Properties

Label 245.2.j.g.79.2
Level $245$
Weight $2$
Character 245.79
Analytic conductor $1.956$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,2,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.2
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 245.79
Dual form 245.2.j.g.214.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(2.44949 - 1.41421i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.67303 - 1.48356i) q^{5} -2.82843 q^{6} +3.00000i q^{8} +(2.50000 - 4.33013i) q^{9} +(-2.19067 + 0.448288i) q^{10} +(-2.44949 - 1.41421i) q^{12} +4.24264i q^{13} +(2.00000 - 6.00000i) q^{15} +(0.500000 - 0.866025i) q^{16} +(-3.67423 + 2.12132i) q^{17} +(-4.33013 + 2.50000i) q^{18} +(-1.41421 + 2.44949i) q^{19} +(-2.12132 - 0.707107i) q^{20} +(3.46410 + 2.00000i) q^{23} +(4.24264 + 7.34847i) q^{24} +(0.598076 - 4.96410i) q^{25} +(2.12132 - 3.67423i) q^{26} -5.65685i q^{27} +(-4.73205 + 4.19615i) q^{30} +(-2.82843 - 4.89898i) q^{31} +(4.33013 - 2.50000i) q^{32} +4.24264 q^{34} -5.00000 q^{36} +(-5.19615 - 3.00000i) q^{37} +(2.44949 - 1.41421i) q^{38} +(6.00000 + 10.3923i) q^{39} +(4.45069 + 5.01910i) q^{40} +4.24264 q^{41} +(-2.24144 - 10.9534i) q^{45} +(-2.00000 - 3.46410i) q^{46} -2.82843i q^{48} +(-3.00000 + 4.00000i) q^{50} +(-6.00000 + 10.3923i) q^{51} +(3.67423 - 2.12132i) q^{52} +(6.92820 - 4.00000i) q^{53} +(-2.82843 + 4.89898i) q^{54} +8.00000i q^{57} +(4.24264 + 7.34847i) q^{59} +(-6.19615 + 1.26795i) q^{60} +(-4.94975 + 8.57321i) q^{61} +5.65685i q^{62} -7.00000 q^{64} +(6.29423 + 7.09808i) q^{65} +(-10.3923 + 6.00000i) q^{67} +(3.67423 + 2.12132i) q^{68} +11.3137 q^{69} +12.0000 q^{71} +(12.9904 + 7.50000i) q^{72} +(-11.0227 + 6.36396i) q^{73} +(3.00000 + 5.19615i) q^{74} +(-5.55532 - 13.0053i) q^{75} +2.82843 q^{76} -12.0000i q^{78} +(6.00000 - 10.3923i) q^{79} +(-0.448288 - 2.19067i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.67423 - 2.12132i) q^{82} -8.48528i q^{83} +(-3.00000 + 9.00000i) q^{85} +(-2.12132 + 3.67423i) q^{89} +(-3.53553 + 10.6066i) q^{90} -4.00000i q^{92} +(-13.8564 - 8.00000i) q^{93} +(1.26795 + 6.19615i) q^{95} +(7.07107 - 12.2474i) q^{96} +4.24264i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} + 20 q^{9} + 16 q^{15} + 4 q^{16} - 16 q^{25} - 24 q^{30} - 40 q^{36} + 48 q^{39} - 16 q^{46} - 24 q^{50} - 48 q^{51} - 8 q^{60} - 56 q^{64} - 12 q^{65} + 96 q^{71} + 24 q^{74} + 48 q^{79}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i 0.161521 0.986869i \(-0.448360\pi\)
−0.773893 + 0.633316i \(0.781693\pi\)
\(3\) 2.44949 1.41421i 1.41421 0.816497i 0.418432 0.908248i \(-0.362580\pi\)
0.995782 + 0.0917517i \(0.0292466\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.67303 1.48356i 0.748203 0.663470i
\(6\) −2.82843 −1.15470
\(7\) 0 0
\(8\) 3.00000i 1.06066i
\(9\) 2.50000 4.33013i 0.833333 1.44338i
\(10\) −2.19067 + 0.448288i −0.692751 + 0.141761i
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) −2.44949 1.41421i −0.707107 0.408248i
\(13\) 4.24264i 1.17670i 0.808608 + 0.588348i \(0.200222\pi\)
−0.808608 + 0.588348i \(0.799778\pi\)
\(14\) 0 0
\(15\) 2.00000 6.00000i 0.516398 1.54919i
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −3.67423 + 2.12132i −0.891133 + 0.514496i −0.874313 0.485363i \(-0.838688\pi\)
−0.0168199 + 0.999859i \(0.505354\pi\)
\(18\) −4.33013 + 2.50000i −1.02062 + 0.589256i
\(19\) −1.41421 + 2.44949i −0.324443 + 0.561951i −0.981399 0.191977i \(-0.938510\pi\)
0.656957 + 0.753928i \(0.271843\pi\)
\(20\) −2.12132 0.707107i −0.474342 0.158114i
\(21\) 0 0
\(22\) 0 0
\(23\) 3.46410 + 2.00000i 0.722315 + 0.417029i 0.815604 0.578610i \(-0.196405\pi\)
−0.0932891 + 0.995639i \(0.529738\pi\)
\(24\) 4.24264 + 7.34847i 0.866025 + 1.50000i
\(25\) 0.598076 4.96410i 0.119615 0.992820i
\(26\) 2.12132 3.67423i 0.416025 0.720577i
\(27\) 5.65685i 1.08866i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) −4.73205 + 4.19615i −0.863950 + 0.766109i
\(31\) −2.82843 4.89898i −0.508001 0.879883i −0.999957 0.00926296i \(-0.997051\pi\)
0.491957 0.870620i \(-0.336282\pi\)
\(32\) 4.33013 2.50000i 0.765466 0.441942i
\(33\) 0 0
\(34\) 4.24264 0.727607
\(35\) 0 0
\(36\) −5.00000 −0.833333
\(37\) −5.19615 3.00000i −0.854242 0.493197i 0.00783774 0.999969i \(-0.497505\pi\)
−0.862080 + 0.506772i \(0.830838\pi\)
\(38\) 2.44949 1.41421i 0.397360 0.229416i
\(39\) 6.00000 + 10.3923i 0.960769 + 1.66410i
\(40\) 4.45069 + 5.01910i 0.703716 + 0.793589i
\(41\) 4.24264 0.662589 0.331295 0.943527i \(-0.392515\pi\)
0.331295 + 0.943527i \(0.392515\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) −2.24144 10.9534i −0.334134 1.63283i
\(46\) −2.00000 3.46410i −0.294884 0.510754i
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 2.82843i 0.408248i
\(49\) 0 0
\(50\) −3.00000 + 4.00000i −0.424264 + 0.565685i
\(51\) −6.00000 + 10.3923i −0.840168 + 1.45521i
\(52\) 3.67423 2.12132i 0.509525 0.294174i
\(53\) 6.92820 4.00000i 0.951662 0.549442i 0.0580651 0.998313i \(-0.481507\pi\)
0.893597 + 0.448871i \(0.148174\pi\)
\(54\) −2.82843 + 4.89898i −0.384900 + 0.666667i
\(55\) 0 0
\(56\) 0 0
\(57\) 8.00000i 1.05963i
\(58\) 0 0
\(59\) 4.24264 + 7.34847i 0.552345 + 0.956689i 0.998105 + 0.0615367i \(0.0196001\pi\)
−0.445760 + 0.895152i \(0.647067\pi\)
\(60\) −6.19615 + 1.26795i −0.799920 + 0.163692i
\(61\) −4.94975 + 8.57321i −0.633750 + 1.09769i 0.353028 + 0.935613i \(0.385152\pi\)
−0.986778 + 0.162075i \(0.948181\pi\)
\(62\) 5.65685i 0.718421i
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) 6.29423 + 7.09808i 0.780703 + 0.880408i
\(66\) 0 0
\(67\) −10.3923 + 6.00000i −1.26962 + 0.733017i −0.974916 0.222571i \(-0.928555\pi\)
−0.294706 + 0.955588i \(0.595222\pi\)
\(68\) 3.67423 + 2.12132i 0.445566 + 0.257248i
\(69\) 11.3137 1.36201
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 12.9904 + 7.50000i 1.53093 + 0.883883i
\(73\) −11.0227 + 6.36396i −1.29011 + 0.744845i −0.978674 0.205422i \(-0.934143\pi\)
−0.311436 + 0.950267i \(0.600810\pi\)
\(74\) 3.00000 + 5.19615i 0.348743 + 0.604040i
