Properties

Label 1224.2.w.j.217.2
Level $1224$
Weight $2$
Character 1224.217
Analytic conductor $9.774$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(217,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.217");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.w (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.269485056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{3} + 81x^{2} - 72x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 217.2
Root \(0.467090 + 0.467090i\) of defining polynomial
Character \(\chi\) \(=\) 1224.217
Dual form 1224.2.w.j.361.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.467090 - 0.467090i) q^{5} +(-1.00000 + 1.00000i) q^{7} +(1.53291 - 1.53291i) q^{11} -5.56365 q^{13} +(4.09656 + 0.467090i) q^{17} -5.69529i q^{19} +(-6.09656 + 6.09656i) q^{23} -4.56365i q^{25} +(-4.56365 - 4.56365i) q^{31} +0.934181 q^{35} +(-3.56365 - 3.56365i) q^{37} +(5.03074 - 5.03074i) q^{41} -1.69529i q^{43} -11.2589 q^{47} +5.00000i q^{49} -11.2589i q^{53} -1.43201 q^{55} +3.06582i q^{59} +(5.69529 - 5.69529i) q^{61} +(2.59873 + 2.59873i) q^{65} -15.1273 q^{67} +(9.49783 + 9.49783i) q^{71} +(-6.69529 - 6.69529i) q^{73} +3.06582i q^{77} +(-1.13164 + 1.13164i) q^{79} -2.13164i q^{83} +(-1.69529 - 2.13164i) q^{85} -12.9342 q^{89} +(5.56365 - 5.56365i) q^{91} +(-2.66022 + 2.66022i) q^{95} +(-8.43201 - 8.43201i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{7} + 12 q^{11} - 6 q^{17} - 6 q^{23} + 6 q^{31} + 12 q^{37} - 6 q^{41} - 12 q^{47} + 36 q^{55} + 12 q^{61} + 24 q^{65} - 24 q^{67} + 18 q^{71} - 18 q^{73} - 18 q^{79} + 12 q^{85} - 72 q^{89}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.467090 0.467090i −0.208889 0.208889i 0.594906 0.803795i \(-0.297189\pi\)
−0.803795 + 0.594906i \(0.797189\pi\)
\(6\) 0 0
\(7\) −1.00000 + 1.00000i −0.377964 + 0.377964i −0.870367 0.492403i \(-0.836119\pi\)
0.492403 + 0.870367i \(0.336119\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.53291 1.53291i 0.462190 0.462190i −0.437183 0.899373i \(-0.644024\pi\)
0.899373 + 0.437183i \(0.144024\pi\)
\(12\) 0 0
\(13\) −5.56365 −1.54308 −0.771540 0.636181i \(-0.780513\pi\)
−0.771540 + 0.636181i \(0.780513\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.09656 + 0.467090i 0.993562 + 0.113286i
\(18\) 0 0
\(19\) 5.69529i 1.30659i −0.757104 0.653295i \(-0.773386\pi\)
0.757104 0.653295i \(-0.226614\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.09656 + 6.09656i −1.27122 + 1.27122i −0.325773 + 0.945448i \(0.605625\pi\)
−0.945448 + 0.325773i \(0.894375\pi\)
\(24\) 0 0
\(25\) 4.56365i 0.912731i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(30\) 0 0
\(31\) −4.56365 4.56365i −0.819656 0.819656i 0.166402 0.986058i \(-0.446785\pi\)
−0.986058 + 0.166402i \(0.946785\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.934181 0.157905
\(36\) 0 0
\(37\) −3.56365 3.56365i −0.585861 0.585861i 0.350647 0.936508i \(-0.385962\pi\)
−0.936508 + 0.350647i \(0.885962\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.03074 5.03074i 0.785670 0.785670i −0.195111 0.980781i \(-0.562507\pi\)
0.980781 + 0.195111i \(0.0625067\pi\)
\(42\) 0 0
\(43\) 1.69529i 0.258530i −0.991610 0.129265i \(-0.958738\pi\)
0.991610 0.129265i \(-0.0412617\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.2589 −1.64229 −0.821143 0.570723i \(-0.806663\pi\)
−0.821143 + 0.570723i \(0.806663\pi\)
\(48\) 0 0
\(49\) 5.00000i 0.714286i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.2589i 1.54654i −0.634080 0.773268i \(-0.718621\pi\)
0.634080 0.773268i \(-0.281379\pi\)
\(54\) 0 0
\(55\) −1.43201 −0.193093
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.06582i 0.399136i 0.979884 + 0.199568i \(0.0639538\pi\)
−0.979884 + 0.199568i \(0.936046\pi\)
\(60\) 0 0
\(61\) 5.69529 5.69529i 0.729207 0.729207i −0.241255 0.970462i \(-0.577559\pi\)
0.970462 + 0.241255i \(0.0775589\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.59873 + 2.59873i 0.322333 + 0.322333i
\(66\) 0 0
\(67\) −15.1273 −1.84809 −0.924047 0.382278i \(-0.875140\pi\)
−0.924047 + 0.382278i \(0.875140\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.49783 + 9.49783i 1.12719 + 1.12719i 0.990633 + 0.136553i \(0.0436023\pi\)
0.136553 + 0.990633i \(0.456398\pi\)
\(72\) 0 0
\(73\) −6.69529 6.69529i −0.783625 0.783625i 0.196816 0.980440i \(-0.436940\pi\)
−0.980440 + 0.196816i \(0.936940\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.06582i 0.349383i
