Properties

Label 1225.2.b.n.99.4
Level $1225$
Weight $2$
Character 1225.99
Analytic conductor $9.782$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,2,Mod(99,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1225.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.78167424761\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.4
Root \(0.437016 + 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 1225.99
Dual form 1225.2.b.n.99.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.381966i q^{2} +0.874032i q^{3} +1.85410 q^{4} +0.333851 q^{6} -1.47214i q^{8} +2.23607 q^{9} +2.23607 q^{11} +1.62054i q^{12} -4.03631i q^{13} +3.14590 q^{16} -7.40492i q^{17} -0.854102i q^{18} -4.24264 q^{19} -0.854102i q^{22} +3.76393i q^{23} +1.28669 q^{24} -1.54173 q^{26} +4.57649i q^{27} -2.23607 q^{29} +6.86474 q^{31} -4.14590i q^{32} +1.95440i q^{33} -2.82843 q^{34} +4.14590 q^{36} -10.7082i q^{37} +1.62054i q^{38} +3.52786 q^{39} -4.78282 q^{41} +5.00000i q^{43} +4.14590 q^{44} +1.43769 q^{46} +9.48683i q^{47} +2.74962i q^{48} +6.47214 q^{51} -7.48373i q^{52} +9.70820i q^{53} +1.74806 q^{54} -3.70820i q^{57} +0.854102i q^{58} +13.1893 q^{59} -3.03476 q^{61} -2.62210i q^{62} +4.70820 q^{64} +0.746512 q^{66} -8.70820i q^{67} -13.7295i q^{68} -3.28980 q^{69} -7.47214 q^{71} -3.29180i q^{72} +2.62210i q^{73} -4.09017 q^{74} -7.86629 q^{76} -1.34752i q^{78} +4.70820 q^{79} +2.70820 q^{81} +1.82688i q^{82} +6.86474i q^{83} +1.90983 q^{86} -1.95440i q^{87} -3.29180i q^{88} -7.94510 q^{89} +6.97871i q^{92} +6.00000i q^{93} +3.62365 q^{94} +3.62365 q^{96} +10.1058i q^{97} +5.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{4} + 52 q^{16} + 60 q^{36} + 64 q^{39} + 60 q^{44} + 92 q^{46} + 16 q^{51} - 16 q^{64} - 24 q^{71} + 12 q^{74} - 16 q^{79} - 32 q^{81} + 60 q^{86} + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(1177\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.381966i − 0.270091i −0.990839 0.135045i \(-0.956882\pi\)
0.990839 0.135045i \(-0.0431180\pi\)
\(3\) 0.874032i 0.504623i 0.967646 + 0.252311i \(0.0811907\pi\)
−0.967646 + 0.252311i \(0.918809\pi\)
\(4\) 1.85410 0.927051
\(5\) 0 0
\(6\) 0.333851 0.136294
\(7\) 0 0
\(8\) − 1.47214i − 0.520479i
\(9\) 2.23607 0.745356
\(10\) 0 0
\(11\) 2.23607 0.674200 0.337100 0.941469i \(-0.390554\pi\)
0.337100 + 0.941469i \(0.390554\pi\)
\(12\) 1.62054i 0.467811i
\(13\) − 4.03631i − 1.11947i −0.828671 0.559735i \(-0.810903\pi\)
0.828671 0.559735i \(-0.189097\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.14590 0.786475
\(17\) − 7.40492i − 1.79596i −0.440040 0.897978i \(-0.645036\pi\)
0.440040 0.897978i \(-0.354964\pi\)
\(18\) − 0.854102i − 0.201314i
\(19\) −4.24264 −0.973329 −0.486664 0.873589i \(-0.661786\pi\)
−0.486664 + 0.873589i \(0.661786\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 0.854102i − 0.182095i
\(23\) 3.76393i 0.784834i 0.919787 + 0.392417i \(0.128361\pi\)
−0.919787 + 0.392417i \(0.871639\pi\)
\(24\) 1.28669 0.262645
\(25\) 0 0
\(26\) −1.54173 −0.302359
\(27\) 4.57649i 0.880746i
\(28\) 0 0
\(29\) −2.23607 −0.415227 −0.207614 0.978211i \(-0.566570\pi\)
−0.207614 + 0.978211i \(0.566570\pi\)
\(30\) 0 0
\(31\) 6.86474 1.23294 0.616472 0.787377i \(-0.288562\pi\)
0.616472 + 0.787377i \(0.288562\pi\)
\(32\) − 4.14590i − 0.732898i
\(33\) 1.95440i 0.340217i
\(34\) −2.82843 −0.485071
\(35\) 0 0
\(36\) 4.14590 0.690983
\(37\) − 10.7082i − 1.76042i −0.474586 0.880209i \(-0.657402\pi\)
0.474586 0.880209i \(-0.342598\pi\)
\(38\) 1.62054i 0.262887i
\(39\) 3.52786 0.564910
\(40\) 0 0
\(41\) −4.78282 −0.746951 −0.373476 0.927640i \(-0.621834\pi\)
−0.373476 + 0.927640i \(0.621834\pi\)
\(42\) 0 0
\(43\) 5.00000i 0.762493i 0.924473 + 0.381246i \(0.124505\pi\)
−0.924473 + 0.381246i \(0.875495\pi\)
\(44\) 4.14590 0.625018
\(45\) 0 0
\(46\) 1.43769 0.211976
\(47\) 9.48683i 1.38380i 0.721995 + 0.691898i \(0.243225\pi\)
−0.721995 + 0.691898i \(0.756775\pi\)
\(48\) 2.74962i 0.396873i
\(49\) 0 0
\(50\) 0 0
\(51\) 6.47214 0.906280
\(52\) − 7.48373i − 1.03781i
\(53\) 9.70820i 1.33352i 0.745271 + 0.666762i \(0.232320\pi\)
−0.745271 + 0.666762i \(0.767680\pi\)
\(54\) 1.74806 0.237881
\(55\) 0 0
\(56\) 0 0
\(57\) − 3.70820i − 0.491164i
\(58\) 0.854102i 0.112149i
\(59\) 13.1893 1.71710 0.858550 0.512730i \(-0.171366\pi\)
0.858550 + 0.512730i \(0.171366\pi\)
\(60\) 0 0
\(61\) −3.03476 −0.388561 −0.194280 0.980946i \(-0.562237\pi\)
−0.194280 + 0.980946i \(0.562237\pi\)
\(62\) − 2.62210i − 0.333007i
\(63\) 0 0
\(64\) 4.70820 0.588525
\(65\) 0 0
\(66\) 0.746512 0.0918893
\(67\) − 8.70820i − 1.06388i −0.846783 0.531938i \(-0.821464\pi\)
0.846783 0.531938i \(-0.178536\pi\)
\(68\) − 13.7295i − 1.66494i
\(69\) −3.28980 −0.396045
\(70\) 0 0
