Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1575,2,Mod(1324,1575)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1575.1324");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1575.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(12.5764383184\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 35) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 1324.2 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1575.1324 |
Dual form | 1575.2.d.c.1324.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(451\) | \(1226\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 2.00000 | 1.00000 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 1.00000i | 0.377964i | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 3.00000 | 0.904534 | 0.452267 | − | 0.891883i | \(-0.350615\pi\) | ||||
0.452267 | + | 0.891883i | \(0.350615\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − 5.00000i | − 1.38675i | −0.720577 | − | 0.693375i | \(-0.756123\pi\) | ||||
0.720577 | − | 0.693375i | \(-0.243877\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 4.00000 | 1.00000 | ||||||||
\(17\) | − 3.00000i | − 0.727607i | −0.931476 | − | 0.363803i | \(-0.881478\pi\) | ||||
0.931476 | − | 0.363803i | \(-0.118522\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −2.00000 | −0.458831 | −0.229416 | − | 0.973329i | \(-0.573682\pi\) | ||||
−0.229416 | + | 0.973329i | \(0.573682\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 6.00000i | − 1.25109i | −0.780189 | − | 0.625543i | \(-0.784877\pi\) | ||||
0.780189 | − | 0.625543i | \(-0.215123\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 2.00000i | 0.377964i | ||||||||
\(29\) | 3.00000 | 0.557086 | 0.278543 | − | 0.960424i | \(-0.410149\pi\) | ||||
0.278543 | + | 0.960424i | \(0.410149\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.00000 | −0.718421 | −0.359211 | − | 0.933257i | \(-0.616954\pi\) | ||||
−0.359211 | + | 0.933257i | \(0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.00000i | 0.328798i | 0.986394 | + | 0.164399i | \(0.0525685\pi\) | ||||
−0.986394 | + | 0.164399i | \(0.947432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 12.0000 | 1.87409 | 0.937043 | − | 0.349215i | \(-0.113552\pi\) | ||||
0.937043 | + | 0.349215i | \(0.113552\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 10.0000i | 1.52499i | 0.646997 | + | 0.762493i | \(0.276025\pi\) | ||||
−0.646997 | + | 0.762493i | \(0.723975\pi\) | |||||||
\(44\) | 6.00000 | 0.904534 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 9.00000i | − 1.31278i | −0.754420 | − | 0.656392i | \(-0.772082\pi\) | ||||
0.754420 | − | 0.656392i | \(-0.227918\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −1.00000 | −0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | − 10.0000i | − 1.38675i | ||||||||
\(53\) | 12.0000i | 1.64833i | 0.566352 | + | 0.824163i | \(0.308354\pi\) | ||||
−0.566352 | + | 0.824163i | \(0.691646\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 8.00000 | 1.02430 | 0.512148 | − | 0.858898i | \(-0.328850\pi\) | ||||
0.512148 | + | 0.858898i | \(0.328850\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 8.00000 | 1.00000 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 4.00000i | − 0.488678i | −0.969690 | − | 0.244339i | \(-0.921429\pi\) | ||||
0.969690 | − | 0.244339i | \(-0.0785709\pi\) | |||||||
\(68\) | − 6.00000i | − 0.727607i | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | − 2.00000i | − 0.234082i | −0.993127 | − | 0.117041i | \(-0.962659\pi\) | ||||
0.993127 | − | 0.117041i | \(-0.0373409\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | −4.00000 | −0.458831 | ||||||||
\(77\) | 3.00000i | 0.341882i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 1.00000 | 0.112509 | 0.0562544 | − | 0.998416i | \(-0.482084\pi\) | ||||
0.0562544 | + | 0.998416i | \(0.482084\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000i | 1.31717i | 0.752506 | + | 0.658586i | \(0.228845\pi\) | ||||
−0.752506 | + | 0.658586i | \(0.771155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −12.0000 | −1.27200 | −0.635999 | − | 0.771690i | \(-0.719412\pi\) | ||||
−0.635999 | + | 0.771690i | \(0.719412\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 5.00000 | 0.524142 | ||||||||