\(78\) 0 0
\(79\) −1.13164 + 1.13164i −0.127319 + 0.127319i −0.767895 0.640576i \(-0.778696\pi\)
0.640576 + 0.767895i \(0.278696\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.13164i 0.233978i −0.993133 0.116989i \(-0.962676\pi\)
0.993133 0.116989i \(-0.0373242\pi\)
\(84\) 0 0
\(85\) −1.69529 2.13164i −0.183880 0.231209i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.9342 −1.37102 −0.685510 0.728063i \(-0.740421\pi\)
−0.685510 + 0.728063i \(0.740421\pi\)
\(90\) 0 0
\(91\) 5.56365 5.56365i 0.583229 0.583229i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.66022 + 2.66022i −0.272932 + 0.272932i
\(96\) 0 0
\(97\) −8.43201 8.43201i −0.856141 0.856141i 0.134740 0.990881i \(-0.456980\pi\)
−0.990881 + 0.134740i \(0.956980\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.12731 0.908201 0.454100 0.890950i \(-0.349961\pi\)
0.454100 + 0.890950i \(0.349961\pi\)
\(102\) 0 0
\(103\) 4.30471 0.424156 0.212078 0.977253i \(-0.431977\pi\)
0.212078 + 0.977253i \(0.431977\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.46709 6.46709i −0.625197 0.625197i 0.321659 0.946856i \(-0.395760\pi\)
−0.946856 + 0.321659i \(0.895760\pi\)
\(108\) 0 0
\(109\) −6.00000 + 6.00000i −0.574696 + 0.574696i −0.933437 0.358741i \(-0.883206\pi\)
0.358741 + 0.933437i \(0.383206\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.0966 12.0966i 1.13795 1.13795i 0.149132 0.988817i \(-0.452352\pi\)
0.988817 0.149132i \(-0.0476478\pi\)
\(114\) 0 0
\(115\) 5.69529 0.531089
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.56365 + 3.62947i −0.418349 + 0.332713i
\(120\) 0 0
\(121\) 6.30038i 0.572761i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.46709 + 4.46709i −0.399549 + 0.399549i
\(126\) 0 0
\(127\) 5.69529i 0.505375i 0.967548 + 0.252688i \(0.0813145\pi\)
−0.967548 + 0.252688i \(0.918685\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.53291 + 1.53291i 0.133931 + 0.133931i 0.770894 0.636963i \(-0.219810\pi\)
−0.636963 + 0.770894i \(0.719810\pi\)
\(132\) 0 0
\(133\) 5.69529 + 5.69529i 0.493844 + 0.493844i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3248 0.882104 0.441052 0.897482i \(-0.354605\pi\)
0.441052 + 0.897482i \(0.354605\pi\)
\(138\) 0 0
\(139\) 5.56365 + 5.56365i 0.471903 + 0.471903i 0.902530 0.430627i \(-0.141708\pi\)
−0.430627 + 0.902530i \(0.641708\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.52858 + 8.52858i −0.713195 + 0.713195i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.3248 0.845838 0.422919 0.906168i \(-0.361006\pi\)
0.422919 + 0.906168i \(0.361006\pi\)
\(150\) 0 0
\(151\) 15.1273i 1.23104i −0.788120 0.615521i \(-0.788945\pi\)
0.788120 0.615521i \(-0.211055\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.26328i 0.342435i
\(156\) 0 0
\(157\) 5.56365 0.444028 0.222014 0.975043i \(-0.428737\pi\)
0.222014 + 0.975043i \(0.428737\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.1931i 0.960953i
\(162\) 0 0
\(163\) −15.1273 + 15.1273i −1.18486 + 1.18486i −0.206393 + 0.978469i \(0.566172\pi\)
−0.978469 + 0.206393i \(0.933828\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.29402 3.29402i −0.254899 0.254899i 0.568077 0.822976i \(-0.307688\pi\)
−0.822976 + 0.568077i \(0.807688\pi\)
\(168\) 0 0
\(169\) 17.9542 1.38110
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.59873 + 2.59873i 0.197578 + 0.197578i 0.798961 0.601383i \(-0.205383\pi\)
−0.601383 + 0.798961i \(0.705383\pi\)
\(174\) 0 0
\(175\) 4.56365 + 4.56365i 0.344980 + 0.344980i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.86836i 0.737596i 0.929510 + 0.368798i \(0.120231\pi\)
−0.929510 + 0.368798i \(0.879769\pi\)
\(180\) 0 0
\(181\) 9.43201 9.43201i 0.701076 0.701076i −0.263565 0.964642i \(-0.584898\pi\)
0.964642 + 0.263565i \(0.0848985\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.32910i 0.244760i
\(186\) 0 0
\(187\) 6.99567 5.56365i 0.511574 0.406855i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.3248 −1.03650 −0.518252 0.855228i \(-0.673417\pi\)
−0.518252 + 0.855228i \(0.673417\pi\)
\(192\) 0 0
\(193\) −11.9542 + 11.9542i −0.860485 + 0.860485i −0.991394 0.130910i \(-0.958210\pi\)
0.130910 + 0.991394i \(0.458210\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.6602 16.6602i 1.18699 1.18699i 0.209096 0.977895i \(-0.432948\pi\)
0.977895 0.209096i \(-0.0670522\pi\)
\(198\) 0 0
\(199\) 0.695292 + 0.695292i 0.0492879 + 0.0492879i 0.731321 0.682033i \(-0.238904\pi\)
