Properties

Label 1225.2.a.v.1.2
Level $1225$
Weight $2$
Character 1225.1
Self dual yes
Analytic conductor $9.782$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,2,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.78167424761\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 245)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.82843 q^{3} -1.00000 q^{4} +2.82843 q^{6} -3.00000 q^{8} +5.00000 q^{9} -2.82843 q^{12} +4.24264 q^{13} -1.00000 q^{16} +4.24264 q^{17} +5.00000 q^{18} +2.82843 q^{19} +4.00000 q^{23} -8.48528 q^{24} +4.24264 q^{26} +5.65685 q^{27} -5.65685 q^{31} +5.00000 q^{32} +4.24264 q^{34} -5.00000 q^{36} +6.00000 q^{37} +2.82843 q^{38} +12.0000 q^{39} -4.24264 q^{41} +4.00000 q^{46} -2.82843 q^{48} +12.0000 q^{51} -4.24264 q^{52} -8.00000 q^{53} +5.65685 q^{54} +8.00000 q^{57} -8.48528 q^{59} -9.89949 q^{61} -5.65685 q^{62} +7.00000 q^{64} -12.0000 q^{67} -4.24264 q^{68} +11.3137 q^{69} +12.0000 q^{71} -15.0000 q^{72} -12.7279 q^{73} +6.00000 q^{74} -2.82843 q^{76} +12.0000 q^{78} +12.0000 q^{79} +1.00000 q^{81} -4.24264 q^{82} -8.48528 q^{83} +4.24264 q^{89} -4.00000 q^{92} -16.0000 q^{93} +14.1421 q^{96} -4.24264 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} - 6 q^{8} + 10 q^{9} - 2 q^{16} + 10 q^{18} + 8 q^{23} + 10 q^{32} - 10 q^{36} + 12 q^{37} + 24 q^{39} + 8 q^{46} + 24 q^{51} - 16 q^{53} + 16 q^{57} + 14 q^{64} - 24 q^{67} + 24 q^{71}+ \cdots - 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 2.82843 1.63299 0.816497 0.577350i \(-0.195913\pi\)
0.816497 + 0.577350i \(0.195913\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.82843 1.15470
\(7\) 0 0
\(8\) −3.00000 −1.06066
\(9\) 5.00000 1.66667
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −2.82843 −0.816497
\(13\) 4.24264 1.17670 0.588348 0.808608i \(-0.299778\pi\)
0.588348 + 0.808608i \(0.299778\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 4.24264 1.02899 0.514496 0.857493i \(-0.327979\pi\)
0.514496 + 0.857493i \(0.327979\pi\)
\(18\) 5.00000 1.17851
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) −8.48528 −1.73205
\(25\) 0 0
\(26\) 4.24264 0.832050
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −5.65685 −1.01600 −0.508001 0.861357i \(-0.669615\pi\)
−0.508001 + 0.861357i \(0.669615\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) 4.24264 0.727607
\(35\) 0 0
\(36\) −5.00000 −0.833333
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 2.82843 0.458831
\(39\) 12.0000 1.92154
\(40\) 0 0
\(41\) −4.24264 −0.662589 −0.331295 0.943527i \(-0.607485\pi\)
−0.331295 + 0.943527i \(0.607485\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −2.82843 −0.408248
\(49\) 0 0
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) −4.24264 −0.588348
\(53\) −8.00000 −1.09888 −0.549442 0.835532i \(-0.685160\pi\)
−0.549442 + 0.835532i \(0.685160\pi\)
\(54\) 5.65685 0.769800
\(55\) 0 0
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 0 0
\(59\) −8.48528 −1.10469 −0.552345 0.833616i \(-0.686267\pi\)
−0.552345 + 0.833616i \(0.686267\pi\)
\(60\) 0 0
\(61\) −9.89949 −1.26750 −0.633750 0.773538i \(-0.718485\pi\)
−0.633750 + 0.773538i \(0.718485\pi\)
\(62\) −5.65685 −0.718421
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) −4.24264 −0.514496
\(69\) 11.3137 1.36201
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) −15.0000 −1.76777
\(73\) −12.7279 −1.48969 −0.744845 0.667237i \(-0.767477\pi\)
−0.744845 + 0.667237i \(0.767477\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) −2.82843 −0.324443
\(77\) 0 0
\(78\) 12.0000 1.35873
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −4.24264 −0.468521
\(83\) −8.48528 −0.931381 −0.465690 0.884948i \(-0.654194\pi\)
−0.465690 + 0.884948i \(0.654194\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.24264 0.449719 0.224860 0.974391i \(-0.427808\pi\)