\(71\) −7.47214 −0.886779 −0.443390 0.896329i \(-0.646224\pi\)
−0.443390 + 0.896329i \(0.646224\pi\)
\(72\) − 3.29180i − 0.387942i
\(73\) 2.62210i 0.306893i 0.988157 + 0.153447i \(0.0490373\pi\)
−0.988157 + 0.153447i \(0.950963\pi\)
\(74\) −4.09017 −0.475473
\(75\) 0 0
\(76\) −7.86629 −0.902325
\(77\) 0 0
\(78\) − 1.34752i − 0.152577i
\(79\) 4.70820 0.529714 0.264857 0.964288i \(-0.414675\pi\)
0.264857 + 0.964288i \(0.414675\pi\)
\(80\) 0 0
\(81\) 2.70820 0.300912
\(82\) 1.82688i 0.201745i
\(83\) 6.86474i 0.753503i 0.926314 + 0.376751i \(0.122959\pi\)
−0.926314 + 0.376751i \(0.877041\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.90983 0.205942
\(87\) − 1.95440i − 0.209533i
\(88\) − 3.29180i − 0.350907i
\(89\) −7.94510 −0.842179 −0.421089 0.907019i \(-0.638352\pi\)
−0.421089 + 0.907019i \(0.638352\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.97871i 0.727581i
\(93\) 6.00000i 0.622171i
\(94\) 3.62365 0.373751
\(95\) 0 0
\(96\) 3.62365 0.369837
\(97\) 10.1058i 1.02609i 0.858361 + 0.513046i \(0.171483\pi\)
−0.858361 + 0.513046i \(0.828517\pi\)
\(98\) 0 0
\(99\) 5.00000 0.502519
\(100\) 0 0
\(101\) 11.1074 1.10523 0.552613 0.833438i \(-0.313631\pi\)
0.552613 + 0.833438i \(0.313631\pi\)
\(102\) − 2.47214i − 0.244778i
\(103\) 9.48683i 0.934765i 0.884055 + 0.467383i \(0.154803\pi\)
−0.884055 + 0.467383i \(0.845197\pi\)
\(104\) −5.94200 −0.582661
\(105\) 0 0
\(106\) 3.70820 0.360173
\(107\) − 6.00000i − 0.580042i −0.957020 0.290021i \(-0.906338\pi\)
0.957020 0.290021i \(-0.0936623\pi\)
\(108\) 8.48528i 0.816497i
\(109\) 1.00000 0.0957826 0.0478913 0.998853i \(-0.484750\pi\)
0.0478913 + 0.998853i \(0.484750\pi\)
\(110\) 0 0
\(111\) 9.35931 0.888347
\(112\) 0 0
\(113\) 9.76393i 0.918513i 0.888304 + 0.459257i \(0.151884\pi\)
−0.888304 + 0.459257i \(0.848116\pi\)
\(114\) −1.41641 −0.132659
\(115\) 0 0
\(116\) −4.14590 −0.384937
\(117\) − 9.02546i − 0.834404i
\(118\) − 5.03786i − 0.463773i
\(119\) 0 0
\(120\) 0 0
\(121\) −6.00000 −0.545455
\(122\) 1.15917i 0.104947i
\(123\) − 4.18034i − 0.376929i
\(124\) 12.7279 1.14300
\(125\) 0 0
\(126\) 0 0
\(127\) − 7.00000i − 0.621150i −0.950549 0.310575i \(-0.899478\pi\)
0.950549 0.310575i \(-0.100522\pi\)
\(128\) − 10.0902i − 0.891853i
\(129\) −4.37016 −0.384771
\(130\) 0 0
\(131\) −14.8098 −1.29394 −0.646971 0.762515i \(-0.723964\pi\)
−0.646971 + 0.762515i \(0.723964\pi\)
\(132\) 3.62365i 0.315398i
\(133\) 0 0
\(134\) −3.32624 −0.287343
\(135\) 0 0
\(136\) −10.9010 −0.934757
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 1.25659i 0.106968i
\(139\) 19.5927 1.66183 0.830914 0.556401i \(-0.187818\pi\)
0.830914 + 0.556401i \(0.187818\pi\)
\(140\) 0 0
\(141\) −8.29180 −0.698295
\(142\) 2.85410i 0.239511i
\(143\) − 9.02546i − 0.754747i
\(144\) 7.03444 0.586203
\(145\) 0 0
\(146\) 1.00155 0.0828890
\(147\) 0 0
\(148\) − 19.8541i − 1.63200i
\(149\) −9.65248 −0.790762 −0.395381 0.918517i \(-0.629387\pi\)
−0.395381 + 0.918517i \(0.629387\pi\)
\(150\) 0 0
\(151\) 8.41641 0.684918 0.342459 0.939533i \(-0.388740\pi\)
0.342459 + 0.939533i \(0.388740\pi\)
\(152\) 6.24574i 0.506597i
\(153\) − 16.5579i − 1.33863i
\(154\) 0 0
\(155\) 0 0
\(156\) 6.54102 0.523701
\(157\) 5.45052i 0.434999i 0.976060 + 0.217500i \(0.0697901\pi\)
−0.976060 + 0.217500i \(0.930210\pi\)
\(158\) − 1.79837i − 0.143071i
\(159\) −8.48528 −0.672927
\(160\) 0 0
\(161\) 0 0
\(162\) − 1.03444i − 0.0812734i
\(163\) − 2.29180i − 0.179507i −0.995964 0.0897537i \(-0.971392\pi\)
0.995964 0.0897537i \(-0.0286080\pi\)
\(164\) −8.86784 −0.692462
\(165\) 0 0
\(166\) 2.62210 0.203514
\(167\) − 14.2697i − 1.10422i −0.833772 0.552110i \(-0.813823\pi\)
0.833772 0.552110i \(-0.186177\pi\)
\(168\) 0 0
\(169\) −3.29180 −0.253215
\(170\) 0 0
\(171\) −9.48683 −0.725476
\(172\) 9.27051i 0.706870i
\(173\) 4.24264i 0.322562i 0.986909 + 0.161281i \(0.0515625\pi\)
−0.986909 + 0.161281i \(0.948437\pi\)
\(174\) −0.746512 −0.0565930
\(175\) 0 0
\(176\) 7.03444 0.530241
\(177\) 11.5279i 0.866487i
\(178\) 3.03476i 0.227465i
\(179\) −3.70820 −0.277164 −0.138582 0.990351i \(-0.544254\pi\)
−0.138582 + 0.990351i \(0.544254\pi\)
\(180\) 0 0
\(181\) 11.1074 0.825605 0.412802 0.910821i \(-0.364550\pi\)
0.412802 + 0.910821i \(0.364550\pi\)
\(182\) 0 0
\(183\) − 2.65248i − 0.196077i
\(184\) 5.54102 0.408489
\(185\) 0 0
\(186\) 2.29180 0.168043
\(187\) − 16.5579i − 1.21083i
\(188\) 17.5896i 1.28285i
\(189\) 0 0
\(190\) 0 0
\(191\) −23.1246 −1.67324 −0.836619 0.547785i \(-0.815471\pi\)
−0.836619 + 0.547785i \(0.815471\pi\)
\(192\) 4.11512i 0.296983i
\(193\) − 10.7082i − 0.770793i −0.922751 0.385397i \(-0.874065\pi\)
0.922751 0.385397i \(-0.125935\pi\)
\(194\) 3.86008 0.277138
\(195\) 0 0
\(196\) 0 0
