Properties

Label 1225.2.a.bc.1.2
Level $1225$
Weight $2$
Character 1225.1
Self dual yes
Analytic conductor $9.782$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,2,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.78167424761\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.874032\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.381966 q^{2} +0.874032 q^{3} -1.85410 q^{4} +0.333851 q^{6} -1.47214 q^{8} -2.23607 q^{9} +2.23607 q^{11} -1.62054 q^{12} -4.03631 q^{13} +3.14590 q^{16} +7.40492 q^{17} -0.854102 q^{18} +4.24264 q^{19} +0.854102 q^{22} +3.76393 q^{23} -1.28669 q^{24} -1.54173 q^{26} -4.57649 q^{27} +2.23607 q^{29} +6.86474 q^{31} +4.14590 q^{32} +1.95440 q^{33} +2.82843 q^{34} +4.14590 q^{36} +10.7082 q^{37} +1.62054 q^{38} -3.52786 q^{39} -4.78282 q^{41} +5.00000 q^{43} -4.14590 q^{44} +1.43769 q^{46} -9.48683 q^{47} +2.74962 q^{48} +6.47214 q^{51} +7.48373 q^{52} +9.70820 q^{53} -1.74806 q^{54} +3.70820 q^{57} +0.854102 q^{58} -13.1893 q^{59} -3.03476 q^{61} +2.62210 q^{62} -4.70820 q^{64} +0.746512 q^{66} +8.70820 q^{67} -13.7295 q^{68} +3.28980 q^{69} -7.47214 q^{71} +3.29180 q^{72} +2.62210 q^{73} +4.09017 q^{74} -7.86629 q^{76} -1.34752 q^{78} -4.70820 q^{79} +2.70820 q^{81} -1.82688 q^{82} +6.86474 q^{83} +1.90983 q^{86} +1.95440 q^{87} -3.29180 q^{88} +7.94510 q^{89} -6.97871 q^{92} +6.00000 q^{93} -3.62365 q^{94} +3.62365 q^{96} -10.1058 q^{97} -5.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{2} + 6 q^{4} + 12 q^{8} + 26 q^{16} + 10 q^{18} - 10 q^{22} + 24 q^{23} + 30 q^{32} + 30 q^{36} + 16 q^{37} - 32 q^{39} + 20 q^{43} - 30 q^{44} + 46 q^{46} + 8 q^{51} + 12 q^{53} - 12 q^{57}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.381966 0.270091 0.135045 0.990839i \(-0.456882\pi\)
0.135045 + 0.990839i \(0.456882\pi\)
\(3\) 0.874032 0.504623 0.252311 0.967646i \(-0.418809\pi\)
0.252311 + 0.967646i \(0.418809\pi\)
\(4\) −1.85410 −0.927051
\(5\) 0 0
\(6\) 0.333851 0.136294
\(7\) 0 0
\(8\) −1.47214 −0.520479
\(9\) −2.23607 −0.745356
\(10\) 0 0
\(11\) 2.23607 0.674200 0.337100 0.941469i \(-0.390554\pi\)
0.337100 + 0.941469i \(0.390554\pi\)
\(12\) −1.62054 −0.467811
\(13\) −4.03631 −1.11947 −0.559735 0.828671i \(-0.689097\pi\)
−0.559735 + 0.828671i \(0.689097\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.14590 0.786475
\(17\) 7.40492 1.79596 0.897978 0.440040i \(-0.145036\pi\)
0.897978 + 0.440040i \(0.145036\pi\)
\(18\) −0.854102 −0.201314
\(19\) 4.24264 0.973329 0.486664 0.873589i \(-0.338214\pi\)
0.486664 + 0.873589i \(0.338214\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.854102 0.182095
\(23\) 3.76393 0.784834 0.392417 0.919787i \(-0.371639\pi\)
0.392417 + 0.919787i \(0.371639\pi\)
\(24\) −1.28669 −0.262645
\(25\) 0 0
\(26\) −1.54173 −0.302359
\(27\) −4.57649 −0.880746
\(28\) 0 0
\(29\) 2.23607 0.415227 0.207614 0.978211i \(-0.433430\pi\)
0.207614 + 0.978211i \(0.433430\pi\)
\(30\) 0 0
\(31\) 6.86474 1.23294 0.616472 0.787377i \(-0.288562\pi\)
0.616472 + 0.787377i \(0.288562\pi\)
\(32\) 4.14590 0.732898
\(33\) 1.95440 0.340217
\(34\) 2.82843 0.485071
\(35\) 0 0
\(36\) 4.14590 0.690983
\(37\) 10.7082 1.76042 0.880209 0.474586i \(-0.157402\pi\)
0.880209 + 0.474586i \(0.157402\pi\)
\(38\) 1.62054 0.262887
\(39\) −3.52786 −0.564910
\(40\) 0 0
\(41\) −4.78282 −0.746951 −0.373476 0.927640i \(-0.621834\pi\)
−0.373476 + 0.927640i \(0.621834\pi\)
\(42\) 0 0
\(43\) 5.00000 0.762493 0.381246 0.924473i \(-0.375495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) −4.14590 −0.625018
\(45\) 0 0
\(46\) 1.43769 0.211976
\(47\) −9.48683 −1.38380 −0.691898 0.721995i \(-0.743225\pi\)
−0.691898 + 0.721995i \(0.743225\pi\)
\(48\) 2.74962 0.396873
\(49\) 0 0
\(50\) 0 0
\(51\) 6.47214 0.906280
\(52\) 7.48373 1.03781
\(53\) 9.70820 1.33352 0.666762 0.745271i \(-0.267680\pi\)
0.666762 + 0.745271i \(0.267680\pi\)
\(54\) −1.74806 −0.237881
\(55\) 0 0
\(56\) 0 0
\(57\) 3.70820 0.491164
\(58\) 0.854102 0.112149
\(59\) −13.1893 −1.71710 −0.858550 0.512730i \(-0.828634\pi\)
−0.858550 + 0.512730i \(0.828634\pi\)
\(60\) 0 0
\(61\) −3.03476 −0.388561 −0.194280 0.980946i \(-0.562237\pi\)
−0.194280 + 0.980946i \(0.562237\pi\)
\(62\) 2.62210 0.333007
\(63\) 0 0
\(64\) −4.70820 −0.588525
\(65\) 0 0
\(66\) 0.746512 0.0918893
\(67\) 8.70820 1.06388 0.531938 0.846783i \(-0.321464\pi\)
0.531938 + 0.846783i \(0.321464\pi\)
\(68\) −13.7295 −1.66494
\(69\) 3.28980 0.396045
\(70\) 0 0
\(71\) −7.47214 −0.886779 −0.443390 0.896329i \(-0.646224\pi\)
−0.443390 + 0.896329i \(0.646224\pi\)