0.224860 + 0.974391i \(0.427808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) −16.0000 −1.65912
\(94\) 0 0
\(95\) 0 0
\(96\) 14.1421 1.44338
\(97\) −4.24264 −0.430775 −0.215387 0.976529i \(-0.569101\pi\)
−0.215387 + 0.976529i \(0.569101\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.24264 0.422159 0.211079 0.977469i \(-0.432302\pi\)
0.211079 + 0.977469i \(0.432302\pi\)
\(102\) 12.0000 1.18818
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −12.7279 −1.24808
\(105\) 0 0
\(106\) −8.00000 −0.777029
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) −5.65685 −0.544331
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 0 0
\(111\) 16.9706 1.61077
\(112\) 0 0
\(113\) 8.00000 0.752577 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(114\) 8.00000 0.749269
\(115\) 0 0
\(116\) 0 0
\(117\) 21.2132 1.96116
\(118\) −8.48528 −0.781133
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −9.89949 −0.896258
\(123\) −12.0000 −1.08200
\(124\) 5.65685 0.508001
\(125\) 0 0
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) −3.00000 −0.265165
\(129\) 0 0
\(130\) 0 0
\(131\) 8.48528 0.741362 0.370681 0.928760i \(-0.379124\pi\)
0.370681 + 0.928760i \(0.379124\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −12.0000 −1.03664
\(135\) 0 0
\(136\) −12.7279 −1.09141
\(137\) −14.0000 −1.19610 −0.598050 0.801459i \(-0.704058\pi\)
−0.598050 + 0.801459i \(0.704058\pi\)
\(138\) 11.3137 0.963087
\(139\) −2.82843 −0.239904 −0.119952 0.992780i \(-0.538274\pi\)
−0.119952 + 0.992780i \(0.538274\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) 0 0
\(144\) −5.00000 −0.416667
\(145\) 0 0
\(146\) −12.7279 −1.05337
\(147\) 0 0
\(148\) −6.00000 −0.493197
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −8.48528 −0.688247
\(153\) 21.2132 1.71499
\(154\) 0 0
\(155\) 0 0
\(156\) −12.0000 −0.960769
\(157\) −4.24264 −0.338600 −0.169300 0.985565i \(-0.554151\pi\)
−0.169300 + 0.985565i \(0.554151\pi\)
\(158\) 12.0000 0.954669
\(159\) −22.6274 −1.79447
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) 24.0000 1.87983 0.939913 0.341415i \(-0.110906\pi\)
0.939913 + 0.341415i \(0.110906\pi\)
\(164\) 4.24264 0.331295
\(165\) 0 0
\(166\) −8.48528 −0.658586
\(167\) −11.3137 −0.875481 −0.437741 0.899101i \(-0.644221\pi\)
−0.437741 + 0.899101i \(0.644221\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 0 0
\(171\) 14.1421 1.08148
\(172\) 0 0
\(173\) 4.24264 0.322562 0.161281 0.986909i \(-0.448437\pi\)
0.161281 + 0.986909i \(0.448437\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −24.0000 −1.80395
\(178\) 4.24264 0.317999
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 18.3848 1.36653 0.683265 0.730171i \(-0.260559\pi\)
0.683265 + 0.730171i \(0.260559\pi\)
\(182\) 0 0
\(183\) −28.0000 −2.06982
\(184\) −12.0000 −0.884652
\(185\) 0 0
\(186\) −16.0000 −1.17318
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 19.7990 1.42887
\(193\) 24.0000 1.72756 0.863779 0.503871i \(-0.168091\pi\)
0.863779 + 0.503871i \(0.168091\pi\)
\(194\) −4.24264 −0.304604
\(195\) 0 0
\(196\) 0 0
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) 11.3137 0.802008 0.401004 0.916076i \(-0.368661\pi\)
0.401004 + 0.916076i \(0.368661\pi\)
\(200\) 0 0
\(201\) −33.9411 −2.39402
\(202\) 4.24264 0.298511
\(203\) 0 0
\(204\) −12.0000 −0.840168
\(205\) 0 0
\(206\) 0 0
\(207\) 20.0000 1.39010
\(208\) −4.24264 −0.294174
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 8.00000 0.549442
\(213\) 33.9411 2.32561
\(214\) 4.00000 0.273434
\(215\) 0 0
\(216\) −16.9706 −1.15470
\(217\) 0 0
\(218\) −16.0000 −1.08366
\(219\) −36.0000 −2.43265
\(220\) 0 0
\(221\) 18.0000 1.21081
\(222\) 16.9706 1.13899
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 8.00000 0.532152
\(227\) −2.82843 −0.187729 −0.0938647 0.995585i \(-0.529922\pi\)
−0.0938647 + 0.995585i \(0.529922\pi\)
\(228\) −8.00000 −0.529813