\(197\) 5.94427i 0.423512i 0.977323 + 0.211756i \(0.0679182\pi\)
−0.977323 + 0.211756i \(0.932082\pi\)
\(198\) − 1.90983i − 0.135726i
\(199\) −25.2495 −1.78989 −0.894945 0.446176i \(-0.852786\pi\)
−0.894945 + 0.446176i \(0.852786\pi\)
\(200\) 0 0
\(201\) 7.61125 0.536856
\(202\) − 4.24264i − 0.298511i
\(203\) 0 0
\(204\) 12.0000 0.840168
\(205\) 0 0
\(206\) 3.62365 0.252472
\(207\) 8.41641i 0.584981i
\(208\) − 12.6978i − 0.880435i
\(209\) −9.48683 −0.656218
\(210\) 0 0
\(211\) 7.41641 0.510567 0.255283 0.966866i \(-0.417831\pi\)
0.255283 + 0.966866i \(0.417831\pi\)
\(212\) 18.0000i 1.23625i
\(213\) − 6.53089i − 0.447489i
\(214\) −2.29180 −0.156664
\(215\) 0 0
\(216\) 6.73722 0.458410
\(217\) 0 0
\(218\) − 0.381966i − 0.0258700i
\(219\) −2.29180 −0.154865
\(220\) 0 0
\(221\) −29.8885 −2.01052
\(222\) − 3.57494i − 0.239934i
\(223\) − 5.86319i − 0.392628i −0.980541 0.196314i \(-0.937103\pi\)
0.980541 0.196314i \(-0.0628972\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.72949 0.248082
\(227\) 26.4574i 1.75604i 0.478625 + 0.878020i \(0.341135\pi\)
−0.478625 + 0.878020i \(0.658865\pi\)
\(228\) − 6.87539i − 0.455334i
\(229\) 7.07107 0.467269 0.233635 0.972324i \(-0.424938\pi\)
0.233635 + 0.972324i \(0.424938\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.29180i 0.216117i
\(233\) 4.52786i 0.296630i 0.988940 + 0.148315i \(0.0473850\pi\)
−0.988940 + 0.148315i \(0.952615\pi\)
\(234\) −3.44742 −0.225365
\(235\) 0 0
\(236\) 24.4543 1.59184
\(237\) 4.11512i 0.267306i
\(238\) 0 0
\(239\) −29.1246 −1.88391 −0.941957 0.335733i \(-0.891016\pi\)
−0.941957 + 0.335733i \(0.891016\pi\)
\(240\) 0 0
\(241\) −14.7310 −0.948909 −0.474454 0.880280i \(-0.657355\pi\)
−0.474454 + 0.880280i \(0.657355\pi\)
\(242\) 2.29180i 0.147322i
\(243\) 16.0965i 1.03259i
\(244\) −5.62675 −0.360216
\(245\) 0 0
\(246\) −1.59675 −0.101805
\(247\) 17.1246i 1.08961i
\(248\) − 10.1058i − 0.641721i
\(249\) −6.00000 −0.380235
\(250\) 0 0
\(251\) −11.5687 −0.730213 −0.365106 0.930966i \(-0.618967\pi\)
−0.365106 + 0.930966i \(0.618967\pi\)
\(252\) 0 0
\(253\) 8.41641i 0.529135i
\(254\) −2.67376 −0.167767
\(255\) 0 0
\(256\) 5.56231 0.347644
\(257\) − 12.1089i − 0.755334i −0.925941 0.377667i \(-0.876726\pi\)
0.925941 0.377667i \(-0.123274\pi\)
\(258\) 1.66925i 0.103923i
\(259\) 0 0
\(260\) 0 0
\(261\) −5.00000 −0.309492
\(262\) 5.65685i 0.349482i
\(263\) 29.9443i 1.84644i 0.384268 + 0.923221i \(0.374454\pi\)
−0.384268 + 0.923221i \(0.625546\pi\)
\(264\) 2.87714 0.177075
\(265\) 0 0
\(266\) 0 0
\(267\) − 6.94427i − 0.424983i
\(268\) − 16.1459i − 0.986268i
\(269\) 15.3500 0.935907 0.467954 0.883753i \(-0.344991\pi\)
0.467954 + 0.883753i \(0.344991\pi\)
\(270\) 0 0
\(271\) −4.44897 −0.270256 −0.135128 0.990828i \(-0.543145\pi\)
−0.135128 + 0.990828i \(0.543145\pi\)
\(272\) − 23.2951i − 1.41247i
\(273\) 0 0
\(274\) 2.29180 0.138452
\(275\) 0 0
\(276\) −6.09962 −0.367154
\(277\) 24.0000i 1.44202i 0.692925 + 0.721010i \(0.256322\pi\)
−0.692925 + 0.721010i \(0.743678\pi\)
\(278\) − 7.48373i − 0.448844i
\(279\) 15.3500 0.918982
\(280\) 0 0
\(281\) −24.5967 −1.46732 −0.733659 0.679517i \(-0.762189\pi\)
−0.733659 + 0.679517i \(0.762189\pi\)
\(282\) 3.16718i 0.188603i
\(283\) − 20.8005i − 1.23646i −0.785996 0.618232i \(-0.787849\pi\)
0.785996 0.618232i \(-0.212151\pi\)
\(284\) −13.8541 −0.822090
\(285\) 0 0
\(286\) −3.44742 −0.203850
\(287\) 0 0
\(288\) − 9.27051i − 0.546270i
\(289\) −37.8328 −2.22546
\(290\) 0 0
\(291\) −8.83282 −0.517789
\(292\) 4.86163i 0.284506i
\(293\) 18.4335i 1.07690i 0.842659 + 0.538448i \(0.180989\pi\)
−0.842659 + 0.538448i \(0.819011\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −15.7639 −0.916260
\(297\) 10.2333i 0.593799i
\(298\) 3.68692i 0.213577i
\(299\) 15.1924 0.878599
\(300\) 0 0
\(301\) 0 0
\(302\) − 3.21478i − 0.184990i
\(303\) 9.70820i 0.557722i
\(304\) −13.3469 −0.765498
\(305\) 0 0
\(306\) −6.32456 −0.361551
\(307\) − 14.5548i − 0.830686i −0.909665 0.415343i \(-0.863662\pi\)
0.909665 0.415343i \(-0.136338\pi\)
\(308\) 0 0
\(309\) −8.29180 −0.471704
\(310\) 0 0
\(311\) −9.56564 −0.542418 −0.271209 0.962520i \(-0.587423\pi\)
−0.271209 + 0.962520i \(0.587423\pi\)
\(312\) − 5.19350i − 0.294024i
\(313\) 21.2132i 1.19904i 0.800359 + 0.599521i \(0.204642\pi\)
−0.800359 + 0.599521i \(0.795358\pi\)
\(314\) 2.08191 0.117489
\(315\) 0 0
\(316\) 8.72949 0.491072
\(317\) 11.9443i 0.670857i 0.942066 + 0.335429i \(0.108881\pi\)
−0.942066 + 0.335429i \(0.891119\pi\)
\(318\) 3.24109i 0.181751i
\(319\) −5.00000 −0.279946
\(320\) 0 0
\(321\) 5.24419 0.292702
\(322\) 0 0
\(323\) 31.4164i 1.74806i
\(324\) 5.02129 0.278960
\(325\) 0 0
\(326\) −0.875388 −0.0484833
\(327\) 0.874032i 0.0483341i
\(328\) 7.04096i 0.388772i
\(329\) 0 0
\(330\) 0 0
