Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1225,2,Mod(99,1225)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1225.99");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1225 = 5^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1225.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.78167424761\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 35) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 99.2 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1225.99 |
Dual form | 1225.2.b.d.99.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1225\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(1177\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(3\) | 1.00000i | 0.577350i | 0.957427 | + | 0.288675i | \(0.0932147\pi\) | ||||
−0.957427 | + | 0.288675i | \(0.906785\pi\) | |||||||
\(4\) | 2.00000 | 1.00000 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 2.00000 | 0.666667 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −3.00000 | −0.904534 | −0.452267 | − | 0.891883i | \(-0.649385\pi\) | ||||
−0.452267 | + | 0.891883i | \(0.649385\pi\) | |||||||
\(12\) | 2.00000i | 0.577350i | ||||||||
\(13\) | 5.00000i | 1.38675i | 0.720577 | + | 0.693375i | \(0.243877\pi\) | ||||
−0.720577 | + | 0.693375i | \(0.756123\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 4.00000 | 1.00000 | ||||||||
\(17\) | − 3.00000i | − 0.727607i | −0.931476 | − | 0.363803i | \(-0.881478\pi\) | ||||
0.931476 | − | 0.363803i | \(-0.118522\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 2.00000 | 0.458831 | 0.229416 | − | 0.973329i | \(-0.426318\pi\) | ||||
0.229416 | + | 0.973329i | \(0.426318\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 6.00000i | 1.25109i | 0.780189 | + | 0.625543i | \(0.215123\pi\) | ||||
−0.780189 | + | 0.625543i | \(0.784877\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 5.00000i | 0.962250i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −3.00000 | −0.557086 | −0.278543 | − | 0.960424i | \(-0.589851\pi\) | ||||
−0.278543 | + | 0.960424i | \(0.589851\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 4.00000 | 0.718421 | 0.359211 | − | 0.933257i | \(-0.383046\pi\) | ||||
0.359211 | + | 0.933257i | \(0.383046\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | − 3.00000i | − 0.522233i | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 4.00000 | 0.666667 | ||||||||
\(37\) | 2.00000i | 0.328798i | 0.986394 | + | 0.164399i | \(0.0525685\pi\) | ||||
−0.986394 | + | 0.164399i | \(0.947432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | −5.00000 | −0.800641 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 12.0000 | 1.87409 | 0.937043 | − | 0.349215i | \(-0.113552\pi\) | ||||
0.937043 | + | 0.349215i | \(0.113552\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 10.0000i | 1.52499i | 0.646997 | + | 0.762493i | \(0.276025\pi\) | ||||
−0.646997 | + | 0.762493i | \(0.723975\pi\) | |||||||
\(44\) | −6.00000 | −0.904534 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 9.00000i | − 1.31278i | −0.754420 | − | 0.656392i | \(-0.772082\pi\) | ||||
0.754420 | − | 0.656392i | \(-0.227918\pi\) | |||||||
\(48\) | 4.00000i | 0.577350i | ||||||||
\(49\) | 0 | 0 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 3.00000 | 0.420084 | ||||||||
\(52\) | 10.0000i | 1.38675i | ||||||||
\(53\) | − 12.0000i | − 1.64833i | −0.566352 | − | 0.824163i | \(-0.691646\pi\) | ||||
0.566352 | − | 0.824163i | \(-0.308354\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 2.00000i | 0.264906i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −8.00000 | −1.02430 | −0.512148 | − | 0.858898i | \(-0.671150\pi\) | ||||
−0.512148 | + | 0.858898i | \(0.671150\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 8.00000 | 1.00000 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 4.00000i | − 0.488678i | −0.969690 | − | 0.244339i | \(-0.921429\pi\) | ||||
0.969690 | − | 0.244339i | \(-0.0785709\pi\) | |||||||
\(68\) | − 6.00000i | − 0.727607i | ||||||||
\(69\) | −6.00000 | −0.722315 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000i | 0.234082i | 0.993127 | + | 0.117041i | \(0.0373409\pi\) | ||||
−0.993127 | + | 0.117041i | \(0.962659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 4.00000 | 0.458831 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 1.00000 | 0.112509 | 0.0562544 | − | 0.998416i | \(-0.482084\pi\) | ||||
0.0562544 | + | 0.998416i | \(0.482084\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000i | 1.31717i | 0.752506 | + | 0.658586i | \(0.228845\pi\) | ||||
−0.752506 | + | 0.658586i | \(0.771155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | − 3.00000i | − 0.321634i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −12.0000 | −1.27200 | −0.635999 | − | 0.771690i | \(-0.719412\pi\) | ||||
−0.635999 | + | 0.771690i | \(0.719412\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 12.0000i | 1.25109i | ||||||||
\(93\) | 4.00000i | 0.414781i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 1.00000i | 0.101535i | 0.998711 | + | 0.0507673i | \(0.0161667\pi\) | ||||
−0.998711 | + | 0.0507673i | \(0.983833\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | −6.00000 | −0.603023 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −6.00000 | −0.597022 | −0.298511 | − | 0.954406i | \(-0.596490\pi\) | ||||
−0.298511 | + | 0.954406i | \(0.596490\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 5.00000i | 0.492665i | 0.969185 | + | 0.246332i | \(0.0792255\pi\) | ||||
−0.969185 | + | 0.246332i | \(0.920775\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 6.00000i | 0.580042i | 0.957020 | + | 0.290021i | \(0.0936623\pi\) | ||||
−0.957020 | + | 0.290021i | \(0.906338\pi\) | |||||||
\(108\) | 10.0000i | 0.962250i | ||||||||
