Properties

Label 1225.2.a.bc.1.2
Level 12251225
Weight 22
Character 1225.1
Self dual yes
Analytic conductor 9.7829.782
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,2,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1225=5272 1225 = 5^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 9.781674247619.78167424761
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,5)\Q(\sqrt{2}, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x46x2+4 x^{4} - 6x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 0.8740320.874032 of defining polynomial
Character χ\chi == 1225.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.381966q2+0.874032q31.85410q4+0.333851q61.47214q82.23607q9+2.23607q111.62054q124.03631q13+3.14590q16+7.40492q170.854102q18+4.24264q19+0.854102q22+3.76393q231.28669q241.54173q264.57649q27+2.23607q29+6.86474q31+4.14590q32+1.95440q33+2.82843q34+4.14590q36+10.7082q37+1.62054q383.52786q394.78282q41+5.00000q434.14590q44+1.43769q469.48683q47+2.74962q48+6.47214q51+7.48373q52+9.70820q531.74806q54+3.70820q57+0.854102q5813.1893q593.03476q61+2.62210q624.70820q64+0.746512q66+8.70820q6713.7295q68+3.28980q697.47214q71+3.29180q72+2.62210q73+4.09017q747.86629q761.34752q784.70820q79+2.70820q811.82688q82+6.86474q83+1.90983q86+1.95440q873.29180q88+7.94510q896.97871q92+6.00000q933.62365q94+3.62365q9610.1058q975.00000q99+O(q100)q+0.381966 q^{2} +0.874032 q^{3} -1.85410 q^{4} +0.333851 q^{6} -1.47214 q^{8} -2.23607 q^{9} +2.23607 q^{11} -1.62054 q^{12} -4.03631 q^{13} +3.14590 q^{16} +7.40492 q^{17} -0.854102 q^{18} +4.24264 q^{19} +0.854102 q^{22} +3.76393 q^{23} -1.28669 q^{24} -1.54173 q^{26} -4.57649 q^{27} +2.23607 q^{29} +6.86474 q^{31} +4.14590 q^{32} +1.95440 q^{33} +2.82843 q^{34} +4.14590 q^{36} +10.7082 q^{37} +1.62054 q^{38} -3.52786 q^{39} -4.78282 q^{41} +5.00000 q^{43} -4.14590 q^{44} +1.43769 q^{46} -9.48683 q^{47} +2.74962 q^{48} +6.47214 q^{51} +7.48373 q^{52} +9.70820 q^{53} -1.74806 q^{54} +3.70820 q^{57} +0.854102 q^{58} -13.1893 q^{59} -3.03476 q^{61} +2.62210 q^{62} -4.70820 q^{64} +0.746512 q^{66} +8.70820 q^{67} -13.7295 q^{68} +3.28980 q^{69} -7.47214 q^{71} +3.29180 q^{72} +2.62210 q^{73} +4.09017 q^{74} -7.86629 q^{76} -1.34752 q^{78} -4.70820 q^{79} +2.70820 q^{81} -1.82688 q^{82} +6.86474 q^{83} +1.90983 q^{86} +1.95440 q^{87} -3.29180 q^{88} +7.94510 q^{89} -6.97871 q^{92} +6.00000 q^{93} -3.62365 q^{94} +3.62365 q^{96} -10.1058 q^{97} -5.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+6q2+6q4+12q8+26q16+10q1810q22+24q23+30q32+30q36+16q3732q39+20q4330q44+46q46+8q51+12q5312q57+20q99+O(q100) 4 q + 6 q^{2} + 6 q^{4} + 12 q^{8} + 26 q^{16} + 10 q^{18} - 10 q^{22} + 24 q^{23} + 30 q^{32} + 30 q^{36} + 16 q^{37} - 32 q^{39} + 20 q^{43} - 30 q^{44} + 46 q^{46} + 8 q^{51} + 12 q^{53} - 12 q^{57}+ \cdots - 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.381966 0.270091 0.135045 0.990839i 0.456882π-0.456882\pi
0.135045 + 0.990839i 0.456882π0.456882\pi
33 0.874032 0.504623 0.252311 0.967646i 0.418809π-0.418809\pi
0.252311 + 0.967646i 0.418809π0.418809\pi
44 −1.85410 −0.927051
55 0 0
66 0.333851 0.136294
77 0 0
88 −1.47214 −0.520479
99 −2.23607 −0.745356
1010 0 0
1111 2.23607 0.674200 0.337100 0.941469i 0.390554π-0.390554\pi
0.337100 + 0.941469i 0.390554π0.390554\pi
1212 −1.62054 −0.467811
1313 −4.03631 −1.11947 −0.559735 0.828671i 0.689097π-0.689097\pi
−0.559735 + 0.828671i 0.689097π0.689097\pi
1414 0 0
1515 0 0
1616 3.14590 0.786475
1717 7.40492 1.79596 0.897978 0.440040i 0.145036π-0.145036\pi
0.897978 + 0.440040i 0.145036π0.145036\pi
1818 −0.854102 −0.201314
1919 4.24264 0.973329 0.486664 0.873589i 0.338214π-0.338214\pi
0.486664 + 0.873589i 0.338214π0.338214\pi
2020 0 0
2121 0 0
2222 0.854102 0.182095
2323 3.76393 0.784834 0.392417 0.919787i 0.371639π-0.371639\pi
0.392417 + 0.919787i 0.371639π0.371639\pi
2424 −1.28669 −0.262645
2525 0 0
2626 −1.54173 −0.302359
2727 −4.57649 −0.880746
2828 0 0
2929 2.23607 0.415227 0.207614 0.978211i 0.433430π-0.433430\pi
0.207614 + 0.978211i 0.433430π0.433430\pi
3030 0 0
3131 6.86474 1.23294 0.616472 0.787377i 0.288562π-0.288562\pi
0.616472 + 0.787377i 0.288562π0.288562\pi
3232 4.14590 0.732898
3333 1.95440 0.340217
3434 2.82843 0.485071
3535 0 0
3636 4.14590 0.690983
3737 10.7082 1.76042 0.880209 0.474586i 0.157402π-0.157402\pi
0.880209 + 0.474586i 0.157402π0.157402\pi
3838 1.62054 0.262887
3939 −3.52786 −0.564910
4040 0 0
4141 −4.78282 −0.746951 −0.373476 0.927640i 0.621834π-0.621834\pi
−0.373476 + 0.927640i 0.621834π0.621834\pi
4242 0 0
4343 5.00000 0.762493 0.381246 0.924473i 0.375495π-0.375495\pi
0.381246 + 0.924473i 0.375495π0.375495\pi
4444 −4.14590 −0.625018
4545 0 0
4646 1.43769 0.211976
4747 −9.48683 −1.38380 −0.691898 0.721995i 0.743225π-0.743225\pi