\(75\) −5.55532 13.0053i −0.641473 1.50173i
\(76\) 2.82843 0.324443
\(77\) 0 0
\(78\) 12.0000i 1.35873i
\(79\) 6.00000 10.3923i 0.675053 1.16923i −0.301401 0.953498i \(-0.597454\pi\)
0.976453 0.215728i \(-0.0692125\pi\)
\(80\) −0.448288 2.19067i −0.0501201 0.244924i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.67423 2.12132i −0.405751 0.234261i
\(83\) 8.48528i 0.931381i −0.884948 0.465690i \(-0.845806\pi\)
0.884948 0.465690i \(-0.154194\pi\)
\(84\) 0 0
\(85\) −3.00000 + 9.00000i −0.325396 + 0.976187i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.12132 + 3.67423i −0.224860 + 0.389468i −0.956277 0.292462i \(-0.905526\pi\)
0.731418 + 0.681930i \(0.238859\pi\)
\(90\) −3.53553 + 10.6066i −0.372678 + 1.11803i
\(91\) 0 0
\(92\) 4.00000i 0.417029i
\(93\) −13.8564 8.00000i −1.43684 0.829561i
\(94\) 0 0
\(95\) 1.26795 + 6.19615i 0.130089 + 0.635712i
\(96\) 7.07107 12.2474i 0.721688 1.25000i
\(97\) 4.24264i 0.430775i 0.976529 + 0.215387i \(0.0691014\pi\)
−0.976529 + 0.215387i \(0.930899\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −4.59808 + 1.96410i −0.459808 + 0.196410i
\(101\) 2.12132 + 3.67423i 0.211079 + 0.365600i 0.952053 0.305934i \(-0.0989688\pi\)
−0.740973 + 0.671534i \(0.765636\pi\)
\(102\) 10.3923 6.00000i 1.02899 0.594089i
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) −12.7279 −1.24808
\(105\) 0 0
\(106\) −8.00000 −0.777029
\(107\) −3.46410 2.00000i −0.334887 0.193347i 0.323122 0.946357i \(-0.395268\pi\)
−0.658009 + 0.753010i \(0.728601\pi\)
\(108\) −4.89898 + 2.82843i −0.471405 + 0.272166i
\(109\) −8.00000 13.8564i −0.766261 1.32720i −0.939577 0.342337i \(-0.888782\pi\)
0.173316 0.984866i \(-0.444552\pi\)
\(110\) 0 0
\(111\) −16.9706 −1.61077
\(112\) 0 0
\(113\) 8.00000i 0.752577i −0.926503 0.376288i \(-0.877200\pi\)
0.926503 0.376288i \(-0.122800\pi\)
\(114\) 4.00000 6.92820i 0.374634 0.648886i
\(115\) 8.76268 1.79315i 0.817124 0.167212i
\(116\) 0 0
\(117\) 18.3712 + 10.6066i 1.69842 + 0.980581i
\(118\) 8.48528i 0.781133i
\(119\) 0 0
\(120\) 18.0000 + 6.00000i 1.64317 + 0.547723i
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 8.57321 4.94975i 0.776182 0.448129i
\(123\) 10.3923 6.00000i 0.937043 0.541002i
\(124\) −2.82843 + 4.89898i −0.254000 + 0.439941i
\(125\) −6.36396 9.19239i −0.569210 0.822192i
\(126\) 0 0
\(127\) 12.0000i 1.06483i −0.846484 0.532414i \(-0.821285\pi\)
0.846484 0.532414i \(-0.178715\pi\)
\(128\) −2.59808 1.50000i −0.229640 0.132583i
\(129\) 0 0
\(130\) −1.90192 9.29423i −0.166810 0.815158i
\(131\) 4.24264 7.34847i 0.370681 0.642039i −0.618989 0.785399i \(-0.712458\pi\)
0.989671 + 0.143361i \(0.0457909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.0000 1.03664
\(135\) −8.39230 9.46410i −0.722295 0.814540i
\(136\) −6.36396 11.0227i −0.545705 0.945189i
\(137\) −12.1244 + 7.00000i −1.03585 + 0.598050i −0.918656 0.395058i \(-0.870724\pi\)
−0.117198 + 0.993109i \(0.537391\pi\)
\(138\) −9.79796 5.65685i −0.834058 0.481543i
\(139\) −2.82843 −0.239904 −0.119952 0.992780i \(-0.538274\pi\)
−0.119952 + 0.992780i \(0.538274\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −10.3923 6.00000i −0.872103 0.503509i
\(143\) 0 0
\(144\) −2.50000 4.33013i −0.208333 0.360844i
\(145\) 0 0
\(146\) 12.7279 1.05337
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) −1.69161 + 14.0406i −0.138120 + 1.14641i
\(151\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(152\) −7.34847 4.24264i −0.596040 0.344124i
\(153\) 21.2132i 1.71499i
\(154\) 0 0
\(155\) −12.0000 4.00000i −0.963863 0.321288i
\(156\) 6.00000 10.3923i 0.480384 0.832050i
\(157\) 3.67423 2.12132i 0.293236 0.169300i −0.346164 0.938174i \(-0.612516\pi\)
0.639400 + 0.768874i \(0.279183\pi\)
\(158\) −10.3923 + 6.00000i −0.826767 + 0.477334i
\(159\) 11.3137 19.5959i 0.897235 1.55406i
\(160\) 3.53553 10.6066i 0.279508 0.838525i
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 20.7846 + 12.0000i 1.62798 + 0.939913i 0.984696 + 0.174282i \(0.0557604\pi\)
0.643280 + 0.765631i \(0.277573\pi\)
\(164\) −2.12132 3.67423i −0.165647 0.286910i
\(165\) 0 0
\(166\) −4.24264 + 7.34847i −0.329293 + 0.570352i
\(167\) 11.3137i 0.875481i 0.899101 + 0.437741i \(0.144221\pi\)
−0.899101 + 0.437741i \(0.855779\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 7.09808 6.29423i 0.544398 0.482745i
\(171\) 7.07107 + 12.2474i 0.540738 + 0.936586i
\(172\) 0 0
\(173\) −3.67423 2.12132i −0.279347 0.161281i 0.353781 0.935328i \(-0.384896\pi\)
−0.633128 + 0.774047i \(0.718229\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 20.7846 + 12.0000i 1.56227 + 0.901975i
\(178\) 3.67423 2.12132i 0.275396 0.159000i
\(179\) 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i \(-0.0186389\pi\)
−0.549825 + 0.835280i \(0.685306\pi\)
\(180\) −8.36516 + 7.41782i −0.623502 + 0.552892i
\(181\) −18.3848 −1.36653 −0.683265 0.730171i \(-0.739441\pi\)
−0.683265 + 0.730171i \(0.739441\pi\)
\(182\) 0 0
\(183\) 28.0000i 2.06982i
\(184\) −6.00000 + 10.3923i −0.442326 + 0.766131i
\(185\) −13.1440 + 2.68973i −0.966368 + 0.197753i
\(186\) 8.00000 + 13.8564i 0.586588 + 1.01600i
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 2.00000 6.00000i 0.145095 0.435286i
\(191\) −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(192\) −17.1464 + 9.89949i −1.23744 + 0.714435i
\(193\) −20.7846 + 12.0000i −1.49611 + 0.863779i −0.999990 0.00447566i \(-0.998575\pi\)
−0.496119 + 0.868255i \(0.665242\pi\)
\(194\) 2.12132 3.67423i 0.152302 0.263795i
\(195\) 25.4558 + 8.48528i 1.82293 + 0.607644i
\(196\) 0 0
\(197\) 8.00000i 0.569976i −0.958531 0.284988i \(-0.908010\pi\)
0.958531 0.284988i \(-0.0919897\pi\)
\(198\) 0 0
\(199\) −5.65685 9.79796i −0.401004 0.694559i 0.592844 0.805318i \(-0.298005\pi\)
−0.993847 + 0.110759i \(0.964672\pi\)
\(200\) 14.8923 + 1.79423i 1.05304 + 0.126871i
\(201\) −16.9706 + 29.3939i −1.19701 + 2.07328i
\(202\) 4.24264i 0.298511i
\(203\) 0 0
\(204\) 12.0000 0.840168
\(205\) 7.09808 6.29423i 0.495751 0.439608i
\(206\) 0 0
\(207\) 17.3205 10.0000i 1.20386 0.695048i