\(331\) −1.29180 −0.0710035 −0.0355018 0.999370i \(-0.511303\pi\)
−0.0355018 + 0.999370i \(0.511303\pi\)
\(332\) 12.7279i 0.698535i
\(333\) − 23.9443i − 1.31214i
\(334\) −5.45052 −0.298239
\(335\) 0 0
\(336\) 0 0
\(337\) 23.1246i 1.25968i 0.776726 + 0.629839i \(0.216879\pi\)
−0.776726 + 0.629839i \(0.783121\pi\)
\(338\) 1.25735i 0.0683911i
\(339\) −8.53399 −0.463503
\(340\) 0 0
\(341\) 15.3500 0.831250
\(342\) 3.62365i 0.195944i
\(343\) 0 0
\(344\) 7.36068 0.396861
\(345\) 0 0
\(346\) 1.62054 0.0871210
\(347\) − 27.6525i − 1.48446i −0.670144 0.742231i \(-0.733768\pi\)
0.670144 0.742231i \(-0.266232\pi\)
\(348\) − 3.62365i − 0.194248i
\(349\) 1.00155 0.0536118 0.0268059 0.999641i \(-0.491466\pi\)
0.0268059 + 0.999641i \(0.491466\pi\)
\(350\) 0 0
\(351\) 18.4721 0.985970
\(352\) − 9.27051i − 0.494120i
\(353\) − 12.1089i − 0.644493i −0.946656 0.322247i \(-0.895562\pi\)
0.946656 0.322247i \(-0.104438\pi\)
\(354\) 4.40325 0.234030
\(355\) 0 0
\(356\) −14.7310 −0.780743
\(357\) 0 0
\(358\) 1.41641i 0.0748595i
\(359\) −0.0557281 −0.00294122 −0.00147061 0.999999i \(-0.500468\pi\)
−0.00147061 + 0.999999i \(0.500468\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) − 4.24264i − 0.222988i
\(363\) − 5.24419i − 0.275249i
\(364\) 0 0
\(365\) 0 0
\(366\) −1.01316 −0.0529585
\(367\) 8.69161i 0.453698i 0.973930 + 0.226849i \(0.0728425\pi\)
−0.973930 + 0.226849i \(0.927158\pi\)
\(368\) 11.8409i 0.617252i
\(369\) −10.6947 −0.556745
\(370\) 0 0
\(371\) 0 0
\(372\) 11.1246i 0.576784i
\(373\) − 16.1246i − 0.834901i −0.908700 0.417450i \(-0.862924\pi\)
0.908700 0.417450i \(-0.137076\pi\)
\(374\) −6.32456 −0.327035
\(375\) 0 0
\(376\) 13.9659 0.720237
\(377\) 9.02546i 0.464835i
\(378\) 0 0
\(379\) 19.0000 0.975964 0.487982 0.872854i \(-0.337733\pi\)
0.487982 + 0.872854i \(0.337733\pi\)
\(380\) 0 0
\(381\) 6.11822 0.313446
\(382\) 8.83282i 0.451926i
\(383\) − 13.1893i − 0.673941i −0.941515 0.336971i \(-0.890598\pi\)
0.941515 0.336971i \(-0.109402\pi\)
\(384\) 8.81913 0.450049
\(385\) 0 0
\(386\) −4.09017 −0.208184
\(387\) 11.1803i 0.568329i
\(388\) 18.7372i 0.951239i
\(389\) −27.7639 −1.40769 −0.703844 0.710355i \(-0.748534\pi\)
−0.703844 + 0.710355i \(0.748534\pi\)
\(390\) 0 0
\(391\) 27.8716 1.40953
\(392\) 0 0
\(393\) − 12.9443i − 0.652952i
\(394\) 2.27051 0.114387
\(395\) 0 0
\(396\) 9.27051 0.465861
\(397\) − 9.89949i − 0.496841i −0.968652 0.248421i \(-0.920088\pi\)
0.968652 0.248421i \(-0.0799115\pi\)
\(398\) 9.64446i 0.483433i
\(399\) 0 0
\(400\) 0 0
\(401\) 23.0689 1.15201 0.576003 0.817448i \(-0.304612\pi\)
0.576003 + 0.817448i \(0.304612\pi\)
\(402\) − 2.90724i − 0.145000i
\(403\) − 27.7082i − 1.38024i
\(404\) 20.5942 1.02460
\(405\) 0 0
\(406\) 0 0
\(407\) − 23.9443i − 1.18687i
\(408\) − 9.52786i − 0.471700i
\(409\) 14.7310 0.728402 0.364201 0.931320i \(-0.381342\pi\)
0.364201 + 0.931320i \(0.381342\pi\)
\(410\) 0 0
\(411\) −5.24419 −0.258677
\(412\) 17.5896i 0.866575i
\(413\) 0 0
\(414\) 3.21478 0.157998
\(415\) 0 0
\(416\) −16.7341 −0.820458
\(417\) 17.1246i 0.838596i
\(418\) 3.62365i 0.177238i
\(419\) −4.86163 −0.237506 −0.118753 0.992924i \(-0.537890\pi\)
−0.118753 + 0.992924i \(0.537890\pi\)
\(420\) 0 0
\(421\) −9.29180 −0.452854 −0.226427 0.974028i \(-0.572705\pi\)
−0.226427 + 0.974028i \(0.572705\pi\)
\(422\) − 2.83282i − 0.137899i
\(423\) 21.2132i 1.03142i
\(424\) 14.2918 0.694071
\(425\) 0 0
\(426\) −2.49458 −0.120863
\(427\) 0 0
\(428\) − 11.1246i − 0.537728i
\(429\) 7.88854 0.380862
\(430\) 0 0
\(431\) 6.76393 0.325807 0.162904 0.986642i \(-0.447914\pi\)
0.162904 + 0.986642i \(0.447914\pi\)
\(432\) 14.3972i 0.692684i
\(433\) − 32.7031i − 1.57161i −0.618473 0.785806i \(-0.712248\pi\)
0.618473 0.785806i \(-0.287752\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.85410 0.0887954
\(437\) − 15.9690i − 0.763901i
\(438\) 0.875388i 0.0418277i
\(439\) −17.7658 −0.847915 −0.423957 0.905682i \(-0.639359\pi\)
−0.423957 + 0.905682i \(0.639359\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 11.4164i 0.543023i
\(443\) 20.1803i 0.958797i 0.877597 + 0.479398i \(0.159145\pi\)
−0.877597 + 0.479398i \(0.840855\pi\)
\(444\) 17.3531 0.823543
\(445\) 0 0
\(446\) −2.23954 −0.106045
\(447\) − 8.43657i − 0.399036i
\(448\) 0 0
\(449\) 12.5967 0.594477 0.297239 0.954803i \(-0.403934\pi\)
0.297239 + 0.954803i \(0.403934\pi\)
\(450\) 0 0
\(451\) −10.6947 −0.503594
\(452\) 18.1033i 0.851509i
\(453\) 7.35621i 0.345625i
\(454\) 10.1058 0.474290
\(455\) 0 0
\(456\) −5.45898 −0.255640
\(457\) − 7.29180i − 0.341096i −0.985349 0.170548i \(-0.945446\pi\)
0.985349 0.170548i \(-0.0545538\pi\)
\(458\) − 2.70091i − 0.126205i
\(459\) 33.8885 1.58178
\(460\) 0 0
\(461\) −33.4009 −1.55564 −0.777819 0.628489i \(-0.783674\pi\)