\(109\) | 7.00000 | 0.670478 | 0.335239 | − | 0.942133i | \(-0.391183\pi\) | ||||
0.335239 | + | 0.942133i | \(0.391183\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | −2.00000 | −0.189832 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 6.00000i | − 0.564433i | −0.959351 | − | 0.282216i | \(-0.908930\pi\) | ||||
0.959351 | − | 0.282216i | \(-0.0910696\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | −6.00000 | −0.557086 | ||||||||
\(117\) | 10.0000i | 0.924500i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −2.00000 | −0.181818 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 12.0000i | 1.08200i | ||||||||
\(124\) | 8.00000 | 0.718421 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 16.0000i | − 1.41977i | −0.704317 | − | 0.709885i | \(-0.748747\pi\) | ||||
0.704317 | − | 0.709885i | \(-0.251253\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | −10.0000 | −0.880451 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 6.00000 | 0.524222 | 0.262111 | − | 0.965038i | \(-0.415581\pi\) | ||||
0.262111 | + | 0.965038i | \(0.415581\pi\) | |||||||
\(132\) | − 6.00000i | − 0.522233i | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 12.0000i | − 1.02523i | −0.858619 | − | 0.512615i | \(-0.828677\pi\) | ||||
0.858619 | − | 0.512615i | \(-0.171323\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 14.0000 | 1.18746 | 0.593732 | − | 0.804663i | \(-0.297654\pi\) | ||||
0.593732 | + | 0.804663i | \(0.297654\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 9.00000 | 0.757937 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 15.0000i | − 1.25436i | ||||||||
\(144\) | 8.00000 | 0.666667 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 4.00000i | 0.328798i | ||||||||
\(149\) | 6.00000 | 0.491539 | 0.245770 | − | 0.969328i | \(-0.420959\pi\) | ||||
0.245770 | + | 0.969328i | \(0.420959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −1.00000 | −0.0813788 | −0.0406894 | − | 0.999172i | \(-0.512955\pi\) | ||||
−0.0406894 | + | 0.999172i | \(0.512955\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | − 6.00000i | − 0.485071i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | −10.0000 | −0.800641 | ||||||||
\(157\) | − 14.0000i | − 1.11732i | −0.829396 | − | 0.558661i | \(-0.811315\pi\) | ||||
0.829396 | − | 0.558661i | \(-0.188685\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 12.0000 | 0.951662 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 2.00000i | − 0.156652i | −0.996928 | − | 0.0783260i | \(-0.975042\pi\) | ||||
0.996928 | − | 0.0783260i | \(-0.0249575\pi\) | |||||||
\(164\) | 24.0000 | 1.87409 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 3.00000i | 0.232147i | 0.993241 | + | 0.116073i | \(0.0370308\pi\) | ||||
−0.993241 | + | 0.116073i | \(0.962969\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −12.0000 | −0.923077 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 4.00000 | 0.305888 | ||||||||
\(172\) | 20.0000i | 1.52499i | ||||||||
\(173\) | − 9.00000i | − 0.684257i | −0.939653 | − | 0.342129i | \(-0.888852\pi\) | ||||
0.939653 | − | 0.342129i | \(-0.111148\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | −12.0000 | −0.904534 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −20.0000 | −1.48659 | −0.743294 | − | 0.668965i | \(-0.766738\pi\) | ||||
−0.743294 | + | 0.668965i | \(0.766738\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | − 8.00000i | − 0.591377i | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 9.00000i | 0.658145i | ||||||||
\(188\) | − 18.0000i | − 1.31278i | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 9.00000 | 0.651217 | 0.325609 | − | 0.945505i | \(-0.394431\pi\) | ||||
0.325609 | + | 0.945505i | \(0.394431\pi\) | |||||||
\(192\) | 8.00000i | 0.577350i | ||||||||
\(193\) | 4.00000i | 0.287926i | 0.989583 | + | 0.143963i | \(0.0459847\pi\) | ||||
−0.989583 | + | 0.143963i | \(0.954015\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −16.0000 | −1.13421 | −0.567105 | − | 0.823646i | \(-0.691937\pi\) | ||||
−0.567105 | + | 0.823646i | \(0.691937\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 4.00000 | 0.282138 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 6.00000 | 0.420084 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 12.0000i | 0.834058i | ||||||||
\(208\) | 20.0000i | 1.38675i | ||||||||
\(209\) | −6.00000 | −0.415029 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −13.0000 | −0.894957 | −0.447478 | − | 0.894295i | \(-0.647678\pi\) | ||||
−0.447478 | + | 0.894295i | \(0.647678\pi\) | |||||||
\(212\) | − 24.0000i | − 1.64833i | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | −2.00000 | −0.135147 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 15.0000 | 1.00901 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 19.0000i | − 1.27233i | −0.771551 | − | 0.636167i | \(-0.780519\pi\) | ||||
0.771551 | − | 0.636167i | \(-0.219481\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 3.00000i | 0.199117i | 0.995032 | + | 0.0995585i | \(0.0317430\pi\) | ||||
−0.995032 | + | 0.0995585i | \(0.968257\pi\) | |||||||
\(228\) | 4.00000i | 0.264906i | ||||||||
\(229\) | −4.00000 | −0.264327 | −0.132164 | − | 0.991228i | \(-0.542192\pi\) | ||||
−0.132164 | + | 0.991228i | \(0.542192\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 24.0000i | − 1.57229i | −0.618041 | − | 0.786146i | \(-0.712073\pi\) | ||||
0.618041 | − | 0.786146i | \(-0.287927\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 1.00000i | 0.0649570i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 21.0000 | 1.35838 | 0.679189 | − | 0.733964i | \(-0.262332\pi\) | ||||
0.679189 | + | 0.733964i | \(0.262332\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 10.0000 | 0.644157 | 0.322078 | − | 0.946713i | \(-0.395619\pi\) | ||||