\(208\) 3.67423 + 2.12132i 0.254762 + 0.147087i
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −6.92820 4.00000i −0.475831 0.274721i
\(213\) 29.3939 16.9706i 2.01404 1.16280i
\(214\) 2.00000 + 3.46410i 0.136717 + 0.236801i
\(215\) 0 0
\(216\) 16.9706 1.15470
\(217\) 0 0
\(218\) 16.0000i 1.08366i
\(219\) −18.0000 + 31.1769i −1.21633 + 2.10674i
\(220\) 0 0
\(221\) −9.00000 15.5885i −0.605406 1.04859i
\(222\) 14.6969 + 8.48528i 0.986394 + 0.569495i
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −20.0000 15.0000i −1.33333 1.00000i
\(226\) −4.00000 + 6.92820i −0.266076 + 0.460857i
\(227\) 2.44949 1.41421i 0.162578 0.0938647i −0.416503 0.909134i \(-0.636745\pi\)
0.579082 + 0.815270i \(0.303411\pi\)
\(228\) 6.92820 4.00000i 0.458831 0.264906i
\(229\) 3.53553 6.12372i 0.233635 0.404667i −0.725240 0.688496i \(-0.758271\pi\)
0.958875 + 0.283829i \(0.0916047\pi\)
\(230\) −8.48528 2.82843i −0.559503 0.186501i
\(231\) 0 0
\(232\) 0 0
\(233\) −12.1244 7.00000i −0.794293 0.458585i 0.0471787 0.998886i \(-0.484977\pi\)
−0.841472 + 0.540301i \(0.818310\pi\)
\(234\) −10.6066 18.3712i −0.693375 1.20096i
\(235\) 0 0
\(236\) 4.24264 7.34847i 0.276172 0.478345i
\(237\) 33.9411i 2.20471i
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) −4.19615 4.73205i −0.270860 0.305453i
\(241\) 4.94975 + 8.57321i 0.318841 + 0.552249i 0.980247 0.197779i \(-0.0633730\pi\)
−0.661405 + 0.750029i \(0.730040\pi\)
\(242\) −9.52628 + 5.50000i −0.612372 + 0.353553i
\(243\) 12.2474 + 7.07107i 0.785674 + 0.453609i
\(244\) 9.89949 0.633750
\(245\) 0 0
\(246\) −12.0000 −0.765092
\(247\) −10.3923 6.00000i −0.661247 0.381771i
\(248\) 14.6969 8.48528i 0.933257 0.538816i
\(249\) −12.0000 20.7846i −0.760469 1.31717i
\(250\) 0.915158 + 11.1428i 0.0578797 + 0.704734i
\(251\) 25.4558 1.60676 0.803379 0.595468i \(-0.203033\pi\)
0.803379 + 0.595468i \(0.203033\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −6.00000 + 10.3923i −0.376473 + 0.652071i
\(255\) 5.37945 + 26.2880i 0.336874 + 1.64622i
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) −23.2702 13.4350i −1.45155 0.838054i −0.452983 0.891519i \(-0.649640\pi\)
−0.998570 + 0.0534653i \(0.982973\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 3.00000 9.00000i 0.186052 0.558156i
\(261\) 0 0
\(262\) −7.34847 + 4.24264i −0.453990 + 0.262111i
\(263\) 13.8564 8.00000i 0.854423 0.493301i −0.00771799 0.999970i \(-0.502457\pi\)
0.862141 + 0.506669i \(0.169123\pi\)
\(264\) 0 0
\(265\) 5.65685 16.9706i 0.347498 1.04249i
\(266\) 0 0
\(267\) 12.0000i 0.734388i
\(268\) 10.3923 + 6.00000i 0.634811 + 0.366508i
\(269\) −10.6066 18.3712i −0.646696 1.12011i −0.983907 0.178681i \(-0.942817\pi\)
0.337211 0.941429i \(-0.390516\pi\)
\(270\) 2.53590 + 12.3923i 0.154330 + 0.754172i
\(271\) 2.82843 4.89898i 0.171815 0.297592i −0.767240 0.641361i \(-0.778370\pi\)
0.939054 + 0.343769i \(0.111704\pi\)
\(272\) 4.24264i 0.257248i
\(273\) 0 0
\(274\) 14.0000 0.845771
\(275\) 0 0
\(276\) −5.65685 9.79796i −0.340503 0.589768i
\(277\) 20.7846 12.0000i 1.24883 0.721010i 0.277951 0.960595i \(-0.410345\pi\)
0.970875 + 0.239585i \(0.0770114\pi\)
\(278\) 2.44949 + 1.41421i 0.146911 + 0.0848189i
\(279\) −28.2843 −1.69334
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −22.0454 + 12.7279i −1.31046 + 0.756596i −0.982173 0.187980i \(-0.939806\pi\)
−0.328291 + 0.944577i \(0.606473\pi\)
\(284\) −6.00000 10.3923i −0.356034 0.616670i
\(285\) 11.8685 + 13.3843i 0.703030 + 0.792815i
\(286\) 0 0
\(287\) 0 0
\(288\) 25.0000i 1.47314i
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) 0 0
\(291\) 6.00000 + 10.3923i 0.351726 + 0.609208i
\(292\) 11.0227 + 6.36396i 0.645055 + 0.372423i
\(293\) 1.41421i 0.0826192i 0.999146 + 0.0413096i \(0.0131530\pi\)
−0.999146 + 0.0413096i \(0.986847\pi\)
\(294\) 0 0
\(295\) 18.0000 + 6.00000i 1.04800 + 0.349334i
\(296\) 9.00000 15.5885i 0.523114 0.906061i
\(297\) 0 0
\(298\) 5.19615 3.00000i 0.301005 0.173785i
\(299\) −8.48528 + 14.6969i −0.490716 + 0.849946i
\(300\) −8.48528 + 11.3137i −0.489898 + 0.653197i
\(301\) 0 0
\(302\) 0 0
\(303\) 10.3923 + 6.00000i 0.597022 + 0.344691i
\(304\) 1.41421 + 2.44949i 0.0811107 + 0.140488i
\(305\) 4.43782 + 21.6865i 0.254109 + 1.24177i
\(306\) 10.6066 18.3712i 0.606339 1.05021i
\(307\) 25.4558i 1.45284i 0.687250 + 0.726421i \(0.258818\pi\)
−0.687250 + 0.726421i \(0.741182\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 8.39230 + 9.46410i 0.476651 + 0.537525i
\(311\) 16.9706 + 29.3939i 0.962312 + 1.66677i 0.716669 + 0.697414i \(0.245666\pi\)
0.245643 + 0.969360i \(0.421001\pi\)
\(312\) −31.1769 + 18.0000i −1.76505 + 1.01905i
\(313\) −18.3712 10.6066i −1.03840 0.599521i −0.119020 0.992892i \(-0.537975\pi\)
−0.919380 + 0.393371i \(0.871309\pi\)
\(314\) −4.24264 −0.239426
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) −6.92820 4.00000i −0.389127 0.224662i 0.292655 0.956218i \(-0.405461\pi\)
−0.681782 + 0.731556i \(0.738795\pi\)
\(318\) −19.5959 + 11.3137i −1.09888 + 0.634441i
\(319\) 0 0
\(320\) −11.7112 + 10.3849i −0.654678 + 0.580536i
\(321\) −11.3137 −0.631470
\(322\) 0 0
\(323\) 12.0000i 0.667698i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 21.0609 + 2.53742i 1.16825 + 0.140751i
\(326\) −12.0000 20.7846i −0.664619 1.15115i
\(327\) −39.1918 22.6274i −2.16731 1.25130i
\(328\) 12.7279i 0.702782i
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000 6.92820i 0.219860 0.380808i −0.734905 0.678170i \(-0.762773\pi\)
0.954765 + 0.297361i \(0.0961066\pi\)
\(332\) −7.34847 + 4.24264i −0.403300 + 0.232845i
\(333\) −25.9808 + 15.0000i −1.42374 + 0.821995i
\(334\) 5.65685 9.79796i 0.309529 0.536120i
\(335\) −8.48528 + 25.4558i −0.463600 + 1.39080i
\(336\) 0 0
\(337\) 18.0000i 0.980522i 0.871576 + 0.490261i \(0.163099\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 4.33013 + 2.50000i 0.235528 + 0.135982i
\(339\) −11.3137 19.5959i −0.614476 1.06430i
\(340\) 9.29423 1.90192i 0.504050 0.103146i
\(341\) 0 0
\(342\) 14.1421i 0.764719i
\(343\) 0 0
\(344\) 0 0