\(72\) 3.29180 0.387942
\(73\) 2.62210 0.306893 0.153447 0.988157i \(-0.450963\pi\)
0.153447 + 0.988157i \(0.450963\pi\)
\(74\) 4.09017 0.475473
\(75\) 0 0
\(76\) −7.86629 −0.902325
\(77\) 0 0
\(78\) −1.34752 −0.152577
\(79\) −4.70820 −0.529714 −0.264857 0.964288i \(-0.585325\pi\)
−0.264857 + 0.964288i \(0.585325\pi\)
\(80\) 0 0
\(81\) 2.70820 0.300912
\(82\) −1.82688 −0.201745
\(83\) 6.86474 0.753503 0.376751 0.926314i \(-0.377041\pi\)
0.376751 + 0.926314i \(0.377041\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.90983 0.205942
\(87\) 1.95440 0.209533
\(88\) −3.29180 −0.350907
\(89\) 7.94510 0.842179 0.421089 0.907019i \(-0.361648\pi\)
0.421089 + 0.907019i \(0.361648\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.97871 −0.727581
\(93\) 6.00000 0.622171
\(94\) −3.62365 −0.373751
\(95\) 0 0
\(96\) 3.62365 0.369837
\(97\) −10.1058 −1.02609 −0.513046 0.858361i \(-0.671483\pi\)
−0.513046 + 0.858361i \(0.671483\pi\)
\(98\) 0 0
\(99\) −5.00000 −0.502519
\(100\) 0 0
\(101\) 11.1074 1.10523 0.552613 0.833438i \(-0.313631\pi\)
0.552613 + 0.833438i \(0.313631\pi\)
\(102\) 2.47214 0.244778
\(103\) 9.48683 0.934765 0.467383 0.884055i \(-0.345197\pi\)
0.467383 + 0.884055i \(0.345197\pi\)
\(104\) 5.94200 0.582661
\(105\) 0 0
\(106\) 3.70820 0.360173
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 8.48528 0.816497
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 0 0
\(111\) 9.35931 0.888347
\(112\) 0 0
\(113\) 9.76393 0.918513 0.459257 0.888304i \(-0.348116\pi\)
0.459257 + 0.888304i \(0.348116\pi\)
\(114\) 1.41641 0.132659
\(115\) 0 0
\(116\) −4.14590 −0.384937
\(117\) 9.02546 0.834404
\(118\) −5.03786 −0.463773
\(119\) 0 0
\(120\) 0 0
\(121\) −6.00000 −0.545455
\(122\) −1.15917 −0.104947
\(123\) −4.18034 −0.376929
\(124\) −12.7279 −1.14300
\(125\) 0 0
\(126\) 0 0
\(127\) 7.00000 0.621150 0.310575 0.950549i \(-0.399478\pi\)
0.310575 + 0.950549i \(0.399478\pi\)
\(128\) −10.0902 −0.891853
\(129\) 4.37016 0.384771
\(130\) 0 0
\(131\) −14.8098 −1.29394 −0.646971 0.762515i \(-0.723964\pi\)
−0.646971 + 0.762515i \(0.723964\pi\)
\(132\) −3.62365 −0.315398
\(133\) 0 0
\(134\) 3.32624 0.287343
\(135\) 0 0
\(136\) −10.9010 −0.934757
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 1.25659 0.106968
\(139\) −19.5927 −1.66183 −0.830914 0.556401i \(-0.812182\pi\)
−0.830914 + 0.556401i \(0.812182\pi\)
\(140\) 0 0
\(141\) −8.29180 −0.698295
\(142\) −2.85410 −0.239511
\(143\) −9.02546 −0.754747
\(144\) −7.03444 −0.586203
\(145\) 0 0
\(146\) 1.00155 0.0828890
\(147\) 0 0
\(148\) −19.8541 −1.63200
\(149\) 9.65248 0.790762 0.395381 0.918517i \(-0.370613\pi\)
0.395381 + 0.918517i \(0.370613\pi\)
\(150\) 0 0
\(151\) 8.41641 0.684918 0.342459 0.939533i \(-0.388740\pi\)
0.342459 + 0.939533i \(0.388740\pi\)
\(152\) −6.24574 −0.506597
\(153\) −16.5579 −1.33863
\(154\) 0 0
\(155\) 0 0
\(156\) 6.54102 0.523701
\(157\) −5.45052 −0.434999 −0.217500 0.976060i \(-0.569790\pi\)
−0.217500 + 0.976060i \(0.569790\pi\)
\(158\) −1.79837 −0.143071
\(159\) 8.48528 0.672927
\(160\) 0 0
\(161\) 0 0
\(162\) 1.03444 0.0812734
\(163\) −2.29180 −0.179507 −0.0897537 0.995964i \(-0.528608\pi\)
−0.0897537 + 0.995964i \(0.528608\pi\)
\(164\) 8.86784 0.692462
\(165\) 0 0
\(166\) 2.62210 0.203514
\(167\) 14.2697 1.10422 0.552110 0.833772i \(-0.313823\pi\)
0.552110 + 0.833772i \(0.313823\pi\)
\(168\) 0 0
\(169\) 3.29180 0.253215
\(170\) 0 0
\(171\) −9.48683 −0.725476
\(172\) −9.27051 −0.706870
\(173\) 4.24264 0.322562 0.161281 0.986909i \(-0.448437\pi\)
0.161281 + 0.986909i \(0.448437\pi\)
\(174\) 0.746512 0.0565930
\(175\) 0 0
\(176\) 7.03444 0.530241
\(177\) −11.5279 −0.866487
\(178\) 3.03476 0.227465
\(179\) 3.70820 0.277164 0.138582 0.990351i \(-0.455746\pi\)
0.138582 + 0.990351i \(0.455746\pi\)
\(180\) 0 0
\(181\) 11.1074 0.825605 0.412802 0.910821i \(-0.364550\pi\)
0.412802 + 0.910821i \(0.364550\pi\)
\(182\) 0 0
\(183\) −2.65248 −0.196077
\(184\) −5.54102 −0.408489
\(185\) 0 0
\(186\) 2.29180 0.168043
\(187\) 16.5579 1.21083
\(188\) 17.5896 1.28285
\(189\) 0 0
\(190\) 0 0
\(191\) −23.1246 −1.67324 −0.836619 0.547785i \(-0.815471\pi\)
−0.836619 + 0.547785i \(0.815471\pi\)
\(192\) −4.11512 −0.296983
\(193\) −10.7082 −0.770793 −0.385397 0.922751i \(-0.625935\pi\)
−0.385397 + 0.922751i \(0.625935\pi\)
\(194\) −3.86008 −0.277138
\(195\) 0 0
\(196\) 0 0
\(197\) −5.94427 −0.423512 −0.211756 0.977323i \(-0.567918\pi\)
−0.211756 + 0.977323i \(0.567918\pi\)
\(198\) −1.90983 −0.135726
\(199\) 25.2495 1.78989 0.894945 0.446176i \(-0.147214\pi\)