0.322078 | + | 0.946713i | \(0.395619\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 16.0000i | 1.02640i | ||||||||
\(244\) | −16.0000 | −1.02430 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 10.0000i | 0.636285i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | −12.0000 | −0.760469 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −18.0000 | −1.13615 | −0.568075 | − | 0.822977i | \(-0.692312\pi\) | ||||
−0.568075 | + | 0.822977i | \(0.692312\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 18.0000i | − 1.13165i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 16.0000 | 1.00000 | ||||||||
\(257\) | − 30.0000i | − 1.87135i | −0.352865 | − | 0.935674i | \(-0.614792\pi\) | ||||
0.352865 | − | 0.935674i | \(-0.385208\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | −6.00000 | −0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 6.00000i | − 0.369976i | −0.982741 | − | 0.184988i | \(-0.940775\pi\) | ||||
0.982741 | − | 0.184988i | \(-0.0592246\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | − 12.0000i | − 0.734388i | ||||||||
\(268\) | − 8.00000i | − 0.488678i | ||||||||
\(269\) | −6.00000 | −0.365826 | −0.182913 | − | 0.983129i | \(-0.558553\pi\) | ||||
−0.182913 | + | 0.983129i | \(0.558553\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 16.0000 | 0.971931 | 0.485965 | − | 0.873978i | \(-0.338468\pi\) | ||||
0.485965 | + | 0.873978i | \(0.338468\pi\) | |||||||
\(272\) | − 12.0000i | − 0.727607i | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | −12.0000 | −0.722315 | ||||||||
\(277\) | − 10.0000i | − 0.600842i | −0.953807 | − | 0.300421i | \(-0.902873\pi\) | ||||
0.953807 | − | 0.300421i | \(-0.0971271\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 8.00000 | 0.478947 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 3.00000 | 0.178965 | 0.0894825 | − | 0.995988i | \(-0.471479\pi\) | ||||
0.0894825 | + | 0.995988i | \(0.471479\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 13.0000i | − 0.772770i | −0.922338 | − | 0.386385i | \(-0.873724\pi\) | ||||
0.922338 | − | 0.386385i | \(-0.126276\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 8.00000 | 0.470588 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −1.00000 | −0.0586210 | ||||||||
\(292\) | 4.00000i | 0.234082i | ||||||||
\(293\) | − 21.0000i | − 1.22683i | −0.789760 | − | 0.613417i | \(-0.789795\pi\) | ||||
0.789760 | − | 0.613417i | \(-0.210205\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | − 15.0000i | − 0.870388i | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −30.0000 | −1.73494 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | − 6.00000i | − 0.344691i | ||||||||
\(304\) | 8.00000 | 0.458831 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 11.0000i | − 0.627803i | −0.949456 | − | 0.313902i | \(-0.898364\pi\) | ||||
0.949456 | − | 0.313902i | \(-0.101636\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | −5.00000 | −0.284440 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −18.0000 | −1.02069 | −0.510343 | − | 0.859971i | \(-0.670482\pi\) | ||||
−0.510343 | + | 0.859971i | \(0.670482\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 19.0000i | − 1.07394i | −0.843600 | − | 0.536972i | \(-0.819568\pi\) | ||||
0.843600 | − | 0.536972i | \(-0.180432\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 2.00000 | 0.112509 | ||||||||
\(317\) | − 18.0000i | − 1.01098i | −0.862832 | − | 0.505490i | \(-0.831312\pi\) | ||||
0.862832 | − | 0.505490i | \(-0.168688\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 9.00000 | 0.503903 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | −6.00000 | −0.334887 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 6.00000i | − 0.333849i | ||||||||
\(324\) | 2.00000 | 0.111111 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 7.00000i | 0.387101i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −28.0000 | −1.53902 | −0.769510 | − | 0.638635i | \(-0.779499\pi\) | ||||
−0.769510 | + | 0.638635i | \(0.779499\pi\) | |||||||
\(332\) | 24.0000i | 1.31717i | ||||||||
\(333\) | 4.00000i | 0.219199i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 14.0000i | 0.762629i | 0.924445 | + | 0.381314i | \(0.124528\pi\) | ||||
−0.924445 | + | 0.381314i | \(0.875472\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 6.00000 | 0.325875 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −12.0000 | −0.649836 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 18.0000i | − 0.966291i | −0.875540 | − | 0.483145i | \(-0.839494\pi\) | ||||
0.875540 | − | 0.483145i | \(-0.160506\pi\) | |||||||
\(348\) | − 6.00000i | − 0.321634i | ||||||||
\(349\) | 26.0000 | 1.39175 | 0.695874 | − | 0.718164i | \(-0.255017\pi\) | ||||
0.695874 | + | 0.718164i | \(0.255017\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | −25.0000 | −1.33440 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 15.0000i | 0.798369i | 0.916871 | + | 0.399185i | \(0.130707\pi\) | ||||
−0.916871 | + | 0.399185i | \(0.869293\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | −24.0000 | −1.27200 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −24.0000 | −1.26667 | −0.633336 | − | 0.773877i | \(-0.718315\pi\) | ||||
−0.633336 | + | 0.773877i | \(0.718315\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −15.0000 | −0.789474 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − 2.00000i | − 0.104973i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 17.0000i | − 0.887393i | −0.896177 | − | 0.443696i | \(-0.853667\pi\) | ||||
0.896177 | − | 0.443696i | \(-0.146333\pi\) | |||||||
\(368\) | 24.0000i | 1.25109i | ||||||||
\(369\) | 24.0000 | 1.24939 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 8.00000i | 0.414781i | ||||||||