\(92\) | − 12.0000i | − 1.25109i | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 1.00000i | − 0.101535i | −0.998711 | − | 0.0507673i | \(-0.983833\pi\) | ||||
0.998711 | − | 0.0507673i | \(-0.0161667\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −6.00000 | −0.597022 | −0.298511 | − | 0.954406i | \(-0.596490\pi\) | ||||
−0.298511 | + | 0.954406i | \(0.596490\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 5.00000i | − 0.492665i | −0.969185 | − | 0.246332i | \(-0.920775\pi\) | ||||
0.969185 | − | 0.246332i | \(-0.0792255\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 6.00000i | − 0.580042i | −0.957020 | − | 0.290021i | \(-0.906338\pi\) | ||||
0.957020 | − | 0.290021i | \(-0.0936623\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 7.00000 | 0.670478 | 0.335239 | − | 0.942133i | \(-0.391183\pi\) | ||||
0.335239 | + | 0.942133i | \(0.391183\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 4.00000i | 0.377964i | ||||||||
\(113\) | 6.00000i | 0.564433i | 0.959351 | + | 0.282216i | \(0.0910696\pi\) | ||||
−0.959351 | + | 0.282216i | \(0.908930\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 6.00000 | 0.557086 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 3.00000 | 0.275010 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −2.00000 | −0.181818 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | −8.00000 | −0.718421 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 16.0000i | − 1.41977i | −0.704317 | − | 0.709885i | \(-0.748747\pi\) | ||||
0.704317 | − | 0.709885i | \(-0.251253\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 6.00000 | 0.524222 | 0.262111 | − | 0.965038i | \(-0.415581\pi\) | ||||
0.262111 | + | 0.965038i | \(0.415581\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 2.00000i | − 0.173422i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 12.0000i | 1.02523i | 0.858619 | + | 0.512615i | \(0.171323\pi\) | ||||
−0.858619 | + | 0.512615i | \(0.828677\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −14.0000 | −1.18746 | −0.593732 | − | 0.804663i | \(-0.702346\pi\) | ||||
−0.593732 | + | 0.804663i | \(0.702346\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 15.0000i | − 1.25436i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 4.00000i | 0.328798i | ||||||||
\(149\) | −6.00000 | −0.491539 | −0.245770 | − | 0.969328i | \(-0.579041\pi\) | ||||
−0.245770 | + | 0.969328i | \(0.579041\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −1.00000 | −0.0813788 | −0.0406894 | − | 0.999172i | \(-0.512955\pi\) | ||||
−0.0406894 | + | 0.999172i | \(0.512955\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 14.0000i | 1.11732i | 0.829396 | + | 0.558661i | \(0.188685\pi\) | ||||
−0.829396 | + | 0.558661i | \(0.811315\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 6.00000 | 0.472866 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 2.00000i | − 0.156652i | −0.996928 | − | 0.0783260i | \(-0.975042\pi\) | ||||
0.996928 | − | 0.0783260i | \(-0.0249575\pi\) | |||||||
\(164\) | 24.0000 | 1.87409 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 3.00000i | 0.232147i | 0.993241 | + | 0.116073i | \(0.0370308\pi\) | ||||
−0.993241 | + | 0.116073i | \(0.962969\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −12.0000 | −0.923077 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 20.0000i | 1.52499i | ||||||||
\(173\) | − 9.00000i | − 0.684257i | −0.939653 | − | 0.342129i | \(-0.888852\pi\) | ||||
0.939653 | − | 0.342129i | \(-0.111148\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 12.0000 | 0.904534 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 12.0000 | 0.896922 | 0.448461 | − | 0.893802i | \(-0.351972\pi\) | ||||
0.448461 | + | 0.893802i | \(0.351972\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 20.0000 | 1.48659 | 0.743294 | − | 0.668965i | \(-0.233262\pi\) | ||||
0.743294 | + | 0.668965i | \(0.233262\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 9.00000i | − 0.658145i | ||||||||
\(188\) | − 18.0000i | − 1.31278i | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −9.00000 | −0.651217 | −0.325609 | − | 0.945505i | \(-0.605569\pi\) | ||||