\(229\) −7.07107 −0.467269 −0.233635 0.972324i \(-0.575062\pi\)
−0.233635 + 0.972324i \(0.575062\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 21.2132 1.38675
\(235\) 0 0
\(236\) 8.48528 0.552345
\(237\) 33.9411 2.20471
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 9.89949 0.637683 0.318841 0.947808i \(-0.396706\pi\)
0.318841 + 0.947808i \(0.396706\pi\)
\(242\) −11.0000 −0.707107
\(243\) −14.1421 −0.907218
\(244\) 9.89949 0.633750
\(245\) 0 0
\(246\) −12.0000 −0.765092
\(247\) 12.0000 0.763542
\(248\) 16.9706 1.07763
\(249\) −24.0000 −1.52094
\(250\) 0 0
\(251\) −25.4558 −1.60676 −0.803379 0.595468i \(-0.796967\pi\)
−0.803379 + 0.595468i \(0.796967\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −12.0000 −0.752947
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −26.8701 −1.67611 −0.838054 0.545587i \(-0.816307\pi\)
−0.838054 + 0.545587i \(0.816307\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 8.48528 0.524222
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 12.0000 0.733017
\(269\) 21.2132 1.29339 0.646696 0.762748i \(-0.276150\pi\)
0.646696 + 0.762748i \(0.276150\pi\)
\(270\) 0 0
\(271\) 5.65685 0.343629 0.171815 0.985129i \(-0.445037\pi\)
0.171815 + 0.985129i \(0.445037\pi\)
\(272\) −4.24264 −0.257248
\(273\) 0 0
\(274\) −14.0000 −0.845771
\(275\) 0 0
\(276\) −11.3137 −0.681005
\(277\) 24.0000 1.44202 0.721010 0.692925i \(-0.243678\pi\)
0.721010 + 0.692925i \(0.243678\pi\)
\(278\) −2.82843 −0.169638
\(279\) −28.2843 −1.69334
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −25.4558 −1.51319 −0.756596 0.653882i \(-0.773139\pi\)
−0.756596 + 0.653882i \(0.773139\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 25.0000 1.47314
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −12.0000 −0.703452
\(292\) 12.7279 0.744845
\(293\) 1.41421 0.0826192 0.0413096 0.999146i \(-0.486847\pi\)
0.0413096 + 0.999146i \(0.486847\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −18.0000 −1.04623
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 16.9706 0.981433
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 12.0000 0.689382
\(304\) −2.82843 −0.162221
\(305\) 0 0
\(306\) 21.2132 1.21268
\(307\) −25.4558 −1.45284 −0.726421 0.687250i \(-0.758818\pi\)
−0.726421 + 0.687250i \(0.758818\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 33.9411 1.92462 0.962312 0.271947i \(-0.0876674\pi\)
0.962312 + 0.271947i \(0.0876674\pi\)
\(312\) −36.0000 −2.03810
\(313\) 21.2132 1.19904 0.599521 0.800359i \(-0.295358\pi\)
0.599521 + 0.800359i \(0.295358\pi\)
\(314\) −4.24264 −0.239426
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) 8.00000 0.449325 0.224662 0.974437i \(-0.427872\pi\)
0.224662 + 0.974437i \(0.427872\pi\)
\(318\) −22.6274 −1.26888
\(319\) 0 0
\(320\) 0 0
\(321\) 11.3137 0.631470
\(322\) 0 0
\(323\) 12.0000 0.667698
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 24.0000 1.32924
\(327\) −45.2548 −2.50260
\(328\) 12.7279 0.702782
\(329\) 0 0
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 8.48528 0.465690
\(333\) 30.0000 1.64399
\(334\) −11.3137 −0.619059
\(335\) 0 0
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 5.00000 0.271964
\(339\) 22.6274 1.22895
\(340\) 0 0
\(341\) 0 0
\(342\) 14.1421 0.764719
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 4.24264 0.228086
\(347\) 8.00000 0.429463 0.214731 0.976673i \(-0.431112\pi\)
0.214731 + 0.976673i \(0.431112\pi\)
\(348\) 0 0
\(349\) −1.41421 −0.0757011 −0.0378506 0.999283i \(-0.512051\pi\)
−0.0378506 + 0.999283i \(0.512051\pi\)
\(350\) 0 0
\(351\) 24.0000 1.28103
\(352\) 0 0
\(353\) −15.5563 −0.827981 −0.413990 0.910281i \(-0.635865\pi\)
−0.413990 + 0.910281i \(0.635865\pi\)
\(354\) −24.0000 −1.27559
\(355\) 0 0
\(356\) −4.24264 −0.224860
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 18.3848 0.966282
\(363\) −31.1127 −1.63299