−0.691898 + 0.721995i 0.743225π0.743225\pi
4848 2.74962 0.396873
4949 0 0
5050 0 0
5151 6.47214 0.906280
5252 7.48373 1.03781
5353 9.70820 1.33352 0.666762 0.745271i 0.267680π-0.267680\pi
0.666762 + 0.745271i 0.267680π0.267680\pi
5454 −1.74806 −0.237881
5555 0 0
5656 0 0
5757 3.70820 0.491164
5858 0.854102 0.112149
5959 −13.1893 −1.71710 −0.858550 0.512730i 0.828634π-0.828634\pi
−0.858550 + 0.512730i 0.828634π0.828634\pi
6060 0 0
6161 −3.03476 −0.388561 −0.194280 0.980946i 0.562237π-0.562237\pi
−0.194280 + 0.980946i 0.562237π0.562237\pi
6262 2.62210 0.333007
6363 0 0
6464 −4.70820 −0.588525
6565 0 0
6666 0.746512 0.0918893
6767 8.70820 1.06388 0.531938 0.846783i 0.321464π-0.321464\pi
0.531938 + 0.846783i 0.321464π0.321464\pi
6868 −13.7295 −1.66494
6969 3.28980 0.396045
7070 0 0
7171 −7.47214 −0.886779 −0.443390 0.896329i 0.646224π-0.646224\pi
−0.443390 + 0.896329i 0.646224π0.646224\pi
7272 3.29180 0.387942
7373 2.62210 0.306893 0.153447 0.988157i 0.450963π-0.450963\pi
0.153447 + 0.988157i 0.450963π0.450963\pi
7474 4.09017 0.475473
7575 0 0
7676 −7.86629 −0.902325
7777 0 0
7878 −1.34752 −0.152577
7979 −4.70820 −0.529714 −0.264857 0.964288i 0.585325π-0.585325\pi
−0.264857 + 0.964288i 0.585325π0.585325\pi
8080 0 0
8181 2.70820 0.300912
8282 −1.82688 −0.201745
8383 6.86474 0.753503 0.376751 0.926314i 0.377041π-0.377041\pi
0.376751 + 0.926314i 0.377041π0.377041\pi
8484 0 0
8585 0 0
8686 1.90983 0.205942
8787 1.95440 0.209533
8888 −3.29180 −0.350907
8989 7.94510 0.842179 0.421089 0.907019i 0.361648π-0.361648\pi
0.421089 + 0.907019i 0.361648π0.361648\pi
9090 0 0
9191 0 0
9292 −6.97871 −0.727581
9393 6.00000 0.622171
9494 −3.62365 −0.373751
9595 0 0
9696 3.62365 0.369837
9797 −10.1058 −1.02609 −0.513046 0.858361i 0.671483π-0.671483\pi
−0.513046 + 0.858361i 0.671483π0.671483\pi
9898 0 0
9999 −5.00000 −0.502519
100100 0 0
101101 11.1074 1.10523 0.552613 0.833438i 0.313631π-0.313631\pi
0.552613 + 0.833438i 0.313631π0.313631\pi
102102 2.47214 0.244778
103103 9.48683 0.934765 0.467383 0.884055i 0.345197π-0.345197\pi
0.467383 + 0.884055i 0.345197π0.345197\pi
104104 5.94200 0.582661
105105 0 0
106106 3.70820 0.360173
107107 6.00000 0.580042 0.290021 0.957020i 0.406338π-0.406338\pi
0.290021 + 0.957020i 0.406338π0.406338\pi
108108 8.48528 0.816497
109109 −1.00000 −0.0957826 −0.0478913 0.998853i 0.515250π-0.515250\pi
−0.0478913 + 0.998853i 0.515250π0.515250\pi
110110 0 0
111111 9.35931 0.888347
112112 0 0
113113 9.76393 0.918513 0.459257 0.888304i 0.348116π-0.348116\pi
0.459257 + 0.888304i 0.348116π0.348116\pi
114114 1.41641 0.132659
115115 0 0
116116 −4.14590 −0.384937
117117 9.02546 0.834404
118118 −5.03786 −0.463773
119119 0 0
120120 0 0
121121 −6.00000 −0.545455
122122 −1.15917 −0.104947
123123 −4.18034 −0.376929
124124 −12.7279 −1.14300
125125 0 0
126126 0 0
127127 7.00000 0.621150 0.310575 0.950549i 0.399478π-0.399478\pi
0.310575 + 0.950549i 0.399478π0.399478\pi
128128 −10.0902 −0.891853
129129 4.37016 0.384771
130130 0 0
131131 −14.8098 −1.29394 −0.646971 0.762515i 0.723964π-0.723964\pi
−0.646971 + 0.762515i 0.723964π0.723964\pi
132132 −3.62365 −0.315398
133133 0 0
134134 3.32624 0.287343
135135 0 0
136136 −10.9010 −0.934757
137137 −6.00000 −0.512615 −0.256307 0.966595i 0.582506π-0.582506\pi
−0.256307 + 0.966595i 0.582506π0.582506\pi
138138 1.25659 0.106968
139139 −19.5927 −1.66183 −0.830914 0.556401i 0.812182π-0.812182\pi
−0.830914 + 0.556401i 0.812182π0.812182\pi
140140 0 0
141141 −8.29180 −0.698295
142142 −2.85410 −0.239511
143143 −9.02546 −0.754747
144144 −7.03444 −0.586203
145145 0 0
146146 1.00155 0.0828890
147147 0 0
148148 −19.8541 −1.63200
149149 9.65248 0.790762 0.395381 0.918517i 0.370613π-0.370613\pi
0.395381 + 0.918517i 0.370613π0.370613\pi
150150 0 0
151151 8.41641 0.684918 0.342459 0.939533i 0.388740π-0.388740\pi
0.342459 + 0.939533i 0.388740π0.388740\pi
152152 −6.24574 −0.506597
153153 −16.5579 −1.33863
154154 0 0
155155 0 0
156156 6.54102 0.523701
157157 −5.45052 −0.434999 −0.217500 0.976060i 0.569790π-0.569790\pi
−0.217500 + 0.976060i 0.569790π0.569790\pi
158158 −1.79837 −0.143071
159159 8.48528 0.672927
160160 0 0
161161 0 0
162162 1.03444 0.0812734
163163 −2.29180 −0.179507 −0.0897537 0.995964i 0.528608π-0.528608\pi
−0.0897537 + 0.995964i 0.528608π0.528608\pi
164164 8.86784 0.692462
165165 0 0
166166 2.62210 0.203514
167167 14.2697 1.10422 0.552110 0.833772i 0.313823π-0.313823\pi
0.552110 + 0.833772i 0.313823π0.313823\pi
168168 0 0
169169 3.29180 0.253215
170170 0 0
171171 −9.48683 −0.725476
172172 −9.27051 −0.706870
173173 4.24264 0.322562 0.161281 0.986909i 0.448437π-0.448437\pi
0.161281 + 0.986909i 0.448437π0.448437\pi
174174 0.746512 0.0565930
175175 0 0
176176 7.03444 0.530241
177177 −11.5279 −0.866487