0.894945 + 0.446176i \(0.147214\pi\)
\(200\) 0 0
\(201\) 7.61125 0.536856
\(202\) 4.24264 0.298511
\(203\) 0 0
\(204\) −12.0000 −0.840168
\(205\) 0 0
\(206\) 3.62365 0.252472
\(207\) −8.41641 −0.584981
\(208\) −12.6978 −0.880435
\(209\) 9.48683 0.656218
\(210\) 0 0
\(211\) 7.41641 0.510567 0.255283 0.966866i \(-0.417831\pi\)
0.255283 + 0.966866i \(0.417831\pi\)
\(212\) −18.0000 −1.23625
\(213\) −6.53089 −0.447489
\(214\) 2.29180 0.156664
\(215\) 0 0
\(216\) 6.73722 0.458410
\(217\) 0 0
\(218\) −0.381966 −0.0258700
\(219\) 2.29180 0.154865
\(220\) 0 0
\(221\) −29.8885 −2.01052
\(222\) 3.57494 0.239934
\(223\) −5.86319 −0.392628 −0.196314 0.980541i \(-0.562897\pi\)
−0.196314 + 0.980541i \(0.562897\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.72949 0.248082
\(227\) −26.4574 −1.75604 −0.878020 0.478625i \(-0.841135\pi\)
−0.878020 + 0.478625i \(0.841135\pi\)
\(228\) −6.87539 −0.455334
\(229\) −7.07107 −0.467269 −0.233635 0.972324i \(-0.575062\pi\)
−0.233635 + 0.972324i \(0.575062\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.29180 −0.216117
\(233\) 4.52786 0.296630 0.148315 0.988940i \(-0.452615\pi\)
0.148315 + 0.988940i \(0.452615\pi\)
\(234\) 3.44742 0.225365
\(235\) 0 0
\(236\) 24.4543 1.59184
\(237\) −4.11512 −0.267306
\(238\) 0 0
\(239\) 29.1246 1.88391 0.941957 0.335733i \(-0.108984\pi\)
0.941957 + 0.335733i \(0.108984\pi\)
\(240\) 0 0
\(241\) −14.7310 −0.948909 −0.474454 0.880280i \(-0.657355\pi\)
−0.474454 + 0.880280i \(0.657355\pi\)
\(242\) −2.29180 −0.147322
\(243\) 16.0965 1.03259
\(244\) 5.62675 0.360216
\(245\) 0 0
\(246\) −1.59675 −0.101805
\(247\) −17.1246 −1.08961
\(248\) −10.1058 −0.641721
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) −11.5687 −0.730213 −0.365106 0.930966i \(-0.618967\pi\)
−0.365106 + 0.930966i \(0.618967\pi\)
\(252\) 0 0
\(253\) 8.41641 0.529135
\(254\) 2.67376 0.167767
\(255\) 0 0
\(256\) 5.56231 0.347644
\(257\) 12.1089 0.755334 0.377667 0.925941i \(-0.376726\pi\)
0.377667 + 0.925941i \(0.376726\pi\)
\(258\) 1.66925 0.103923
\(259\) 0 0
\(260\) 0 0
\(261\) −5.00000 −0.309492
\(262\) −5.65685 −0.349482
\(263\) 29.9443 1.84644 0.923221 0.384268i \(-0.125546\pi\)
0.923221 + 0.384268i \(0.125546\pi\)
\(264\) −2.87714 −0.177075
\(265\) 0 0
\(266\) 0 0
\(267\) 6.94427 0.424983
\(268\) −16.1459 −0.986268
\(269\) −15.3500 −0.935907 −0.467954 0.883753i \(-0.655009\pi\)
−0.467954 + 0.883753i \(0.655009\pi\)
\(270\) 0 0
\(271\) −4.44897 −0.270256 −0.135128 0.990828i \(-0.543145\pi\)
−0.135128 + 0.990828i \(0.543145\pi\)
\(272\) 23.2951 1.41247
\(273\) 0 0
\(274\) −2.29180 −0.138452
\(275\) 0 0
\(276\) −6.09962 −0.367154
\(277\) −24.0000 −1.44202 −0.721010 0.692925i \(-0.756322\pi\)
−0.721010 + 0.692925i \(0.756322\pi\)
\(278\) −7.48373 −0.448844
\(279\) −15.3500 −0.918982
\(280\) 0 0
\(281\) −24.5967 −1.46732 −0.733659 0.679517i \(-0.762189\pi\)
−0.733659 + 0.679517i \(0.762189\pi\)
\(282\) −3.16718 −0.188603
\(283\) −20.8005 −1.23646 −0.618232 0.785996i \(-0.712151\pi\)
−0.618232 + 0.785996i \(0.712151\pi\)
\(284\) 13.8541 0.822090
\(285\) 0 0
\(286\) −3.44742 −0.203850
\(287\) 0 0
\(288\) −9.27051 −0.546270
\(289\) 37.8328 2.22546
\(290\) 0 0
\(291\) −8.83282 −0.517789
\(292\) −4.86163 −0.284506
\(293\) 18.4335 1.07690 0.538448 0.842659i \(-0.319011\pi\)
0.538448 + 0.842659i \(0.319011\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −15.7639 −0.916260
\(297\) −10.2333 −0.593799
\(298\) 3.68692 0.213577
\(299\) −15.1924 −0.878599
\(300\) 0 0
\(301\) 0 0
\(302\) 3.21478 0.184990
\(303\) 9.70820 0.557722
\(304\) 13.3469 0.765498
\(305\) 0 0
\(306\) −6.32456 −0.361551
\(307\) 14.5548 0.830686 0.415343 0.909665i \(-0.363662\pi\)
0.415343 + 0.909665i \(0.363662\pi\)
\(308\) 0 0
\(309\) 8.29180 0.471704
\(310\) 0 0
\(311\) −9.56564 −0.542418 −0.271209 0.962520i \(-0.587423\pi\)
−0.271209 + 0.962520i \(0.587423\pi\)
\(312\) 5.19350 0.294024
\(313\) 21.2132 1.19904 0.599521 0.800359i \(-0.295358\pi\)
0.599521 + 0.800359i \(0.295358\pi\)
\(314\) −2.08191 −0.117489
\(315\) 0 0
\(316\) 8.72949 0.491072
\(317\) −11.9443 −0.670857 −0.335429 0.942066i \(-0.608881\pi\)
−0.335429 + 0.942066i \(0.608881\pi\)
\(318\) 3.24109 0.181751
\(319\) 5.00000 0.279946
\(320\) 0 0
\(321\) 5.24419 0.292702
\(322\) 0 0
\(323\) 31.4164 1.74806
\(324\) −5.02129 −0.278960
\(325\) 0 0
\(326\) −0.875388 −0.0484833
\(327\) −0.874032 −0.0483341
\(328\) 7.04096 0.388772
\(329\) 0 0
\(330\) 0 0
\(331\) −1.29180 −0.0710035 −0.0355018 0.999370i \(-0.511303\pi\)
−0.0355018 + 0.999370i \(0.511303\pi\)