\(364\) 0 0
\(365\) 0 0
\(366\) −28.0000 −1.46358
\(367\) −16.9706 −0.885856 −0.442928 0.896557i \(-0.646060\pi\)
−0.442928 + 0.896557i \(0.646060\pi\)
\(368\) −4.00000 −0.208514
\(369\) −21.2132 −1.10432
\(370\) 0 0
\(371\) 0 0
\(372\) 16.0000 0.829561
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −24.0000 −1.23280 −0.616399 0.787434i \(-0.711409\pi\)
−0.616399 + 0.787434i \(0.711409\pi\)
\(380\) 0 0
\(381\) −33.9411 −1.73886
\(382\) 12.0000 0.613973
\(383\) −33.9411 −1.73431 −0.867155 0.498038i \(-0.834054\pi\)
−0.867155 + 0.498038i \(0.834054\pi\)
\(384\) −8.48528 −0.433013
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) 0 0
\(388\) 4.24264 0.215387
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 16.9706 0.858238
\(392\) 0 0
\(393\) 24.0000 1.21064
\(394\) −8.00000 −0.403034
\(395\) 0 0
\(396\) 0 0
\(397\) −4.24264 −0.212932 −0.106466 0.994316i \(-0.533954\pi\)
−0.106466 + 0.994316i \(0.533954\pi\)
\(398\) 11.3137 0.567105
\(399\) 0 0
\(400\) 0 0
\(401\) 24.0000 1.19850 0.599251 0.800561i \(-0.295465\pi\)
0.599251 + 0.800561i \(0.295465\pi\)
\(402\) −33.9411 −1.69283
\(403\) −24.0000 −1.19553
\(404\) −4.24264 −0.211079
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −36.0000 −1.78227
\(409\) −18.3848 −0.909069 −0.454534 0.890729i \(-0.650194\pi\)
−0.454534 + 0.890729i \(0.650194\pi\)
\(410\) 0 0
\(411\) −39.5980 −1.95322
\(412\) 0 0
\(413\) 0 0
\(414\) 20.0000 0.982946
\(415\) 0 0
\(416\) 21.2132 1.04006
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) −8.48528 −0.414533 −0.207267 0.978285i \(-0.566457\pi\)
−0.207267 + 0.978285i \(0.566457\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 4.00000 0.194717
\(423\) 0 0
\(424\) 24.0000 1.16554
\(425\) 0 0
\(426\) 33.9411 1.64445
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) −5.65685 −0.272166
\(433\) −4.24264 −0.203888 −0.101944 0.994790i \(-0.532506\pi\)
−0.101944 + 0.994790i \(0.532506\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 16.0000 0.766261
\(437\) 11.3137 0.541208
\(438\) −36.0000 −1.72015
\(439\) −28.2843 −1.34993 −0.674967 0.737848i \(-0.735842\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 18.0000 0.856173
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) −16.9706 −0.805387
\(445\) 0 0
\(446\) 0 0
\(447\) −16.9706 −0.802680
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −8.00000 −0.376288
\(453\) 0 0
\(454\) −2.82843 −0.132745
\(455\) 0 0
\(456\) −24.0000 −1.12390
\(457\) −24.0000 −1.12267 −0.561336 0.827588i \(-0.689713\pi\)
−0.561336 + 0.827588i \(0.689713\pi\)
\(458\) −7.07107 −0.330409
\(459\) 24.0000 1.12022
\(460\) 0 0
\(461\) −21.2132 −0.987997 −0.493999 0.869463i \(-0.664465\pi\)
−0.493999 + 0.869463i \(0.664465\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −14.0000 −0.648537
\(467\) 31.1127 1.43972 0.719862 0.694117i \(-0.244205\pi\)
0.719862 + 0.694117i \(0.244205\pi\)
\(468\) −21.2132 −0.980581
\(469\) 0 0
\(470\) 0 0
\(471\) −12.0000 −0.552931
\(472\) 25.4558 1.17170
\(473\) 0 0
\(474\) 33.9411 1.55897
\(475\) 0 0
\(476\) 0 0
\(477\) −40.0000 −1.83147
\(478\) 24.0000 1.09773
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 25.4558 1.16069
\(482\) 9.89949 0.450910
\(483\) 0 0
\(484\) 11.0000 0.500000
\(485\) 0 0
\(486\) −14.1421 −0.641500
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) 29.6985 1.34439
\(489\) 67.8823 3.06974
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 12.0000 0.541002
\(493\) 0 0
\(494\) 12.0000 0.539906
\(495\) 0 0
\(496\) 5.65685 0.254000
\(497\) 0 0
\(498\) −24.0000 −1.07547
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) 0 0
\(501\) −32.0000 −1.42965
\(502\) −25.4558 −1.13615
\(503\) −16.9706 −0.756680 −0.378340 0.925667i \(-0.623505\pi\)
−0.378340 + 0.925667i \(0.623505\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 14.1421 0.628074
\(508\) 12.0000 0.532414