−0.682033 + 0.731321i \(0.738904\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4.69962 −0.328236
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.73037 8.73037i −0.603892 0.603892i
\(210\) 0 0
\(211\) 6.00000 6.00000i 0.413057 0.413057i −0.469745 0.882802i \(-0.655654\pi\)
0.882802 + 0.469745i \(0.155654\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.791854 + 0.791854i −0.0540040 + 0.0540040i
\(216\) 0 0
\(217\) 9.12731 0.619602
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −22.7919 2.59873i −1.53315 0.174809i
\(222\) 0 0
\(223\) 3.43201i 0.229825i 0.993376 + 0.114912i \(0.0366587\pi\)
−0.993376 + 0.114912i \(0.963341\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.66022 2.66022i 0.176565 0.176565i −0.613292 0.789856i \(-0.710155\pi\)
0.789856 + 0.613292i \(0.210155\pi\)
\(228\) 0 0
\(229\) 1.39058i 0.0918923i 0.998944 + 0.0459462i \(0.0146303\pi\)
−0.998944 + 0.0459462i \(0.985370\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.837618 + 0.837618i 0.0548742 + 0.0548742i 0.734011 0.679137i \(-0.237646\pi\)
−0.679137 + 0.734011i \(0.737646\pi\)
\(234\) 0 0
\(235\) 5.25894 + 5.25894i 0.343056 + 0.343056i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.39058 −0.0899494 −0.0449747 0.998988i \(-0.514321\pi\)
−0.0449747 + 0.998988i \(0.514321\pi\)
\(240\) 0 0
\(241\) 10.2589 + 10.2589i 0.660837 + 0.660837i 0.955577 0.294741i \(-0.0952332\pi\)
−0.294741 + 0.955577i \(0.595233\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.33545 2.33545i 0.149207 0.149207i
\(246\) 0 0
\(247\) 31.6866i 2.01617i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.4521 0.722848 0.361424 0.932402i \(-0.382291\pi\)
0.361424 + 0.932402i \(0.382291\pi\)
\(252\) 0 0
\(253\) 18.6910i 1.17509i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 31.1888i 1.94550i 0.231849 + 0.972752i \(0.425522\pi\)
−0.231849 + 0.972752i \(0.574478\pi\)
\(258\) 0 0
\(259\) 7.12731 0.442869
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 15.9298i 0.982277i 0.871082 + 0.491138i \(0.163419\pi\)
−0.871082 + 0.491138i \(0.836581\pi\)
\(264\) 0 0
\(265\) −5.25894 + 5.25894i −0.323054 + 0.323054i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.53291 + 7.53291i 0.459290 + 0.459290i 0.898422 0.439133i \(-0.144714\pi\)
−0.439133 + 0.898422i \(0.644714\pi\)
\(270\) 0 0
\(271\) 19.9499 1.21187 0.605935 0.795514i \(-0.292799\pi\)
0.605935 + 0.795514i \(0.292799\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.99567 6.99567i −0.421855 0.421855i
\(276\) 0 0
\(277\) 11.2589 + 11.2589i 0.676484 + 0.676484i 0.959203 0.282718i \(-0.0912362\pi\)
−0.282718 + 0.959203i \(0.591236\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.9342i 0.771589i 0.922585 + 0.385794i \(0.126073\pi\)
−0.922585 + 0.385794i \(0.873927\pi\)
\(282\) 0 0
\(283\) −10.8226 + 10.8226i −0.643337 + 0.643337i −0.951374 0.308038i \(-0.900328\pi\)
0.308038 + 0.951374i \(0.400328\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.0615i 0.593911i
\(288\) 0 0
\(289\) 16.5637 + 3.82693i 0.974333 + 0.225114i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.67524 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(294\) 0 0
\(295\) 1.43201 1.43201i 0.0833751 0.0833751i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 33.9192 33.9192i 1.96160 1.96160i
\(300\) 0 0
\(301\) 1.69529 + 1.69529i 0.0977150 + 0.0977150i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.32043 −0.304647
\(306\) 0 0
\(307\) 22.8640 1.30492 0.652460 0.757824i \(-0.273737\pi\)
0.652460 + 0.757824i \(0.273737\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −21.4978 21.4978i −1.21903 1.21903i −0.967972 0.251058i \(-0.919221\pi\)
−0.251058 0.967972i \(-0.580779\pi\)
\(312\) 0 0
\(313\) 6.69529 6.69529i 0.378440 0.378440i −0.492099 0.870539i \(-0.663770\pi\)
0.870539 + 0.492099i \(0.163770\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.39058 + 1.39058i −0.0781029 + 0.0781029i −0.745079 0.666976i \(-0.767588\pi\)
0.666976 + 0.745079i \(0.267588\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.66022 23.3311i 0.148018 1.29818i
\(324\) 0 0
\(325\) 25.3906i 1.40842i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.2589 11.2589i 0.620726 0.620726i
\(330\) 0 0
\(331\) 1.43201i 0.0787106i −0.999225 0.0393553i \(-0.987470\pi\)
0.999225 0.0393553i \(-0.0125304\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.06582 + 7.06582i 0.386047 + 0.386047i
\(336\) 0 0