−0.325609 | + | 0.945505i | \(0.605569\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 4.00000i | 0.287926i | 0.989583 | + | 0.143963i | \(0.0459847\pi\) | ||||
−0.989583 | + | 0.143963i | \(0.954015\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | −2.00000 | −0.142857 | ||||||||
\(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 16.0000 | 1.13421 | 0.567105 | − | 0.823646i | \(-0.308063\pi\) | ||||
0.567105 | + | 0.823646i | \(0.308063\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 3.00000i | 0.210559i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | − 20.0000i | − 1.38675i | ||||||||
\(209\) | −6.00000 | −0.415029 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −13.0000 | −0.894957 | −0.447478 | − | 0.894295i | \(-0.647678\pi\) | ||||
−0.447478 | + | 0.894295i | \(0.647678\pi\) | |||||||
\(212\) | 24.0000i | 1.64833i | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 4.00000i | − 0.271538i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −15.0000 | −1.00901 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 19.0000i | 1.27233i | 0.771551 | + | 0.636167i | \(0.219481\pi\) | ||||
−0.771551 | + | 0.636167i | \(0.780519\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 3.00000i | 0.199117i | 0.995032 | + | 0.0995585i | \(0.0317430\pi\) | ||||
−0.995032 | + | 0.0995585i | \(0.968257\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 4.00000 | 0.264327 | 0.132164 | − | 0.991228i | \(-0.457808\pi\) | ||||
0.132164 | + | 0.991228i | \(0.457808\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 24.0000i | 1.57229i | 0.618041 | + | 0.786146i | \(0.287927\pi\) | ||||
−0.618041 | + | 0.786146i | \(0.712073\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −21.0000 | −1.35838 | −0.679189 | − | 0.733964i | \(-0.737668\pi\) | ||||
−0.679189 | + | 0.733964i | \(0.737668\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −10.0000 | −0.644157 | −0.322078 | − | 0.946713i | \(-0.604381\pi\) | ||||
−0.322078 | + | 0.946713i | \(0.604381\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 16.0000 | 1.02430 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 10.0000i | 0.636285i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −18.0000 | −1.13615 | −0.568075 | − | 0.822977i | \(-0.692312\pi\) | ||||
−0.568075 | + | 0.822977i | \(0.692312\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 18.0000i | − 1.13165i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 16.0000 | 1.00000 | ||||||||
\(257\) | − 30.0000i | − 1.87135i | −0.352865 | − | 0.935674i | \(-0.614792\pi\) | ||||
0.352865 | − | 0.935674i | \(-0.385208\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −2.00000 | −0.124274 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 6.00000i | 0.369976i | 0.982741 | + | 0.184988i | \(0.0592246\pi\) | ||||
−0.982741 | + | 0.184988i | \(0.940775\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | − 8.00000i | − 0.488678i | ||||||||
\(269\) | −6.00000 | −0.365826 | −0.182913 | − | 0.983129i | \(-0.558553\pi\) | ||||
−0.182913 | + | 0.983129i | \(0.558553\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −16.0000 | −0.971931 | −0.485965 | − | 0.873978i | \(-0.661532\pi\) | ||||
−0.485965 | + | 0.873978i | \(0.661532\pi\) | |||||||
\(272\) | − 12.0000i | − 0.727607i | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 10.0000i | − 0.600842i | −0.953807 | − | 0.300421i | \(-0.902873\pi\) | ||||
0.953807 | − | 0.300421i | \(-0.0971271\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −3.00000 | −0.178965 | −0.0894825 | − | 0.995988i | \(-0.528521\pi\) | ||||
−0.0894825 | + | 0.995988i | \(0.528521\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 13.0000i | 0.772770i | 0.922338 | + | 0.386385i | \(0.126276\pi\) | ||||
−0.922338 | + | 0.386385i | \(0.873724\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 12.0000i | 0.708338i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 8.00000 | 0.470588 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | − 4.00000i | − 0.234082i | ||||||||
\(293\) | − 21.0000i | − 1.22683i | −0.789760 | − | 0.613417i | \(-0.789795\pi\) | ||||