\(345\) 18.9282 16.7846i 1.01906 0.903653i
\(346\) 2.12132 + 3.67423i 0.114043 + 0.197528i
\(347\) 6.92820 4.00000i 0.371925 0.214731i −0.302374 0.953189i \(-0.597779\pi\)
0.674299 + 0.738458i \(0.264446\pi\)
\(348\) 0 0
\(349\) −1.41421 −0.0757011 −0.0378506 0.999283i \(-0.512051\pi\)
−0.0378506 + 0.999283i \(0.512051\pi\)
\(350\) 0 0
\(351\) 24.0000 1.28103
\(352\) 0 0
\(353\) −13.4722 + 7.77817i −0.717053 + 0.413990i −0.813667 0.581331i \(-0.802532\pi\)
0.0966144 + 0.995322i \(0.469199\pi\)
\(354\) −12.0000 20.7846i −0.637793 1.10469i
\(355\) 20.0764 17.8028i 1.06554 0.944873i
\(356\) 4.24264 0.224860
\(357\) 0 0
\(358\) 12.0000i 0.634220i
\(359\) 12.0000 20.7846i 0.633336 1.09697i −0.353529 0.935423i \(-0.615019\pi\)
0.986865 0.161546i \(-0.0516481\pi\)
\(360\) 32.8601 6.72432i 1.73188 0.354403i
\(361\) 5.50000 + 9.52628i 0.289474 + 0.501383i
\(362\) 15.9217 + 9.19239i 0.836825 + 0.483141i
\(363\) 31.1127i 1.63299i
\(364\) 0 0
\(365\) −9.00000 + 27.0000i −0.471082 + 1.41324i
\(366\) 14.0000 24.2487i 0.731792 1.26750i
\(367\) 14.6969 8.48528i 0.767174 0.442928i −0.0646916 0.997905i \(-0.520606\pi\)
0.831866 + 0.554977i \(0.187273\pi\)
\(368\) 3.46410 2.00000i 0.180579 0.104257i
\(369\) 10.6066 18.3712i 0.552158 0.956365i
\(370\) 12.7279 + 4.24264i 0.661693 + 0.220564i
\(371\) 0 0
\(372\) 16.0000i 0.829561i
\(373\) −20.7846 12.0000i −1.07619 0.621336i −0.146321 0.989237i \(-0.546743\pi\)
−0.929865 + 0.367901i \(0.880077\pi\)
\(374\) 0 0
\(375\) −28.5885 13.5167i −1.47630 0.697997i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 24.0000 1.23280 0.616399 0.787434i \(-0.288591\pi\)
0.616399 + 0.787434i \(0.288591\pi\)
\(380\) 4.73205 4.19615i 0.242749 0.215258i
\(381\) −16.9706 29.3939i −0.869428 1.50589i
\(382\) 10.3923 6.00000i 0.531717 0.306987i
\(383\) 29.3939 + 16.9706i 1.50196 + 0.867155i 0.999997 + 0.00226413i \(0.000720695\pi\)
0.501960 + 0.864891i \(0.332613\pi\)
\(384\) −8.48528 −0.433013
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) 0 0
\(388\) 3.67423 2.12132i 0.186531 0.107694i
\(389\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) −17.8028 20.0764i −0.901478 1.01661i
\(391\) −16.9706 −0.858238
\(392\) 0 0
\(393\) 24.0000i 1.21064i
\(394\) −4.00000 + 6.92820i −0.201517 + 0.349038i
\(395\) −5.37945 26.2880i −0.270670 1.32270i
\(396\) 0 0
\(397\) −3.67423 2.12132i −0.184405 0.106466i 0.404956 0.914336i \(-0.367287\pi\)
−0.589360 + 0.807870i \(0.700620\pi\)
\(398\) 11.3137i 0.567105i
\(399\) 0 0
\(400\) −4.00000 3.00000i −0.200000 0.150000i
\(401\) −12.0000 + 20.7846i −0.599251 + 1.03793i 0.393680 + 0.919247i \(0.371202\pi\)
−0.992932 + 0.118686i \(0.962132\pi\)
\(402\) 29.3939 16.9706i 1.46603 0.846415i
\(403\) 20.7846 12.0000i 1.03536 0.597763i
\(404\) 2.12132 3.67423i 0.105540 0.182800i
\(405\) −2.12132 0.707107i −0.105409 0.0351364i
\(406\) 0 0
\(407\) 0 0
\(408\) −31.1769 18.0000i −1.54349 0.891133i
\(409\) 9.19239 + 15.9217i 0.454534 + 0.787277i 0.998661 0.0517263i \(-0.0164724\pi\)
−0.544127 + 0.839003i \(0.683139\pi\)
\(410\) −9.29423 + 1.90192i −0.459009 + 0.0939293i
\(411\) −19.7990 + 34.2929i −0.976612 + 1.69154i
\(412\) 0 0
\(413\) 0 0
\(414\) −20.0000 −0.982946
\(415\) −12.5885 14.1962i −0.617943 0.696862i
\(416\) 10.6066 + 18.3712i 0.520031 + 0.900721i
\(417\) −6.92820 + 4.00000i −0.339276 + 0.195881i
\(418\) 0 0
\(419\) −8.48528 −0.414533 −0.207267 0.978285i \(-0.566457\pi\)
−0.207267 + 0.978285i \(0.566457\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) −3.46410 2.00000i −0.168630 0.0973585i
\(423\) 0 0
\(424\) 12.0000 + 20.7846i 0.582772 + 1.00939i
\(425\) 8.33298 + 19.5080i 0.404209 + 0.946276i
\(426\) −33.9411 −1.64445
\(427\) 0 0
\(428\) 4.00000i 0.193347i
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 20.7846i −0.578020 1.00116i −0.995706 0.0925683i \(-0.970492\pi\)
0.417687 0.908591i \(-0.362841\pi\)
\(432\) −4.89898 2.82843i −0.235702 0.136083i
\(433\) 4.24264i 0.203888i −0.994790 0.101944i \(-0.967494\pi\)
0.994790 0.101944i \(-0.0325063\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −8.00000 + 13.8564i −0.383131 + 0.663602i
\(437\) −9.79796 + 5.65685i −0.468700 + 0.270604i
\(438\) 31.1769 18.0000i 1.48969 0.860073i
\(439\) 14.1421 24.4949i 0.674967 1.16908i −0.301511 0.953463i \(-0.597491\pi\)
0.976478 0.215615i \(-0.0691756\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 18.0000i 0.856173i
\(443\) −3.46410 2.00000i −0.164584 0.0950229i 0.415445 0.909618i \(-0.363626\pi\)
−0.580030 + 0.814595i \(0.696959\pi\)
\(444\) 8.48528 + 14.6969i 0.402694 + 0.697486i
\(445\) 1.90192 + 9.29423i 0.0901598 + 0.440589i
\(446\) 0 0
\(447\) 16.9706i 0.802680i
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 9.82051 + 22.9904i 0.462943 + 1.08378i
\(451\) 0 0
\(452\) −6.92820 + 4.00000i −0.325875 + 0.188144i
\(453\) 0 0
\(454\) −2.82843 −0.132745
\(455\) 0 0
\(456\) −24.0000 −1.12390
\(457\) 20.7846 + 12.0000i 0.972263 + 0.561336i 0.899925 0.436044i \(-0.143621\pi\)
0.0723376 + 0.997380i \(0.476954\pi\)
\(458\) −6.12372 + 3.53553i −0.286143 + 0.165205i
\(459\) 12.0000 + 20.7846i 0.560112 + 0.970143i
\(460\) −5.93426 6.69213i −0.276686 0.312022i
\(461\) 21.2132 0.987997 0.493999 0.869463i \(-0.335535\pi\)
0.493999 + 0.869463i \(0.335535\pi\)
\(462\) 0 0
\(463\) 24.0000i 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) 0 0
\(465\) −35.0507 + 7.17260i −1.62544 + 0.332622i
\(466\) 7.00000 + 12.1244i 0.324269 + 0.561650i
\(467\) 26.9444 + 15.5563i 1.24684 + 0.719862i 0.970477 0.241192i \(-0.0775384\pi\)
0.276360 + 0.961054i \(0.410872\pi\)
\(468\) 21.2132i 0.980581i
\(469\) 0 0
\(470\) 0 0
\(471\) 6.00000 10.3923i 0.276465 0.478852i
\(472\) −22.0454 + 12.7279i −1.01472 + 0.585850i
\(473\) 0 0
\(474\) −16.9706 + 29.3939i −0.779484 + 1.35011i
\(475\) 11.3137 + 8.48528i 0.519109 + 0.389331i
\(476\) 0 0
\(477\) 40.0000i 1.83147i
\(478\) 20.7846 + 12.0000i 0.950666 + 0.548867i
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) −6.33975 30.9808i −0.289368 1.41407i
\(481\) 12.7279 22.0454i 0.580343 1.00518i