\(373\) | 4.00000i | 0.207112i | 0.994624 | + | 0.103556i | \(0.0330221\pi\) | ||||
−0.994624 | + | 0.103556i | \(0.966978\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 15.0000i | − 0.772539i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −20.0000 | −1.02733 | −0.513665 | − | 0.857991i | \(-0.671713\pi\) | ||||
−0.513665 | + | 0.857991i | \(0.671713\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 16.0000 | 0.819705 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 12.0000i | 0.613171i | 0.951843 | + | 0.306586i | \(0.0991866\pi\) | ||||
−0.951843 | + | 0.306586i | \(0.900813\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 20.0000i | 1.01666i | ||||||||
\(388\) | 2.00000i | 0.101535i | ||||||||
\(389\) | 3.00000 | 0.152106 | 0.0760530 | − | 0.997104i | \(-0.475768\pi\) | ||||
0.0760530 | + | 0.997104i | \(0.475768\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 18.0000 | 0.910299 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 6.00000i | 0.302660i | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | −12.0000 | −0.603023 | ||||||||
\(397\) | 25.0000i | 1.25471i | 0.778732 | + | 0.627357i | \(0.215863\pi\) | ||||
−0.778732 | + | 0.627357i | \(0.784137\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −15.0000 | −0.749064 | −0.374532 | − | 0.927214i | \(-0.622197\pi\) | ||||
−0.374532 | + | 0.927214i | \(0.622197\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 20.0000i | 0.996271i | ||||||||
\(404\) | −12.0000 | −0.597022 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 6.00000i | − 0.297409i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 14.0000 | 0.692255 | 0.346128 | − | 0.938187i | \(-0.387496\pi\) | ||||
0.346128 | + | 0.938187i | \(0.387496\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 12.0000 | 0.591916 | ||||||||
\(412\) | 10.0000i | 0.492665i | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 14.0000i | 0.685583i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −12.0000 | −0.586238 | −0.293119 | − | 0.956076i | \(-0.594693\pi\) | ||||
−0.293119 | + | 0.956076i | \(0.594693\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 17.0000 | 0.828529 | 0.414265 | − | 0.910156i | \(-0.364039\pi\) | ||||
0.414265 | + | 0.910156i | \(0.364039\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | − 18.0000i | − 0.875190i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 12.0000i | 0.580042i | ||||||||
\(429\) | 15.0000 | 0.724207 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 21.0000 | 1.01153 | 0.505767 | − | 0.862670i | \(-0.331209\pi\) | ||||
0.505767 | + | 0.862670i | \(0.331209\pi\) | |||||||
\(432\) | 20.0000i | 0.962250i | ||||||||
\(433\) | 2.00000i | 0.0961139i | 0.998845 | + | 0.0480569i | \(0.0153029\pi\) | ||||
−0.998845 | + | 0.0480569i | \(0.984697\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 14.0000 | 0.670478 | ||||||||
\(437\) | 12.0000i | 0.574038i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 26.0000 | 1.24091 | 0.620456 | − | 0.784241i | \(-0.286947\pi\) | ||||
0.620456 | + | 0.784241i | \(0.286947\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 18.0000i | 0.855206i | 0.903967 | + | 0.427603i | \(0.140642\pi\) | ||||
−0.903967 | + | 0.427603i | \(0.859358\pi\) | |||||||
\(444\) | −4.00000 | −0.189832 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 6.00000i | 0.283790i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 9.00000 | 0.424736 | 0.212368 | − | 0.977190i | \(-0.431882\pi\) | ||||
0.212368 | + | 0.977190i | \(0.431882\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −36.0000 | −1.69517 | ||||||||
\(452\) | − 12.0000i | − 0.564433i | ||||||||
\(453\) | − 1.00000i | − 0.0469841i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 8.00000i | 0.374224i | 0.982339 | + | 0.187112i | \(0.0599128\pi\) | ||||
−0.982339 | + | 0.187112i | \(0.940087\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 15.0000 | 0.700140 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 24.0000 | 1.11779 | 0.558896 | − | 0.829238i | \(-0.311225\pi\) | ||||
0.558896 | + | 0.829238i | \(0.311225\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 32.0000i | − 1.48717i | −0.668644 | − | 0.743583i | \(-0.733125\pi\) | ||||
0.668644 | − | 0.743583i | \(-0.266875\pi\) | |||||||
\(464\) | −12.0000 | −0.557086 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 15.0000i | − 0.694117i | −0.937843 | − | 0.347059i | \(-0.887180\pi\) | ||||
0.937843 | − | 0.347059i | \(-0.112820\pi\) | |||||||
\(468\) | 20.0000i | 0.924500i | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 14.0000 | 0.645086 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 30.0000i | − 1.37940i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | − 24.0000i | − 1.09888i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −30.0000 | −1.37073 | −0.685367 | − | 0.728197i | \(-0.740358\pi\) | ||||
−0.685367 | + | 0.728197i | \(0.740358\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −10.0000 | −0.455961 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | −4.00000 | −0.181818 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 38.0000i | 1.72194i | 0.508652 | + | 0.860972i | \(0.330144\pi\) | ||||
−0.508652 | + | 0.860972i | \(0.669856\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 2.00000 | 0.0904431 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 15.0000 | 0.676941 | 0.338470 | − | 0.940977i | \(-0.390091\pi\) | ||||
0.338470 | + | 0.940977i | \(0.390091\pi\) | |||||||
\(492\) | 24.0000i | 1.08200i | ||||||||
\(493\) | 9.00000i | 0.405340i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 16.0000 | 0.718421 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 31.0000 | 1.38775 | 0.693875 | − | 0.720095i | \(-0.255902\pi\) | ||||