178178 3.03476 0.227465
179179 3.70820 0.277164 0.138582 0.990351i 0.455746π-0.455746\pi
0.138582 + 0.990351i 0.455746π0.455746\pi
180180 0 0
181181 11.1074 0.825605 0.412802 0.910821i 0.364550π-0.364550\pi
0.412802 + 0.910821i 0.364550π0.364550\pi
182182 0 0
183183 −2.65248 −0.196077
184184 −5.54102 −0.408489
185185 0 0
186186 2.29180 0.168043
187187 16.5579 1.21083
188188 17.5896 1.28285
189189 0 0
190190 0 0
191191 −23.1246 −1.67324 −0.836619 0.547785i 0.815471π-0.815471\pi
−0.836619 + 0.547785i 0.815471π0.815471\pi
192192 −4.11512 −0.296983
193193 −10.7082 −0.770793 −0.385397 0.922751i 0.625935π-0.625935\pi
−0.385397 + 0.922751i 0.625935π0.625935\pi
194194 −3.86008 −0.277138
195195 0 0
196196 0 0
197197 −5.94427 −0.423512 −0.211756 0.977323i 0.567918π-0.567918\pi
−0.211756 + 0.977323i 0.567918π0.567918\pi
198198 −1.90983 −0.135726
199199 25.2495 1.78989 0.894945 0.446176i 0.147214π-0.147214\pi
0.894945 + 0.446176i 0.147214π0.147214\pi
200200 0 0
201201 7.61125 0.536856
202202 4.24264 0.298511
203203 0 0
204204 −12.0000 −0.840168
205205 0 0
206206 3.62365 0.252472
207207 −8.41641 −0.584981
208208 −12.6978 −0.880435
209209 9.48683 0.656218
210210 0 0
211211 7.41641 0.510567 0.255283 0.966866i 0.417831π-0.417831\pi
0.255283 + 0.966866i 0.417831π0.417831\pi
212212 −18.0000 −1.23625
213213 −6.53089 −0.447489
214214 2.29180 0.156664
215215 0 0
216216 6.73722 0.458410
217217 0 0
218218 −0.381966 −0.0258700
219219 2.29180 0.154865
220220 0 0
221221 −29.8885 −2.01052
222222 3.57494 0.239934
223223 −5.86319 −0.392628 −0.196314 0.980541i 0.562897π-0.562897\pi
−0.196314 + 0.980541i 0.562897π0.562897\pi
224224 0 0
225225 0 0
226226 3.72949 0.248082
227227 −26.4574 −1.75604 −0.878020 0.478625i 0.841135π-0.841135\pi
−0.878020 + 0.478625i 0.841135π0.841135\pi
228228 −6.87539 −0.455334
229229 −7.07107 −0.467269 −0.233635 0.972324i 0.575062π-0.575062\pi
−0.233635 + 0.972324i 0.575062π0.575062\pi
230230 0 0
231231 0 0
232232 −3.29180 −0.216117
233233 4.52786 0.296630 0.148315 0.988940i 0.452615π-0.452615\pi
0.148315 + 0.988940i 0.452615π0.452615\pi
234234 3.44742 0.225365
235235 0 0
236236 24.4543 1.59184
237237 −4.11512 −0.267306
238238 0 0
239239 29.1246 1.88391 0.941957 0.335733i 0.108984π-0.108984\pi
0.941957 + 0.335733i 0.108984π0.108984\pi
240240 0 0
241241 −14.7310 −0.948909 −0.474454 0.880280i 0.657355π-0.657355\pi
−0.474454 + 0.880280i 0.657355π0.657355\pi
242242 −2.29180 −0.147322
243243 16.0965 1.03259
244244 5.62675 0.360216
245245 0 0
246246 −1.59675 −0.101805
247247 −17.1246 −1.08961
248248 −10.1058 −0.641721
249249 6.00000 0.380235
250250 0 0
251251 −11.5687 −0.730213 −0.365106 0.930966i 0.618967π-0.618967\pi
−0.365106 + 0.930966i 0.618967π0.618967\pi
252252 0 0
253253 8.41641 0.529135
254254 2.67376 0.167767
255255 0 0
256256 5.56231 0.347644
257257 12.1089 0.755334 0.377667 0.925941i 0.376726π-0.376726\pi
0.377667 + 0.925941i 0.376726π0.376726\pi
258258 1.66925 0.103923
259259 0 0
260260 0 0
261261 −5.00000 −0.309492
262262 −5.65685 −0.349482
263263 29.9443 1.84644 0.923221 0.384268i 0.125546π-0.125546\pi
0.923221 + 0.384268i 0.125546π0.125546\pi
264264 −2.87714 −0.177075
265265 0 0
266266 0 0
267267 6.94427 0.424983
268268 −16.1459 −0.986268
269269 −15.3500 −0.935907 −0.467954 0.883753i 0.655009π-0.655009\pi
−0.467954 + 0.883753i 0.655009π0.655009\pi
270270 0 0
271271 −4.44897 −0.270256 −0.135128 0.990828i 0.543145π-0.543145\pi
−0.135128 + 0.990828i 0.543145π0.543145\pi
272272 23.2951 1.41247
273273 0 0
274274 −2.29180 −0.138452
275275 0 0
276276 −6.09962 −0.367154
277277 −24.0000 −1.44202 −0.721010 0.692925i 0.756322π-0.756322\pi
−0.721010 + 0.692925i 0.756322π0.756322\pi
278278 −7.48373 −0.448844
279279 −15.3500 −0.918982
280280 0 0
281281 −24.5967 −1.46732 −0.733659 0.679517i 0.762189π-0.762189\pi
−0.733659 + 0.679517i 0.762189π0.762189\pi
282282 −3.16718 −0.188603
283283 −20.8005 −1.23646 −0.618232 0.785996i 0.712151π-0.712151\pi
−0.618232 + 0.785996i 0.712151π0.712151\pi
284284 13.8541 0.822090
285285 0 0
286286 −3.44742 −0.203850
287287 0 0
288288 −9.27051 −0.546270
289289 37.8328 2.22546
290290 0 0
291291 −8.83282 −0.517789
292292 −4.86163 −0.284506
293293 18.4335 1.07690 0.538448 0.842659i 0.319011π-0.319011\pi
0.538448 + 0.842659i 0.319011π0.319011\pi
294294 0 0
295295 0 0
296296 −15.7639 −0.916260
297297 −10.2333 −0.593799
298298 3.68692 0.213577
299299 −15.1924 −0.878599
300300 0 0
301301 0 0
302302 3.21478 0.184990
303303 9.70820 0.557722
304304 13.3469 0.765498
305305 0 0
306306 −6.32456 −0.361551
307307 14.5548 0.830686 0.415343 0.909665i 0.363662π-0.363662\pi
0.415343 + 0.909665i 0.363662π0.363662\pi
308308 0 0
309309 8.29180 0.471704
310310 0 0
311311 −9.56564 −0.542418 −0.271209 0.962520i 0.587423π-0.587423\pi