−0.777819 + 0.628489i \(0.783674\pi\)
\(462\) 0 0
\(463\) − 14.0000i − 0.650635i −0.945605 0.325318i \(-0.894529\pi\)
0.945605 0.325318i \(-0.105471\pi\)
\(464\) −7.03444 −0.326566
\(465\) 0 0
\(466\) 1.72949 0.0801171
\(467\) 9.64446i 0.446292i 0.974785 + 0.223146i \(0.0716327\pi\)
−0.974785 + 0.223146i \(0.928367\pi\)
\(468\) − 16.7341i − 0.773535i
\(469\) 0 0
\(470\) 0 0
\(471\) −4.76393 −0.219510
\(472\) − 19.4164i − 0.893714i
\(473\) 11.1803i 0.514073i
\(474\) 1.57184 0.0721968
\(475\) 0 0
\(476\) 0 0
\(477\) 21.7082i 0.993950i
\(478\) 11.1246i 0.508828i
\(479\) 9.02546 0.412384 0.206192 0.978512i \(-0.433893\pi\)
0.206192 + 0.978512i \(0.433893\pi\)
\(480\) 0 0
\(481\) −43.2216 −1.97074
\(482\) 5.62675i 0.256291i
\(483\) 0 0
\(484\) −11.1246 −0.505664
\(485\) 0 0
\(486\) 6.14833 0.278894
\(487\) − 28.7082i − 1.30089i −0.759552 0.650446i \(-0.774582\pi\)
0.759552 0.650446i \(-0.225418\pi\)
\(488\) 4.46758i 0.202238i
\(489\) 2.00310 0.0905835
\(490\) 0 0
\(491\) 7.47214 0.337213 0.168606 0.985683i \(-0.446073\pi\)
0.168606 + 0.985683i \(0.446073\pi\)
\(492\) − 7.75078i − 0.349432i
\(493\) 16.5579i 0.745730i
\(494\) 6.54102 0.294294
\(495\) 0 0
\(496\) 21.5958 0.969678
\(497\) 0 0
\(498\) 2.29180i 0.102698i
\(499\) 25.4164 1.13779 0.568897 0.822409i \(-0.307370\pi\)
0.568897 + 0.822409i \(0.307370\pi\)
\(500\) 0 0
\(501\) 12.4721 0.557214
\(502\) 4.41887i 0.197224i
\(503\) 16.8918i 0.753166i 0.926383 + 0.376583i \(0.122901\pi\)
−0.926383 + 0.376583i \(0.877099\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 3.21478 0.142914
\(507\) − 2.87714i − 0.127778i
\(508\) − 12.9787i − 0.575837i
\(509\) −5.78437 −0.256388 −0.128194 0.991749i \(-0.540918\pi\)
−0.128194 + 0.991749i \(0.540918\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 22.3050i − 0.985749i
\(513\) − 19.4164i − 0.857255i
\(514\) −4.62520 −0.204009
\(515\) 0 0
\(516\) −8.10272 −0.356702
\(517\) 21.2132i 0.932956i
\(518\) 0 0
\(519\) −3.70820 −0.162772
\(520\) 0 0
\(521\) 36.0230 1.57820 0.789099 0.614266i \(-0.210548\pi\)
0.789099 + 0.614266i \(0.210548\pi\)
\(522\) 1.90983i 0.0835910i
\(523\) − 3.24109i − 0.141723i −0.997486 0.0708615i \(-0.977425\pi\)
0.997486 0.0708615i \(-0.0225748\pi\)
\(524\) −27.4589 −1.19955
\(525\) 0 0
\(526\) 11.4377 0.498707
\(527\) − 50.8328i − 2.21431i
\(528\) 6.14833i 0.267572i
\(529\) 8.83282 0.384035
\(530\) 0 0
\(531\) 29.4922 1.27985
\(532\) 0 0
\(533\) 19.3050i 0.836190i
\(534\) −2.65248 −0.114784
\(535\) 0 0
\(536\) −12.8197 −0.553725
\(537\) − 3.24109i − 0.139863i
\(538\) − 5.86319i − 0.252780i
\(539\) 0 0
\(540\) 0 0
\(541\) −8.70820 −0.374395 −0.187197 0.982322i \(-0.559940\pi\)
−0.187197 + 0.982322i \(0.559940\pi\)
\(542\) 1.69936i 0.0729936i
\(543\) 9.70820i 0.416619i
\(544\) −30.7000 −1.31625
\(545\) 0 0
\(546\) 0 0
\(547\) − 29.0000i − 1.23995i −0.784621 0.619975i \(-0.787143\pi\)
0.784621 0.619975i \(-0.212857\pi\)
\(548\) 11.1246i 0.475220i
\(549\) −6.78593 −0.289616
\(550\) 0 0
\(551\) 9.48683 0.404153
\(552\) 4.84303i 0.206133i
\(553\) 0 0
\(554\) 9.16718 0.389476
\(555\) 0 0
\(556\) 36.3268 1.54060
\(557\) − 24.5967i − 1.04220i −0.853496 0.521099i \(-0.825522\pi\)
0.853496 0.521099i \(-0.174478\pi\)
\(558\) − 5.86319i − 0.248208i
\(559\) 20.1815 0.853589
\(560\) 0 0
\(561\) 14.4721 0.611014
\(562\) 9.39512i 0.396309i
\(563\) − 13.8083i − 0.581950i −0.956731 0.290975i \(-0.906020\pi\)
0.956731 0.290975i \(-0.0939796\pi\)
\(564\) −15.3738 −0.647355
\(565\) 0 0
\(566\) −7.94510 −0.333957
\(567\) 0 0
\(568\) 11.0000i 0.461550i
\(569\) 29.9443 1.25533 0.627665 0.778484i \(-0.284011\pi\)
0.627665 + 0.778484i \(0.284011\pi\)
\(570\) 0 0
\(571\) 26.4164 1.10549 0.552746 0.833350i \(-0.313580\pi\)
0.552746 + 0.833350i \(0.313580\pi\)
\(572\) − 16.7341i − 0.699689i
\(573\) − 20.2117i − 0.844354i
\(574\) 0 0
\(575\) 0 0
\(576\) 10.5279 0.438661
\(577\) − 42.1900i − 1.75639i −0.478301 0.878196i \(-0.658747\pi\)
0.478301 0.878196i \(-0.341253\pi\)
\(578\) 14.4508i 0.601076i
\(579\) 9.35931 0.388960
\(580\) 0 0
\(581\) 0 0
\(582\) 3.37384i 0.139850i
\(583\) 21.7082i 0.899062i
\(584\) 3.86008 0.159731
\(585\) 0 0
\(586\) 7.04096 0.290860
\(587\) − 5.86319i − 0.242000i −0.992653 0.121000i \(-0.961390\pi\)
0.992653 0.121000i \(-0.0386100\pi\)
\(588\) 0 0
\(589\) −29.1246 −1.20006
\(590\) 0 0
\(591\) −5.19548 −0.213714
\(592\) − 33.6869i − 1.38452i
\(593\) − 30.7000i − 1.26070i −0.776311 0.630350i \(-0.782912\pi\)
0.776311 0.630350i \(-0.217088\pi\)
\(594\) 3.90879 0.160380
\(595\) 0 0
\(596\) −17.8967 −0.733076
\(597\) − 22.0689i − 0.903219i
\(598\) − 5.80298i − 0.237301i
\(599\) 6.81966 0.278644 0.139322 0.990247i \(-0.455508\pi\)
0.139322 + 0.990247i \(0.455508\pi\)
\(600\) 0 0