0.693875 | + | 0.720095i | \(0.255902\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | −3.00000 | −0.134030 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 27.0000i | 1.20387i | 0.798545 | + | 0.601935i | \(0.205603\pi\) | ||||
−0.798545 | + | 0.601935i | \(0.794397\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | − 12.0000i | − 0.532939i | ||||||||
\(508\) | − 32.0000i | − 1.41977i | ||||||||
\(509\) | −6.00000 | −0.265945 | −0.132973 | − | 0.991120i | \(-0.542452\pi\) | ||||
−0.132973 | + | 0.991120i | \(0.542452\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 10.0000i | 0.441511i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | −20.0000 | −0.880451 | ||||||||
\(517\) | 27.0000i | 1.18746i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 9.00000 | 0.395056 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 42.0000 | 1.84005 | 0.920027 | − | 0.391856i | \(-0.128167\pi\) | ||||
0.920027 | + | 0.391856i | \(0.128167\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 20.0000i | 0.874539i | 0.899331 | + | 0.437269i | \(0.144054\pi\) | ||||
−0.899331 | + | 0.437269i | \(0.855946\pi\) | |||||||
\(524\) | 12.0000 | 0.524222 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 12.0000i | − 0.522728i | ||||||||
\(528\) | − 12.0000i | − 0.522233i | ||||||||
\(529\) | −13.0000 | −0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 60.0000i | 2.59889i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | − 12.0000i | − 0.517838i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 11.0000 | 0.472927 | 0.236463 | − | 0.971640i | \(-0.424012\pi\) | ||||
0.236463 | + | 0.971640i | \(0.424012\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | − 20.0000i | − 0.858282i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 8.00000i | 0.342055i | 0.985266 | + | 0.171028i | \(0.0547087\pi\) | ||||
−0.985266 | + | 0.171028i | \(0.945291\pi\) | |||||||
\(548\) | − 24.0000i | − 1.02523i | ||||||||
\(549\) | −16.0000 | −0.682863 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −6.00000 | −0.255609 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 28.0000 | 1.18746 | ||||||||
\(557\) | − 24.0000i | − 1.01691i | −0.861088 | − | 0.508456i | \(-0.830216\pi\) | ||||
0.861088 | − | 0.508456i | \(-0.169784\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −50.0000 | −2.11477 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | −9.00000 | −0.379980 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 36.0000i | 1.51722i | 0.651546 | + | 0.758610i | \(0.274121\pi\) | ||||
−0.651546 | + | 0.758610i | \(0.725879\pi\) | |||||||
\(564\) | 18.0000 | 0.757937 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −18.0000 | −0.754599 | −0.377300 | − | 0.926091i | \(-0.623147\pi\) | ||||
−0.377300 | + | 0.926091i | \(0.623147\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −4.00000 | −0.167395 | −0.0836974 | − | 0.996491i | \(-0.526673\pi\) | ||||
−0.0836974 | + | 0.996491i | \(0.526673\pi\) | |||||||
\(572\) | − 30.0000i | − 1.25436i | ||||||||
\(573\) | 9.00000i | 0.375980i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 16.0000 | 0.666667 | ||||||||
\(577\) | 7.00000i | 0.291414i | 0.989328 | + | 0.145707i | \(0.0465456\pi\) | ||||
−0.989328 | + | 0.145707i | \(0.953454\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | −4.00000 | −0.166234 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 36.0000i | 1.49097i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 24.0000i | 0.990586i | 0.868726 | + | 0.495293i | \(0.164939\pi\) | ||||
−0.868726 | + | 0.495293i | \(0.835061\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 8.00000 | 0.329634 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 8.00000i | 0.328798i | ||||||||
\(593\) | − 39.0000i | − 1.60154i | −0.598973 | − | 0.800769i | \(-0.704424\pi\) | ||||
0.598973 | − | 0.800769i | \(-0.295576\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 12.0000 | 0.491539 | ||||||||
\(597\) | − 16.0000i | − 0.654836i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −45.0000 | −1.83865 | −0.919325 | − | 0.393499i | \(-0.871265\pi\) | ||||
−0.919325 | + | 0.393499i | \(0.871265\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 10.0000 | 0.407909 | 0.203954 | − | 0.978980i | \(-0.434621\pi\) | ||||
0.203954 | + | 0.978980i | \(0.434621\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | − 8.00000i | − 0.325785i | ||||||||
\(604\) | −2.00000 | −0.0813788 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 13.0000i | 0.527654i | 0.964570 | + | 0.263827i | \(0.0849848\pi\) | ||||
−0.964570 | + | 0.263827i | \(0.915015\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 45.0000 | 1.82051 | ||||||||
\(612\) | − 12.0000i | − 0.485071i | ||||||||
\(613\) | − 2.00000i | − 0.0807792i | −0.999184 | − | 0.0403896i | \(-0.987140\pi\) | ||||
0.999184 | − | 0.0403896i | \(-0.0128599\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 42.0000i | 1.69086i | 0.534089 | + | 0.845428i | \(0.320655\pi\) | ||||
−0.534089 | + | 0.845428i | \(0.679345\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 26.0000 | 1.04503 | 0.522514 | − | 0.852631i | \(-0.324994\pi\) | ||||
0.522514 | + | 0.852631i | \(0.324994\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | −30.0000 | −1.20386 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | −20.0000 | −0.800641 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | − 6.00000i | − 0.239617i | ||||||||
\(628\) | − 28.0000i | − 1.11732i | ||||||||
\(629\) | 6.00000 | 0.239236 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 29.0000 | 1.15447 | 0.577236 | − | 0.816577i | \(-0.304131\pi\) | ||||