−0.271209 + 0.962520i 0.587423π0.587423\pi
312312 5.19350 0.294024
313313 21.2132 1.19904 0.599521 0.800359i 0.295358π-0.295358\pi
0.599521 + 0.800359i 0.295358π0.295358\pi
314314 −2.08191 −0.117489
315315 0 0
316316 8.72949 0.491072
317317 −11.9443 −0.670857 −0.335429 0.942066i 0.608881π-0.608881\pi
−0.335429 + 0.942066i 0.608881π0.608881\pi
318318 3.24109 0.181751
319319 5.00000 0.279946
320320 0 0
321321 5.24419 0.292702
322322 0 0
323323 31.4164 1.74806
324324 −5.02129 −0.278960
325325 0 0
326326 −0.875388 −0.0484833
327327 −0.874032 −0.0483341
328328 7.04096 0.388772
329329 0 0
330330 0 0
331331 −1.29180 −0.0710035 −0.0355018 0.999370i 0.511303π-0.511303\pi
−0.0355018 + 0.999370i 0.511303π0.511303\pi
332332 −12.7279 −0.698535
333333 −23.9443 −1.31214
334334 5.45052 0.298239
335335 0 0
336336 0 0
337337 −23.1246 −1.25968 −0.629839 0.776726i 0.716879π-0.716879\pi
−0.629839 + 0.776726i 0.716879π0.716879\pi
338338 1.25735 0.0683911
339339 8.53399 0.463503
340340 0 0
341341 15.3500 0.831250
342342 −3.62365 −0.195944
343343 0 0
344344 −7.36068 −0.396861
345345 0 0
346346 1.62054 0.0871210
347347 27.6525 1.48446 0.742231 0.670144i 0.233768π-0.233768\pi
0.742231 + 0.670144i 0.233768π0.233768\pi
348348 −3.62365 −0.194248
349349 −1.00155 −0.0536118 −0.0268059 0.999641i 0.508534π-0.508534\pi
−0.0268059 + 0.999641i 0.508534π0.508534\pi
350350 0 0
351351 18.4721 0.985970
352352 9.27051 0.494120
353353 −12.1089 −0.644493 −0.322247 0.946656i 0.604438π-0.604438\pi
−0.322247 + 0.946656i 0.604438π0.604438\pi
354354 −4.40325 −0.234030
355355 0 0
356356 −14.7310 −0.780743
357357 0 0
358358 1.41641 0.0748595
359359 0.0557281 0.00294122 0.00147061 0.999999i 0.499532π-0.499532\pi
0.00147061 + 0.999999i 0.499532π0.499532\pi
360360 0 0
361361 −1.00000 −0.0526316
362362 4.24264 0.222988
363363 −5.24419 −0.275249
364364 0 0
365365 0 0
366366 −1.01316 −0.0529585
367367 −8.69161 −0.453698 −0.226849 0.973930i 0.572842π-0.572842\pi
−0.226849 + 0.973930i 0.572842π0.572842\pi
368368 11.8409 0.617252
369369 10.6947 0.556745
370370 0 0
371371 0 0
372372 −11.1246 −0.576784
373373 −16.1246 −0.834901 −0.417450 0.908700i 0.637076π-0.637076\pi
−0.417450 + 0.908700i 0.637076π0.637076\pi
374374 6.32456 0.327035
375375 0 0
376376 13.9659 0.720237
377377 −9.02546 −0.464835
378378 0 0
379379 −19.0000 −0.975964 −0.487982 0.872854i 0.662267π-0.662267\pi
−0.487982 + 0.872854i 0.662267π0.662267\pi
380380 0 0
381381 6.11822 0.313446
382382 −8.83282 −0.451926
383383 −13.1893 −0.673941 −0.336971 0.941515i 0.609402π-0.609402\pi
−0.336971 + 0.941515i 0.609402π0.609402\pi
384384 −8.81913 −0.450049
385385 0 0
386386 −4.09017 −0.208184
387387 −11.1803 −0.568329
388388 18.7372 0.951239
389389 27.7639 1.40769 0.703844 0.710355i 0.251466π-0.251466\pi
0.703844 + 0.710355i 0.251466π0.251466\pi
390390 0 0
391391 27.8716 1.40953
392392 0 0
393393 −12.9443 −0.652952
394394 −2.27051 −0.114387
395395 0 0
396396 9.27051 0.465861
397397 9.89949 0.496841 0.248421 0.968652i 0.420088π-0.420088\pi
0.248421 + 0.968652i 0.420088π0.420088\pi
398398 9.64446 0.483433
399399 0 0
400400 0 0
401401 23.0689 1.15201 0.576003 0.817448i 0.304612π-0.304612\pi
0.576003 + 0.817448i 0.304612π0.304612\pi
402402 2.90724 0.145000
403403 −27.7082 −1.38024
404404 −20.5942 −1.02460
405405 0 0
406406 0 0
407407 23.9443 1.18687
408408 −9.52786 −0.471700
409409 −14.7310 −0.728402 −0.364201 0.931320i 0.618658π-0.618658\pi
−0.364201 + 0.931320i 0.618658π0.618658\pi
410410 0 0
411411 −5.24419 −0.258677
412412 −17.5896 −0.866575
413413 0 0
414414 −3.21478 −0.157998
415415 0 0
416416 −16.7341 −0.820458
417417 −17.1246 −0.838596
418418 3.62365 0.177238
419419 4.86163 0.237506 0.118753 0.992924i 0.462110π-0.462110\pi
0.118753 + 0.992924i 0.462110π0.462110\pi
420420 0 0
421421 −9.29180 −0.452854 −0.226427 0.974028i 0.572705π-0.572705\pi
−0.226427 + 0.974028i 0.572705π0.572705\pi
422422 2.83282 0.137899
423423 21.2132 1.03142
424424 −14.2918 −0.694071
425425 0 0
426426 −2.49458 −0.120863
427427 0 0
428428 −11.1246 −0.537728
429429 −7.88854 −0.380862
430430 0 0
431431 6.76393 0.325807 0.162904 0.986642i 0.447914π-0.447914\pi
0.162904 + 0.986642i 0.447914π0.447914\pi
432432 −14.3972 −0.692684
433433 −32.7031 −1.57161 −0.785806 0.618473i 0.787752π-0.787752\pi
−0.785806 + 0.618473i 0.787752π0.787752\pi
434434 0 0
435435 0 0
436436 1.85410 0.0887954
437437 15.9690 0.763901
438438 0.875388 0.0418277
439439 17.7658 0.847915 0.423957 0.905682i 0.360641π-0.360641\pi
0.423957 + 0.905682i 0.360641π0.360641\pi
440440 0 0
441441 0 0
442442 −11.4164 −0.543023
443443 20.1803 0.958797 0.479398 0.877597i 0.340855π-0.340855\pi
0.479398 + 0.877597i 0.340855π0.340855\pi
444444 −17.3531 −0.823543
445445 0 0
446446 −2.23954 −0.106045
447447 8.43657 0.399036