0.789760 | − | 0.613417i | \(-0.210205\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −30.0000 | −1.73494 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −10.0000 | −0.576390 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | −8.00000 | −0.458831 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 11.0000i | 0.627803i | 0.949456 | + | 0.313902i | \(0.101636\pi\) | ||||
−0.949456 | + | 0.313902i | \(0.898364\pi\) | |||||||
\(308\) | 6.00000i | 0.341882i | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −18.0000 | −1.02069 | −0.510343 | − | 0.859971i | \(-0.670482\pi\) | ||||
−0.510343 | + | 0.859971i | \(0.670482\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 19.0000i | 1.07394i | 0.843600 | + | 0.536972i | \(0.180432\pi\) | ||||
−0.843600 | + | 0.536972i | \(0.819568\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 2.00000 | 0.112509 | ||||||||
\(317\) | 18.0000i | 1.01098i | 0.862832 | + | 0.505490i | \(0.168688\pi\) | ||||
−0.862832 | + | 0.505490i | \(0.831312\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 9.00000 | 0.503903 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 6.00000i | 0.333849i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 9.00000 | 0.496186 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −28.0000 | −1.53902 | −0.769510 | − | 0.638635i | \(-0.779499\pi\) | ||||
−0.769510 | + | 0.638635i | \(0.779499\pi\) | |||||||
\(332\) | 24.0000i | 1.31717i | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 14.0000i | 0.762629i | 0.924445 | + | 0.381314i | \(0.124528\pi\) | ||||
−0.924445 | + | 0.381314i | \(0.875472\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −12.0000 | −0.649836 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 1.00000i | − 0.0539949i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 18.0000i | 0.966291i | 0.875540 | + | 0.483145i | \(0.160506\pi\) | ||||
−0.875540 | + | 0.483145i | \(0.839494\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −26.0000 | −1.39175 | −0.695874 | − | 0.718164i | \(-0.744983\pi\) | ||||
−0.695874 | + | 0.718164i | \(0.744983\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 15.0000i | 0.798369i | 0.916871 | + | 0.399185i | \(0.130707\pi\) | ||||
−0.916871 | + | 0.399185i | \(0.869293\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | −24.0000 | −1.27200 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 24.0000 | 1.26667 | 0.633336 | − | 0.773877i | \(-0.281685\pi\) | ||||
0.633336 | + | 0.773877i | \(0.281685\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −15.0000 | −0.789474 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 10.0000 | 0.524142 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 17.0000i | 0.887393i | 0.896177 | + | 0.443696i | \(0.146333\pi\) | ||||
−0.896177 | + | 0.443696i | \(0.853667\pi\) | |||||||
\(368\) | − 24.0000i | − 1.25109i | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −12.0000 | −0.623009 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 4.00000i | 0.207112i | 0.994624 | + | 0.103556i | \(0.0330221\pi\) | ||||
−0.994624 | + | 0.103556i | \(0.966978\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 15.0000i | − 0.772539i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −20.0000 | −1.02733 | −0.513665 | − | 0.857991i | \(-0.671713\pi\) | ||||
−0.513665 | + | 0.857991i | \(0.671713\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 12.0000i | 0.613171i | 0.951843 | + | 0.306586i | \(0.0991866\pi\) | ||||
−0.951843 | + | 0.306586i | \(0.900813\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | − 2.00000i | − 0.101535i | ||||||||
\(389\) | −3.00000 | −0.152106 | −0.0760530 | − | 0.997104i | \(-0.524232\pi\) | ||||
−0.0760530 | + | 0.997104i | \(0.524232\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −18.0000 | −0.910299 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 25.0000i | − 1.25471i | −0.778732 | − | 0.627357i | \(-0.784137\pi\) | ||||
0.778732 | − | 0.627357i | \(-0.215863\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 15.0000 | 0.749064 | 0.374532 | − | 0.927214i | \(-0.377803\pi\) | ||||
0.374532 | + | 0.927214i | \(0.377803\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 20.0000i | 0.996271i | ||||||||