\(337\) −1.13164 1.13164i −0.0616443 0.0616443i 0.675613 0.737257i \(-0.263879\pi\)
−0.737257 + 0.675613i \(0.763879\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −13.9913 −0.757673
\(342\) 0 0
\(343\) −12.0000 12.0000i −0.647939 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.5837 17.5837i 0.943943 0.943943i −0.0545672 0.998510i \(-0.517378\pi\)
0.998510 + 0.0545672i \(0.0173779\pi\)
\(348\) 0 0
\(349\) 21.8269i 1.16837i −0.811621 0.584184i \(-0.801414\pi\)
0.811621 0.584184i \(-0.198586\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −24.1931 −1.28767 −0.643835 0.765164i \(-0.722658\pi\)
−0.643835 + 0.765164i \(0.722658\pi\)
\(354\) 0 0
\(355\) 8.87269i 0.470914i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 25.5837i 1.35026i 0.737700 + 0.675128i \(0.235912\pi\)
−0.737700 + 0.675128i \(0.764088\pi\)
\(360\) 0 0
\(361\) −13.4363 −0.707176
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.25461i 0.327381i
\(366\) 0 0
\(367\) 15.3863 15.3863i 0.803156 0.803156i −0.180432 0.983588i \(-0.557749\pi\)
0.983588 + 0.180432i \(0.0577495\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.2589 + 11.2589i 0.584535 + 0.584535i
\(372\) 0 0
\(373\) −19.6452 −1.01719 −0.508595 0.861006i \(-0.669835\pi\)
−0.508595 + 0.861006i \(0.669835\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −3.56365 3.56365i −0.183053 0.183053i 0.609632 0.792685i \(-0.291317\pi\)
−0.792685 + 0.609632i \(0.791317\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 35.2589i 1.80165i 0.434185 + 0.900824i \(0.357037\pi\)
−0.434185 + 0.900824i \(0.642963\pi\)
\(384\) 0 0
\(385\) 1.43201 1.43201i 0.0729822 0.0729822i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 22.3248i 1.13191i −0.824436 0.565955i \(-0.808507\pi\)
0.824436 0.565955i \(-0.191493\pi\)
\(390\) 0 0
\(391\) −27.8226 + 22.1273i −1.40705 + 1.11903i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.05715 0.0531912
\(396\) 0 0
\(397\) 24.6495 24.6495i 1.23712 1.23712i 0.275953 0.961171i \(-0.411006\pi\)
0.961171 0.275953i \(-0.0889935\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.35551 + 3.35551i −0.167566 + 0.167566i −0.785909 0.618343i \(-0.787804\pi\)
0.618343 + 0.785909i \(0.287804\pi\)
\(402\) 0 0
\(403\) 25.3906 + 25.3906i 1.26480 + 1.26480i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −10.9255 −0.541558
\(408\) 0 0
\(409\) −23.5637 −1.16515 −0.582574 0.812778i \(-0.697954\pi\)
−0.582574 + 0.812778i \(0.697954\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.06582 3.06582i −0.150859 0.150859i
\(414\) 0 0
\(415\) −0.995668 + 0.995668i −0.0488754 + 0.0488754i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 19.7153 19.7153i 0.963158 0.963158i −0.0361873 0.999345i \(-0.511521\pi\)
0.999345 + 0.0361873i \(0.0115213\pi\)
\(420\) 0 0
\(421\) −2.17307 −0.105909 −0.0529545 0.998597i \(-0.516864\pi\)
−0.0529545 + 0.998597i \(0.516864\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.13164 18.6953i 0.103400 0.906855i
\(426\) 0 0
\(427\) 11.3906i 0.551229i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.6295 + 11.6295i −0.560172 + 0.560172i −0.929356 0.369184i \(-0.879637\pi\)
0.369184 + 0.929356i \(0.379637\pi\)
\(432\) 0 0
\(433\) 4.69962i 0.225850i −0.993604 0.112925i \(-0.963978\pi\)
0.993604 0.112925i \(-0.0360219\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 34.7217 + 34.7217i 1.66096 + 1.66096i
\(438\) 0 0
\(439\) −4.56365 4.56365i −0.217811 0.217811i 0.589764 0.807575i \(-0.299221\pi\)
−0.807575 + 0.589764i \(0.799221\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.3863 0.968580 0.484290 0.874908i \(-0.339078\pi\)
0.484290 + 0.874908i \(0.339078\pi\)
\(444\) 0 0
\(445\) 6.04143 + 6.04143i 0.286391 + 0.286391i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −26.1474 + 26.1474i −1.23397 + 1.23397i −0.271544 + 0.962426i \(0.587534\pi\)
−0.962426 + 0.271544i \(0.912466\pi\)
\(450\) 0 0
\(451\) 15.4234i 0.726257i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5.19746 −0.243661
\(456\) 0 0
\(457\) 8.43635i 0.394636i 0.980340 + 0.197318i \(0.0632231\pi\)
−0.980340 + 0.197318i \(0.936777\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 23.6666i 1.10226i 0.834419 + 0.551131i \(0.185804\pi\)
−0.834419 + 0.551131i \(0.814196\pi\)
\(462\) 0 0
\(463\) −8.78117 −0.408095 −0.204048 0.978961i \(-0.565410\pi\)
−0.204048 + 0.978961i \(0.565410\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 38.9255i 1.80126i −0.434589 0.900629i \(-0.643106\pi\)