\(482\) 9.89949i 0.450910i
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 6.29423 + 7.09808i 0.285806 + 0.322307i
\(486\) −7.07107 12.2474i −0.320750 0.555556i
\(487\) −10.3923 + 6.00000i −0.470920 + 0.271886i −0.716625 0.697459i \(-0.754314\pi\)
0.245705 + 0.969345i \(0.420981\pi\)
\(488\) −25.7196 14.8492i −1.16427 0.672194i
\(489\) 67.8823 3.06974
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) −10.3923 6.00000i −0.468521 0.270501i
\(493\) 0 0
\(494\) 6.00000 + 10.3923i 0.269953 + 0.467572i
\(495\) 0 0
\(496\) −5.65685 −0.254000
\(497\) 0 0
\(498\) 24.0000i 1.07547i
\(499\) −6.00000 + 10.3923i −0.268597 + 0.465223i −0.968500 0.249015i \(-0.919893\pi\)
0.699903 + 0.714238i \(0.253227\pi\)
\(500\) −4.77886 + 10.1075i −0.213717 + 0.452023i
\(501\) 16.0000 + 27.7128i 0.714827 + 1.23812i
\(502\) −22.0454 12.7279i −0.983935 0.568075i
\(503\) 16.9706i 0.756680i −0.925667 0.378340i \(-0.876495\pi\)
0.925667 0.378340i \(-0.123505\pi\)
\(504\) 0 0
\(505\) 9.00000 + 3.00000i 0.400495 + 0.133498i
\(506\) 0 0
\(507\) −12.2474 + 7.07107i −0.543928 + 0.314037i
\(508\) −10.3923 + 6.00000i −0.461084 + 0.266207i
\(509\) −6.36396 + 11.0227i −0.282078 + 0.488573i −0.971896 0.235409i \(-0.924357\pi\)
0.689819 + 0.723982i \(0.257690\pi\)
\(510\) 8.48528 25.4558i 0.375735 1.12720i
\(511\) 0 0
\(512\) 11.0000i 0.486136i
\(513\) 13.8564 + 8.00000i 0.611775 + 0.353209i
\(514\) 13.4350 + 23.2702i 0.592594 + 1.02640i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) −21.2942 + 18.8827i −0.933814 + 0.828061i
\(521\) −14.8492 25.7196i −0.650557 1.12680i −0.982988 0.183670i \(-0.941202\pi\)
0.332431 0.943128i \(-0.392131\pi\)
\(522\) 0 0
\(523\) −7.34847 4.24264i −0.321326 0.185518i 0.330657 0.943751i \(-0.392730\pi\)
−0.651984 + 0.758233i \(0.726063\pi\)
\(524\) −8.48528 −0.370681
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) 20.7846 + 12.0000i 0.905392 + 0.522728i
\(528\) 0 0
\(529\) −3.50000 6.06218i −0.152174 0.263573i
\(530\) −13.3843 + 11.8685i −0.581375 + 0.515535i
\(531\) 42.4264 1.84115
\(532\) 0 0
\(533\) 18.0000i 0.779667i
\(534\) 6.00000 10.3923i 0.259645 0.449719i
\(535\) −8.76268 + 1.79315i −0.378844 + 0.0775247i
\(536\) −18.0000 31.1769i −0.777482 1.34664i
\(537\) 29.3939 + 16.9706i 1.26844 + 0.732334i
\(538\) 21.2132i 0.914566i
\(539\) 0 0
\(540\) −4.00000 + 12.0000i −0.172133 + 0.516398i
\(541\) −9.00000 + 15.5885i −0.386940 + 0.670200i −0.992036 0.125952i \(-0.959801\pi\)
0.605096 + 0.796152i \(0.293135\pi\)
\(542\) −4.89898 + 2.82843i −0.210429 + 0.121491i
\(543\) −45.0333 + 26.0000i −1.93256 + 1.11577i
\(544\) −10.6066 + 18.3712i −0.454754 + 0.787658i
\(545\) −33.9411 11.3137i −1.45388 0.484626i
\(546\) 0 0
\(547\) 24.0000i 1.02617i −0.858339 0.513083i \(-0.828503\pi\)
0.858339 0.513083i \(-0.171497\pi\)
\(548\) 12.1244 + 7.00000i 0.517927 + 0.299025i
\(549\) 24.7487 + 42.8661i 1.05625 + 1.82948i
\(550\) 0 0
\(551\) 0 0
\(552\) 33.9411i 1.44463i
\(553\) 0 0
\(554\) −24.0000 −1.01966
\(555\) −28.3923 + 25.1769i −1.20519 + 1.06870i
\(556\) 1.41421 + 2.44949i 0.0599760 + 0.103882i
\(557\) 34.6410 20.0000i 1.46779 0.847427i 0.468438 0.883497i \(-0.344817\pi\)
0.999349 + 0.0360693i \(0.0114837\pi\)
\(558\) 24.4949 + 14.1421i 1.03695 + 0.598684i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.0454 12.7279i 0.929103 0.536418i 0.0425753 0.999093i \(-0.486444\pi\)
0.886528 + 0.462675i \(0.153110\pi\)
\(564\) 0 0
\(565\) −11.8685 13.3843i −0.499312 0.563080i
\(566\) 25.4558 1.06999
\(567\) 0 0
\(568\) 36.0000i 1.51053i
\(569\) 12.0000 20.7846i 0.503066 0.871336i −0.496928 0.867792i \(-0.665539\pi\)
0.999994 0.00354413i \(-0.00112814\pi\)
\(570\) −3.58630 17.5254i −0.150214 0.734057i
\(571\) 16.0000 + 27.7128i 0.669579 + 1.15975i 0.978022 + 0.208502i \(0.0668588\pi\)
−0.308443 + 0.951243i \(0.599808\pi\)
\(572\) 0 0
\(573\) 33.9411i 1.41791i
\(574\) 0 0
\(575\) 12.0000 16.0000i 0.500435 0.667246i
\(576\) −17.5000 + 30.3109i −0.729167 + 1.26295i
\(577\) 33.0681 19.0919i 1.37664 0.794805i 0.384890 0.922963i \(-0.374240\pi\)
0.991754 + 0.128157i \(0.0409062\pi\)
\(578\) −0.866025 + 0.500000i −0.0360219 + 0.0207973i
\(579\) −33.9411 + 58.7878i −1.41055 + 2.44314i
\(580\) 0 0
\(581\) 0 0
\(582\) 12.0000i 0.497416i
\(583\) 0 0
\(584\) −19.0919 33.0681i −0.790028 1.36837i
\(585\) 46.4711 9.50962i 1.92135 0.393174i
\(586\) 0.707107 1.22474i 0.0292103 0.0505937i
\(587\) 42.4264i 1.75113i −0.483105 0.875563i \(-0.660491\pi\)
0.483105 0.875563i \(-0.339509\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) −12.5885 14.1962i −0.518259 0.584446i
\(591\) −11.3137 19.5959i −0.465384 0.806068i
\(592\) −5.19615 + 3.00000i −0.213561 + 0.123299i
\(593\) −6.12372 3.53553i −0.251471 0.145187i 0.368967 0.929443i \(-0.379712\pi\)
−0.620438 + 0.784256i \(0.713045\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) −27.7128 16.0000i −1.13421 0.654836i
\(598\) 14.6969 8.48528i 0.601003 0.346989i
\(599\) 6.00000 + 10.3923i 0.245153 + 0.424618i 0.962175 0.272433i \(-0.0878284\pi\)
−0.717021 + 0.697051i \(0.754495\pi\)
\(600\) 39.0160 16.6660i 1.59282 0.680385i
\(601\) −41.0122 −1.67292 −0.836461 0.548026i \(-0.815379\pi\)
−0.836461 + 0.548026i \(0.815379\pi\)
\(602\) 0 0
\(603\) 60.0000i 2.44339i
\(604\) 0 0
\(605\) −4.93117 24.0974i −0.200480 0.979698i
\(606\) −6.00000 10.3923i −0.243733 0.422159i
\(607\) 29.3939 + 16.9706i 1.19306 + 0.688814i 0.958999 0.283408i \(-0.0914650\pi\)
0.234061 + 0.972222i \(0.424798\pi\)
\(608\) 14.1421i 0.573539i
\(609\) 0 0
\(610\) 7.00000 21.0000i 0.283422 0.850265i
\(611\) 0 0
\(612\) 18.3712 10.6066i 0.742611 0.428746i
\(613\) 5.19615 3.00000i 0.209871 0.121169i −0.391381 0.920229i \(-0.628002\pi\)
0.601251 + 0.799060i \(0.294669\pi\)
\(614\) 12.7279 22.0454i 0.513657 0.889680i
\(615\) 8.48528 25.4558i 0.342160 1.02648i
\(616\) 0 0
\(617\) 38.0000i 1.52982i 0.644136 + 0.764911i \(0.277217\pi\)
−0.644136 + 0.764911i \(0.722783\pi\)
\(618\) 0 0
\(619\) −9.89949 17.1464i −0.397894 0.689173i 0.595572 0.803302i \(-0.296926\pi\)