\(332\) −12.7279 −0.698535
\(333\) −23.9443 −1.31214
\(334\) 5.45052 0.298239
\(335\) 0 0
\(336\) 0 0
\(337\) −23.1246 −1.25968 −0.629839 0.776726i \(-0.716879\pi\)
−0.629839 + 0.776726i \(0.716879\pi\)
\(338\) 1.25735 0.0683911
\(339\) 8.53399 0.463503
\(340\) 0 0
\(341\) 15.3500 0.831250
\(342\) −3.62365 −0.195944
\(343\) 0 0
\(344\) −7.36068 −0.396861
\(345\) 0 0
\(346\) 1.62054 0.0871210
\(347\) 27.6525 1.48446 0.742231 0.670144i \(-0.233768\pi\)
0.742231 + 0.670144i \(0.233768\pi\)
\(348\) −3.62365 −0.194248
\(349\) −1.00155 −0.0536118 −0.0268059 0.999641i \(-0.508534\pi\)
−0.0268059 + 0.999641i \(0.508534\pi\)
\(350\) 0 0
\(351\) 18.4721 0.985970
\(352\) 9.27051 0.494120
\(353\) −12.1089 −0.644493 −0.322247 0.946656i \(-0.604438\pi\)
−0.322247 + 0.946656i \(0.604438\pi\)
\(354\) −4.40325 −0.234030
\(355\) 0 0
\(356\) −14.7310 −0.780743
\(357\) 0 0
\(358\) 1.41641 0.0748595
\(359\) 0.0557281 0.00294122 0.00147061 0.999999i \(-0.499532\pi\)
0.00147061 + 0.999999i \(0.499532\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 4.24264 0.222988
\(363\) −5.24419 −0.275249
\(364\) 0 0
\(365\) 0 0
\(366\) −1.01316 −0.0529585
\(367\) −8.69161 −0.453698 −0.226849 0.973930i \(-0.572842\pi\)
−0.226849 + 0.973930i \(0.572842\pi\)
\(368\) 11.8409 0.617252
\(369\) 10.6947 0.556745
\(370\) 0 0
\(371\) 0 0
\(372\) −11.1246 −0.576784
\(373\) −16.1246 −0.834901 −0.417450 0.908700i \(-0.637076\pi\)
−0.417450 + 0.908700i \(0.637076\pi\)
\(374\) 6.32456 0.327035
\(375\) 0 0
\(376\) 13.9659 0.720237
\(377\) −9.02546 −0.464835
\(378\) 0 0
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) 0 0
\(381\) 6.11822 0.313446
\(382\) −8.83282 −0.451926
\(383\) −13.1893 −0.673941 −0.336971 0.941515i \(-0.609402\pi\)
−0.336971 + 0.941515i \(0.609402\pi\)
\(384\) −8.81913 −0.450049
\(385\) 0 0
\(386\) −4.09017 −0.208184
\(387\) −11.1803 −0.568329
\(388\) 18.7372 0.951239
\(389\) 27.7639 1.40769 0.703844 0.710355i \(-0.251466\pi\)
0.703844 + 0.710355i \(0.251466\pi\)
\(390\) 0 0
\(391\) 27.8716 1.40953
\(392\) 0 0
\(393\) −12.9443 −0.652952
\(394\) −2.27051 −0.114387
\(395\) 0 0
\(396\) 9.27051 0.465861
\(397\) 9.89949 0.496841 0.248421 0.968652i \(-0.420088\pi\)
0.248421 + 0.968652i \(0.420088\pi\)
\(398\) 9.64446 0.483433
\(399\) 0 0
\(400\) 0 0
\(401\) 23.0689 1.15201 0.576003 0.817448i \(-0.304612\pi\)
0.576003 + 0.817448i \(0.304612\pi\)
\(402\) 2.90724 0.145000
\(403\) −27.7082 −1.38024
\(404\) −20.5942 −1.02460
\(405\) 0 0
\(406\) 0 0
\(407\) 23.9443 1.18687
\(408\) −9.52786 −0.471700
\(409\) −14.7310 −0.728402 −0.364201 0.931320i \(-0.618658\pi\)
−0.364201 + 0.931320i \(0.618658\pi\)
\(410\) 0 0
\(411\) −5.24419 −0.258677
\(412\) −17.5896 −0.866575
\(413\) 0 0
\(414\) −3.21478 −0.157998
\(415\) 0 0
\(416\) −16.7341 −0.820458
\(417\) −17.1246 −0.838596
\(418\) 3.62365 0.177238
\(419\) 4.86163 0.237506 0.118753 0.992924i \(-0.462110\pi\)
0.118753 + 0.992924i \(0.462110\pi\)
\(420\) 0 0
\(421\) −9.29180 −0.452854 −0.226427 0.974028i \(-0.572705\pi\)
−0.226427 + 0.974028i \(0.572705\pi\)
\(422\) 2.83282 0.137899
\(423\) 21.2132 1.03142
\(424\) −14.2918 −0.694071
\(425\) 0 0
\(426\) −2.49458 −0.120863
\(427\) 0 0
\(428\) −11.1246 −0.537728
\(429\) −7.88854 −0.380862
\(430\) 0 0
\(431\) 6.76393 0.325807 0.162904 0.986642i \(-0.447914\pi\)
0.162904 + 0.986642i \(0.447914\pi\)
\(432\) −14.3972 −0.692684
\(433\) −32.7031 −1.57161 −0.785806 0.618473i \(-0.787752\pi\)
−0.785806 + 0.618473i \(0.787752\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.85410 0.0887954
\(437\) 15.9690 0.763901
\(438\) 0.875388 0.0418277
\(439\) 17.7658 0.847915 0.423957 0.905682i \(-0.360641\pi\)
0.423957 + 0.905682i \(0.360641\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −11.4164 −0.543023
\(443\) 20.1803 0.958797 0.479398 0.877597i \(-0.340855\pi\)
0.479398 + 0.877597i \(0.340855\pi\)
\(444\) −17.3531 −0.823543
\(445\) 0 0
\(446\) −2.23954 −0.106045
\(447\) 8.43657 0.399036
\(448\) 0 0
\(449\) −12.5967 −0.594477 −0.297239 0.954803i \(-0.596066\pi\)
−0.297239 + 0.954803i \(0.596066\pi\)
\(450\) 0 0
\(451\) −10.6947 −0.503594
\(452\) −18.1033 −0.851509
\(453\) 7.35621 0.345625
\(454\) −10.1058 −0.474290
\(455\) 0 0
\(456\) −5.45898 −0.255640
\(457\) 7.29180 0.341096 0.170548 0.985349i \(-0.445446\pi\)
0.170548 + 0.985349i \(0.445446\pi\)
\(458\) −2.70091 −0.126205
\(459\) −33.8885 −1.58178
\(460\) 0 0
\(461\) −33.4009 −1.55564 −0.777819 0.628489i \(-0.783674\pi\)
−0.777819 + 0.628489i \(0.783674\pi\)
\(462\) 0 0
\(463\) −14.0000 −0.650635 −0.325318 0.945605i \(-0.605471\pi\)