0.434589 0.900629i \(-0.356894\pi\)
\(468\) 0 0
\(469\) 15.1273 15.1273i 0.698514 0.698514i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.59873 2.59873i −0.119490 0.119490i
\(474\) 0 0
\(475\) −25.9913 −1.19256
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.6846 16.6846i −0.762339 0.762339i 0.214406 0.976745i \(-0.431219\pi\)
−0.976745 + 0.214406i \(0.931219\pi\)
\(480\) 0 0
\(481\) 19.8269 + 19.8269i 0.904030 + 0.904030i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.87703i 0.357677i
\(486\) 0 0
\(487\) 29.6495 29.6495i 1.34355 1.34355i 0.451049 0.892499i \(-0.351050\pi\)
0.892499 0.451049i \(-0.148950\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.25461i 0.282267i −0.989991 0.141133i \(-0.954925\pi\)
0.989991 0.141133i \(-0.0450746\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −18.9957 −0.852072
\(498\) 0 0
\(499\) −14.3863 + 14.3863i −0.644017 + 0.644017i −0.951541 0.307523i \(-0.900500\pi\)
0.307523 + 0.951541i \(0.400500\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.8333 17.8333i 0.795147 0.795147i −0.187179 0.982326i \(-0.559934\pi\)
0.982326 + 0.187179i \(0.0599344\pi\)
\(504\) 0 0
\(505\) −4.26328 4.26328i −0.189713 0.189713i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.34614 0.281288 0.140644 0.990060i \(-0.455083\pi\)
0.140644 + 0.990060i \(0.455083\pi\)
\(510\) 0 0
\(511\) 13.3906 0.592365
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.01069 2.01069i −0.0886015 0.0886015i
\(516\) 0 0
\(517\) −17.2589 + 17.2589i −0.759048 + 0.759048i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.2282 18.2282i 0.798592 0.798592i −0.184282 0.982874i \(-0.558996\pi\)
0.982874 + 0.184282i \(0.0589958\pi\)
\(522\) 0 0
\(523\) −29.9085 −1.30781 −0.653903 0.756578i \(-0.726870\pi\)
−0.653903 + 0.756578i \(0.726870\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.5637 20.8269i −0.721524 0.907235i
\(528\) 0 0
\(529\) 51.3362i 2.23201i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −27.9893 + 27.9893i −1.21235 + 1.21235i
\(534\) 0 0
\(535\) 6.04143i 0.261194i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7.66455 + 7.66455i 0.330135 + 0.330135i
\(540\) 0 0
\(541\) −18.6910 18.6910i −0.803587 0.803587i 0.180067 0.983654i \(-0.442368\pi\)
−0.983654 + 0.180067i \(0.942368\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.60508 0.240095
\(546\) 0 0
\(547\) −24.6910 24.6910i −1.05571 1.05571i −0.998354 0.0573554i \(-0.981733\pi\)
−0.0573554 0.998354i \(-0.518267\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 2.26328i 0.0962443i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −44.8427 −1.90004 −0.950022 0.312183i \(-0.898940\pi\)
−0.950022 + 0.312183i \(0.898940\pi\)
\(558\) 0 0
\(559\) 9.43201i 0.398932i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 30.9041i 1.30245i −0.758883 0.651227i \(-0.774255\pi\)
0.758883 0.651227i \(-0.225745\pi\)
\(564\) 0 0
\(565\) −11.3004 −0.475410
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.5222i 0.650725i 0.945589 + 0.325363i \(0.105486\pi\)
−0.945589 + 0.325363i \(0.894514\pi\)
\(570\) 0 0
\(571\) −9.86836 + 9.86836i −0.412978 + 0.412978i −0.882775 0.469797i \(-0.844327\pi\)
0.469797 + 0.882775i \(0.344327\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 27.8226 + 27.8226i 1.16028 + 1.16028i
\(576\) 0 0
\(577\) 0.436347 0.0181654 0.00908268 0.999959i \(-0.497109\pi\)
0.00908268 + 0.999959i \(0.497109\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.13164 + 2.13164i 0.0884353 + 0.0884353i
\(582\) 0 0
\(583\) −17.2589 17.2589i −0.714792 0.714792i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.6137i 0.644448i 0.946663 + 0.322224i \(0.104430\pi\)
−0.946663 + 0.322224i \(0.895570\pi\)
\(588\) 0 0
\(589\) −25.9913 + 25.9913i −1.07095 + 1.07095i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.1273i 0.867594i 0.901011 + 0.433797i \(0.142827\pi\)
−0.901011 + 0.433797i \(0.857173\pi\)
\(594\) 0 0
\(595\) 3.82693 + 0.436347i 0.156889 + 0.0178885i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −18.8025 −0.768251 −0.384126 0.923281i \(-0.625497\pi\)
−0.384126 + 0.923281i \(0.625497\pi\)
\(600\) 0 0
\(601\) 1.69096 1.69096i 0.0689757 0.0689757i −0.671777 0.740753i \(-0.734469\pi\)
0.740753 + 0.671777i \(0.234469\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.94285 2.94285i 0.119644 0.119644i
\(606\) 0 0