\(404\) | −12.0000 | −0.597022 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 6.00000i | 0.297409i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −14.0000 | −0.692255 | −0.346128 | − | 0.938187i | \(-0.612504\pi\) | ||||
−0.346128 | + | 0.938187i | \(0.612504\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | − 10.0000i | − 0.492665i | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −12.0000 | −0.586238 | −0.293119 | − | 0.956076i | \(-0.594693\pi\) | ||||
−0.293119 | + | 0.956076i | \(0.594693\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 17.0000 | 0.828529 | 0.414265 | − | 0.910156i | \(-0.364039\pi\) | ||||
0.414265 | + | 0.910156i | \(0.364039\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 8.00000i | 0.387147i | ||||||||
\(428\) | − 12.0000i | − 0.580042i | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −21.0000 | −1.01153 | −0.505767 | − | 0.862670i | \(-0.668791\pi\) | ||||
−0.505767 | + | 0.862670i | \(0.668791\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 2.00000i | − 0.0961139i | −0.998845 | − | 0.0480569i | \(-0.984697\pi\) | ||||
0.998845 | − | 0.0480569i | \(-0.0153029\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 14.0000 | 0.670478 | ||||||||
\(437\) | 12.0000i | 0.574038i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −26.0000 | −1.24091 | −0.620456 | − | 0.784241i | \(-0.713053\pi\) | ||||
−0.620456 | + | 0.784241i | \(0.713053\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 18.0000i | − 0.855206i | −0.903967 | − | 0.427603i | \(-0.859358\pi\) | ||||
0.903967 | − | 0.427603i | \(-0.140642\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 8.00000i | 0.377964i | ||||||||
\(449\) | −9.00000 | −0.424736 | −0.212368 | − | 0.977190i | \(-0.568118\pi\) | ||||
−0.212368 | + | 0.977190i | \(0.568118\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 36.0000 | 1.69517 | ||||||||
\(452\) | 12.0000i | 0.564433i | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 8.00000i | 0.374224i | 0.982339 | + | 0.187112i | \(0.0599128\pi\) | ||||
−0.982339 | + | 0.187112i | \(0.940087\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 24.0000 | 1.11779 | 0.558896 | − | 0.829238i | \(-0.311225\pi\) | ||||
0.558896 | + | 0.829238i | \(0.311225\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 32.0000i | − 1.48717i | −0.668644 | − | 0.743583i | \(-0.733125\pi\) | ||||
0.668644 | − | 0.743583i | \(-0.266875\pi\) | |||||||
\(464\) | 12.0000 | 0.557086 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 15.0000i | − 0.694117i | −0.937843 | − | 0.347059i | \(-0.887180\pi\) | ||||
0.937843 | − | 0.347059i | \(-0.112820\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 4.00000 | 0.184703 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 30.0000i | 1.37940i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 6.00000 | 0.275010 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −30.0000 | −1.37073 | −0.685367 | − | 0.728197i | \(-0.740358\pi\) | ||||
−0.685367 | + | 0.728197i | \(0.740358\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 10.0000 | 0.455961 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | −4.00000 | −0.181818 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 38.0000i | 1.72194i | 0.508652 | + | 0.860972i | \(0.330144\pi\) | ||||
−0.508652 | + | 0.860972i | \(0.669856\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −15.0000 | −0.676941 | −0.338470 | − | 0.940977i | \(-0.609909\pi\) | ||||
−0.338470 | + | 0.940977i | \(0.609909\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 9.00000i | − 0.405340i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | −16.0000 | −0.718421 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 31.0000 | 1.38775 | 0.693875 | − | 0.720095i | \(-0.255902\pi\) | ||||
0.693875 | + | 0.720095i | \(0.255902\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 27.0000i | 1.20387i | 0.798545 | + | 0.601935i | \(0.205603\pi\) | ||||
−0.798545 | + | 0.601935i | \(0.794397\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | − 32.0000i | − 1.41977i | ||||||||
\(509\) | −6.00000 | −0.265945 | −0.132973 | − | 0.991120i | \(-0.542452\pi\) | ||||