−0.993466 + 0.114129i \(0.963592\pi\)
\(620\) 2.53590 + 12.3923i 0.101844 + 0.497687i
\(621\) 11.3137 19.5959i 0.454003 0.786357i
\(622\) 33.9411i 1.36092i
\(623\) 0 0
\(624\) 12.0000 0.480384
\(625\) −24.2846 5.93782i −0.971384 0.237513i
\(626\) 10.6066 + 18.3712i 0.423925 + 0.734260i
\(627\) 0 0
\(628\) −3.67423 2.12132i −0.146618 0.0846499i
\(629\) 25.4558 1.01499
\(630\) 0 0
\(631\) 12.0000 0.477712 0.238856 0.971055i \(-0.423228\pi\)
0.238856 + 0.971055i \(0.423228\pi\)
\(632\) 31.1769 + 18.0000i 1.24015 + 0.716002i
\(633\) 9.79796 5.65685i 0.389434 0.224840i
\(634\) 4.00000 + 6.92820i 0.158860 + 0.275154i
\(635\) −17.8028 20.0764i −0.706481 0.796707i
\(636\) −22.6274 −0.897235
\(637\) 0 0
\(638\) 0 0
\(639\) 30.0000 51.9615i 1.18678 2.05557i
\(640\) −6.57201 + 1.34486i −0.259782 + 0.0531604i
\(641\) −12.0000 20.7846i −0.473972 0.820943i 0.525584 0.850741i \(-0.323847\pi\)
−0.999556 + 0.0297987i \(0.990513\pi\)
\(642\) 9.79796 + 5.65685i 0.386695 + 0.223258i
\(643\) 8.48528i 0.334627i −0.985904 0.167313i \(-0.946491\pi\)
0.985904 0.167313i \(-0.0535092\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 + 10.3923i −0.236067 + 0.408880i
\(647\) −4.89898 + 2.82843i −0.192599 + 0.111197i −0.593199 0.805056i \(-0.702135\pi\)
0.400600 + 0.916253i \(0.368802\pi\)
\(648\) 2.59808 1.50000i 0.102062 0.0589256i
\(649\) 0 0
\(650\) −16.9706 12.7279i −0.665640 0.499230i
\(651\) 0 0
\(652\) 24.0000i 0.939913i
\(653\) 1.73205 + 1.00000i 0.0677804 + 0.0391330i 0.533507 0.845796i \(-0.320874\pi\)
−0.465727 + 0.884929i \(0.654207\pi\)
\(654\) 22.6274 + 39.1918i 0.884802 + 1.53252i
\(655\) −3.80385 18.5885i −0.148629 0.726311i
\(656\) 2.12132 3.67423i 0.0828236 0.143455i
\(657\) 63.6396i 2.48282i
\(658\) 0 0
\(659\) −48.0000 −1.86981 −0.934907 0.354892i \(-0.884518\pi\)
−0.934907 + 0.354892i \(0.884518\pi\)
\(660\) 0 0
\(661\) 7.77817 + 13.4722i 0.302536 + 0.524008i 0.976710 0.214565i \(-0.0688334\pi\)
−0.674174 + 0.738573i \(0.735500\pi\)
\(662\) −6.92820 + 4.00000i −0.269272 + 0.155464i
\(663\) −44.0908 25.4558i −1.71235 0.988623i
\(664\) 25.4558 0.987878
\(665\) 0 0
\(666\) 30.0000 1.16248
\(667\) 0 0
\(668\) 9.79796 5.65685i 0.379094 0.218870i
\(669\) 0 0
\(670\) 20.0764 17.8028i 0.775619 0.687781i
\(671\) 0 0
\(672\) 0 0
\(673\) 6.00000i 0.231283i −0.993291 0.115642i \(-0.963108\pi\)
0.993291 0.115642i \(-0.0368924\pi\)
\(674\) 9.00000 15.5885i 0.346667 0.600445i
\(675\) −28.0812 3.38323i −1.08085 0.130221i
\(676\) 2.50000 + 4.33013i 0.0961538 + 0.166543i
\(677\) −8.57321 4.94975i −0.329495 0.190234i 0.326122 0.945328i \(-0.394258\pi\)
−0.655617 + 0.755094i \(0.727591\pi\)
\(678\) 22.6274i 0.869001i
\(679\) 0 0
\(680\) −27.0000 9.00000i −1.03540 0.345134i
\(681\) 4.00000 6.92820i 0.153280 0.265489i
\(682\) 0 0
\(683\) −24.2487 + 14.0000i −0.927851 + 0.535695i −0.886131 0.463434i \(-0.846617\pi\)
−0.0417198 + 0.999129i \(0.513284\pi\)
\(684\) 7.07107 12.2474i 0.270369 0.468293i
\(685\) −9.89949 + 29.6985i −0.378240 + 1.13472i
\(686\) 0 0
\(687\) 20.0000i 0.763048i
\(688\) 0 0
\(689\) 16.9706 + 29.3939i 0.646527 + 1.11982i
\(690\) −24.7846 + 5.07180i −0.943534 + 0.193080i
\(691\) −1.41421 + 2.44949i −0.0537992 + 0.0931830i −0.891671 0.452684i \(-0.850466\pi\)
0.837872 + 0.545867i \(0.183800\pi\)
\(692\) 4.24264i 0.161281i
\(693\) 0 0
\(694\) −8.00000 −0.303676
\(695\) −4.73205 + 4.19615i −0.179497 + 0.159169i
\(696\) 0 0
\(697\) −15.5885 + 9.00000i −0.590455 + 0.340899i
\(698\) 1.22474 + 0.707107i 0.0463573 + 0.0267644i
\(699\) −39.5980 −1.49773
\(700\) 0 0
\(701\) 48.0000 1.81293 0.906467 0.422276i \(-0.138769\pi\)
0.906467 + 0.422276i \(0.138769\pi\)
\(702\) −20.7846 12.0000i −0.784465 0.452911i
\(703\) 14.6969 8.48528i 0.554306 0.320028i
\(704\) 0 0
\(705\) 0 0
\(706\) 15.5563 0.585471
\(707\) 0 0
\(708\) 24.0000i 0.901975i
\(709\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(710\) −26.2880 + 5.37945i −0.986573 + 0.201887i
\(711\) −30.0000 51.9615i −1.12509 1.94871i
\(712\) −11.0227 6.36396i −0.413093 0.238500i
\(713\) 22.6274i 0.847403i
\(714\) 0 0
\(715\) 0 0
\(716\) 6.00000 10.3923i 0.224231 0.388379i
\(717\) −58.7878 + 33.9411i −2.19547 + 1.26755i
\(718\) −20.7846 + 12.0000i −0.775675 + 0.447836i
\(719\) −8.48528 + 14.6969i −0.316448 + 0.548103i −0.979744 0.200253i \(-0.935823\pi\)
0.663297 + 0.748357i \(0.269157\pi\)
\(720\) −10.6066 3.53553i −0.395285 0.131762i
\(721\) 0 0
\(722\) 11.0000i 0.409378i
\(723\) 24.2487 + 14.0000i 0.901819 + 0.520666i
\(724\) 9.19239 + 15.9217i 0.341632 + 0.591725i
\(725\) 0 0
\(726\) −15.5563 + 26.9444i −0.577350 + 1.00000i
\(727\) 33.9411i 1.25881i −0.777079 0.629403i \(-0.783299\pi\)
0.777079 0.629403i \(-0.216701\pi\)
\(728\) 0 0
\(729\) 43.0000 1.59259
\(730\) 21.2942 18.8827i 0.788135 0.698880i
\(731\) 0 0
\(732\) 24.2487 14.0000i 0.896258 0.517455i
\(733\) 3.67423 + 2.12132i 0.135711 + 0.0783528i 0.566318 0.824187i \(-0.308367\pi\)
−0.430607 + 0.902539i \(0.641701\pi\)
\(734\) −16.9706 −0.626395
\(735\) 0 0
\(736\) 20.0000 0.737210
\(737\) 0 0
\(738\) −18.3712 + 10.6066i −0.676252 + 0.390434i
\(739\) 8.00000 + 13.8564i 0.294285 + 0.509716i 0.974818 0.223001i \(-0.0715853\pi\)
−0.680534 + 0.732717i \(0.738252\pi\)
\(740\) 8.90138 + 10.0382i 0.327221 + 0.369011i
\(741\) −33.9411 −1.24686
\(742\) 0 0
\(743\) 28.0000i 1.02722i −0.858024 0.513610i \(-0.828308\pi\)
0.858024 0.513610i \(-0.171692\pi\)
\(744\) 24.0000 41.5692i 0.879883 1.52400i
\(745\) 2.68973 + 13.1440i 0.0985440 + 0.481560i
\(746\) 12.0000 + 20.7846i 0.439351 + 0.760979i
\(747\) −36.7423 21.2132i −1.34433 0.776151i
\(748\) 0 0
\(749\) 0 0
\(750\) 18.0000 + 26.0000i 0.657267 + 0.949386i
\(751\) 20.0000 34.6410i 0.729810 1.26407i −0.227153 0.973859i \(-0.572942\pi\)
0.956963 0.290209i \(-0.0937250\pi\)
\(752\) 0 0
\(753\) 62.3538 36.0000i 2.27230 1.31191i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 6.00000i 0.218074i −0.994038 0.109037i \(-0.965223\pi\)
0.994038 0.109037i \(-0.0347767\pi\)