\(509\) 12.7279 0.564155 0.282078 0.959392i \(-0.408976\pi\)
0.282078 + 0.959392i \(0.408976\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) 16.0000 0.706417
\(514\) −26.8701 −1.18519
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) −29.6985 −1.30111 −0.650557 0.759457i \(-0.725465\pi\)
−0.650557 + 0.759457i \(0.725465\pi\)
\(522\) 0 0
\(523\) 8.48528 0.371035 0.185518 0.982641i \(-0.440604\pi\)
0.185518 + 0.982641i \(0.440604\pi\)
\(524\) −8.48528 −0.370681
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −42.4264 −1.84115
\(532\) 0 0
\(533\) −18.0000 −0.779667
\(534\) 12.0000 0.519291
\(535\) 0 0
\(536\) 36.0000 1.55496
\(537\) 33.9411 1.46467
\(538\) 21.2132 0.914566
\(539\) 0 0
\(540\) 0 0
\(541\) 18.0000 0.773880 0.386940 0.922105i \(-0.373532\pi\)
0.386940 + 0.922105i \(0.373532\pi\)
\(542\) 5.65685 0.242983
\(543\) 52.0000 2.23153
\(544\) 21.2132 0.909509
\(545\) 0 0
\(546\) 0 0
\(547\) −24.0000 −1.02617 −0.513083 0.858339i \(-0.671497\pi\)
−0.513083 + 0.858339i \(0.671497\pi\)
\(548\) 14.0000 0.598050
\(549\) −49.4975 −2.11250
\(550\) 0 0
\(551\) 0 0
\(552\) −33.9411 −1.44463
\(553\) 0 0
\(554\) 24.0000 1.01966
\(555\) 0 0
\(556\) 2.82843 0.119952
\(557\) 40.0000 1.69485 0.847427 0.530912i \(-0.178150\pi\)
0.847427 + 0.530912i \(0.178150\pi\)
\(558\) −28.2843 −1.19737
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.4558 1.07284 0.536418 0.843952i \(-0.319777\pi\)
0.536418 + 0.843952i \(0.319777\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −25.4558 −1.06999
\(567\) 0 0
\(568\) −36.0000 −1.51053
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 0 0
\(571\) −32.0000 −1.33916 −0.669579 0.742741i \(-0.733526\pi\)
−0.669579 + 0.742741i \(0.733526\pi\)
\(572\) 0 0
\(573\) 33.9411 1.41791
\(574\) 0 0
\(575\) 0 0
\(576\) 35.0000 1.45833
\(577\) −38.1838 −1.58961 −0.794805 0.606864i \(-0.792427\pi\)
−0.794805 + 0.606864i \(0.792427\pi\)
\(578\) 1.00000 0.0415945
\(579\) 67.8823 2.82109
\(580\) 0 0
\(581\) 0 0
\(582\) −12.0000 −0.497416
\(583\) 0 0
\(584\) 38.1838 1.58006
\(585\) 0 0
\(586\) 1.41421 0.0584206
\(587\) 42.4264 1.75113 0.875563 0.483105i \(-0.160491\pi\)
0.875563 + 0.483105i \(0.160491\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) −22.6274 −0.930768
\(592\) −6.00000 −0.246598
\(593\) 7.07107 0.290374 0.145187 0.989404i \(-0.453622\pi\)
0.145187 + 0.989404i \(0.453622\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 32.0000 1.30967
\(598\) 16.9706 0.693978
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) 41.0122 1.67292 0.836461 0.548026i \(-0.184621\pi\)
0.836461 + 0.548026i \(0.184621\pi\)
\(602\) 0 0
\(603\) −60.0000 −2.44339
\(604\) 0 0
\(605\) 0 0
\(606\) 12.0000 0.487467
\(607\) 33.9411 1.37763 0.688814 0.724938i \(-0.258132\pi\)
0.688814 + 0.724938i \(0.258132\pi\)
\(608\) 14.1421 0.573539
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −21.2132 −0.857493
\(613\) −6.00000 −0.242338 −0.121169 0.992632i \(-0.538664\pi\)
−0.121169 + 0.992632i \(0.538664\pi\)
\(614\) −25.4558 −1.02731
\(615\) 0 0
\(616\) 0 0
\(617\) 38.0000 1.52982 0.764911 0.644136i \(-0.222783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) 19.7990 0.795789 0.397894 0.917431i \(-0.369741\pi\)
0.397894 + 0.917431i \(0.369741\pi\)
\(620\) 0 0
\(621\) 22.6274 0.908007
\(622\) 33.9411 1.36092
\(623\) 0 0
\(624\) −12.0000 −0.480384
\(625\) 0 0
\(626\) 21.2132 0.847850
\(627\) 0 0
\(628\) 4.24264 0.169300
\(629\) 25.4558 1.01499
\(630\) 0 0
\(631\) 12.0000 0.477712 0.238856 0.971055i \(-0.423228\pi\)
0.238856 + 0.971055i \(0.423228\pi\)
\(632\) −36.0000 −1.43200
\(633\) 11.3137 0.449680
\(634\) 8.00000 0.317721
\(635\) 0 0
\(636\) 22.6274 0.897235
\(637\) 0 0
\(638\) 0 0
\(639\) 60.0000 2.37356
\(640\) 0 0
\(641\) 24.0000 0.947943 0.473972 0.880540i \(-0.342820\pi\)
0.473972 + 0.880540i \(0.342820\pi\)