0.577236 | + | 0.816577i | \(0.304131\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | − 13.0000i | − 0.516704i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 24.0000 | 0.951662 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −30.0000 | −1.18493 | −0.592464 | − | 0.805597i | \(-0.701845\pi\) | ||||
−0.592464 | + | 0.805597i | \(0.701845\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 41.0000i | 1.61688i | 0.588577 | + | 0.808441i | \(0.299688\pi\) | ||||
−0.588577 | + | 0.808441i | \(0.700312\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 24.0000i | 0.943537i | 0.881722 | + | 0.471769i | \(0.156384\pi\) | ||||
−0.881722 | + | 0.471769i | \(0.843616\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | − 4.00000i | − 0.156652i | ||||||||
\(653\) | 6.00000i | 0.234798i | 0.993085 | + | 0.117399i | \(0.0374557\pi\) | ||||
−0.993085 | + | 0.117399i | \(0.962544\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 48.0000 | 1.87409 | ||||||||
\(657\) | 4.00000i | 0.156055i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 15.0000 | 0.584317 | 0.292159 | − | 0.956370i | \(-0.405627\pi\) | ||||
0.292159 | + | 0.956370i | \(0.405627\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −32.0000 | −1.24466 | −0.622328 | − | 0.782757i | \(-0.713813\pi\) | ||||
−0.622328 | + | 0.782757i | \(0.713813\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 15.0000i | 0.582552i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 18.0000i | − 0.696963i | ||||||||
\(668\) | 6.00000i | 0.232147i | ||||||||
\(669\) | 19.0000 | 0.734582 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 24.0000 | 0.926510 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 28.0000i | 1.07932i | 0.841883 | + | 0.539660i | \(0.181447\pi\) | ||||
−0.841883 | + | 0.539660i | \(0.818553\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | −24.0000 | −0.923077 | ||||||||
\(677\) | − 45.0000i | − 1.72949i | −0.502211 | − | 0.864745i | \(-0.667480\pi\) | ||||
0.502211 | − | 0.864745i | \(-0.332520\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −3.00000 | −0.114960 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 24.0000i | 0.918334i | 0.888350 | + | 0.459167i | \(0.151852\pi\) | ||||
−0.888350 | + | 0.459167i | \(0.848148\pi\) | |||||||
\(684\) | 8.00000 | 0.305888 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | − 4.00000i | − 0.152610i | ||||||||
\(688\) | 40.0000i | 1.52499i | ||||||||
\(689\) | 60.0000 | 2.28582 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 28.0000 | 1.06517 | 0.532585 | − | 0.846376i | \(-0.321221\pi\) | ||||
0.532585 | + | 0.846376i | \(0.321221\pi\) | |||||||
\(692\) | − 18.0000i | − 0.684257i | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 36.0000i | − 1.36360i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 24.0000 | 0.907763 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −9.00000 | −0.339925 | −0.169963 | − | 0.985451i | \(-0.554365\pi\) | ||||
−0.169963 | + | 0.985451i | \(0.554365\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 4.00000i | 0.150863i | ||||||||
\(704\) | −24.0000 | −0.904534 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −35.0000 | −1.31445 | −0.657226 | − | 0.753693i | \(-0.728270\pi\) | ||||
−0.657226 | + | 0.753693i | \(0.728270\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 2.00000 | 0.0750059 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 24.0000i | 0.898807i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | −24.0000 | −0.896922 | ||||||||
\(717\) | 21.0000i | 0.784259i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −30.0000 | −1.11881 | −0.559406 | − | 0.828894i | \(-0.688971\pi\) | ||||
−0.559406 | + | 0.828894i | \(0.688971\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 10.0000i | 0.371904i | ||||||||
\(724\) | −40.0000 | −1.48659 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 8.00000i | − 0.296704i | −0.988935 | − | 0.148352i | \(-0.952603\pi\) | ||||
0.988935 | − | 0.148352i | \(-0.0473968\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −13.0000 | −0.481481 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 30.0000 | 1.10959 | ||||||||
\(732\) | − 16.0000i | − 0.591377i | ||||||||
\(733\) | − 31.0000i | − 1.14501i | −0.819901 | − | 0.572506i | \(-0.805971\pi\) | ||||
0.819901 | − | 0.572506i | \(-0.194029\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 12.0000i | 0.442026i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 43.0000 | 1.58178 | 0.790890 | − | 0.611958i | \(-0.209618\pi\) | ||||
0.790890 | + | 0.611958i | \(0.209618\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | −10.0000 | −0.367359 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 12.0000i | 0.440237i | 0.975473 | + | 0.220119i | \(0.0706445\pi\) | ||||
−0.975473 | + | 0.220119i | \(0.929356\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 24.0000i | 0.878114i | ||||||||
\(748\) | 18.0000i | 0.658145i | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 23.0000 | 0.839282 | 0.419641 | − | 0.907690i | \(-0.362156\pi\) | ||||
0.419641 | + | 0.907690i | \(0.362156\pi\) | |||||||
\(752\) | − 36.0000i | − 1.31278i | ||||||||
\(753\) | − 18.0000i | − 0.655956i | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 16.0000i | − 0.581530i | −0.956795 | − | 0.290765i | \(-0.906090\pi\) | ||||
0.956795 | − | 0.290765i | \(-0.0939098\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 18.0000 | 0.653359 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −30.0000 | −1.08750 | −0.543750 | − | 0.839248i | \(-0.682996\pi\) | ||||
−0.543750 | + | 0.839248i | \(0.682996\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 18.0000 | 0.651217 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 16.0000i | 0.577350i | ||||||||