\(601\) −29.4621 −1.20178 −0.600891 0.799331i \(-0.705187\pi\)
−0.600891 + 0.799331i \(0.705187\pi\)
\(602\) 0 0
\(603\) − 19.4721i − 0.792967i
\(604\) 15.6049 0.634953
\(605\) 0 0
\(606\) 3.70820 0.150635
\(607\) 45.2247i 1.83562i 0.397025 + 0.917808i \(0.370042\pi\)
−0.397025 + 0.917808i \(0.629958\pi\)
\(608\) 17.5896i 0.713351i
\(609\) 0 0
\(610\) 0 0
\(611\) 38.2918 1.54912
\(612\) − 30.7000i − 1.24098i
\(613\) 14.4164i 0.582273i 0.956681 + 0.291137i \(0.0940334\pi\)
−0.956681 + 0.291137i \(0.905967\pi\)
\(614\) −5.55944 −0.224361
\(615\) 0 0
\(616\) 0 0
\(617\) − 19.3607i − 0.779432i −0.920935 0.389716i \(-0.872573\pi\)
0.920935 0.389716i \(-0.127427\pi\)
\(618\) 3.16718i 0.127403i
\(619\) 9.28050 0.373015 0.186507 0.982454i \(-0.440283\pi\)
0.186507 + 0.982454i \(0.440283\pi\)
\(620\) 0 0
\(621\) −17.2256 −0.691240
\(622\) 3.65375i 0.146502i
\(623\) 0 0
\(624\) 11.0983 0.444288
\(625\) 0 0
\(626\) 8.10272 0.323850
\(627\) − 8.29180i − 0.331142i
\(628\) 10.1058i 0.403266i
\(629\) −79.2934 −3.16163
\(630\) 0 0
\(631\) −28.1246 −1.11962 −0.559812 0.828620i \(-0.689126\pi\)
−0.559812 + 0.828620i \(0.689126\pi\)
\(632\) − 6.93112i − 0.275705i
\(633\) 6.48218i 0.257643i
\(634\) 4.56231 0.181192
\(635\) 0 0
\(636\) −15.7326 −0.623837
\(637\) 0 0
\(638\) 1.90983i 0.0756109i
\(639\) −16.7082 −0.660966
\(640\) 0 0
\(641\) −16.5279 −0.652811 −0.326406 0.945230i \(-0.605838\pi\)
−0.326406 + 0.945230i \(0.605838\pi\)
\(642\) − 2.00310i − 0.0790562i
\(643\) 22.2148i 0.876064i 0.898959 + 0.438032i \(0.144324\pi\)
−0.898959 + 0.438032i \(0.855676\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) − 19.0525i − 0.749030i −0.927221 0.374515i \(-0.877809\pi\)
0.927221 0.374515i \(-0.122191\pi\)
\(648\) − 3.98684i − 0.156618i
\(649\) 29.4922 1.15767
\(650\) 0 0
\(651\) 0 0
\(652\) − 4.24922i − 0.166412i
\(653\) 1.41641i 0.0554283i 0.999616 + 0.0277142i \(0.00882282\pi\)
−0.999616 + 0.0277142i \(0.991177\pi\)
\(654\) 0.333851 0.0130546
\(655\) 0 0
\(656\) −15.0463 −0.587458
\(657\) 5.86319i 0.228745i
\(658\) 0 0
\(659\) 8.83282 0.344078 0.172039 0.985090i \(-0.444965\pi\)
0.172039 + 0.985090i \(0.444965\pi\)
\(660\) 0 0
\(661\) 19.9752 0.776946 0.388473 0.921460i \(-0.373003\pi\)
0.388473 + 0.921460i \(0.373003\pi\)
\(662\) 0.493422i 0.0191774i
\(663\) − 26.1235i − 1.01455i
\(664\) 10.1058 0.392182
\(665\) 0 0
\(666\) −9.14590 −0.354396
\(667\) − 8.41641i − 0.325885i
\(668\) − 26.4574i − 1.02367i
\(669\) 5.12461 0.198129
\(670\) 0 0
\(671\) −6.78593 −0.261968
\(672\) 0 0
\(673\) − 41.1246i − 1.58524i −0.609718 0.792619i \(-0.708717\pi\)
0.609718 0.792619i \(-0.291283\pi\)
\(674\) 8.83282 0.340227
\(675\) 0 0
\(676\) −6.10333 −0.234743
\(677\) 13.8083i 0.530696i 0.964153 + 0.265348i \(0.0854868\pi\)
−0.964153 + 0.265348i \(0.914513\pi\)
\(678\) 3.25969i 0.125188i
\(679\) 0 0
\(680\) 0 0
\(681\) −23.1246 −0.886137
\(682\) − 5.86319i − 0.224513i
\(683\) 41.0689i 1.57146i 0.618571 + 0.785729i \(0.287712\pi\)
−0.618571 + 0.785729i \(0.712288\pi\)
\(684\) −17.5896 −0.672553
\(685\) 0 0
\(686\) 0 0
\(687\) 6.18034i 0.235795i
\(688\) 15.7295i 0.599681i
\(689\) 39.1853 1.49284
\(690\) 0 0
\(691\) 1.79677 0.0683524 0.0341762 0.999416i \(-0.489119\pi\)
0.0341762 + 0.999416i \(0.489119\pi\)
\(692\) 7.86629i 0.299031i
\(693\) 0 0
\(694\) −10.5623 −0.400940
\(695\) 0 0
\(696\) −2.87714 −0.109058
\(697\) 35.4164i 1.34149i
\(698\) − 0.382559i − 0.0144801i
\(699\) −3.95750 −0.149686
\(700\) 0 0
\(701\) 31.4164 1.18658 0.593291 0.804988i \(-0.297828\pi\)
0.593291 + 0.804988i \(0.297828\pi\)
\(702\) − 7.05573i − 0.266301i
\(703\) 45.4311i 1.71346i
\(704\) 10.5279 0.396784
\(705\) 0 0
\(706\) −4.62520 −0.174072
\(707\) 0 0
\(708\) 21.3738i 0.803278i
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 10.5279 0.394826
\(712\) 11.6963i 0.438336i
\(713\) 25.8384i 0.967656i
\(714\) 0 0
\(715\) 0 0
\(716\) −6.87539 −0.256945
\(717\) − 25.4558i − 0.950666i
\(718\) 0.0212862i 0 0.000794395i
\(719\) −1.54173 −0.0574969 −0.0287485 0.999587i \(-0.509152\pi\)
−0.0287485 + 0.999587i \(0.509152\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.381966i 0.0142153i
\(723\) − 12.8754i − 0.478841i
\(724\) 20.5942 0.765378
\(725\) 0 0
\(726\) −2.00310 −0.0743421
\(727\) − 5.65685i − 0.209801i −0.994483 0.104901i \(-0.966548\pi\)
0.994483 0.104901i \(-0.0334524\pi\)
\(728\) 0 0
\(729\) −5.94427 −0.220158
\(730\) 0 0
\(731\) 37.0246 1.36940
\(732\) − 4.91796i − 0.181773i
\(733\) − 6.48218i − 0.239425i −0.992809 0.119712i \(-0.961803\pi\)
0.992809 0.119712i \(-0.0381972\pi\)
\(734\) 3.31990 0.122540
\(735\) 0 0
\(736\) 15.6049 0.575203
\(737\) − 19.4721i − 0.717265i
\(738\) 4.08502i 0.150372i
\(739\) 7.29180 0.268233 0.134117 0.990966i \(-0.457180\pi\)