\(607\) −26.6452 26.6452i −1.08150 1.08150i −0.996370 0.0851248i \(-0.972871\pi\)
−0.0851248 0.996370i \(-0.527129\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 62.6409 2.53418
\(612\) 0 0
\(613\) −35.8183 −1.44669 −0.723343 0.690489i \(-0.757395\pi\)
−0.723343 + 0.690489i \(0.757395\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −19.4363 19.4363i −0.782478 0.782478i 0.197770 0.980248i \(-0.436630\pi\)
−0.980248 + 0.197770i \(0.936630\pi\)
\(618\) 0 0
\(619\) 31.9499 31.9499i 1.28418 1.28418i 0.345906 0.938269i \(-0.387572\pi\)
0.938269 0.345906i \(-0.112428\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.9342 12.9342i 0.518197 0.518197i
\(624\) 0 0
\(625\) −18.6452 −0.745808
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.9342 16.2633i −0.515720 0.648459i
\(630\) 0 0
\(631\) 21.6866i 0.863331i −0.902034 0.431666i \(-0.857926\pi\)
0.902034 0.431666i \(-0.142074\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.66022 2.66022i 0.105567 0.105567i
\(636\) 0 0
\(637\) 27.8183i 1.10220i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.35551 3.35551i −0.132535 0.132535i 0.637727 0.770262i \(-0.279875\pi\)
−0.770262 + 0.637727i \(0.779875\pi\)
\(642\) 0 0
\(643\) 5.60508 + 5.60508i 0.221043 + 0.221043i 0.808938 0.587895i \(-0.200043\pi\)
−0.587895 + 0.808938i \(0.700043\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.67524 0.0658603 0.0329302 0.999458i \(-0.489516\pi\)
0.0329302 + 0.999458i \(0.489516\pi\)
\(648\) 0 0
\(649\) 4.69962 + 4.69962i 0.184476 + 0.184476i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.5987 18.5987i 0.727825 0.727825i −0.242362 0.970186i \(-0.577922\pi\)
0.970186 + 0.242362i \(0.0779220\pi\)
\(654\) 0 0
\(655\) 1.43201i 0.0559534i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −34.8025 −1.35571 −0.677857 0.735194i \(-0.737091\pi\)
−0.677857 + 0.735194i \(0.737091\pi\)
\(660\) 0 0
\(661\) 35.2088i 1.36947i −0.728794 0.684733i \(-0.759919\pi\)
0.728794 0.684733i \(-0.240081\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.32043i 0.206317i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17.4607i 0.674064i
\(672\) 0 0
\(673\) 2.17740 2.17740i 0.0839327 0.0839327i −0.663894 0.747827i \(-0.731097\pi\)
0.747827 + 0.663894i \(0.231097\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.79185 + 6.79185i 0.261032 + 0.261032i 0.825473 0.564441i \(-0.190908\pi\)
−0.564441 + 0.825473i \(0.690908\pi\)
\(678\) 0 0
\(679\) 16.8640 0.647182
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.1781 + 21.1781i 0.810358 + 0.810358i 0.984687 0.174330i \(-0.0557758\pi\)
−0.174330 + 0.984687i \(0.555776\pi\)
\(684\) 0 0
\(685\) −4.82260 4.82260i −0.184262 0.184262i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 62.6409i 2.38643i
\(690\) 0 0
\(691\) 4.51789 4.51789i 0.171869 0.171869i −0.615931 0.787800i \(-0.711220\pi\)
0.787800 + 0.615931i \(0.211220\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.19746i 0.197151i
\(696\) 0 0
\(697\) 22.9586 18.2589i 0.869618 0.691607i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −37.2503 −1.40692 −0.703462 0.710733i \(-0.748363\pi\)
−0.703462 + 0.710733i \(0.748363\pi\)
\(702\) 0 0
\(703\) −20.2960 + 20.2960i −0.765480 + 0.765480i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.12731 + 9.12731i −0.343268 + 0.343268i
\(708\) 0 0
\(709\) 3.86836 + 3.86836i 0.145279 + 0.145279i 0.776006 0.630726i \(-0.217243\pi\)
−0.630726 + 0.776006i \(0.717243\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 55.6452 2.08393
\(714\) 0 0
\(715\) 7.96723 0.297958
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.42133 + 4.42133i 0.164888 + 0.164888i 0.784728 0.619840i \(-0.212803\pi\)
−0.619840 + 0.784728i \(0.712803\pi\)
\(720\) 0 0
\(721\) −4.30471 + 4.30471i −0.160316 + 0.160316i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18.5179 0.686791 0.343395 0.939191i \(-0.388423\pi\)
0.343395 + 0.939191i \(0.388423\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.791854 6.94487i 0.0292878 0.256865i
\(732\) 0 0
\(733\) 13.3906i 0.494592i 0.968940 + 0.247296i \(0.0795421\pi\)
−0.968940 + 0.247296i \(0.920458\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −23.1888 + 23.1888i −0.854170 + 0.854170i
\(738\) 0 0
\(739\) 14.9141i 0.548625i 0.961641 + 0.274312i \(0.0884503\pi\)
−0.961641 + 0.274312i \(0.911550\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.56799 + 5.56799i 0.204270 + 0.204270i 0.801826 0.597557i \(-0.203862\pi\)