448448 0 0
449449 −12.5967 −0.594477 −0.297239 0.954803i 0.596066π-0.596066\pi
−0.297239 + 0.954803i 0.596066π0.596066\pi
450450 0 0
451451 −10.6947 −0.503594
452452 −18.1033 −0.851509
453453 7.35621 0.345625
454454 −10.1058 −0.474290
455455 0 0
456456 −5.45898 −0.255640
457457 7.29180 0.341096 0.170548 0.985349i 0.445446π-0.445446\pi
0.170548 + 0.985349i 0.445446π0.445446\pi
458458 −2.70091 −0.126205
459459 −33.8885 −1.58178
460460 0 0
461461 −33.4009 −1.55564 −0.777819 0.628489i 0.783674π-0.783674\pi
−0.777819 + 0.628489i 0.783674π0.783674\pi
462462 0 0
463463 −14.0000 −0.650635 −0.325318 0.945605i 0.605471π-0.605471\pi
−0.325318 + 0.945605i 0.605471π0.605471\pi
464464 7.03444 0.326566
465465 0 0
466466 1.72949 0.0801171
467467 −9.64446 −0.446292 −0.223146 0.974785i 0.571633π-0.571633\pi
−0.223146 + 0.974785i 0.571633π0.571633\pi
468468 −16.7341 −0.773535
469469 0 0
470470 0 0
471471 −4.76393 −0.219510
472472 19.4164 0.893714
473473 11.1803 0.514073
474474 −1.57184 −0.0721968
475475 0 0
476476 0 0
477477 −21.7082 −0.993950
478478 11.1246 0.508828
479479 −9.02546 −0.412384 −0.206192 0.978512i 0.566107π-0.566107\pi
−0.206192 + 0.978512i 0.566107π0.566107\pi
480480 0 0
481481 −43.2216 −1.97074
482482 −5.62675 −0.256291
483483 0 0
484484 11.1246 0.505664
485485 0 0
486486 6.14833 0.278894
487487 28.7082 1.30089 0.650446 0.759552i 0.274582π-0.274582\pi
0.650446 + 0.759552i 0.274582π0.274582\pi
488488 4.46758 0.202238
489489 −2.00310 −0.0905835
490490 0 0
491491 7.47214 0.337213 0.168606 0.985683i 0.446073π-0.446073\pi
0.168606 + 0.985683i 0.446073π0.446073\pi
492492 7.75078 0.349432
493493 16.5579 0.745730
494494 −6.54102 −0.294294
495495 0 0
496496 21.5958 0.969678
497497 0 0
498498 2.29180 0.102698
499499 −25.4164 −1.13779 −0.568897 0.822409i 0.692630π-0.692630\pi
−0.568897 + 0.822409i 0.692630π0.692630\pi
500500 0 0
501501 12.4721 0.557214
502502 −4.41887 −0.197224
503503 16.8918 0.753166 0.376583 0.926383i 0.377099π-0.377099\pi
0.376583 + 0.926383i 0.377099π0.377099\pi
504504 0 0
505505 0 0
506506 3.21478 0.142914
507507 2.87714 0.127778
508508 −12.9787 −0.575837
509509 5.78437 0.256388 0.128194 0.991749i 0.459082π-0.459082\pi
0.128194 + 0.991749i 0.459082π0.459082\pi
510510 0 0
511511 0 0
512512 22.3050 0.985749
513513 −19.4164 −0.857255
514514 4.62520 0.204009
515515 0 0
516516 −8.10272 −0.356702
517517 −21.2132 −0.932956
518518 0 0
519519 3.70820 0.162772
520520 0 0
521521 36.0230 1.57820 0.789099 0.614266i 0.210548π-0.210548\pi
0.789099 + 0.614266i 0.210548π0.210548\pi
522522 −1.90983 −0.0835910
523523 −3.24109 −0.141723 −0.0708615 0.997486i 0.522575π-0.522575\pi
−0.0708615 + 0.997486i 0.522575π0.522575\pi
524524 27.4589 1.19955
525525 0 0
526526 11.4377 0.498707
527527 50.8328 2.21431
528528 6.14833 0.267572
529529 −8.83282 −0.384035
530530 0 0
531531 29.4922 1.27985
532532 0 0
533533 19.3050 0.836190
534534 2.65248 0.114784
535535 0 0
536536 −12.8197 −0.553725
537537 3.24109 0.139863
538538 −5.86319 −0.252780
539539 0 0
540540 0 0
541541 −8.70820 −0.374395 −0.187197 0.982322i 0.559940π-0.559940\pi
−0.187197 + 0.982322i 0.559940π0.559940\pi
542542 −1.69936 −0.0729936
543543 9.70820 0.416619
544544 30.7000 1.31625
545545 0 0
546546 0 0
547547 29.0000 1.23995 0.619975 0.784621i 0.287143π-0.287143\pi
0.619975 + 0.784621i 0.287143π0.287143\pi
548548 11.1246 0.475220
549549 6.78593 0.289616
550550 0 0
551551 9.48683 0.404153
552552 −4.84303 −0.206133
553553 0 0
554554 −9.16718 −0.389476
555555 0 0
556556 36.3268 1.54060
557557 24.5967 1.04220 0.521099 0.853496i 0.325522π-0.325522\pi
0.521099 + 0.853496i 0.325522π0.325522\pi
558558 −5.86319 −0.248208
559559 −20.1815 −0.853589
560560 0 0
561561 14.4721 0.611014
562562 −9.39512 −0.396309
563563 −13.8083 −0.581950 −0.290975 0.956731i 0.593980π-0.593980\pi
−0.290975 + 0.956731i 0.593980π0.593980\pi
564564 15.3738 0.647355
565565 0 0
566566 −7.94510 −0.333957
567567 0 0
568568 11.0000 0.461550
569569 −29.9443 −1.25533 −0.627665 0.778484i 0.715989π-0.715989\pi
−0.627665 + 0.778484i 0.715989π0.715989\pi
570570 0 0
571571 26.4164 1.10549 0.552746 0.833350i 0.313580π-0.313580\pi
0.552746 + 0.833350i 0.313580π0.313580\pi
572572 16.7341 0.699689
573573 −20.2117 −0.844354
574574 0 0
575575 0 0
576576 10.5279 0.438661
577577 42.1900 1.75639 0.878196 0.478301i 0.158747π-0.158747\pi
0.878196 + 0.478301i 0.158747π0.158747\pi
578578 14.4508 0.601076
579579 −9.35931 −0.388960
580580 0 0
581581 0 0
582582 −3.37384 −0.139850
583583 21.7082 0.899062
584584 −3.86008 −0.159731
585585 0 0
586586 7.04096 0.290860
587587 5.86319 0.242000 0.121000 0.992653i 0.461390π-0.461390\pi
0.121000 + 0.992653i 0.461390π0.461390\pi
588588 0 0
589589 29.1246 1.20006
590590 0 0
591591 −5.19548 −0.213714
592592 33.6869 1.38452