\(642\) 11.3137 0.446516
\(643\) −8.48528 −0.334627 −0.167313 0.985904i \(-0.553509\pi\)
−0.167313 + 0.985904i \(0.553509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) 5.65685 0.222394 0.111197 0.993798i \(-0.464532\pi\)
0.111197 + 0.993798i \(0.464532\pi\)
\(648\) −3.00000 −0.117851
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −24.0000 −0.939913
\(653\) 2.00000 0.0782660 0.0391330 0.999234i \(-0.487540\pi\)
0.0391330 + 0.999234i \(0.487540\pi\)
\(654\) −45.2548 −1.76960
\(655\) 0 0
\(656\) 4.24264 0.165647
\(657\) −63.6396 −2.48282
\(658\) 0 0
\(659\) 48.0000 1.86981 0.934907 0.354892i \(-0.115482\pi\)
0.934907 + 0.354892i \(0.115482\pi\)
\(660\) 0 0
\(661\) 15.5563 0.605072 0.302536 0.953138i \(-0.402167\pi\)
0.302536 + 0.953138i \(0.402167\pi\)
\(662\) −8.00000 −0.310929
\(663\) 50.9117 1.97725
\(664\) 25.4558 0.987878
\(665\) 0 0
\(666\) 30.0000 1.16248
\(667\) 0 0
\(668\) 11.3137 0.437741
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) 18.0000 0.693334
\(675\) 0 0
\(676\) −5.00000 −0.192308
\(677\) −9.89949 −0.380468 −0.190234 0.981739i \(-0.560925\pi\)
−0.190234 + 0.981739i \(0.560925\pi\)
\(678\) 22.6274 0.869001
\(679\) 0 0
\(680\) 0 0
\(681\) −8.00000 −0.306561
\(682\) 0 0
\(683\) 28.0000 1.07139 0.535695 0.844411i \(-0.320050\pi\)
0.535695 + 0.844411i \(0.320050\pi\)
\(684\) −14.1421 −0.540738
\(685\) 0 0
\(686\) 0 0
\(687\) −20.0000 −0.763048
\(688\) 0 0
\(689\) −33.9411 −1.29305
\(690\) 0 0
\(691\) −2.82843 −0.107598 −0.0537992 0.998552i \(-0.517133\pi\)
−0.0537992 + 0.998552i \(0.517133\pi\)
\(692\) −4.24264 −0.161281
\(693\) 0 0
\(694\) 8.00000 0.303676
\(695\) 0 0
\(696\) 0 0
\(697\) −18.0000 −0.681799
\(698\) −1.41421 −0.0535288
\(699\) −39.5980 −1.49773
\(700\) 0 0
\(701\) 48.0000 1.81293 0.906467 0.422276i \(-0.138769\pi\)
0.906467 + 0.422276i \(0.138769\pi\)
\(702\) 24.0000 0.905822
\(703\) 16.9706 0.640057
\(704\) 0 0
\(705\) 0 0
\(706\) −15.5563 −0.585471
\(707\) 0 0
\(708\) 24.0000 0.901975
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 60.0000 2.25018
\(712\) −12.7279 −0.476999
\(713\) −22.6274 −0.847403
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 67.8823 2.53511
\(718\) 24.0000 0.895672
\(719\) 16.9706 0.632895 0.316448 0.948610i \(-0.397510\pi\)
0.316448 + 0.948610i \(0.397510\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −11.0000 −0.409378
\(723\) 28.0000 1.04133
\(724\) −18.3848 −0.683265
\(725\) 0 0
\(726\) −31.1127 −1.15470
\(727\) 33.9411 1.25881 0.629403 0.777079i \(-0.283299\pi\)
0.629403 + 0.777079i \(0.283299\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) 0 0
\(732\) 28.0000 1.03491
\(733\) −4.24264 −0.156706 −0.0783528 0.996926i \(-0.524966\pi\)
−0.0783528 + 0.996926i \(0.524966\pi\)
\(734\) −16.9706 −0.626395
\(735\) 0 0
\(736\) 20.0000 0.737210
\(737\) 0 0
\(738\) −21.2132 −0.780869
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) 33.9411 1.24686
\(742\) 0 0
\(743\) 28.0000 1.02722 0.513610 0.858024i \(-0.328308\pi\)
0.513610 + 0.858024i \(0.328308\pi\)
\(744\) 48.0000 1.75977
\(745\) 0 0
\(746\) −24.0000 −0.878702
\(747\) −42.4264 −1.55230
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 0 0
\(753\) −72.0000 −2.62383
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −6.00000 −0.218074 −0.109037 0.994038i \(-0.534777\pi\)
−0.109037 + 0.994038i \(0.534777\pi\)
\(758\) −24.0000 −0.871719
\(759\) 0 0
\(760\) 0 0
\(761\) 29.6985 1.07657 0.538285 0.842763i \(-0.319073\pi\)
0.538285 + 0.842763i \(0.319073\pi\)
\(762\) −33.9411 −1.22956
\(763\) 0 0
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −33.9411 −1.22634
\(767\) −36.0000 −1.29988
\(768\) −48.0833 −1.73506
\(769\) −24.0416 −0.866963 −0.433482 0.901162i \(-0.642715\pi\)
−0.433482 + 0.901162i \(0.642715\pi\)
\(770\) 0 0
\(771\) −76.0000 −2.73707
\(772\) −24.0000 −0.863779