0.134117 + 0.990966i \(0.457180\pi\)
\(740\) 0 0
\(741\) −14.9675 −0.549843
\(742\) 0 0
\(743\) 33.7082i 1.23663i 0.785929 + 0.618317i \(0.212185\pi\)
−0.785929 + 0.618317i \(0.787815\pi\)
\(744\) 8.83282 0.323827
\(745\) 0 0
\(746\) −6.15905 −0.225499
\(747\) 15.3500i 0.561628i
\(748\) − 30.7000i − 1.12250i
\(749\) 0 0
\(750\) 0 0
\(751\) 26.8328 0.979143 0.489572 0.871963i \(-0.337153\pi\)
0.489572 + 0.871963i \(0.337153\pi\)
\(752\) 29.8446i 1.08832i
\(753\) − 10.1115i − 0.368482i
\(754\) 3.44742 0.125548
\(755\) 0 0
\(756\) 0 0
\(757\) 12.4164i 0.451282i 0.974211 + 0.225641i \(0.0724476\pi\)
−0.974211 + 0.225641i \(0.927552\pi\)
\(758\) − 7.25735i − 0.263599i
\(759\) −7.35621 −0.267014
\(760\) 0 0
\(761\) 52.9148 1.91816 0.959080 0.283136i \(-0.0913747\pi\)
0.959080 + 0.283136i \(0.0913747\pi\)
\(762\) − 2.33695i − 0.0846589i
\(763\) 0 0
\(764\) −42.8754 −1.55118
\(765\) 0 0
\(766\) −5.03786 −0.182025
\(767\) − 53.2361i − 1.92224i
\(768\) 4.86163i 0.175429i
\(769\) −8.69161 −0.313428 −0.156714 0.987644i \(-0.550090\pi\)
−0.156714 + 0.987644i \(0.550090\pi\)
\(770\) 0 0
\(771\) 10.5836 0.381159
\(772\) − 19.8541i − 0.714565i
\(773\) 15.3500i 0.552102i 0.961143 + 0.276051i \(0.0890258\pi\)
−0.961143 + 0.276051i \(0.910974\pi\)
\(774\) 4.27051 0.153500
\(775\) 0 0
\(776\) 14.8771 0.534059
\(777\) 0 0
\(778\) 10.6049i 0.380203i
\(779\) 20.2918 0.727029
\(780\) 0 0
\(781\) −16.7082 −0.597867
\(782\) − 10.6460i − 0.380700i
\(783\) − 10.2333i − 0.365710i
\(784\) 0 0
\(785\) 0 0
\(786\) −4.94427 −0.176356
\(787\) 16.3516i 0.582871i 0.956591 + 0.291435i \(0.0941328\pi\)
−0.956591 + 0.291435i \(0.905867\pi\)
\(788\) 11.0213i 0.392617i
\(789\) −26.1723 −0.931757
\(790\) 0 0
\(791\) 0 0
\(792\) − 7.36068i − 0.261550i
\(793\) 12.2492i 0.434983i
\(794\) −3.78127 −0.134192
\(795\) 0 0
\(796\) −46.8152 −1.65932
\(797\) 39.0277i 1.38243i 0.722648 + 0.691216i \(0.242925\pi\)
−0.722648 + 0.691216i \(0.757075\pi\)
\(798\) 0 0
\(799\) 70.2492 2.48524
\(800\) 0 0
\(801\) −17.7658 −0.627723
\(802\) − 8.81153i − 0.311146i
\(803\) 5.86319i 0.206907i
\(804\) 14.1120 0.497693
\(805\) 0 0
\(806\) −10.5836 −0.372791
\(807\) 13.4164i 0.472280i
\(808\) − 16.3516i − 0.575246i
\(809\) −29.0689 −1.02201 −0.511004 0.859578i \(-0.670726\pi\)
−0.511004 + 0.859578i \(0.670726\pi\)
\(810\) 0 0
\(811\) 7.07107 0.248299 0.124149 0.992264i \(-0.460380\pi\)
0.124149 + 0.992264i \(0.460380\pi\)
\(812\) 0 0
\(813\) − 3.88854i − 0.136377i
\(814\) −9.14590 −0.320564
\(815\) 0 0
\(816\) 20.3607 0.712766
\(817\) − 21.2132i − 0.742156i
\(818\) − 5.62675i − 0.196735i
\(819\) 0 0
\(820\) 0 0
\(821\) 10.5836 0.369370 0.184685 0.982798i \(-0.440874\pi\)
0.184685 + 0.982798i \(0.440874\pi\)
\(822\) 2.00310i 0.0698662i
\(823\) − 29.5410i − 1.02974i −0.857270 0.514868i \(-0.827841\pi\)
0.857270 0.514868i \(-0.172159\pi\)
\(824\) 13.9659 0.486525
\(825\) 0 0
\(826\) 0 0
\(827\) 1.47214i 0.0511912i 0.999672 + 0.0255956i \(0.00814822\pi\)
−0.999672 + 0.0255956i \(0.991852\pi\)
\(828\) 15.6049i 0.542307i
\(829\) −10.0757 −0.349944 −0.174972 0.984573i \(-0.555984\pi\)
−0.174972 + 0.984573i \(0.555984\pi\)
\(830\) 0 0
\(831\) −20.9768 −0.727676
\(832\) − 19.0038i − 0.658837i
\(833\) 0 0
\(834\) 6.54102 0.226497
\(835\) 0 0
\(836\) −17.5896 −0.608348
\(837\) 31.4164i 1.08591i
\(838\) 1.85698i 0.0641483i
\(839\) 31.3190 1.08125 0.540626 0.841263i \(-0.318187\pi\)
0.540626 + 0.841263i \(0.318187\pi\)
\(840\) 0 0
\(841\) −24.0000 −0.827586
\(842\) 3.54915i 0.122312i
\(843\) − 21.4983i − 0.740442i
\(844\) 13.7508 0.473321
\(845\) 0 0
\(846\) 8.10272 0.278577
\(847\) 0 0
\(848\) 30.5410i 1.04878i
\(849\) 18.1803 0.623948
\(850\) 0 0
\(851\) 40.3050 1.38164
\(852\) − 12.1089i − 0.414845i
\(853\) − 22.2148i − 0.760619i −0.924859 0.380309i \(-0.875818\pi\)
0.924859 0.380309i \(-0.124182\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −8.83282 −0.301899
\(857\) − 20.6730i − 0.706177i −0.935590 0.353088i \(-0.885131\pi\)
0.935590 0.353088i \(-0.114869\pi\)
\(858\) − 3.01316i − 0.102867i
\(859\) −39.7742 −1.35708 −0.678539 0.734564i \(-0.737387\pi\)
−0.678539 + 0.734564i \(0.737387\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 2.58359i − 0.0879975i
\(863\) − 1.36068i − 0.0463181i −0.999732 0.0231590i \(-0.992628\pi\)
0.999732 0.0231590i \(-0.00737241\pi\)
\(864\) 18.9737 0.645497
\(865\) 0 0
\(866\) −12.4915 −0.424478
\(867\) − 33.0671i − 1.12302i
\(868\) 0 0
\(869\) 10.5279 0.357133
\(870\) 0 0
\(871\) −35.1490 −1.19098
\(872\) − 1.47214i − 0.0498528i
\(873\) 22.5973i 0.764803i
\(874\) −6.09962 −0.206323
\(875\) 0 0
\(876\) −4.24922 −0.143568
\(877\) 38.2918i 1.29302i 0.762905 + 0.646511i \(0.223773\pi\)
−0.762905 + 0.646511i \(0.776227\pi\)