593593 −30.7000 −1.26070 −0.630350 0.776311i 0.717088π-0.717088\pi
−0.630350 + 0.776311i 0.717088π0.717088\pi
594594 −3.90879 −0.160380
595595 0 0
596596 −17.8967 −0.733076
597597 22.0689 0.903219
598598 −5.80298 −0.237301
599599 −6.81966 −0.278644 −0.139322 0.990247i 0.544492π-0.544492\pi
−0.139322 + 0.990247i 0.544492π0.544492\pi
600600 0 0
601601 −29.4621 −1.20178 −0.600891 0.799331i 0.705187π-0.705187\pi
−0.600891 + 0.799331i 0.705187π0.705187\pi
602602 0 0
603603 −19.4721 −0.792967
604604 −15.6049 −0.634953
605605 0 0
606606 3.70820 0.150635
607607 −45.2247 −1.83562 −0.917808 0.397025i 0.870042π-0.870042\pi
−0.917808 + 0.397025i 0.870042π0.870042\pi
608608 17.5896 0.713351
609609 0 0
610610 0 0
611611 38.2918 1.54912
612612 30.7000 1.24098
613613 14.4164 0.582273 0.291137 0.956681i 0.405967π-0.405967\pi
0.291137 + 0.956681i 0.405967π0.405967\pi
614614 5.55944 0.224361
615615 0 0
616616 0 0
617617 19.3607 0.779432 0.389716 0.920935i 0.372573π-0.372573\pi
0.389716 + 0.920935i 0.372573π0.372573\pi
618618 3.16718 0.127403
619619 −9.28050 −0.373015 −0.186507 0.982454i 0.559717π-0.559717\pi
−0.186507 + 0.982454i 0.559717π0.559717\pi
620620 0 0
621621 −17.2256 −0.691240
622622 −3.65375 −0.146502
623623 0 0
624624 −11.0983 −0.444288
625625 0 0
626626 8.10272 0.323850
627627 8.29180 0.331142
628628 10.1058 0.403266
629629 79.2934 3.16163
630630 0 0
631631 −28.1246 −1.11962 −0.559812 0.828620i 0.689126π-0.689126\pi
−0.559812 + 0.828620i 0.689126π0.689126\pi
632632 6.93112 0.275705
633633 6.48218 0.257643
634634 −4.56231 −0.181192
635635 0 0
636636 −15.7326 −0.623837
637637 0 0
638638 1.90983 0.0756109
639639 16.7082 0.660966
640640 0 0
641641 −16.5279 −0.652811 −0.326406 0.945230i 0.605838π-0.605838\pi
−0.326406 + 0.945230i 0.605838π0.605838\pi
642642 2.00310 0.0790562
643643 22.2148 0.876064 0.438032 0.898959i 0.355676π-0.355676\pi
0.438032 + 0.898959i 0.355676π0.355676\pi
644644 0 0
645645 0 0
646646 12.0000 0.472134
647647 19.0525 0.749030 0.374515 0.927221i 0.377809π-0.377809\pi
0.374515 + 0.927221i 0.377809π0.377809\pi
648648 −3.98684 −0.156618
649649 −29.4922 −1.15767
650650 0 0
651651 0 0
652652 4.24922 0.166412
653653 1.41641 0.0554283 0.0277142 0.999616i 0.491177π-0.491177\pi
0.0277142 + 0.999616i 0.491177π0.491177\pi
654654 −0.333851 −0.0130546
655655 0 0
656656 −15.0463 −0.587458
657657 −5.86319 −0.228745
658658 0 0
659659 −8.83282 −0.344078 −0.172039 0.985090i 0.555035π-0.555035\pi
−0.172039 + 0.985090i 0.555035π0.555035\pi
660660 0 0
661661 19.9752 0.776946 0.388473 0.921460i 0.373003π-0.373003\pi
0.388473 + 0.921460i 0.373003π0.373003\pi
662662 −0.493422 −0.0191774
663663 −26.1235 −1.01455
664664 −10.1058 −0.392182
665665 0 0
666666 −9.14590 −0.354396
667667 8.41641 0.325885
668668 −26.4574 −1.02367
669669 −5.12461 −0.198129
670670 0 0
671671 −6.78593 −0.261968
672672 0 0
673673 −41.1246 −1.58524 −0.792619 0.609718i 0.791283π-0.791283\pi
−0.792619 + 0.609718i 0.791283π0.791283\pi
674674 −8.83282 −0.340227
675675 0 0
676676 −6.10333 −0.234743
677677 −13.8083 −0.530696 −0.265348 0.964153i 0.585487π-0.585487\pi
−0.265348 + 0.964153i 0.585487π0.585487\pi
678678 3.25969 0.125188
679679 0 0
680680 0 0
681681 −23.1246 −0.886137
682682 5.86319 0.224513
683683 41.0689 1.57146 0.785729 0.618571i 0.212288π-0.212288\pi
0.785729 + 0.618571i 0.212288π0.212288\pi
684684 17.5896 0.672553
685685 0 0
686686 0 0
687687 −6.18034 −0.235795
688688 15.7295 0.599681
689689 −39.1853 −1.49284
690690 0 0
691691 1.79677 0.0683524 0.0341762 0.999416i 0.489119π-0.489119\pi
0.0341762 + 0.999416i 0.489119π0.489119\pi
692692 −7.86629 −0.299031
693693 0 0
694694 10.5623 0.400940
695695 0 0
696696 −2.87714 −0.109058
697697 −35.4164 −1.34149
698698 −0.382559 −0.0144801
699699 3.95750 0.149686
700700 0 0
701701 31.4164 1.18658 0.593291 0.804988i 0.297828π-0.297828\pi
0.593291 + 0.804988i 0.297828π0.297828\pi
702702 7.05573 0.266301
703703 45.4311 1.71346
704704 −10.5279 −0.396784
705705 0 0
706706 −4.62520 −0.174072
707707 0 0
708708 21.3738 0.803278
709709 −10.0000 −0.375558 −0.187779 0.982211i 0.560129π-0.560129\pi
−0.187779 + 0.982211i 0.560129π0.560129\pi
710710 0 0
711711 10.5279 0.394826
712712 −11.6963 −0.438336
713713 25.8384 0.967656
714714 0 0
715715 0 0
716716 −6.87539 −0.256945
717717 25.4558 0.950666
718718 0.0212862 0.000794395 0
719719 1.54173 0.0574969 0.0287485 0.999587i 0.490848π-0.490848\pi
0.0287485 + 0.999587i 0.490848π0.490848\pi
720720 0 0
721721 0 0
722722 −0.381966 −0.0142153
723723 −12.8754 −0.478841
724724 −20.5942 −0.765378
725725 0 0
726726 −2.00310 −0.0743421
727727 5.65685 0.209801 0.104901 0.994483i 0.466548π-0.466548\pi
0.104901 + 0.994483i 0.466548π0.466548\pi
728728 0 0
729729 5.94427 0.220158
730730 0 0
731731 37.0246 1.36940