\(758\) −20.7846 12.0000i −0.754931 0.435860i
\(759\) 0 0
\(760\) −18.5885 + 3.80385i −0.674274 + 0.137980i
\(761\) 14.8492 25.7196i 0.538285 0.932336i −0.460712 0.887550i \(-0.652406\pi\)
0.998997 0.0447866i \(-0.0142608\pi\)
\(762\) 33.9411i 1.22956i
\(763\) 0 0
\(764\) 12.0000 0.434145
\(765\) 31.4711 + 35.4904i 1.13784 + 1.28316i
\(766\) −16.9706 29.3939i −0.613171 1.06204i
\(767\) −31.1769 + 18.0000i −1.12573 + 0.649942i
\(768\) 41.6413 + 24.0416i 1.50260 + 0.867528i
\(769\) −24.0416 −0.866963 −0.433482 0.901162i \(-0.642715\pi\)
−0.433482 + 0.901162i \(0.642715\pi\)
\(770\) 0 0
\(771\) −76.0000 −2.73707
\(772\) 20.7846 + 12.0000i 0.748054 + 0.431889i
\(773\) −18.3712 + 10.6066i −0.660765 + 0.381493i −0.792568 0.609783i \(-0.791257\pi\)
0.131803 + 0.991276i \(0.457923\pi\)
\(774\) 0 0
\(775\) −26.0106 + 11.1106i −0.934330 + 0.399106i
\(776\) −12.7279 −0.456906
\(777\) 0 0
\(778\) 0 0
\(779\) −6.00000 + 10.3923i −0.214972 + 0.372343i
\(780\) −5.37945 26.2880i −0.192615 0.941263i
\(781\) 0 0
\(782\) 14.6969 + 8.48528i 0.525561 + 0.303433i
\(783\) 0 0
\(784\) 0 0
\(785\) 3.00000 9.00000i 0.107075 0.321224i
\(786\) −12.0000 + 20.7846i −0.428026 + 0.741362i
\(787\) −7.34847 + 4.24264i −0.261945 + 0.151234i −0.625221 0.780447i \(-0.714991\pi\)
0.363277 + 0.931681i \(0.381658\pi\)
\(788\) −6.92820 + 4.00000i −0.246807 + 0.142494i
\(789\) 22.6274 39.1918i 0.805557 1.39527i
\(790\) −8.48528 + 25.4558i −0.301893 + 0.905678i
\(791\) 0 0
\(792\) 0 0
\(793\) −36.3731 21.0000i −1.29165 0.745732i
\(794\) 2.12132 + 3.67423i 0.0752828 + 0.130394i
\(795\) −10.1436 49.5692i −0.359756 1.75804i
\(796\) −5.65685 + 9.79796i −0.200502 + 0.347279i
\(797\) 4.24264i 0.150282i 0.997173 + 0.0751410i \(0.0239407\pi\)
−0.997173 + 0.0751410i \(0.976059\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −9.82051 22.9904i −0.347207 0.812833i
\(801\) 10.6066 + 18.3712i 0.374766 + 0.649113i
\(802\) 20.7846 12.0000i 0.733930 0.423735i
\(803\) 0 0
\(804\) 33.9411 1.19701
\(805\) 0 0
\(806\) −24.0000 −0.845364
\(807\) −51.9615 30.0000i −1.82913 1.05605i
\(808\) −11.0227 + 6.36396i −0.387777 + 0.223883i
\(809\) 15.0000 + 25.9808i 0.527372 + 0.913435i 0.999491 + 0.0319002i \(0.0101559\pi\)
−0.472119 + 0.881535i \(0.656511\pi\)
\(810\) 1.48356 + 1.67303i 0.0521271 + 0.0587844i
\(811\) 14.1421 0.496598 0.248299 0.968683i \(-0.420129\pi\)
0.248299 + 0.968683i \(0.420129\pi\)
\(812\) 0 0
\(813\) 16.0000i 0.561144i
\(814\) 0 0
\(815\) 52.5761 10.7589i 1.84166 0.376868i
\(816\) 6.00000 + 10.3923i 0.210042 + 0.363803i
\(817\) 0 0
\(818\) 18.3848i 0.642809i
\(819\) 0 0
\(820\) −9.00000 3.00000i −0.314294 0.104765i
\(821\) 3.00000 5.19615i 0.104701 0.181347i −0.808915 0.587925i \(-0.799945\pi\)
0.913616 + 0.406578i \(0.133278\pi\)
\(822\) 34.2929 19.7990i 1.19610 0.690569i
\(823\) 20.7846 12.0000i 0.724506 0.418294i −0.0919029 0.995768i \(-0.529295\pi\)
0.816409 + 0.577474i \(0.195962\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 52.0000i 1.80822i 0.427303 + 0.904109i \(0.359464\pi\)
−0.427303 + 0.904109i \(0.640536\pi\)
\(828\) −17.3205 10.0000i −0.601929 0.347524i
\(829\) 12.0208 + 20.8207i 0.417500 + 0.723132i 0.995687 0.0927727i \(-0.0295730\pi\)
−0.578187 + 0.815904i \(0.696240\pi\)
\(830\) 3.80385 + 18.5885i 0.132033 + 0.645215i
\(831\) 33.9411 58.7878i 1.17740 2.03932i
\(832\) 29.6985i 1.02961i
\(833\) 0 0
\(834\) 8.00000 0.277017
\(835\) 16.7846 + 18.9282i 0.580855 + 0.655037i
\(836\) 0 0
\(837\) −27.7128 + 16.0000i −0.957895 + 0.553041i
\(838\) 7.34847 + 4.24264i 0.253849 + 0.146560i
\(839\) −16.9706 −0.585889 −0.292944 0.956129i \(-0.594635\pi\)
−0.292944 + 0.956129i \(0.594635\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 5.19615 + 3.00000i 0.179071 + 0.103387i
\(843\) 0 0
\(844\) −2.00000 3.46410i −0.0688428 0.119239i
\(845\) −8.36516 + 7.41782i −0.287770 + 0.255181i
\(846\) 0 0
\(847\) 0 0
\(848\) 8.00000i 0.274721i
\(849\) −36.0000 + 62.3538i −1.23552 + 2.13998i
\(850\) 2.53742 21.0609i 0.0870329 0.722383i
\(851\) −12.0000 20.7846i −0.411355 0.712487i
\(852\) −29.3939 16.9706i −1.00702 0.581402i
\(853\) 12.7279i 0.435796i −0.975972 0.217898i \(-0.930080\pi\)
0.975972 0.217898i \(-0.0699200\pi\)
\(854\) 0 0
\(855\) 30.0000 + 10.0000i 1.02598 + 0.341993i
\(856\) 6.00000 10.3923i 0.205076 0.355202i
\(857\) 47.7650 27.5772i 1.63162 0.942018i 0.648030 0.761615i \(-0.275593\pi\)
0.983593 0.180403i \(-0.0577403\pi\)
\(858\) 0 0
\(859\) −15.5563 + 26.9444i −0.530776 + 0.919331i 0.468579 + 0.883421i \(0.344766\pi\)
−0.999355 + 0.0359092i \(0.988567\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 24.0000i 0.817443i
\(863\) −13.8564 8.00000i −0.471678 0.272323i 0.245264 0.969456i \(-0.421125\pi\)
−0.716942 + 0.697133i \(0.754459\pi\)
\(864\) −14.1421 24.4949i −0.481125 0.833333i
\(865\) −9.29423 + 1.90192i −0.316013 + 0.0646673i
\(866\) −2.12132 + 3.67423i −0.0720854 + 0.124856i
\(867\) 2.82843i 0.0960584i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −25.4558 44.0908i −0.862538 1.49396i
\(872\) 41.5692 24.0000i 1.40771 0.812743i
\(873\) 18.3712 + 10.6066i 0.621770 + 0.358979i
\(874\) 11.3137 0.382692
\(875\) 0 0
\(876\) 36.0000 1.21633
\(877\) 25.9808 + 15.0000i 0.877308 + 0.506514i 0.869770 0.493458i \(-0.164267\pi\)
0.00753813 + 0.999972i \(0.497601\pi\)
\(878\) −24.4949 + 14.1421i −0.826663 + 0.477274i
\(879\) 2.00000 + 3.46410i 0.0674583 + 0.116841i
\(880\) 0 0
\(881\) 46.6690 1.57232 0.786160 0.618023i \(-0.212066\pi\)
0.786160 + 0.618023i \(0.212066\pi\)
\(882\) 0 0
\(883\) 36.0000i 1.21150i −0.795656 0.605748i \(-0.792874\pi\)
0.795656 0.605748i \(-0.207126\pi\)
\(884\) −9.00000 + 15.5885i −0.302703 + 0.524297i
\(885\) 52.5761 10.7589i 1.76733 0.361657i
\(886\) 2.00000 + 3.46410i 0.0671913 + 0.116379i
\(887\) 14.6969 + 8.48528i 0.493475 + 0.284908i 0.726015 0.687679i \(-0.241370\pi\)
−0.232540 + 0.972587i \(0.574704\pi\)
\(888\) 50.9117i 1.70848i
\(889\) 0 0
\(890\) 3.00000 9.00000i 0.100560 0.301681i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 8.48528 14.6969i 0.283790 0.491539i