−0.325318 + 0.945605i \(0.605471\pi\)
\(464\) 7.03444 0.326566
\(465\) 0 0
\(466\) 1.72949 0.0801171
\(467\) −9.64446 −0.446292 −0.223146 0.974785i \(-0.571633\pi\)
−0.223146 + 0.974785i \(0.571633\pi\)
\(468\) −16.7341 −0.773535
\(469\) 0 0
\(470\) 0 0
\(471\) −4.76393 −0.219510
\(472\) 19.4164 0.893714
\(473\) 11.1803 0.514073
\(474\) −1.57184 −0.0721968
\(475\) 0 0
\(476\) 0 0
\(477\) −21.7082 −0.993950
\(478\) 11.1246 0.508828
\(479\) −9.02546 −0.412384 −0.206192 0.978512i \(-0.566107\pi\)
−0.206192 + 0.978512i \(0.566107\pi\)
\(480\) 0 0
\(481\) −43.2216 −1.97074
\(482\) −5.62675 −0.256291
\(483\) 0 0
\(484\) 11.1246 0.505664
\(485\) 0 0
\(486\) 6.14833 0.278894
\(487\) 28.7082 1.30089 0.650446 0.759552i \(-0.274582\pi\)
0.650446 + 0.759552i \(0.274582\pi\)
\(488\) 4.46758 0.202238
\(489\) −2.00310 −0.0905835
\(490\) 0 0
\(491\) 7.47214 0.337213 0.168606 0.985683i \(-0.446073\pi\)
0.168606 + 0.985683i \(0.446073\pi\)
\(492\) 7.75078 0.349432
\(493\) 16.5579 0.745730
\(494\) −6.54102 −0.294294
\(495\) 0 0
\(496\) 21.5958 0.969678
\(497\) 0 0
\(498\) 2.29180 0.102698
\(499\) −25.4164 −1.13779 −0.568897 0.822409i \(-0.692630\pi\)
−0.568897 + 0.822409i \(0.692630\pi\)
\(500\) 0 0
\(501\) 12.4721 0.557214
\(502\) −4.41887 −0.197224
\(503\) 16.8918 0.753166 0.376583 0.926383i \(-0.377099\pi\)
0.376583 + 0.926383i \(0.377099\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 3.21478 0.142914
\(507\) 2.87714 0.127778
\(508\) −12.9787 −0.575837
\(509\) 5.78437 0.256388 0.128194 0.991749i \(-0.459082\pi\)
0.128194 + 0.991749i \(0.459082\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.3050 0.985749
\(513\) −19.4164 −0.857255
\(514\) 4.62520 0.204009
\(515\) 0 0
\(516\) −8.10272 −0.356702
\(517\) −21.2132 −0.932956
\(518\) 0 0
\(519\) 3.70820 0.162772
\(520\) 0 0
\(521\) 36.0230 1.57820 0.789099 0.614266i \(-0.210548\pi\)
0.789099 + 0.614266i \(0.210548\pi\)
\(522\) −1.90983 −0.0835910
\(523\) −3.24109 −0.141723 −0.0708615 0.997486i \(-0.522575\pi\)
−0.0708615 + 0.997486i \(0.522575\pi\)
\(524\) 27.4589 1.19955
\(525\) 0 0
\(526\) 11.4377 0.498707
\(527\) 50.8328 2.21431
\(528\) 6.14833 0.267572
\(529\) −8.83282 −0.384035
\(530\) 0 0
\(531\) 29.4922 1.27985
\(532\) 0 0
\(533\) 19.3050 0.836190
\(534\) 2.65248 0.114784
\(535\) 0 0
\(536\) −12.8197 −0.553725
\(537\) 3.24109 0.139863
\(538\) −5.86319 −0.252780
\(539\) 0 0
\(540\) 0 0
\(541\) −8.70820 −0.374395 −0.187197 0.982322i \(-0.559940\pi\)
−0.187197 + 0.982322i \(0.559940\pi\)
\(542\) −1.69936 −0.0729936
\(543\) 9.70820 0.416619
\(544\) 30.7000 1.31625
\(545\) 0 0
\(546\) 0 0
\(547\) 29.0000 1.23995 0.619975 0.784621i \(-0.287143\pi\)
0.619975 + 0.784621i \(0.287143\pi\)
\(548\) 11.1246 0.475220
\(549\) 6.78593 0.289616
\(550\) 0 0
\(551\) 9.48683 0.404153
\(552\) −4.84303 −0.206133
\(553\) 0 0
\(554\) −9.16718 −0.389476
\(555\) 0 0
\(556\) 36.3268 1.54060
\(557\) 24.5967 1.04220 0.521099 0.853496i \(-0.325522\pi\)
0.521099 + 0.853496i \(0.325522\pi\)
\(558\) −5.86319 −0.248208
\(559\) −20.1815 −0.853589
\(560\) 0 0
\(561\) 14.4721 0.611014
\(562\) −9.39512 −0.396309
\(563\) −13.8083 −0.581950 −0.290975 0.956731i \(-0.593980\pi\)
−0.290975 + 0.956731i \(0.593980\pi\)
\(564\) 15.3738 0.647355
\(565\) 0 0
\(566\) −7.94510 −0.333957
\(567\) 0 0
\(568\) 11.0000 0.461550
\(569\) −29.9443 −1.25533 −0.627665 0.778484i \(-0.715989\pi\)
−0.627665 + 0.778484i \(0.715989\pi\)
\(570\) 0 0
\(571\) 26.4164 1.10549 0.552746 0.833350i \(-0.313580\pi\)
0.552746 + 0.833350i \(0.313580\pi\)
\(572\) 16.7341 0.699689
\(573\) −20.2117 −0.844354
\(574\) 0 0
\(575\) 0 0
\(576\) 10.5279 0.438661
\(577\) 42.1900 1.75639 0.878196 0.478301i \(-0.158747\pi\)
0.878196 + 0.478301i \(0.158747\pi\)
\(578\) 14.4508 0.601076
\(579\) −9.35931 −0.388960
\(580\) 0 0
\(581\) 0 0
\(582\) −3.37384 −0.139850
\(583\) 21.7082 0.899062
\(584\) −3.86008 −0.159731
\(585\) 0 0
\(586\) 7.04096 0.290860
\(587\) 5.86319 0.242000 0.121000 0.992653i \(-0.461390\pi\)
0.121000 + 0.992653i \(0.461390\pi\)
\(588\) 0 0
\(589\) 29.1246 1.20006
\(590\) 0 0
\(591\) −5.19548 −0.213714
\(592\) 33.6869 1.38452
\(593\) −30.7000 −1.26070 −0.630350 0.776311i \(-0.717088\pi\)
−0.630350 + 0.776311i \(0.717088\pi\)
\(594\) −3.90879 −0.160380
\(595\) 0 0
\(596\) −17.8967 −0.733076
\(597\) 22.0689 0.903219
\(598\) −5.80298 −0.237301
\(599\) −6.81966 −0.278644 −0.139322 0.990247i \(-0.544492\pi\)
−0.139322 + 0.990247i \(0.544492\pi\)
\(600\) 0 0
\(601\) −29.4621 −1.20178 −0.600891 0.799331i \(-0.705187\pi\)