732732 4.91796 0.181773
733733 −6.48218 −0.239425 −0.119712 0.992809i 0.538197π-0.538197\pi
−0.119712 + 0.992809i 0.538197π0.538197\pi
734734 −3.31990 −0.122540
735735 0 0
736736 15.6049 0.575203
737737 19.4721 0.717265
738738 4.08502 0.150372
739739 −7.29180 −0.268233 −0.134117 0.990966i 0.542820π-0.542820\pi
−0.134117 + 0.990966i 0.542820π0.542820\pi
740740 0 0
741741 −14.9675 −0.549843
742742 0 0
743743 33.7082 1.23663 0.618317 0.785929i 0.287815π-0.287815\pi
0.618317 + 0.785929i 0.287815π0.287815\pi
744744 −8.83282 −0.323827
745745 0 0
746746 −6.15905 −0.225499
747747 −15.3500 −0.561628
748748 −30.7000 −1.12250
749749 0 0
750750 0 0
751751 26.8328 0.979143 0.489572 0.871963i 0.337153π-0.337153\pi
0.489572 + 0.871963i 0.337153π0.337153\pi
752752 −29.8446 −1.08832
753753 −10.1115 −0.368482
754754 −3.44742 −0.125548
755755 0 0
756756 0 0
757757 −12.4164 −0.451282 −0.225641 0.974211i 0.572448π-0.572448\pi
−0.225641 + 0.974211i 0.572448π0.572448\pi
758758 −7.25735 −0.263599
759759 7.35621 0.267014
760760 0 0
761761 52.9148 1.91816 0.959080 0.283136i 0.0913747π-0.0913747\pi
0.959080 + 0.283136i 0.0913747π0.0913747\pi
762762 2.33695 0.0846589
763763 0 0
764764 42.8754 1.55118
765765 0 0
766766 −5.03786 −0.182025
767767 53.2361 1.92224
768768 4.86163 0.175429
769769 8.69161 0.313428 0.156714 0.987644i 0.449910π-0.449910\pi
0.156714 + 0.987644i 0.449910π0.449910\pi
770770 0 0
771771 10.5836 0.381159
772772 19.8541 0.714565
773773 15.3500 0.552102 0.276051 0.961143i 0.410974π-0.410974\pi
0.276051 + 0.961143i 0.410974π0.410974\pi
774774 −4.27051 −0.153500
775775 0 0
776776 14.8771 0.534059
777777 0 0
778778 10.6049 0.380203
779779 −20.2918 −0.727029
780780 0 0
781781 −16.7082 −0.597867
782782 10.6460 0.380700
783783 −10.2333 −0.365710
784784 0 0
785785 0 0
786786 −4.94427 −0.176356
787787 −16.3516 −0.582871 −0.291435 0.956591i 0.594133π-0.594133\pi
−0.291435 + 0.956591i 0.594133π0.594133\pi
788788 11.0213 0.392617
789789 26.1723 0.931757
790790 0 0
791791 0 0
792792 7.36068 0.261550
793793 12.2492 0.434983
794794 3.78127 0.134192
795795 0 0
796796 −46.8152 −1.65932
797797 −39.0277 −1.38243 −0.691216 0.722648i 0.742925π-0.742925\pi
−0.691216 + 0.722648i 0.742925π0.742925\pi
798798 0 0
799799 −70.2492 −2.48524
800800 0 0
801801 −17.7658 −0.627723
802802 8.81153 0.311146
803803 5.86319 0.206907
804804 −14.1120 −0.497693
805805 0 0
806806 −10.5836 −0.372791
807807 −13.4164 −0.472280
808808 −16.3516 −0.575246
809809 29.0689 1.02201 0.511004 0.859578i 0.329274π-0.329274\pi
0.511004 + 0.859578i 0.329274π0.329274\pi
810810 0 0
811811 7.07107 0.248299 0.124149 0.992264i 0.460380π-0.460380\pi
0.124149 + 0.992264i 0.460380π0.460380\pi
812812 0 0
813813 −3.88854 −0.136377
814814 9.14590 0.320564
815815 0 0
816816 20.3607 0.712766
817817 21.2132 0.742156
818818 −5.62675 −0.196735
819819 0 0
820820 0 0
821821 10.5836 0.369370 0.184685 0.982798i 0.440874π-0.440874\pi
0.184685 + 0.982798i 0.440874π0.440874\pi
822822 −2.00310 −0.0698662
823823 −29.5410 −1.02974 −0.514868 0.857270i 0.672159π-0.672159\pi
−0.514868 + 0.857270i 0.672159π0.672159\pi
824824 −13.9659 −0.486525
825825 0 0
826826 0 0
827827 −1.47214 −0.0511912 −0.0255956 0.999672i 0.508148π-0.508148\pi
−0.0255956 + 0.999672i 0.508148π0.508148\pi
828828 15.6049 0.542307
829829 10.0757 0.349944 0.174972 0.984573i 0.444016π-0.444016\pi
0.174972 + 0.984573i 0.444016π0.444016\pi
830830 0 0
831831 −20.9768 −0.727676
832832 19.0038 0.658837
833833 0 0
834834 −6.54102 −0.226497
835835 0 0
836836 −17.5896 −0.608348
837837 −31.4164 −1.08591
838838 1.85698 0.0641483
839839 −31.3190 −1.08125 −0.540626 0.841263i 0.681813π-0.681813\pi
−0.540626 + 0.841263i 0.681813π0.681813\pi
840840 0 0
841841 −24.0000 −0.827586
842842 −3.54915 −0.122312
843843 −21.4983 −0.740442
844844 −13.7508 −0.473321
845845 0 0
846846 8.10272 0.278577
847847 0 0
848848 30.5410 1.04878
849849 −18.1803 −0.623948
850850 0 0
851851 40.3050 1.38164
852852 12.1089 0.414845
853853 −22.2148 −0.760619 −0.380309 0.924859i 0.624182π-0.624182\pi
−0.380309 + 0.924859i 0.624182π0.624182\pi
854854 0 0
855855 0 0
856856 −8.83282 −0.301899
857857 20.6730 0.706177 0.353088 0.935590i 0.385131π-0.385131\pi
0.353088 + 0.935590i 0.385131π0.385131\pi
858858 −3.01316 −0.102867
859859 39.7742 1.35708 0.678539 0.734564i 0.262613π-0.262613\pi
0.678539 + 0.734564i 0.262613π0.262613\pi
860860 0 0
861861 0 0
862862 2.58359 0.0879975
863863 −1.36068 −0.0463181 −0.0231590 0.999732i 0.507372π-0.507372\pi
−0.0231590 + 0.999732i 0.507372π0.507372\pi
864864 −18.9737 −0.645497
865865 0 0
866866 −12.4915 −0.424478
867867 33.0671 1.12302
868868 0 0
869869 −10.5279 −0.357133
870870 0 0
871871 −35.1490 −1.19098
872872 1.47214 0.0498528
873873 22.5973 0.764803