\(769\) | 14.0000 | 0.504853 | 0.252426 | − | 0.967616i | \(-0.418771\pi\) | ||||
0.252426 | + | 0.967616i | \(0.418771\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 30.0000 | 1.08042 | ||||||||
\(772\) | 8.00000i | 0.287926i | ||||||||
\(773\) | 21.0000i | 0.755318i | 0.925945 | + | 0.377659i | \(0.123271\pi\) | ||||
−0.925945 | + | 0.377659i | \(0.876729\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 24.0000 | 0.859889 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | − 15.0000i | − 0.536056i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 5.00000i | − 0.178231i | −0.996021 | − | 0.0891154i | \(-0.971596\pi\) | ||||
0.996021 | − | 0.0891154i | \(-0.0284040\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 6.00000 | 0.213606 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 40.0000i | − 1.42044i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | −32.0000 | −1.13421 | ||||||||
\(797\) | − 15.0000i | − 0.531327i | −0.964066 | − | 0.265664i | \(-0.914409\pi\) | ||||
0.964066 | − | 0.265664i | \(-0.0855911\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −27.0000 | −0.955191 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | −24.0000 | −0.847998 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 6.00000i | − 0.211735i | ||||||||
\(804\) | 8.00000 | 0.282138 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | − 6.00000i | − 0.211210i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 15.0000 | 0.527372 | 0.263686 | − | 0.964609i | \(-0.415062\pi\) | ||||
0.263686 | + | 0.964609i | \(0.415062\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −2.00000 | −0.0702295 | −0.0351147 | − | 0.999383i | \(-0.511180\pi\) | ||||
−0.0351147 | + | 0.999383i | \(0.511180\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 16.0000i | 0.561144i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 12.0000 | 0.420084 | ||||||||
\(817\) | 20.0000i | 0.699711i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −27.0000 | −0.942306 | −0.471153 | − | 0.882051i | \(-0.656162\pi\) | ||||
−0.471153 | + | 0.882051i | \(0.656162\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 4.00000i | 0.139431i | 0.997567 | + | 0.0697156i | \(0.0222092\pi\) | ||||
−0.997567 | + | 0.0697156i | \(0.977791\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 54.0000i | 1.87776i | 0.344239 | + | 0.938882i | \(0.388137\pi\) | ||||
−0.344239 | + | 0.938882i | \(0.611863\pi\) | |||||||
\(828\) | 24.0000i | 0.834058i | ||||||||
\(829\) | −52.0000 | −1.80603 | −0.903017 | − | 0.429604i | \(-0.858653\pi\) | ||||
−0.903017 | + | 0.429604i | \(0.858653\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 10.0000 | 0.346896 | ||||||||
\(832\) | 40.0000i | 1.38675i | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | −12.0000 | −0.415029 | ||||||||
\(837\) | 20.0000i | 0.691301i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −42.0000 | −1.45000 | −0.725001 | − | 0.688748i | \(-0.758161\pi\) | ||||
−0.725001 | + | 0.688748i | \(0.758161\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −20.0000 | −0.689655 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 3.00000i | 0.103325i | ||||||||
\(844\) | −26.0000 | −0.894957 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | − 48.0000i | − 1.64833i | ||||||||
\(849\) | 13.0000 | 0.446159 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −12.0000 | −0.411355 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 10.0000i | − 0.342393i | −0.985237 | − | 0.171197i | \(-0.945237\pi\) | ||||
0.985237 | − | 0.171197i | \(-0.0547634\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 30.0000i | 1.02478i | 0.858753 | + | 0.512390i | \(0.171240\pi\) | ||||
−0.858753 | + | 0.512390i | \(0.828760\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −4.00000 | −0.136478 | −0.0682391 | − | 0.997669i | \(-0.521738\pi\) | ||||
−0.0682391 | + | 0.997669i | \(0.521738\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 24.0000i | − 0.816970i | −0.912765 | − | 0.408485i | \(-0.866057\pi\) | ||||
0.912765 | − | 0.408485i | \(-0.133943\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 8.00000i | 0.271694i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −3.00000 | −0.101768 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 20.0000 | 0.677674 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 2.00000i | 0.0676897i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | −4.00000 | −0.135147 | ||||||||
\(877\) | 50.0000i | 1.68838i | 0.536044 | + | 0.844190i | \(0.319918\pi\) | ||||
−0.536044 | + | 0.844190i | \(0.680082\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 21.0000 | 0.708312 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 20.0000i | − 0.673054i | −0.941674 | − | 0.336527i | \(-0.890748\pi\) | ||||
0.941674 | − | 0.336527i | \(-0.109252\pi\) | |||||||
\(884\) | 30.0000 | 1.00901 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 24.0000i | 0.805841i | 0.915235 | + | 0.402921i | \(0.132005\pi\) | ||||
−0.915235 | + | 0.402921i | \(0.867995\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | −3.00000 | −0.100504 | ||||||||
\(892\) | − 38.0000i | − 1.27233i | ||||||||
\(893\) | − 18.0000i | − 0.602347i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | − 30.0000i | − 1.00167i | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −12.0000 | −0.400222 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −36.0000 | −1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 26.0000i | 0.863316i | 0.902037 | + | 0.431658i | \(0.142071\pi\) | ||||
−0.902037 | + | 0.431658i | \(0.857929\pi\) | |||||||
\(908\) | 6.00000i | 0.199117i | ||||||||
\(909\) | −12.0000 | −0.398015 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −24.0000 | −0.795155 | −0.397578 | − | 0.917568i | \(-0.630149\pi\) | ||||