−0.132973 | + | 0.991120i | \(0.542452\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 2.00000 | 0.0884748 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 27.0000i | − 1.18746i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 42.0000 | 1.84005 | 0.920027 | − | 0.391856i | \(-0.128167\pi\) | ||||
0.920027 | + | 0.391856i | \(0.128167\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 20.0000i | − 0.874539i | −0.899331 | − | 0.437269i | \(-0.855946\pi\) | ||||
0.899331 | − | 0.437269i | \(-0.144054\pi\) | |||||||
\(524\) | 12.0000 | 0.524222 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 12.0000i | 0.522728i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −13.0000 | −0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | − 4.00000i | − 0.173422i | ||||||||
\(533\) | − 60.0000i | − 2.59889i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −3.00000 | −0.129219 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 11.0000 | 0.472927 | 0.236463 | − | 0.971640i | \(-0.424012\pi\) | ||||
0.236463 | + | 0.971640i | \(0.424012\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 8.00000i | 0.342055i | 0.985266 | + | 0.171028i | \(0.0547087\pi\) | ||||
−0.985266 | + | 0.171028i | \(0.945291\pi\) | |||||||
\(548\) | 24.0000i | 1.02523i | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −6.00000 | −0.255609 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 1.00000i | 0.0425243i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | −28.0000 | −1.18746 | ||||||||
\(557\) | 24.0000i | 1.01691i | 0.861088 | + | 0.508456i | \(0.169784\pi\) | ||||
−0.861088 | + | 0.508456i | \(0.830216\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 50.0000 | 2.11477 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 36.0000i | 1.51722i | 0.651546 | + | 0.758610i | \(0.274121\pi\) | ||||
−0.651546 | + | 0.758610i | \(0.725879\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 18.0000 | 0.754599 | 0.377300 | − | 0.926091i | \(-0.376853\pi\) | ||||
0.377300 | + | 0.926091i | \(0.376853\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −4.00000 | −0.167395 | −0.0836974 | − | 0.996491i | \(-0.526673\pi\) | ||||
−0.0836974 | + | 0.996491i | \(0.526673\pi\) | |||||||
\(572\) | − 30.0000i | − 1.25436i | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 7.00000i | − 0.291414i | −0.989328 | − | 0.145707i | \(-0.953454\pi\) | ||||
0.989328 | − | 0.145707i | \(-0.0465456\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −12.0000 | −0.497844 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 36.0000i | 1.49097i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 24.0000i | 0.990586i | 0.868726 | + | 0.495293i | \(0.164939\pi\) | ||||
−0.868726 | + | 0.495293i | \(0.835061\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 8.00000 | 0.329634 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 8.00000i | 0.328798i | ||||||||
\(593\) | − 39.0000i | − 1.60154i | −0.598973 | − | 0.800769i | \(-0.704424\pi\) | ||||
0.598973 | − | 0.800769i | \(-0.295576\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | −12.0000 | −0.491539 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 45.0000 | 1.83865 | 0.919325 | − | 0.393499i | \(-0.128735\pi\) | ||||
0.919325 | + | 0.393499i | \(0.128735\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −10.0000 | −0.407909 | −0.203954 | − | 0.978980i | \(-0.565379\pi\) | ||||
−0.203954 | + | 0.978980i | \(0.565379\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | −2.00000 | −0.0813788 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 13.0000i | − 0.527654i | −0.964570 | − | 0.263827i | \(-0.915015\pi\) | ||||
0.964570 | − | 0.263827i | \(-0.0849848\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −45.0000 | −1.82051 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 2.00000i | − 0.0807792i | −0.999184 | − | 0.0403896i | \(-0.987140\pi\) | ||||
0.999184 | − | 0.0403896i | \(-0.0128599\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 42.0000i | − 1.69086i | −0.534089 | − | 0.845428i | \(-0.679345\pi\) | ||||
0.534089 | − | 0.845428i | \(-0.320655\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −26.0000 | −1.04503 | −0.522514 | − | 0.852631i | \(-0.675006\pi\) | ||||
−0.522514 | + | 0.852631i | \(0.675006\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 12.0000i | − 0.480770i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 28.0000i | 1.11732i | ||||||||