874874 6.09962 0.206323
875875 0 0
876876 −4.24922 −0.143568
877877 −38.2918 −1.29302 −0.646511 0.762905i 0.723773π-0.723773\pi
−0.646511 + 0.762905i 0.723773π0.723773\pi
878878 6.78593 0.229014
879879 16.1115 0.543426
880880 0 0
881881 −1.62054 −0.0545975 −0.0272988 0.999627i 0.508691π-0.508691\pi
−0.0272988 + 0.999627i 0.508691π0.508691\pi
882882 0 0
883883 −32.7082 −1.10072 −0.550359 0.834928i 0.685509π-0.685509\pi
−0.550359 + 0.834928i 0.685509π0.685509\pi
884884 55.4164 1.86386
885885 0 0
886886 7.70820 0.258962
887887 −24.9945 −0.839232 −0.419616 0.907702i 0.637835π-0.637835\pi
−0.419616 + 0.907702i 0.637835π0.637835\pi
888888 −13.7782 −0.462366
889889 0 0
890890 0 0
891891 6.05573 0.202875
892892 10.8709 0.363986
893893 −40.2492 −1.34689
894894 3.22248 0.107776
895895 0 0
896896 0 0
897897 −13.2786 −0.443361
898898 −4.81153 −0.160563
899899 15.3500 0.511952
900900 0 0
901901 71.8885 2.39495
902902 −4.08502 −0.136016
903903 0 0
904904 −14.3738 −0.478067
905905 0 0
906906 2.80982 0.0933501
907907 −14.8328 −0.492516 −0.246258 0.969204i 0.579201π-0.579201\pi
−0.246258 + 0.969204i 0.579201π0.579201\pi
908908 49.0547 1.62794
909909 −24.8369 −0.823786
910910 0 0
911911 21.7639 0.721071 0.360536 0.932745i 0.382594π-0.382594\pi
0.360536 + 0.932745i 0.382594π0.382594\pi
912912 11.6656 0.386288
913913 15.3500 0.508011
914914 2.78522 0.0921268
915915 0 0
916916 13.1105 0.433182
917917 0 0
918918 −12.9443 −0.427225
919919 31.8328 1.05007 0.525034 0.851081i 0.324053π-0.324053\pi
0.525034 + 0.851081i 0.324053π0.324053\pi
920920 0 0
921921 12.7214 0.419183
922922 −12.7580 −0.420163
923923 30.1599 0.992724
924924 0 0
925925 0 0
926926 −5.34752 −0.175731
927927 −21.2132 −0.696733
928928 9.27051 0.304319
929929 −47.0516 −1.54371 −0.771857 0.635797i 0.780672π-0.780672\pi
−0.771857 + 0.635797i 0.780672π0.780672\pi
930930 0 0
931931 0 0
932932 −8.39512 −0.274991
933933 −8.36068 −0.273716
934934 −3.68385 −0.120539
935935 0 0
936936 −13.2867 −0.434290
937937 −28.4906 −0.930747 −0.465374 0.885114i 0.654080π-0.654080\pi
−0.465374 + 0.885114i 0.654080π0.654080\pi
938938 0 0
939939 18.5410 0.605063
940940 0 0
941941 3.62365 0.118128 0.0590638 0.998254i 0.481188π-0.481188\pi
0.0590638 + 0.998254i 0.481188π0.481188\pi
942942 −1.81966 −0.0592877
943943 −18.0022 −0.586233
944944 −41.4922 −1.35046
945945 0 0
946946 4.27051 0.138846
947947 −12.0000 −0.389948 −0.194974 0.980808i 0.562462π-0.562462\pi
−0.194974 + 0.980808i 0.562462π0.562462\pi
948948 7.62985 0.247806
949949 −10.5836 −0.343558
950950 0 0
951951 −10.4397 −0.338530
952952 0 0
953953 −36.5967 −1.18548 −0.592742 0.805392i 0.701955π-0.701955\pi
−0.592742 + 0.805392i 0.701955π0.701955\pi
954954 −8.29180 −0.268457
955955 0 0
956956 −54.0000 −1.74648
957957 4.37016 0.141267
958958 −3.44742 −0.111381
959959 0 0
960960 0 0
961961 16.1246 0.520149
962962 −16.5092 −0.532278
963963 −13.4164 −0.432338
964964 27.3128 0.879687
965965 0 0
966966 0 0
967967 −46.2492 −1.48727 −0.743637 0.668583i 0.766901π-0.766901\pi
−0.743637 + 0.668583i 0.766901π0.766901\pi
968968 8.83282 0.283897
969969 27.4589 0.882108
970970 0 0
971971 −12.7279 −0.408458 −0.204229 0.978923i 0.565469π-0.565469\pi
−0.204229 + 0.978923i 0.565469π0.565469\pi
972972 −29.8446 −0.957266
973973 0 0
974974 10.9656 0.351359
975975 0 0
976976 −9.54704 −0.305593
977977 −27.7639 −0.888247 −0.444123 0.895966i 0.646485π-0.646485\pi
−0.444123 + 0.895966i 0.646485π0.646485\pi
978978 −0.765117 −0.0244658
979979 17.7658 0.567797
980980 0 0
981981 2.23607 0.0713922
982982 2.85410 0.0910781
983983 8.10272 0.258437 0.129218 0.991616i 0.458753π-0.458753\pi
0.129218 + 0.991616i 0.458753π0.458753\pi
984984 6.15403 0.196183
985985 0 0
986986 6.32456 0.201415
987987 0 0
988988 31.7508 1.01013
989989 18.8197 0.598430
990990 0 0
991991 −5.00000 −0.158830 −0.0794151 0.996842i 0.525305π-0.525305\pi
−0.0794151 + 0.996842i 0.525305π0.525305\pi
992992 28.4605 0.903622
993993 −1.12907 −0.0358300
994994 0 0
995995 0 0
996996 −11.1246 −0.352497
997997 −48.6722 −1.54146 −0.770731 0.637160i 0.780109π-0.780109\pi
−0.770731 + 0.637160i 0.780109π0.780109\pi
998998 −9.70820 −0.307308
999999 −49.0060 −1.55048
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.2.a.bc.1.2 yes 4
5.2 odd 4 1225.2.b.n.99.5 8
5.3 odd 4 1225.2.b.n.99.4 8
5.4 even 2 1225.2.a.ba.1.3 4
7.6 odd 2 inner 1225.2.a.bc.1.1 yes 4
35.13 even 4 1225.2.b.n.99.3 8
35.27 even 4 1225.2.b.n.99.6 8
35.34 odd 2 1225.2.a.ba.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1225.2.a.ba.1.3 4 5.4 even 2
1225.2.a.ba.1.4 yes 4 35.34 odd 2
1225.2.a.bc.1.1 yes 4 7.6 odd 2 inner
1225.2.a.bc.1.2 yes 4 1.1 even 1 trivial
1225.2.b.n.99.3 8 35.13 even 4
1225.2.b.n.99.4 8 5.3 odd 4
1225.2.b.n.99.5 8 5.2 odd 4
1225.2.b.n.99.6 8 35.27 even 4