\(895\) 25.4558 + 8.48528i 0.850895 + 0.283632i
\(896\) 0 0
\(897\) 48.0000i 1.60267i
\(898\) −15.5885 9.00000i −0.520194 0.300334i
\(899\) 0 0
\(900\) −2.99038 + 24.8205i −0.0996794 + 0.827350i
\(901\) −16.9706 + 29.3939i −0.565371 + 0.979252i
\(902\) 0 0
\(903\) 0 0
\(904\) 24.0000 0.798228
\(905\) −30.7583 + 27.2750i −1.02244 + 0.906651i
\(906\) 0 0
\(907\) −10.3923 + 6.00000i −0.345071 + 0.199227i −0.662512 0.749051i \(-0.730510\pi\)
0.317441 + 0.948278i \(0.397176\pi\)
\(908\) −2.44949 1.41421i −0.0812892 0.0469323i
\(909\) 21.2132 0.703598
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 6.92820 + 4.00000i 0.229416 + 0.132453i
\(913\) 0 0
\(914\) −12.0000 20.7846i −0.396925 0.687494i
\(915\) 41.5398 + 46.8449i 1.37326 + 1.54865i
\(916\) −7.07107 −0.233635
\(917\) 0 0
\(918\) 24.0000i 0.792118i
\(919\) 10.0000 17.3205i 0.329870 0.571351i −0.652616 0.757689i \(-0.726329\pi\)
0.982486 + 0.186338i \(0.0596619\pi\)
\(920\) 5.37945 + 26.2880i 0.177355 + 0.866691i
\(921\) 36.0000 + 62.3538i 1.18624 + 2.05463i
\(922\) −18.3712 10.6066i −0.605022 0.349310i
\(923\) 50.9117i 1.67578i
\(924\) 0 0
\(925\) −18.0000 + 24.0000i −0.591836 + 0.789115i
\(926\) −12.0000 + 20.7846i −0.394344 + 0.683025i
\(927\) 0 0
\(928\) 0 0
\(929\) −6.36396 + 11.0227i −0.208795 + 0.361643i −0.951335 0.308158i \(-0.900287\pi\)
0.742540 + 0.669801i \(0.233621\pi\)
\(930\) 33.9411 + 11.3137i 1.11297 + 0.370991i
\(931\) 0 0
\(932\) 14.0000i 0.458585i
\(933\) 83.1384 + 48.0000i 2.72183 + 1.57145i
\(934\) −15.5563 26.9444i −0.509019 0.881647i
\(935\) 0 0
\(936\) −31.8198 + 55.1135i −1.04006 + 1.80144i
\(937\) 12.7279i 0.415803i −0.978150 0.207902i \(-0.933337\pi\)
0.978150 0.207902i \(-0.0666634\pi\)
\(938\) 0 0
\(939\) −60.0000 −1.95803
\(940\) 0 0
\(941\) 10.6066 + 18.3712i 0.345765 + 0.598883i 0.985493 0.169719i \(-0.0542860\pi\)
−0.639727 + 0.768602i \(0.720953\pi\)
\(942\) −10.3923 + 6.00000i −0.338600 + 0.195491i
\(943\) 14.6969 + 8.48528i 0.478598 + 0.276319i
\(944\) 8.48528 0.276172
\(945\) 0 0
\(946\) 0 0
\(947\) 6.92820 + 4.00000i 0.225136 + 0.129983i 0.608326 0.793687i \(-0.291841\pi\)
−0.383190 + 0.923670i \(0.625175\pi\)
\(948\) −29.3939 + 16.9706i −0.954669 + 0.551178i
\(949\) −27.0000 46.7654i −0.876457 1.51807i
\(950\) −5.55532 13.0053i −0.180238 0.421948i
\(951\) −22.6274 −0.733744
\(952\) 0 0
\(953\) 32.0000i 1.03658i −0.855204 0.518291i \(-0.826568\pi\)
0.855204 0.518291i \(-0.173432\pi\)
\(954\) −20.0000 + 34.6410i −0.647524 + 1.12154i
\(955\) 5.37945 + 26.2880i 0.174075 + 0.850661i
\(956\) 12.0000 + 20.7846i 0.388108 + 0.672222i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −14.0000 + 42.0000i −0.451848 + 1.35554i
\(961\) −0.500000 + 0.866025i −0.0161290 + 0.0279363i
\(962\) −22.0454 + 12.7279i −0.710772 + 0.410365i
\(963\) −17.3205 + 10.0000i −0.558146 + 0.322245i
\(964\) 4.94975 8.57321i 0.159421 0.276125i
\(965\) −16.9706 + 50.9117i −0.546302 + 1.63891i
\(966\) 0 0
\(967\) 36.0000i 1.15768i 0.815440 + 0.578841i \(0.196495\pi\)
−0.815440 + 0.578841i \(0.803505\pi\)
\(968\) 28.5788 + 16.5000i 0.918559 + 0.530330i
\(969\) −16.9706 29.3939i −0.545173 0.944267i
\(970\) −1.90192 9.29423i −0.0610671 0.298420i
\(971\) −4.24264 + 7.34847i −0.136153 + 0.235824i −0.926037 0.377432i \(-0.876807\pi\)
0.789884 + 0.613256i \(0.210140\pi\)
\(972\) 14.1421i 0.453609i
\(973\) 0 0
\(974\) 12.0000 0.384505
\(975\) 55.1769 23.5692i 1.76708 0.754819i
\(976\) 4.94975 + 8.57321i 0.158438 + 0.274422i
\(977\) −8.66025 + 5.00000i −0.277066 + 0.159964i −0.632094 0.774891i \(-0.717805\pi\)
0.355028 + 0.934856i \(0.384471\pi\)
\(978\) −58.7878 33.9411i −1.87983 1.08532i
\(979\) 0 0
\(980\) 0 0
\(981\) −80.0000 −2.55420
\(982\) 10.3923 + 6.00000i 0.331632 + 0.191468i
\(983\) −24.4949 + 14.1421i −0.781266 + 0.451064i −0.836879 0.547388i \(-0.815622\pi\)
0.0556128 + 0.998452i \(0.482289\pi\)
\(984\) 18.0000 + 31.1769i 0.573819 + 0.993884i
\(985\) −11.8685 13.3843i −0.378162 0.426458i
\(986\) 0 0
\(987\) 0 0
\(988\) 12.0000i 0.381771i
\(989\) 0 0
\(990\) 0 0
\(991\) −10.0000 17.3205i −0.317660 0.550204i 0.662339 0.749204i \(-0.269564\pi\)
−0.979999 + 0.199000i \(0.936231\pi\)
\(992\) −24.4949 14.1421i −0.777714 0.449013i
\(993\) 22.6274i 0.718059i
\(994\) 0 0
\(995\) −24.0000 8.00000i −0.760851 0.253617i
\(996\) −12.0000 + 20.7846i −0.380235 + 0.658586i
\(997\) −47.7650 + 27.5772i −1.51273 + 0.873378i −0.512845 + 0.858481i \(0.671409\pi\)
−0.999889 + 0.0148965i \(0.995258\pi\)
\(998\) 10.3923 6.00000i 0.328963 0.189927i
\(999\) −16.9706 + 29.3939i −0.536925 + 0.929981i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.2.j.g.79.2 8
5.4 even 2 inner 245.2.j.g.79.3 8
7.2 even 3 245.2.b.f.99.4 yes 4
7.3 odd 6 inner 245.2.j.g.214.4 8
7.4 even 3 inner 245.2.j.g.214.3 8
7.5 odd 6 245.2.b.f.99.3 yes 4
7.6 odd 2 inner 245.2.j.g.79.1 8
21.2 odd 6 2205.2.d.k.1324.2 4
21.5 even 6 2205.2.d.k.1324.1 4
35.2 odd 12 1225.2.a.l.1.2 2
35.4 even 6 inner 245.2.j.g.214.2 8
35.9 even 6 245.2.b.f.99.1 4
35.12 even 12 1225.2.a.l.1.1 2
35.19 odd 6 245.2.b.f.99.2 yes 4
35.23 odd 12 1225.2.a.v.1.1 2
35.24 odd 6 inner 245.2.j.g.214.1 8
35.33 even 12 1225.2.a.v.1.2 2
35.34 odd 2 inner 245.2.j.g.79.4 8
105.44 odd 6 2205.2.d.k.1324.4 4
105.89 even 6 2205.2.d.k.1324.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.2.b.f.99.1 4 35.9 even 6
245.2.b.f.99.2 yes 4 35.19 odd 6
245.2.b.f.99.3 yes 4 7.5 odd 6
245.2.b.f.99.4 yes 4 7.2 even 3
245.2.j.g.79.1 8 7.6 odd 2 inner
245.2.j.g.79.2 8 1.1 even 1 trivial
245.2.j.g.79.3 8 5.4 even 2 inner
245.2.j.g.79.4 8 35.34 odd 2 inner
245.2.j.g.214.1 8 35.24 odd 6 inner
245.2.j.g.214.2 8 35.4 even 6 inner
245.2.j.g.214.3 8 7.4 even 3 inner
245.2.j.g.214.4 8 7.3 odd 6 inner
1225.2.a.l.1.1 2 35.12 even 12
1225.2.a.l.1.2 2 35.2 odd 12
1225.2.a.v.1.1 2 35.23 odd 12
1225.2.a.v.1.2 2 35.33 even 12
2205.2.d.k.1324.1 4 21.5 even 6
2205.2.d.k.1324.2 4 21.2 odd 6
2205.2.d.k.1324.3 4 105.89 even 6
2205.2.d.k.1324.4 4 105.44 odd 6