−0.600891 + 0.799331i \(0.705187\pi\)
\(602\) 0 0
\(603\) −19.4721 −0.792967
\(604\) −15.6049 −0.634953
\(605\) 0 0
\(606\) 3.70820 0.150635
\(607\) −45.2247 −1.83562 −0.917808 0.397025i \(-0.870042\pi\)
−0.917808 + 0.397025i \(0.870042\pi\)
\(608\) 17.5896 0.713351
\(609\) 0 0
\(610\) 0 0
\(611\) 38.2918 1.54912
\(612\) 30.7000 1.24098
\(613\) 14.4164 0.582273 0.291137 0.956681i \(-0.405967\pi\)
0.291137 + 0.956681i \(0.405967\pi\)
\(614\) 5.55944 0.224361
\(615\) 0 0
\(616\) 0 0
\(617\) 19.3607 0.779432 0.389716 0.920935i \(-0.372573\pi\)
0.389716 + 0.920935i \(0.372573\pi\)
\(618\) 3.16718 0.127403
\(619\) −9.28050 −0.373015 −0.186507 0.982454i \(-0.559717\pi\)
−0.186507 + 0.982454i \(0.559717\pi\)
\(620\) 0 0
\(621\) −17.2256 −0.691240
\(622\) −3.65375 −0.146502
\(623\) 0 0
\(624\) −11.0983 −0.444288
\(625\) 0 0
\(626\) 8.10272 0.323850
\(627\) 8.29180 0.331142
\(628\) 10.1058 0.403266
\(629\) 79.2934 3.16163
\(630\) 0 0
\(631\) −28.1246 −1.11962 −0.559812 0.828620i \(-0.689126\pi\)
−0.559812 + 0.828620i \(0.689126\pi\)
\(632\) 6.93112 0.275705
\(633\) 6.48218 0.257643
\(634\) −4.56231 −0.181192
\(635\) 0 0
\(636\) −15.7326 −0.623837
\(637\) 0 0
\(638\) 1.90983 0.0756109
\(639\) 16.7082 0.660966
\(640\) 0 0
\(641\) −16.5279 −0.652811 −0.326406 0.945230i \(-0.605838\pi\)
−0.326406 + 0.945230i \(0.605838\pi\)
\(642\) 2.00310 0.0790562
\(643\) 22.2148 0.876064 0.438032 0.898959i \(-0.355676\pi\)
0.438032 + 0.898959i \(0.355676\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) 19.0525 0.749030 0.374515 0.927221i \(-0.377809\pi\)
0.374515 + 0.927221i \(0.377809\pi\)
\(648\) −3.98684 −0.156618
\(649\) −29.4922 −1.15767
\(650\) 0 0
\(651\) 0 0
\(652\) 4.24922 0.166412
\(653\) 1.41641 0.0554283 0.0277142 0.999616i \(-0.491177\pi\)
0.0277142 + 0.999616i \(0.491177\pi\)
\(654\) −0.333851 −0.0130546
\(655\) 0 0
\(656\) −15.0463 −0.587458
\(657\) −5.86319 −0.228745
\(658\) 0 0
\(659\) −8.83282 −0.344078 −0.172039 0.985090i \(-0.555035\pi\)
−0.172039 + 0.985090i \(0.555035\pi\)
\(660\) 0 0
\(661\) 19.9752 0.776946 0.388473 0.921460i \(-0.373003\pi\)
0.388473 + 0.921460i \(0.373003\pi\)
\(662\) −0.493422 −0.0191774
\(663\) −26.1235 −1.01455
\(664\) −10.1058 −0.392182
\(665\) 0 0
\(666\) −9.14590 −0.354396
\(667\) 8.41641 0.325885
\(668\) −26.4574 −1.02367
\(669\) −5.12461 −0.198129
\(670\) 0 0
\(671\) −6.78593 −0.261968
\(672\) 0 0
\(673\) −41.1246 −1.58524 −0.792619 0.609718i \(-0.791283\pi\)
−0.792619 + 0.609718i \(0.791283\pi\)
\(674\) −8.83282 −0.340227
\(675\) 0 0
\(676\) −6.10333 −0.234743
\(677\) −13.8083 −0.530696 −0.265348 0.964153i \(-0.585487\pi\)
−0.265348 + 0.964153i \(0.585487\pi\)
\(678\) 3.25969 0.125188
\(679\) 0 0
\(680\) 0 0
\(681\) −23.1246 −0.886137
\(682\) 5.86319 0.224513
\(683\) 41.0689 1.57146 0.785729 0.618571i \(-0.212288\pi\)
0.785729 + 0.618571i \(0.212288\pi\)
\(684\) 17.5896 0.672553
\(685\) 0 0
\(686\) 0 0
\(687\) −6.18034 −0.235795
\(688\) 15.7295 0.599681
\(689\) −39.1853 −1.49284
\(690\) 0 0
\(691\) 1.79677 0.0683524 0.0341762 0.999416i \(-0.489119\pi\)
0.0341762 + 0.999416i \(0.489119\pi\)
\(692\) −7.86629 −0.299031
\(693\) 0 0
\(694\) 10.5623 0.400940
\(695\) 0 0
\(696\) −2.87714 −0.109058
\(697\) −35.4164 −1.34149
\(698\) −0.382559 −0.0144801
\(699\) 3.95750 0.149686
\(700\) 0 0
\(701\) 31.4164 1.18658 0.593291 0.804988i \(-0.297828\pi\)
0.593291 + 0.804988i \(0.297828\pi\)
\(702\) 7.05573 0.266301
\(703\) 45.4311 1.71346
\(704\) −10.5279 −0.396784
\(705\) 0 0
\(706\) −4.62520 −0.174072
\(707\) 0 0
\(708\) 21.3738 0.803278
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 10.5279 0.394826
\(712\) −11.6963 −0.438336
\(713\) 25.8384 0.967656
\(714\) 0 0
\(715\) 0 0
\(716\) −6.87539 −0.256945
\(717\) 25.4558 0.950666
\(718\) 0.0212862 0.000794395 0
\(719\) 1.54173 0.0574969 0.0287485 0.999587i \(-0.490848\pi\)
0.0287485 + 0.999587i \(0.490848\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.381966 −0.0142153
\(723\) −12.8754 −0.478841
\(724\) −20.5942 −0.765378
\(725\) 0 0
\(726\) −2.00310 −0.0743421
\(727\) 5.65685 0.209801 0.104901 0.994483i \(-0.466548\pi\)
0.104901 + 0.994483i \(0.466548\pi\)
\(728\) 0 0
\(729\) 5.94427 0.220158
\(730\) 0 0
\(731\) 37.0246 1.36940
\(732\) 4.91796 0.181773
\(733\) −6.48218 −0.239425 −0.119712 0.992809i \(-0.538197\pi\)
−0.119712 + 0.992809i \(0.538197\pi\)
\(734\) −3.31990 −0.122540
\(735\) 0 0
\(736\) 15.6049 0.575203
\(737\) 19.4721 0.717265
\(738\) 4.08502 0.150372
\(739\) −7.29180 −0.268233 −0.134117 0.990966i \(-0.542820\pi\)
