6 T^{2} + \cdots + 144)^{2} Copy content Toggle raw display
5353 T6+180T4++20736 T^{6} + 180 T^{4} + \cdots + 20736 Copy content Toggle raw display
5959 T6+84T4++64 T^{6} + 84 T^{4} + \cdots + 64 Copy content Toggle raw display
6161 T612T5++430592 T^{6} - 12 T^{5} + \cdots + 430592 Copy content Toggle raw display
6767 (T3+12T2+192)2 (T^{3} + 12 T^{2} + \cdots - 192)^{2} Copy content Toggle raw display
7171 T6+18T5++1002528 T^{6} + 18 T^{5} + \cdots + 1002528 Copy content Toggle raw display
7373 T6+18T5++557568 T^{6} + 18 T^{5} + \cdots + 557568 Copy content Toggle raw display
7979 T6+18T5++29768 T^{6} + 18 T^{5} + \cdots + 29768 Copy content Toggle raw display
8383 T6+192T4++9216 T^{6} + 192 T^{4} + \cdots + 9216 Copy content Toggle raw display
8989 (T336T2+1496)2 (T^{3} - 36 T^{2} + \cdots - 1496)^{2} Copy content Toggle raw display
9797 T6+6T5++5484672 T^{6} + 6 T^{5} + \cdots + 5484672 Copy content Toggle raw display
show more
show less