\(773\) −21.2132 −0.762986 −0.381493 0.924372i \(-0.624590\pi\)
−0.381493 + 0.924372i \(0.624590\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 12.7279 0.456906
\(777\) 0 0
\(778\) 0 0
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) 0 0
\(782\) 16.9706 0.606866
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 24.0000 0.856052
\(787\) 8.48528 0.302468 0.151234 0.988498i \(-0.451675\pi\)
0.151234 + 0.988498i \(0.451675\pi\)
\(788\) 8.00000 0.284988
\(789\) −45.2548 −1.61111
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −42.0000 −1.49146
\(794\) −4.24264 −0.150566
\(795\) 0 0
\(796\) −11.3137 −0.401004
\(797\) −4.24264 −0.150282 −0.0751410 0.997173i \(-0.523941\pi\)
−0.0751410 + 0.997173i \(0.523941\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 21.2132 0.749532
\(802\) 24.0000 0.847469
\(803\) 0 0
\(804\) 33.9411 1.19701
\(805\) 0 0
\(806\) −24.0000 −0.845364
\(807\) 60.0000 2.11210
\(808\) −12.7279 −0.447767
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) −14.1421 −0.496598 −0.248299 0.968683i \(-0.579871\pi\)
−0.248299 + 0.968683i \(0.579871\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 0 0
\(815\) 0 0
\(816\) −12.0000 −0.420084
\(817\) 0 0
\(818\) −18.3848 −0.642809
\(819\) 0 0
\(820\) 0 0
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) −39.5980 −1.38114
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 52.0000 1.80822 0.904109 0.427303i \(-0.140536\pi\)
0.904109 + 0.427303i \(0.140536\pi\)
\(828\) −20.0000 −0.695048
\(829\) −24.0416 −0.835000 −0.417500 0.908677i \(-0.637094\pi\)
−0.417500 + 0.908677i \(0.637094\pi\)
\(830\) 0 0
\(831\) 67.8823 2.35481
\(832\) 29.6985 1.02961
\(833\) 0 0
\(834\) −8.00000 −0.277017
\(835\) 0 0
\(836\) 0 0
\(837\) −32.0000 −1.10608
\(838\) −8.48528 −0.293119
\(839\) −16.9706 −0.585889 −0.292944 0.956129i \(-0.594635\pi\)
−0.292944 + 0.956129i \(0.594635\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −6.00000 −0.206774
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 8.00000 0.274721
\(849\) −72.0000 −2.47103
\(850\) 0 0
\(851\) 24.0000 0.822709
\(852\) −33.9411 −1.16280
\(853\) −12.7279 −0.435796 −0.217898 0.975972i \(-0.569920\pi\)
−0.217898 + 0.975972i \(0.569920\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −55.1543 −1.88404 −0.942018 0.335562i \(-0.891074\pi\)
−0.942018 + 0.335562i \(0.891074\pi\)
\(858\) 0 0
\(859\) 31.1127 1.06155 0.530776 0.847512i \(-0.321901\pi\)
0.530776 + 0.847512i \(0.321901\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 24.0000 0.817443
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 28.2843 0.962250
\(865\) 0 0
\(866\) −4.24264 −0.144171
\(867\) 2.82843 0.0960584
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −50.9117 −1.72508
\(872\) 48.0000 1.62549
\(873\) −21.2132 −0.717958
\(874\) 11.3137 0.382692
\(875\) 0 0
\(876\) 36.0000 1.21633
\(877\) −30.0000 −1.01303 −0.506514 0.862232i \(-0.669066\pi\)
−0.506514 + 0.862232i \(0.669066\pi\)
\(878\) −28.2843 −0.954548
\(879\) 4.00000 0.134917
\(880\) 0 0
\(881\) −46.6690 −1.57232 −0.786160 0.618023i \(-0.787934\pi\)
−0.786160 + 0.618023i \(0.787934\pi\)
\(882\) 0 0
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) −18.0000 −0.605406
\(885\) 0 0
\(886\) −4.00000 −0.134383
\(887\) 16.9706 0.569816 0.284908 0.958555i \(-0.408037\pi\)
0.284908 + 0.958555i \(0.408037\pi\)
\(888\) −50.9117 −1.70848
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) −16.9706 −0.567581
\(895\) 0 0
\(896\) 0 0
\(897\) 48.0000 1.60267
\(898\) −18.0000 −0.600668
\(899\) 0 0
\(900\) 0 0
\(901\) −33.9411 −1.13074
\(902\) 0 0
\(903\) 0 0
\(904\) −24.0000 −0.798228
\(905\) 0 0
\(906\) 0 0
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 2.82843 0.0938647
\(909\) 21.2132 0.703598
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) −8.00000 −0.264906
\(913\) 0 0
\(914\) −24.0000 −0.793849
