Properties

Label 1225.2.a.m
Level $1225$
Weight $2$
Character orbit 1225.a
Self dual yes
Analytic conductor $9.782$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,2,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.78167424761\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{2} + (\beta + 1) q^{3} + ( - 2 \beta + 1) q^{4} + q^{6} + (\beta - 3) q^{8} + 2 \beta q^{9} + (2 \beta + 2) q^{11} + ( - \beta - 3) q^{12} + (2 \beta - 2) q^{13} + 3 q^{16} + ( - 2 \beta + 2) q^{17}+ \cdots + (4 \beta + 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} + 2 q^{6} - 6 q^{8} + 4 q^{11} - 6 q^{12} - 4 q^{13} + 6 q^{16} + 4 q^{17} + 8 q^{18} + 4 q^{22} + 2 q^{23} - 2 q^{24} + 12 q^{26} + 2 q^{27} - 2 q^{29} + 12 q^{31} + 6 q^{32}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.41421 −0.414214 3.82843 0 1.00000 0 −4.41421 −2.82843 0
1.2 0.414214 2.41421 −1.82843 0 1.00000 0 −1.58579 2.82843 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1225.2.a.m 2
5.b even 2 1 245.2.a.g 2
5.c odd 4 2 1225.2.b.h 4
7.b odd 2 1 1225.2.a.k 2
7.d odd 6 2 175.2.e.c 4
15.d odd 2 1 2205.2.a.q 2
20.d odd 2 1 3920.2.a.bv 2
35.c odd 2 1 245.2.a.h 2
35.f even 4 2 1225.2.b.g 4
35.i odd 6 2 35.2.e.a 4
35.j even 6 2 245.2.e.e 4
35.k even 12 4 175.2.k.a 8
105.g even 2 1 2205.2.a.n 2
105.p even 6 2 315.2.j.e 4
140.c even 2 1 3920.2.a.bq 2
140.s even 6 2 560.2.q.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.e.a 4 35.i odd 6 2
175.2.e.c 4 7.d odd 6 2
175.2.k.a 8 35.k even 12 4
245.2.a.g 2 5.b even 2 1
245.2.a.h 2 35.c odd 2 1
245.2.e.e 4 35.j even 6 2
315.2.j.e 4 105.p even 6 2
560.2.q.k 4 140.s even 6 2
1225.2.a.k 2 7.b odd 2 1
1225.2.a.m 2 1.a even 1 1 trivial
1225.2.b.g 4 35.f even 4 2
1225.2.b.h 4 5.c odd 4 2
2205.2.a.n 2 105.g even 2 1
2205.2.a.q 2 15.d odd 2 1
3920.2.a.bq 2 140.c even 2 1
3920.2.a.bv 2 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1225))\):

\( T_{2}^{2} + 2T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{2} - 2T_{3} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$19$ \( T^{2} - 8 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
$29$ \( (T + 1)^{2} \) Copy content Toggle raw display
$31$ \( (T - 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 10T + 17 \) Copy content Toggle raw display
$43$ \( T^{2} + 10T + 23 \) Copy content Toggle raw display
$47$ \( (T - 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 8T + 8 \) Copy content Toggle raw display
$59$ \( T^{2} - 8T - 56 \) Copy content Toggle raw display
$61$ \( T^{2} - 6T - 63 \) Copy content Toggle raw display
$67$ \( T^{2} + 22T + 119 \) Copy content Toggle raw display
$71$ \( T^{2} + 8T - 56 \) Copy content Toggle raw display
$73$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$79$ \( T^{2} - 24T + 136 \) Copy content Toggle raw display
$83$ \( T^{2} - 2T - 161 \) Copy content Toggle raw display
$89$ \( T^{2} - 6T - 23 \) Copy content Toggle raw display
$97$ \( T^{2} - 12T + 4 \) Copy content Toggle raw display
show more
show less