−0.134117 + 0.990966i \(0.542820\pi\)
\(740\) 0 0
\(741\) −14.9675 −0.549843
\(742\) 0 0
\(743\) 33.7082 1.23663 0.618317 0.785929i \(-0.287815\pi\)
0.618317 + 0.785929i \(0.287815\pi\)
\(744\) −8.83282 −0.323827
\(745\) 0 0
\(746\) −6.15905 −0.225499
\(747\) −15.3500 −0.561628
\(748\) −30.7000 −1.12250
\(749\) 0 0
\(750\) 0 0
\(751\) 26.8328 0.979143 0.489572 0.871963i \(-0.337153\pi\)
0.489572 + 0.871963i \(0.337153\pi\)
\(752\) −29.8446 −1.08832
\(753\) −10.1115 −0.368482
\(754\) −3.44742 −0.125548
\(755\) 0 0
\(756\) 0 0
\(757\) −12.4164 −0.451282 −0.225641 0.974211i \(-0.572448\pi\)
−0.225641 + 0.974211i \(0.572448\pi\)
\(758\) −7.25735 −0.263599
\(759\) 7.35621 0.267014
\(760\) 0 0
\(761\) 52.9148 1.91816 0.959080 0.283136i \(-0.0913747\pi\)
0.959080 + 0.283136i \(0.0913747\pi\)
\(762\) 2.33695 0.0846589
\(763\) 0 0
\(764\) 42.8754 1.55118
\(765\) 0 0
\(766\) −5.03786 −0.182025
\(767\) 53.2361 1.92224
\(768\) 4.86163 0.175429
\(769\) 8.69161 0.313428 0.156714 0.987644i \(-0.449910\pi\)
0.156714 + 0.987644i \(0.449910\pi\)
\(770\) 0 0
\(771\) 10.5836 0.381159
\(772\) 19.8541 0.714565
\(773\) 15.3500 0.552102 0.276051 0.961143i \(-0.410974\pi\)
0.276051 + 0.961143i \(0.410974\pi\)
\(774\) −4.27051 −0.153500
\(775\) 0 0
\(776\) 14.8771 0.534059
\(777\) 0 0
\(778\) 10.6049 0.380203
\(779\) −20.2918 −0.727029
\(780\) 0 0
\(781\) −16.7082 −0.597867
\(782\) 10.6460 0.380700
\(783\) −10.2333 −0.365710
\(784\) 0 0
\(785\) 0 0
\(786\) −4.94427 −0.176356
\(787\) −16.3516 −0.582871 −0.291435 0.956591i \(-0.594133\pi\)
−0.291435 + 0.956591i \(0.594133\pi\)
\(788\) 11.0213 0.392617
\(789\) 26.1723 0.931757
\(790\) 0 0
\(791\) 0 0
\(792\) 7.36068 0.261550
\(793\) 12.2492 0.434983
\(794\) 3.78127 0.134192
\(795\) 0 0
\(796\) −46.8152 −1.65932
\(797\) −39.0277 −1.38243 −0.691216 0.722648i \(-0.742925\pi\)
−0.691216 + 0.722648i \(0.742925\pi\)
\(798\) 0 0
\(799\) −70.2492 −2.48524
\(800\) 0 0
\(801\) −17.7658 −0.627723
\(802\) 8.81153 0.311146
\(803\) 5.86319 0.206907
\(804\) −14.1120 −0.497693
\(805\) 0 0
\(806\) −10.5836 −0.372791
\(807\) −13.4164 −0.472280
\(808\) −16.3516 −0.575246
\(809\) 29.0689 1.02201 0.511004 0.859578i \(-0.329274\pi\)
0.511004 + 0.859578i \(0.329274\pi\)
\(810\) 0 0
\(811\) 7.07107 0.248299 0.124149 0.992264i \(-0.460380\pi\)
0.124149 + 0.992264i \(0.460380\pi\)
\(812\) 0 0
\(813\) −3.88854 −0.136377
\(814\) 9.14590 0.320564
\(815\) 0 0
\(816\) 20.3607 0.712766
\(817\) 21.2132 0.742156
\(818\) −5.62675 −0.196735
\(819\) 0 0
\(820\) 0 0
\(821\) 10.5836 0.369370 0.184685 0.982798i \(-0.440874\pi\)
0.184685 + 0.982798i \(0.440874\pi\)
\(822\) −2.00310 −0.0698662
\(823\) −29.5410 −1.02974 −0.514868 0.857270i \(-0.672159\pi\)
−0.514868 + 0.857270i \(0.672159\pi\)
\(824\) −13.9659 −0.486525
\(825\) 0 0
\(826\) 0 0
\(827\) −1.47214 −0.0511912 −0.0255956 0.999672i \(-0.508148\pi\)
−0.0255956 + 0.999672i \(0.508148\pi\)
\(828\) 15.6049 0.542307
\(829\) 10.0757 0.349944 0.174972 0.984573i \(-0.444016\pi\)
0.174972 + 0.984573i \(0.444016\pi\)
\(830\) 0 0
\(831\) −20.9768 −0.727676
\(832\) 19.0038 0.658837
\(833\) 0 0
\(834\) −6.54102 −0.226497
\(835\) 0 0
\(836\) −17.5896 −0.608348
\(837\) −31.4164 −1.08591
\(838\) 1.85698 0.0641483
\(839\) −31.3190 −1.08125 −0.540626 0.841263i \(-0.681813\pi\)
−0.540626 + 0.841263i \(0.681813\pi\)
\(840\) 0 0
\(841\) −24.0000 −0.827586
\(842\) −3.54915 −0.122312
\(843\) −21.4983 −0.740442
\(844\) −13.7508 −0.473321
\(845\) 0 0
\(846\) 8.10272 0.278577
\(847\) 0 0
\(848\) 30.5410 1.04878
\(849\) −18.1803 −0.623948
\(850\) 0 0
\(851\) 40.3050 1.38164
\(852\) 12.1089 0.414845
\(853\) −22.2148 −0.760619 −0.380309 0.924859i \(-0.624182\pi\)
−0.380309 + 0.924859i \(0.624182\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −8.83282 −0.301899
\(857\) 20.6730 0.706177 0.353088 0.935590i \(-0.385131\pi\)
0.353088 + 0.935590i \(0.385131\pi\)
\(858\) −3.01316 −0.102867
\(859\) 39.7742 1.35708 0.678539 0.734564i \(-0.262613\pi\)
0.678539 + 0.734564i \(0.262613\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 2.58359 0.0879975
\(863\) −1.36068 −0.0463181 −0.0231590 0.999732i \(-0.507372\pi\)
−0.0231590 + 0.999732i \(0.507372\pi\)
\(864\) −18.9737 −0.645497
\(865\) 0 0
\(866\) −12.4915 −0.424478
\(867\) 33.0671 1.12302
\(868\) 0 0
\(869\) −10.5279 −0.357133
\(870\) 0 0
\(871\) −35.1490 −1.19098
\(872\) 1.47214 0.0498528
\(873\) 22.5973 0.764803
\(874\) 6.09962 0.206323
\(875\) 0 0
\(876\) −4.24922 −0.143568
\(877\) −38.2918 −1.29302 −0.646511 0.762905i \(-0.723773\pi\)
