Properties

Label 3920.2.a.bq
Level $3920$
Weight $2$
Character orbit 3920.a
Self dual yes
Analytic conductor $31.301$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3920,2,Mod(1,3920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3920.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3920.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.3013575923\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{3} + q^{5} - 2 \beta q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\beta - 1) q^{3} + q^{5} - 2 \beta q^{9} + (2 \beta - 2) q^{11} + ( - 2 \beta - 2) q^{13} + (\beta - 1) q^{15} + (2 \beta + 2) q^{17} - 2 \beta q^{19} + ( - \beta + 1) q^{23} + q^{25} + ( - \beta - 1) q^{27} - q^{29} + 6 q^{31} + ( - 4 \beta + 6) q^{33} - 2 q^{39} + ( - 2 \beta - 5) q^{41} + (\beta - 5) q^{43} - 2 \beta q^{45} - 2 q^{47} + 2 q^{51} + (2 \beta - 4) q^{53} + (2 \beta - 2) q^{55} + (2 \beta - 4) q^{57} + ( - 6 \beta + 4) q^{59} + (6 \beta - 3) q^{61} + ( - 2 \beta - 2) q^{65} + (\beta - 11) q^{67} + (2 \beta - 3) q^{69} + ( - 6 \beta + 4) q^{71} + ( - 2 \beta + 2) q^{73} + (\beta - 1) q^{75} + ( - 2 \beta - 12) q^{79} + (6 \beta - 1) q^{81} + ( - 9 \beta - 1) q^{83} + (2 \beta + 2) q^{85} + ( - \beta + 1) q^{87} + ( - 4 \beta - 3) q^{89} + (6 \beta - 6) q^{93} - 2 \beta q^{95} + (4 \beta + 6) q^{97} + (4 \beta - 8) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{5} - 4 q^{11} - 4 q^{13} - 2 q^{15} + 4 q^{17} + 2 q^{23} + 2 q^{25} - 2 q^{27} - 2 q^{29} + 12 q^{31} + 12 q^{33} - 4 q^{39} - 10 q^{41} - 10 q^{43} - 4 q^{47} + 4 q^{51} - 8 q^{53} - 4 q^{55} - 8 q^{57} + 8 q^{59} - 6 q^{61} - 4 q^{65} - 22 q^{67} - 6 q^{69} + 8 q^{71} + 4 q^{73} - 2 q^{75} - 24 q^{79} - 2 q^{81} - 2 q^{83} + 4 q^{85} + 2 q^{87} - 6 q^{89} - 12 q^{93} + 12 q^{97} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −2.41421 0 1.00000 0 0 0 2.82843 0
1.2 0 0.414214 0 1.00000 0 0 0 −2.82843 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3920.2.a.bq 2
4.b odd 2 1 245.2.a.h 2
7.b odd 2 1 3920.2.a.bv 2
7.c even 3 2 560.2.q.k 4
12.b even 2 1 2205.2.a.n 2
20.d odd 2 1 1225.2.a.k 2
20.e even 4 2 1225.2.b.g 4
28.d even 2 1 245.2.a.g 2
28.f even 6 2 245.2.e.e 4
28.g odd 6 2 35.2.e.a 4
84.h odd 2 1 2205.2.a.q 2
84.n even 6 2 315.2.j.e 4
140.c even 2 1 1225.2.a.m 2
140.j odd 4 2 1225.2.b.h 4
140.p odd 6 2 175.2.e.c 4
140.w even 12 4 175.2.k.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.e.a 4 28.g odd 6 2
175.2.e.c 4 140.p odd 6 2
175.2.k.a 8 140.w even 12 4
245.2.a.g 2 28.d even 2 1
245.2.a.h 2 4.b odd 2 1
245.2.e.e 4 28.f even 6 2
315.2.j.e 4 84.n even 6 2
560.2.q.k 4 7.c even 3 2
1225.2.a.k 2 20.d odd 2 1
1225.2.a.m 2 140.c even 2 1
1225.2.b.g 4 20.e even 4 2
1225.2.b.h 4 140.j odd 4 2
2205.2.a.n 2 12.b even 2 1
2205.2.a.q 2 84.h odd 2 1
3920.2.a.bq 2 1.a even 1 1 trivial
3920.2.a.bv 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3920))\):

\( T_{3}^{2} + 2T_{3} - 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 4T_{11} - 4 \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} - 4 \) Copy content Toggle raw display
\( T_{17}^{2} - 4T_{17} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$19$ \( T^{2} - 8 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
$29$ \( (T + 1)^{2} \) Copy content Toggle raw display
$31$ \( (T - 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 10T + 17 \) Copy content Toggle raw display
$43$ \( T^{2} + 10T + 23 \) Copy content Toggle raw display
$47$ \( (T + 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 8T + 8 \) Copy content Toggle raw display
$59$ \( T^{2} - 8T - 56 \) Copy content Toggle raw display
$61$ \( T^{2} + 6T - 63 \) Copy content Toggle raw display
$67$ \( T^{2} + 22T + 119 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T - 56 \) Copy content Toggle raw display
$73$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 24T + 136 \) Copy content Toggle raw display
$83$ \( T^{2} + 2T - 161 \) Copy content Toggle raw display
$89$ \( T^{2} + 6T - 23 \) Copy content Toggle raw display
$97$ \( T^{2} - 12T + 4 \) Copy content Toggle raw display
show more
show less