−0.597557 + 0.801826i \(0.703862\pi\)
\(744\) 0 0
\(745\) −4.82260 4.82260i −0.176686 0.176686i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12.9342 0.472605
\(750\) 0 0
\(751\) −16.5637 16.5637i −0.604416 0.604416i 0.337065 0.941481i \(-0.390566\pi\)
−0.941481 + 0.337065i \(0.890566\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.06582 + 7.06582i −0.257151 + 0.257151i
\(756\) 0 0
\(757\) 9.90979i 0.360178i −0.983650 0.180089i \(-0.942361\pi\)
0.983650 0.180089i \(-0.0576385\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.00433 −0.181407 −0.0907034 0.995878i \(-0.528912\pi\)
−0.0907034 + 0.995878i \(0.528912\pi\)
\(762\) 0 0
\(763\) 12.0000i 0.434429i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 17.0572i 0.615898i
\(768\) 0 0
\(769\) −22.0815 −0.796281 −0.398140 0.917324i \(-0.630344\pi\)
−0.398140 + 0.917324i \(0.630344\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 43.6452i 1.56981i −0.619617 0.784904i \(-0.712712\pi\)
0.619617 0.784904i \(-0.287288\pi\)
\(774\) 0 0
\(775\) −20.8269 + 20.8269i −0.748125 + 0.748125i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −28.6516 28.6516i −1.02655 1.02655i
\(780\) 0 0
\(781\) 29.1186 1.04195
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.59873 2.59873i −0.0927526 0.0927526i
\(786\) 0 0
\(787\) −35.2589 35.2589i −1.25685 1.25685i −0.952591 0.304255i \(-0.901592\pi\)
−0.304255 0.952591i \(-0.598408\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.1931i 0.860209i
\(792\) 0 0
\(793\) −31.6866 + 31.6866i −1.12523 + 1.12523i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.5136i 0.620362i 0.950678 + 0.310181i \(0.100390\pi\)
−0.950678 + 0.310181i \(0.899610\pi\)
\(798\) 0 0
\(799\) −46.1230 5.25894i −1.63171 0.186048i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −20.5266 −0.724366
\(804\) 0 0
\(805\) −5.69529 + 5.69529i −0.200733 + 0.200733i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 38.6145 38.6145i 1.35761 1.35761i 0.480759 0.876853i \(-0.340361\pi\)
0.876853 0.480759i \(-0.159639\pi\)
\(810\) 0 0
\(811\) −1.78550 1.78550i −0.0626973 0.0626973i 0.675063 0.737760i \(-0.264116\pi\)
−0.737760 + 0.675063i \(0.764116\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 14.1316 0.495010
\(816\) 0 0
\(817\) −9.65518 −0.337792
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.7260 23.7260i −0.828044 0.828044i 0.159202 0.987246i \(-0.449108\pi\)
−0.987246 + 0.159202i \(0.949108\pi\)
\(822\) 0 0
\(823\) −11.6495 + 11.6495i −0.406077 + 0.406077i −0.880368 0.474291i \(-0.842704\pi\)
0.474291 + 0.880368i \(0.342704\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.59873 8.59873i 0.299007 0.299007i −0.541618 0.840625i \(-0.682188\pi\)
0.840625 + 0.541618i \(0.182188\pi\)
\(828\) 0 0
\(829\) 27.3819 0.951013 0.475507 0.879712i \(-0.342265\pi\)
0.475507 + 0.879712i \(0.342265\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.33545 + 20.4828i −0.0809186 + 0.709687i
\(834\) 0 0
\(835\) 3.07721i 0.106491i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −15.7016 + 15.7016i −0.542081 + 0.542081i −0.924139 0.382057i \(-0.875216\pi\)
0.382057 + 0.924139i \(0.375216\pi\)
\(840\) 0 0
\(841\) 29.0000i 1.00000i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.38625 8.38625i −0.288496 0.288496i
\(846\) 0 0
\(847\) −6.30038 6.30038i −0.216483 0.216483i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 43.4521 1.48952
\(852\) 0 0
\(853\) 33.5637 + 33.5637i 1.14920 + 1.14920i 0.986711 + 0.162487i \(0.0519515\pi\)
0.162487 + 0.986711i \(0.448048\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.8183 22.8183i 0.779457 0.779457i −0.200281 0.979738i \(-0.564186\pi\)
0.979738 + 0.200281i \(0.0641856\pi\)
\(858\) 0 0
\(859\) 4.60942i 0.157271i 0.996903 + 0.0786356i \(0.0250564\pi\)
−0.996903 + 0.0786356i \(0.974944\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.934181 0.0317999 0.0158999 0.999874i \(-0.494939\pi\)
0.0158999 + 0.999874i \(0.494939\pi\)
\(864\) 0 0
\(865\) 2.42768i 0.0825437i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.46940i 0.117691i
\(870\) 0 0
\(871\) 84.1631 2.85176
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8.93418i 0.302030i
\(876\) 0 0
\(877\) −2.82260 + 2.82260i −0.0953124 + 0.0953124i −0.753155 0.657843i \(-0.771469\pi\)
0.657843 + 0.753155i \(0.271469\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.1474 18.1474i −0.611400 0.611400i 0.331911 0.943311i \(-0.392307\pi\)