−0.397578 | + | 0.917568i | \(0.630149\pi\) | |||||||
\(912\) | 8.00000i | 0.264906i | ||||||||
\(913\) | − 36.0000i | − 1.19143i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | −8.00000 | −0.264327 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −11.0000 | −0.362857 | −0.181428 | − | 0.983404i | \(-0.558072\pi\) | ||||
−0.181428 | + | 0.983404i | \(0.558072\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 11.0000 | 0.362462 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 10.0000i | 0.328443i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 36.0000 | 1.18112 | 0.590561 | − | 0.806993i | \(-0.298907\pi\) | ||||
0.590561 | + | 0.806993i | \(0.298907\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | − 48.0000i | − 1.57229i | ||||||||
\(933\) | − 18.0000i | − 0.589294i | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 47.0000i | − 1.53542i | −0.640796 | − | 0.767712i | \(-0.721395\pi\) | ||||
0.640796 | − | 0.767712i | \(-0.278605\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 19.0000 | 0.620042 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 72.0000i | 2.34464i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(948\) | 2.00000i | 0.0649570i | ||||||||
\(949\) | −10.0000 | −0.324614 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 18.0000 | 0.583690 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 42.0000 | 1.35838 | ||||||||
\(957\) | 9.00000i | 0.290929i | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 12.0000i | 0.386695i | ||||||||
\(964\) | 20.0000 | 0.644157 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 22.0000i | − 0.707472i | −0.935345 | − | 0.353736i | \(-0.884911\pi\) | ||||
0.935345 | − | 0.353736i | \(-0.115089\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 6.00000 | 0.192748 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 48.0000 | 1.54039 | 0.770197 | − | 0.637806i | \(-0.220158\pi\) | ||||
0.770197 | + | 0.637806i | \(0.220158\pi\) | |||||||
\(972\) | 32.0000i | 1.02640i | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | −32.0000 | −1.02430 | ||||||||
\(977\) | 54.0000i | 1.72761i | 0.503824 | + | 0.863807i | \(0.331926\pi\) | ||||
−0.503824 | + | 0.863807i | \(0.668074\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 36.0000 | 1.15056 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 14.0000 | 0.446986 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 21.0000i | − 0.669796i | −0.942254 | − | 0.334898i | \(-0.891298\pi\) | ||||
0.942254 | − | 0.334898i | \(-0.108702\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 20.0000i | 0.636285i | ||||||||
\(989\) | −60.0000 | −1.90789 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 56.0000 | 1.77890 | 0.889449 | − | 0.457034i | \(-0.151088\pi\) | ||||
0.889449 | + | 0.457034i | \(0.151088\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | − 28.0000i | − 0.888553i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | −24.0000 | −0.760469 | ||||||||
\(997\) | 37.0000i | 1.17180i | 0.810383 | + | 0.585901i | \(0.199259\pi\) | ||||
−0.810383 | + | 0.585901i | \(0.800741\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −10.0000 | −0.316386 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1225.2.b.d.99.2 | 2 | ||
5.2 | odd | 4 | 1225.2.a.e.1.1 | 1 | |||
5.3 | odd | 4 | 245.2.a.c.1.1 | 1 | |||
5.4 | even | 2 | inner | 1225.2.b.d.99.1 | 2 | ||
7.6 | odd | 2 | 175.2.b.a.99.1 | 2 | |||
15.8 | even | 4 | 2205.2.a.e.1.1 | 1 | |||
20.3 | even | 4 | 3920.2.a.ba.1.1 | 1 | |||
21.20 | even | 2 | 1575.2.d.c.1324.2 | 2 | |||
28.27 | even | 2 | 2800.2.g.l.449.2 | 2 | |||
35.3 | even | 12 | 245.2.e.a.226.1 | 2 | |||
35.13 | even | 4 | 35.2.a.a.1.1 | ✓ | 1 | ||
35.18 | odd | 12 | 245.2.e.b.226.1 | 2 | |||
35.23 | odd | 12 | 245.2.e.b.116.1 | 2 | |||
35.27 | even | 4 | 175.2.a.b.1.1 | 1 | |||
35.33 | even | 12 | 245.2.e.a.116.1 | 2 | |||
35.34 | odd | 2 | 175.2.b.a.99.2 | 2 | |||
105.62 | odd | 4 | 1575.2.a.f.1.1 | 1 | |||
105.83 | odd | 4 | 315.2.a.b.1.1 | 1 | |||
105.104 | even | 2 | 1575.2.d.c.1324.1 | 2 | |||
140.27 | odd | 4 | 2800.2.a.z.1.1 | 1 | |||
140.83 | odd | 4 | 560.2.a.b.1.1 | 1 | |||
140.139 | even | 2 | 2800.2.g.l.449.1 | 2 | |||
280.13 | even | 4 | 2240.2.a.k.1.1 | 1 | |||
280.83 | odd | 4 | 2240.2.a.u.1.1 | 1 | |||
385.153 | odd | 4 | 4235.2.a.c.1.1 | 1 | |||
420.83 | even | 4 | 5040.2.a.v.1.1 | 1 | |||
455.363 | even | 4 | 5915.2.a.f.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
35.2.a.a.1.1 | ✓ | 1 | 35.13 | even | 4 | ||
175.2.a.b.1.1 | 1 | 35.27 | even | 4 | |||
175.2.b.a.99.1 | 2 | 7.6 | odd | 2 | |||
175.2.b.a.99.2 | 2 | 35.34 | odd | 2 | |||
245.2.a.c.1.1 | 1 | 5.3 | odd | 4 | |||
245.2.e.a.116.1 | 2 | 35.33 | even | 12 | |||
245.2.e.a.226.1 | 2 | 35.3 | even | 12 | |||
245.2.e.b.116.1 | 2 | 35.23 | odd | 12 | |||
245.2.e.b.226.1 | 2 | 35.18 | odd | 12 | |||
315.2.a.b.1.1 | 1 | 105.83 | odd | 4 | |||
560.2.a.b.1.1 | 1 | 140.83 | odd | 4 | |||
1225.2.a.e.1.1 | 1 | 5.2 | odd | 4 | |||
1225.2.b.d.99.1 | 2 | 5.4 | even | 2 | inner | ||
1225.2.b.d.99.2 | 2 | 1.1 | even | 1 | trivial | ||
1575.2.a.f.1.1 | 1 | 105.62 | odd | 4 | |||
1575.2.d.c.1324.1 | 2 | 105.104 | even | 2 | |||
1575.2.d.c.1324.2 | 2 | 21.20 | even | 2 | |||
2205.2.a.e.1.1 | 1 | 15.8 | even | 4 | |||
2240.2.a.k.1.1 | 1 | 280.13 | even | 4 | |||
2240.2.a.u.1.1 | 1 | 280.83 | odd | 4 | |||
2800.2.a.z.1.1 | 1 | 140.27 | odd | 4 | |||
2800.2.g.l.449.1 | 2 | 140.139 | even | 2 | |||
2800.2.g.l.449.2 | 2 | 28.27 | even | 2 | |||
3920.2.a.ba.1.1 | 1 | 20.3 | even | 4 | |||
4235.2.a.c.1.1 | 1 | 385.153 | odd | 4 | |||
5040.2.a.v.1.1 | 1 | 420.83 | even | 4 | |||
5915.2.a.f.1.1 | 1 | 455.363 | even | 4 |