\(629\) | 6.00000 | 0.239236 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 29.0000 | 1.15447 | 0.577236 | − | 0.816577i | \(-0.304131\pi\) | ||||
0.577236 | + | 0.816577i | \(0.304131\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 5.00000i | 0.198107i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 30.0000 | 1.18493 | 0.592464 | − | 0.805597i | \(-0.298155\pi\) | ||||
0.592464 | + | 0.805597i | \(0.298155\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 41.0000i | − 1.61688i | −0.588577 | − | 0.808441i | \(-0.700312\pi\) | ||||
0.588577 | − | 0.808441i | \(-0.299688\pi\) | |||||||
\(644\) | 12.0000 | 0.472866 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 24.0000i | 0.943537i | 0.881722 | + | 0.471769i | \(0.156384\pi\) | ||||
−0.881722 | + | 0.471769i | \(0.843616\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | − 4.00000i | − 0.156652i | ||||||||
\(653\) | − 6.00000i | − 0.234798i | −0.993085 | − | 0.117399i | \(-0.962544\pi\) | ||||
0.993085 | − | 0.117399i | \(-0.0374557\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 48.0000 | 1.87409 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −15.0000 | −0.584317 | −0.292159 | − | 0.956370i | \(-0.594373\pi\) | ||||
−0.292159 | + | 0.956370i | \(0.594373\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 32.0000 | 1.24466 | 0.622328 | − | 0.782757i | \(-0.286187\pi\) | ||||
0.622328 | + | 0.782757i | \(0.286187\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 18.0000i | − 0.696963i | ||||||||
\(668\) | 6.00000i | 0.232147i | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 24.0000 | 0.926510 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 28.0000i | 1.07932i | 0.841883 | + | 0.539660i | \(0.181447\pi\) | ||||
−0.841883 | + | 0.539660i | \(0.818553\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | −24.0000 | −0.923077 | ||||||||
\(677\) | − 45.0000i | − 1.72949i | −0.502211 | − | 0.864745i | \(-0.667480\pi\) | ||||
0.502211 | − | 0.864745i | \(-0.332520\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 1.00000 | 0.0383765 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 24.0000i | − 0.918334i | −0.888350 | − | 0.459167i | \(-0.848148\pi\) | ||||
0.888350 | − | 0.459167i | \(-0.151852\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 40.0000i | 1.52499i | ||||||||
\(689\) | 60.0000 | 2.28582 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −28.0000 | −1.06517 | −0.532585 | − | 0.846376i | \(-0.678779\pi\) | ||||
−0.532585 | + | 0.846376i | \(0.678779\pi\) | |||||||
\(692\) | − 18.0000i | − 0.684257i | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 36.0000i | − 1.36360i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 9.00000 | 0.339925 | 0.169963 | − | 0.985451i | \(-0.445635\pi\) | ||||
0.169963 | + | 0.985451i | \(0.445635\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 4.00000i | − 0.150863i | ||||||||
\(704\) | 24.0000 | 0.904534 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 6.00000i | − 0.225653i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −35.0000 | −1.31445 | −0.657226 | − | 0.753693i | \(-0.728270\pi\) | ||||
−0.657226 | + | 0.753693i | \(0.728270\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 24.0000i | 0.898807i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 24.0000 | 0.896922 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −30.0000 | −1.11881 | −0.559406 | − | 0.828894i | \(-0.688971\pi\) | ||||
−0.559406 | + | 0.828894i | \(0.688971\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 5.00000 | 0.186210 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 40.0000 | 1.48659 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 8.00000i | 0.296704i | 0.988935 | + | 0.148352i | \(0.0473968\pi\) | ||||
−0.988935 | + | 0.148352i | \(0.952603\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 30.0000 | 1.10959 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 31.0000i | 1.14501i | 0.819901 | + | 0.572506i | \(0.194029\pi\) | ||||
−0.819901 | + | 0.572506i | \(0.805971\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 12.0000i | − 0.442026i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 43.0000 | 1.58178 | 0.790890 | − | 0.611958i | \(-0.209618\pi\) | ||||