−0.646511 + 0.762905i \(0.723773\pi\)
\(878\) 6.78593 0.229014
\(879\) 16.1115 0.543426
\(880\) 0 0
\(881\) −1.62054 −0.0545975 −0.0272988 0.999627i \(-0.508691\pi\)
−0.0272988 + 0.999627i \(0.508691\pi\)
\(882\) 0 0
\(883\) −32.7082 −1.10072 −0.550359 0.834928i \(-0.685509\pi\)
−0.550359 + 0.834928i \(0.685509\pi\)
\(884\) 55.4164 1.86386
\(885\) 0 0
\(886\) 7.70820 0.258962
\(887\) −24.9945 −0.839232 −0.419616 0.907702i \(-0.637835\pi\)
−0.419616 + 0.907702i \(0.637835\pi\)
\(888\) −13.7782 −0.462366
\(889\) 0 0
\(890\) 0 0
\(891\) 6.05573 0.202875
\(892\) 10.8709 0.363986
\(893\) −40.2492 −1.34689
\(894\) 3.22248 0.107776
\(895\) 0 0
\(896\) 0 0
\(897\) −13.2786 −0.443361
\(898\) −4.81153 −0.160563
\(899\) 15.3500 0.511952
\(900\) 0 0
\(901\) 71.8885 2.39495
\(902\) −4.08502 −0.136016
\(903\) 0 0
\(904\) −14.3738 −0.478067
\(905\) 0 0
\(906\) 2.80982 0.0933501
\(907\) −14.8328 −0.492516 −0.246258 0.969204i \(-0.579201\pi\)
−0.246258 + 0.969204i \(0.579201\pi\)
\(908\) 49.0547 1.62794
\(909\) −24.8369 −0.823786
\(910\) 0 0
\(911\) 21.7639 0.721071 0.360536 0.932745i \(-0.382594\pi\)
0.360536 + 0.932745i \(0.382594\pi\)
\(912\) 11.6656 0.386288
\(913\) 15.3500 0.508011
\(914\) 2.78522 0.0921268
\(915\) 0 0
\(916\) 13.1105 0.433182
\(917\) 0 0
\(918\) −12.9443 −0.427225
\(919\) 31.8328 1.05007 0.525034 0.851081i \(-0.324053\pi\)
0.525034 + 0.851081i \(0.324053\pi\)
\(920\) 0 0
\(921\) 12.7214 0.419183
\(922\) −12.7580 −0.420163
\(923\) 30.1599 0.992724
\(924\) 0 0
\(925\) 0 0
\(926\) −5.34752 −0.175731
\(927\) −21.2132 −0.696733
\(928\) 9.27051 0.304319
\(929\) −47.0516 −1.54371 −0.771857 0.635797i \(-0.780672\pi\)
−0.771857 + 0.635797i \(0.780672\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −8.39512 −0.274991
\(933\) −8.36068 −0.273716
\(934\) −3.68385 −0.120539
\(935\) 0 0
\(936\) −13.2867 −0.434290
\(937\) −28.4906 −0.930747 −0.465374 0.885114i \(-0.654080\pi\)
−0.465374 + 0.885114i \(0.654080\pi\)
\(938\) 0 0
\(939\) 18.5410 0.605063
\(940\) 0 0
\(941\) 3.62365 0.118128 0.0590638 0.998254i \(-0.481188\pi\)
0.0590638 + 0.998254i \(0.481188\pi\)
\(942\) −1.81966 −0.0592877
\(943\) −18.0022 −0.586233
\(944\) −41.4922 −1.35046
\(945\) 0 0
\(946\) 4.27051 0.138846
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 7.62985 0.247806
\(949\) −10.5836 −0.343558
\(950\) 0 0
\(951\) −10.4397 −0.338530
\(952\) 0 0
\(953\) −36.5967 −1.18548 −0.592742 0.805392i \(-0.701955\pi\)
−0.592742 + 0.805392i \(0.701955\pi\)
\(954\) −8.29180 −0.268457
\(955\) 0 0
\(956\) −54.0000 −1.74648
\(957\) 4.37016 0.141267
\(958\) −3.44742 −0.111381
\(959\) 0 0
\(960\) 0 0
\(961\) 16.1246 0.520149
\(962\) −16.5092 −0.532278
\(963\) −13.4164 −0.432338
\(964\) 27.3128 0.879687
\(965\) 0 0
\(966\) 0 0
\(967\) −46.2492 −1.48727 −0.743637 0.668583i \(-0.766901\pi\)
−0.743637 + 0.668583i \(0.766901\pi\)
\(968\) 8.83282 0.283897
\(969\) 27.4589 0.882108
\(970\) 0 0
\(971\) −12.7279 −0.408458 −0.204229 0.978923i \(-0.565469\pi\)
−0.204229 + 0.978923i \(0.565469\pi\)
\(972\) −29.8446 −0.957266
\(973\) 0 0
\(974\) 10.9656 0.351359
\(975\) 0 0
\(976\) −9.54704 −0.305593
\(977\) −27.7639 −0.888247 −0.444123 0.895966i \(-0.646485\pi\)
−0.444123 + 0.895966i \(0.646485\pi\)
\(978\) −0.765117 −0.0244658
\(979\) 17.7658 0.567797
\(980\) 0 0
\(981\) 2.23607 0.0713922
\(982\) 2.85410 0.0910781
\(983\) 8.10272 0.258437 0.129218 0.991616i \(-0.458753\pi\)
0.129218 + 0.991616i \(0.458753\pi\)
\(984\) 6.15403 0.196183
\(985\) 0 0
\(986\) 6.32456 0.201415
\(987\) 0 0
\(988\) 31.7508 1.01013
\(989\) 18.8197 0.598430
\(990\) 0 0
\(991\) −5.00000 −0.158830 −0.0794151 0.996842i \(-0.525305\pi\)
−0.0794151 + 0.996842i \(0.525305\pi\)
\(992\) 28.4605 0.903622
\(993\) −1.12907 −0.0358300
\(994\) 0 0
\(995\) 0 0
\(996\) −11.1246 −0.352497
\(997\) −48.6722 −1.54146 −0.770731 0.637160i \(-0.780109\pi\)
−0.770731 + 0.637160i \(0.780109\pi\)
\(998\) −9.70820 −0.307308
\(999\) −49.0060 −1.55048
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.2.a.bc.1.2 yes 4
5.2 odd 4 1225.2.b.n.99.5 8
5.3 odd 4 1225.2.b.n.99.4 8
5.4 even 2 1225.2.a.ba.1.3 4
7.6 odd 2 inner 1225.2.a.bc.1.1 yes 4
35.13 even 4 1225.2.b.n.99.3 8
35.27 even 4 1225.2.b.n.99.6 8
35.34 odd 2 1225.2.a.ba.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1225.2.a.ba.1.3 4 5.4 even 2
1225.2.a.ba.1.4 yes 4 35.34 odd 2
1225.2.a.bc.1.1 yes 4 7.6 odd 2 inner
1225.2.a.bc.1.2 yes 4 1.1 even 1 trivial
1225.2.b.n.99.3 8 35.13 even 4
1225.2.b.n.99.4 8 5.3 odd 4
1225.2.b.n.99.5 8 5.2 odd 4
1225.2.b.n.99.6 8 35.27 even 4