−0.943311 + 0.331911i \(0.892307\pi\)
\(882\) 0 0
\(883\) −10.2218 −0.343992 −0.171996 0.985098i \(-0.555022\pi\)
−0.171996 + 0.985098i \(0.555022\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27.0307 + 27.0307i 0.907604 + 0.907604i 0.996078 0.0884749i \(-0.0281993\pi\)
−0.0884749 + 0.996078i \(0.528199\pi\)
\(888\) 0 0
\(889\) −5.69529 5.69529i −0.191014 0.191014i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 64.1230i 2.14579i
\(894\) 0 0
\(895\) 4.60942 4.60942i 0.154076 0.154076i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 5.25894 46.1230i 0.175201 1.53658i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8.81121 −0.292894
\(906\) 0 0
\(907\) 28.9542 28.9542i 0.961410 0.961410i −0.0378729 0.999283i \(-0.512058\pi\)
0.999283 + 0.0378729i \(0.0120582\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.51285 4.51285i 0.149518 0.149518i −0.628385 0.777903i \(-0.716284\pi\)
0.777903 + 0.628385i \(0.216284\pi\)
\(912\) 0 0
\(913\) −3.26761 3.26761i −0.108142 0.108142i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.06582 −0.101242
\(918\) 0 0
\(919\) 4.05010 0.133600 0.0668002 0.997766i \(-0.478721\pi\)
0.0668002 + 0.997766i \(0.478721\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −52.8427 52.8427i −1.73934 1.73934i
\(924\) 0 0
\(925\) −16.2633 + 16.2633i −0.534733 + 0.534733i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.552965 + 0.552965i −0.0181422 + 0.0181422i −0.716120 0.697977i \(-0.754084\pi\)
0.697977 + 0.716120i \(0.254084\pi\)
\(930\) 0 0
\(931\) 28.4765 0.933278
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.86634 0.668880i −0.191850 0.0218747i
\(936\) 0 0
\(937\) 43.0358i 1.40592i 0.711231 + 0.702959i \(0.248138\pi\)
−0.711231 + 0.702959i \(0.751862\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −23.2589 + 23.2589i −0.758220 + 0.758220i −0.975998 0.217778i \(-0.930119\pi\)
0.217778 + 0.975998i \(0.430119\pi\)
\(942\) 0 0
\(943\) 61.3405i 1.99752i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.7982 + 33.7982i 1.09829 + 1.09829i 0.994610 + 0.103684i \(0.0330631\pi\)
0.103684 + 0.994610i \(0.466937\pi\)
\(948\) 0 0
\(949\) 37.2503 + 37.2503i 1.20920 + 1.20920i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.60508 −0.181566 −0.0907832 0.995871i \(-0.528937\pi\)
−0.0907832 + 0.995871i \(0.528937\pi\)
\(954\) 0 0
\(955\) 6.69096 + 6.69096i 0.216514 + 0.216514i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.3248 + 10.3248i −0.333404 + 0.333404i
\(960\) 0 0
\(961\) 10.6539i 0.343673i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11.1674 0.359492
\(966\) 0 0
\(967\) 27.0859i 0.871023i 0.900183 + 0.435512i \(0.143432\pi\)
−0.900183 + 0.435512i \(0.856568\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 46.3776i 1.48833i 0.667997 + 0.744164i \(0.267152\pi\)
−0.667997 + 0.744164i \(0.732848\pi\)
\(972\) 0 0
\(973\) −11.1273 −0.356725
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.45640i 0.142573i 0.997456 + 0.0712865i \(0.0227105\pi\)
−0.997456 + 0.0712865i \(0.977290\pi\)
\(978\) 0 0
\(979\) −19.8269 + 19.8269i −0.633671 + 0.633671i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.8119 17.8119i −0.568112 0.568112i 0.363487 0.931599i \(-0.381586\pi\)
−0.931599 + 0.363487i \(0.881586\pi\)
\(984\) 0 0
\(985\) −15.5637 −0.495899
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.3355 + 10.3355i 0.328648 + 0.328648i
\(990\) 0 0
\(991\) 11.2132 + 11.2132i 0.356198 + 0.356198i 0.862410 0.506211i \(-0.168954\pi\)
−0.506211 + 0.862410i \(0.668954\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.649528i 0.0205914i
\(996\) 0 0
\(997\) 14.0815 14.0815i 0.445967 0.445967i −0.448044 0.894011i \(-0.647879\pi\)
0.894011 + 0.448044i \(0.147879\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.w.j.217.2 yes 6
3.2 odd 2 1224.2.w.i.217.2 6
4.3 odd 2 2448.2.be.v.1441.2 6
12.11 even 2 2448.2.be.w.1441.2 6
17.4 even 4 inner 1224.2.w.j.361.2 yes 6
51.38 odd 4 1224.2.w.i.361.2 yes 6
68.55 odd 4 2448.2.be.v.1585.2 6
204.191 even 4 2448.2.be.w.1585.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1224.2.w.i.217.2 6 3.2 odd 2
1224.2.w.i.361.2 yes 6 51.38 odd 4
1224.2.w.j.217.2 yes 6 1.1 even 1 trivial
1224.2.w.j.361.2 yes 6 17.4 even 4 inner
2448.2.be.v.1441.2 6 4.3 odd 2
2448.2.be.v.1585.2 6 68.55 odd 4
2448.2.be.w.1441.2 6 12.11 even 2
2448.2.be.w.1585.2 6 204.191 even 4