\(915\) 0 0
\(916\) 7.07107 0.233635
\(917\) 0 0
\(918\) 24.0000 0.792118
\(919\) 20.0000 0.659739 0.329870 0.944027i \(-0.392995\pi\)
0.329870 + 0.944027i \(0.392995\pi\)
\(920\) 0 0
\(921\) −72.0000 −2.37248
\(922\) −21.2132 −0.698620
\(923\) 50.9117 1.67578
\(924\) 0 0
\(925\) 0 0
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) 0 0
\(929\) 12.7279 0.417590 0.208795 0.977959i \(-0.433046\pi\)
0.208795 + 0.977959i \(0.433046\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 14.0000 0.458585
\(933\) 96.0000 3.14290
\(934\) 31.1127 1.01804
\(935\) 0 0
\(936\) −63.6396 −2.08013
\(937\) 12.7279 0.415803 0.207902 0.978150i \(-0.433337\pi\)
0.207902 + 0.978150i \(0.433337\pi\)
\(938\) 0 0
\(939\) 60.0000 1.95803
\(940\) 0 0
\(941\) 21.2132 0.691531 0.345765 0.938321i \(-0.387619\pi\)
0.345765 + 0.938321i \(0.387619\pi\)
\(942\) −12.0000 −0.390981
\(943\) −16.9706 −0.552638
\(944\) 8.48528 0.276172
\(945\) 0 0
\(946\) 0 0
\(947\) −8.00000 −0.259965 −0.129983 0.991516i \(-0.541492\pi\)
−0.129983 + 0.991516i \(0.541492\pi\)
\(948\) −33.9411 −1.10236
\(949\) −54.0000 −1.75291
\(950\) 0 0
\(951\) 22.6274 0.733744
\(952\) 0 0
\(953\) 32.0000 1.03658 0.518291 0.855204i \(-0.326568\pi\)
0.518291 + 0.855204i \(0.326568\pi\)
\(954\) −40.0000 −1.29505
\(955\) 0 0
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 25.4558 0.820729
\(963\) 20.0000 0.644491
\(964\) −9.89949 −0.318841
\(965\) 0 0
\(966\) 0 0
\(967\) 36.0000 1.15768 0.578841 0.815440i \(-0.303505\pi\)
0.578841 + 0.815440i \(0.303505\pi\)
\(968\) 33.0000 1.06066
\(969\) 33.9411 1.09035
\(970\) 0 0
\(971\) −8.48528 −0.272306 −0.136153 0.990688i \(-0.543474\pi\)
−0.136153 + 0.990688i \(0.543474\pi\)
\(972\) 14.1421 0.453609
\(973\) 0 0
\(974\) −12.0000 −0.384505
\(975\) 0 0
\(976\) 9.89949 0.316875
\(977\) −10.0000 −0.319928 −0.159964 0.987123i \(-0.551138\pi\)
−0.159964 + 0.987123i \(0.551138\pi\)
\(978\) 67.8823 2.17064
\(979\) 0 0
\(980\) 0 0
\(981\) −80.0000 −2.55420
\(982\) −12.0000 −0.382935
\(983\) −28.2843 −0.902128 −0.451064 0.892492i \(-0.648955\pi\)
−0.451064 + 0.892492i \(0.648955\pi\)
\(984\) 36.0000 1.14764
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −12.0000 −0.381771
\(989\) 0 0
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) −28.2843 −0.898027
\(993\) −22.6274 −0.718059
\(994\) 0 0
\(995\) 0 0
\(996\) 24.0000 0.760469
\(997\) 55.1543 1.74676 0.873378 0.487044i \(-0.161925\pi\)
0.873378 + 0.487044i \(0.161925\pi\)
\(998\) −12.0000 −0.379853
\(999\) 33.9411 1.07385
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.2.a.v.1.2 2
5.2 odd 4 245.2.b.f.99.3 yes 4
5.3 odd 4 245.2.b.f.99.2 yes 4
5.4 even 2 1225.2.a.l.1.1 2
7.6 odd 2 inner 1225.2.a.v.1.1 2
15.2 even 4 2205.2.d.k.1324.1 4
15.8 even 4 2205.2.d.k.1324.3 4
35.2 odd 12 245.2.j.g.214.4 8
35.3 even 12 245.2.j.g.79.3 8
35.12 even 12 245.2.j.g.214.3 8
35.13 even 4 245.2.b.f.99.1 4
35.17 even 12 245.2.j.g.79.2 8
35.18 odd 12 245.2.j.g.79.4 8
35.23 odd 12 245.2.j.g.214.1 8
35.27 even 4 245.2.b.f.99.4 yes 4
35.32 odd 12 245.2.j.g.79.1 8
35.33 even 12 245.2.j.g.214.2 8
35.34 odd 2 1225.2.a.l.1.2 2
105.62 odd 4 2205.2.d.k.1324.2 4
105.83 odd 4 2205.2.d.k.1324.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.2.b.f.99.1 4 35.13 even 4
245.2.b.f.99.2 yes 4 5.3 odd 4
245.2.b.f.99.3 yes 4 5.2 odd 4
245.2.b.f.99.4 yes 4 35.27 even 4
245.2.j.g.79.1 8 35.32 odd 12
245.2.j.g.79.2 8 35.17 even 12
245.2.j.g.79.3 8 35.3 even 12
245.2.j.g.79.4 8 35.18 odd 12
245.2.j.g.214.1 8 35.23 odd 12
245.2.j.g.214.2 8 35.33 even 12
245.2.j.g.214.3 8 35.12 even 12
245.2.j.g.214.4 8 35.2 odd 12
1225.2.a.l.1.1 2 5.4 even 2
1225.2.a.l.1.2 2 35.34 odd 2
1225.2.a.v.1.1 2 7.6 odd 2 inner
1225.2.a.v.1.2 2 1.1 even 1 trivial
2205.2.d.k.1324.1 4 15.2 even 4
2205.2.d.k.1324.2 4 105.62 odd 4
2205.2.d.k.1324.3 4 15.8 even 4
2205.2.d.k.1324.4 4 105.83 odd 4