\(878\) 6.78593i 0.229014i
\(879\) −16.1115 −0.543426
\(880\) 0 0
\(881\) −1.62054 −0.0545975 −0.0272988 0.999627i \(-0.508691\pi\)
−0.0272988 + 0.999627i \(0.508691\pi\)
\(882\) 0 0
\(883\) − 32.7082i − 1.10072i −0.834928 0.550359i \(-0.814491\pi\)
0.834928 0.550359i \(-0.185509\pi\)
\(884\) −55.4164 −1.86386
\(885\) 0 0
\(886\) 7.70820 0.258962
\(887\) 24.9945i 0.839232i 0.907702 + 0.419616i \(0.137835\pi\)
−0.907702 + 0.419616i \(0.862165\pi\)
\(888\) − 13.7782i − 0.462366i
\(889\) 0 0
\(890\) 0 0
\(891\) 6.05573 0.202875
\(892\) − 10.8709i − 0.363986i
\(893\) − 40.2492i − 1.34689i
\(894\) −3.22248 −0.107776
\(895\) 0 0
\(896\) 0 0
\(897\) 13.2786i 0.443361i
\(898\) − 4.81153i − 0.160563i
\(899\) −15.3500 −0.511952
\(900\) 0 0
\(901\) 71.8885 2.39495
\(902\) 4.08502i 0.136016i
\(903\) 0 0
\(904\) 14.3738 0.478067
\(905\) 0 0
\(906\) 2.80982 0.0933501
\(907\) 14.8328i 0.492516i 0.969204 + 0.246258i \(0.0792010\pi\)
−0.969204 + 0.246258i \(0.920799\pi\)
\(908\) 49.0547i 1.62794i
\(909\) 24.8369 0.823786
\(910\) 0 0
\(911\) 21.7639 0.721071 0.360536 0.932745i \(-0.382594\pi\)
0.360536 + 0.932745i \(0.382594\pi\)
\(912\) − 11.6656i − 0.386288i
\(913\) 15.3500i 0.508011i
\(914\) −2.78522 −0.0921268
\(915\) 0 0
\(916\) 13.1105 0.433182
\(917\) 0 0
\(918\) − 12.9443i − 0.427225i
\(919\) −31.8328 −1.05007 −0.525034 0.851081i \(-0.675947\pi\)
−0.525034 + 0.851081i \(0.675947\pi\)
\(920\) 0 0
\(921\) 12.7214 0.419183
\(922\) 12.7580i 0.420163i
\(923\) 30.1599i 0.992724i
\(924\) 0 0
\(925\) 0 0
\(926\) −5.34752 −0.175731
\(927\) 21.2132i 0.696733i
\(928\) 9.27051i 0.304319i
\(929\) 47.0516 1.54371 0.771857 0.635797i \(-0.219328\pi\)
0.771857 + 0.635797i \(0.219328\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 8.39512i 0.274991i
\(933\) − 8.36068i − 0.273716i
\(934\) 3.68385 0.120539
\(935\) 0 0
\(936\) −13.2867 −0.434290
\(937\) 28.4906i 0.930747i 0.885114 + 0.465374i \(0.154080\pi\)
−0.885114 + 0.465374i \(0.845920\pi\)
\(938\) 0 0
\(939\) −18.5410 −0.605063
\(940\) 0 0
\(941\) 3.62365 0.118128 0.0590638 0.998254i \(-0.481188\pi\)
0.0590638 + 0.998254i \(0.481188\pi\)
\(942\) 1.81966i 0.0592877i
\(943\) − 18.0022i − 0.586233i
\(944\) 41.4922 1.35046
\(945\) 0 0
\(946\) 4.27051 0.138846
\(947\) 12.0000i 0.389948i 0.980808 + 0.194974i \(0.0624622\pi\)
−0.980808 + 0.194974i \(0.937538\pi\)
\(948\) 7.62985i 0.247806i
\(949\) 10.5836 0.343558
\(950\) 0 0
\(951\) −10.4397 −0.338530
\(952\) 0 0
\(953\) − 36.5967i − 1.18548i −0.805392 0.592742i \(-0.798045\pi\)
0.805392 0.592742i \(-0.201955\pi\)
\(954\) 8.29180 0.268457
\(955\) 0 0
\(956\) −54.0000 −1.74648
\(957\) − 4.37016i − 0.141267i
\(958\) − 3.44742i − 0.111381i
\(959\) 0 0
\(960\) 0 0
\(961\) 16.1246 0.520149
\(962\) 16.5092i 0.532278i
\(963\) − 13.4164i − 0.432338i
\(964\) −27.3128 −0.879687
\(965\) 0 0
\(966\) 0 0
\(967\) 46.2492i 1.48727i 0.668583 + 0.743637i \(0.266901\pi\)
−0.668583 + 0.743637i \(0.733099\pi\)
\(968\) 8.83282i 0.283897i
\(969\) −27.4589 −0.882108
\(970\) 0 0
\(971\) −12.7279 −0.408458 −0.204229 0.978923i \(-0.565469\pi\)
−0.204229 + 0.978923i \(0.565469\pi\)
\(972\) 29.8446i 0.957266i
\(973\) 0 0
\(974\) −10.9656 −0.351359
\(975\) 0 0
\(976\) −9.54704 −0.305593
\(977\) 27.7639i 0.888247i 0.895966 + 0.444123i \(0.146485\pi\)
−0.895966 + 0.444123i \(0.853515\pi\)
\(978\) − 0.765117i − 0.0244658i
\(979\) −17.7658 −0.567797
\(980\) 0 0
\(981\) 2.23607 0.0713922
\(982\) − 2.85410i − 0.0910781i
\(983\) 8.10272i 0.258437i 0.991616 + 0.129218i \(0.0412468\pi\)
−0.991616 + 0.129218i \(0.958753\pi\)
\(984\) −6.15403 −0.196183
\(985\) 0 0
\(986\) 6.32456 0.201415
\(987\) 0 0
\(988\) 31.7508i 1.01013i
\(989\) −18.8197 −0.598430
\(990\) 0 0
\(991\) −5.00000 −0.158830 −0.0794151 0.996842i \(-0.525305\pi\)
−0.0794151 + 0.996842i \(0.525305\pi\)
\(992\) − 28.4605i − 0.903622i
\(993\) − 1.12907i − 0.0358300i
\(994\) 0 0
\(995\) 0 0
\(996\) −11.1246 −0.352497
\(997\) 48.6722i 1.54146i 0.637160 + 0.770731i \(0.280109\pi\)
−0.637160 + 0.770731i \(0.719891\pi\)
\(998\) − 9.70820i − 0.307308i
\(999\) 49.0060 1.55048
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.2.b.n.99.4 8
5.2 odd 4 1225.2.a.bc.1.2 yes 4
5.3 odd 4 1225.2.a.ba.1.3 4
5.4 even 2 inner 1225.2.b.n.99.5 8
7.6 odd 2 inner 1225.2.b.n.99.3 8
35.13 even 4 1225.2.a.ba.1.4 yes 4
35.27 even 4 1225.2.a.bc.1.1 yes 4
35.34 odd 2 inner 1225.2.b.n.99.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1225.2.a.ba.1.3 4 5.3 odd 4
1225.2.a.ba.1.4 yes 4 35.13 even 4
1225.2.a.bc.1.1 yes 4 35.27 even 4
1225.2.a.bc.1.2 yes 4 5.2 odd 4
1225.2.b.n.99.3 8 7.6 odd 2 inner
1225.2.b.n.99.4 8 1.1 even 1 trivial
1225.2.b.n.99.5 8 5.4 even 2 inner
1225.2.b.n.99.6 8 35.34 odd 2 inner