0.790890 | + | 0.611958i | \(0.209618\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 12.0000i | − 0.440237i | −0.975473 | − | 0.220119i | \(-0.929356\pi\) | ||||
0.975473 | − | 0.220119i | \(-0.0706445\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | − 18.0000i | − 0.658145i | ||||||||
\(749\) | 6.00000 | 0.219235 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 23.0000 | 0.839282 | 0.419641 | − | 0.907690i | \(-0.362156\pi\) | ||||
0.419641 | + | 0.907690i | \(0.362156\pi\) | |||||||
\(752\) | − 36.0000i | − 1.31278i | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 16.0000i | − 0.581530i | −0.956795 | − | 0.290765i | \(-0.906090\pi\) | ||||
0.956795 | − | 0.290765i | \(-0.0939098\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −30.0000 | −1.08750 | −0.543750 | − | 0.839248i | \(-0.682996\pi\) | ||||
−0.543750 | + | 0.839248i | \(0.682996\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 7.00000i | 0.253417i | ||||||||
\(764\) | −18.0000 | −0.651217 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −14.0000 | −0.504853 | −0.252426 | − | 0.967616i | \(-0.581229\pi\) | ||||
−0.252426 | + | 0.967616i | \(0.581229\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 8.00000i | 0.287926i | ||||||||
\(773\) | 21.0000i | 0.755318i | 0.925945 | + | 0.377659i | \(0.123271\pi\) | ||||
−0.925945 | + | 0.377659i | \(0.876729\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −24.0000 | −0.859889 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | −4.00000 | −0.142857 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 5.00000i | 0.178231i | 0.996021 | + | 0.0891154i | \(0.0284040\pi\) | ||||
−0.996021 | + | 0.0891154i | \(0.971596\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −6.00000 | −0.213335 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 40.0000i | − 1.42044i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 32.0000 | 1.13421 | ||||||||
\(797\) | − 15.0000i | − 0.531327i | −0.964066 | − | 0.265664i | \(-0.914409\pi\) | ||||
0.964066 | − | 0.265664i | \(-0.0855911\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −27.0000 | −0.955191 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 6.00000i | − 0.211735i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −15.0000 | −0.527372 | −0.263686 | − | 0.964609i | \(-0.584938\pi\) | ||||
−0.263686 | + | 0.964609i | \(0.584938\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 2.00000 | 0.0702295 | 0.0351147 | − | 0.999383i | \(-0.488820\pi\) | ||||
0.0351147 | + | 0.999383i | \(0.488820\pi\) | |||||||
\(812\) | 6.00000i | 0.210559i | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 20.0000i | − 0.699711i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 27.0000 | 0.942306 | 0.471153 | − | 0.882051i | \(-0.343838\pi\) | ||||
0.471153 | + | 0.882051i | \(0.343838\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 4.00000i | 0.139431i | 0.997567 | + | 0.0697156i | \(0.0222092\pi\) | ||||
−0.997567 | + | 0.0697156i | \(0.977791\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 54.0000i | − 1.87776i | −0.344239 | − | 0.938882i | \(-0.611863\pi\) | ||||
0.344239 | − | 0.938882i | \(-0.388137\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 52.0000 | 1.80603 | 0.903017 | − | 0.429604i | \(-0.141347\pi\) | ||||
0.903017 | + | 0.429604i | \(0.141347\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | − 40.0000i | − 1.38675i | ||||||||
\(833\) | 3.00000i | 0.103944i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | −12.0000 | −0.415029 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −42.0000 | −1.45000 | −0.725001 | − | 0.688748i | \(-0.758161\pi\) | ||||
−0.725001 | + | 0.688748i | \(0.758161\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −20.0000 | −0.689655 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | −26.0000 | −0.894957 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 2.00000i | − 0.0687208i | ||||||||
\(848\) | 48.0000i | 1.64833i | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 12.0000 | 0.411355 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 10.0000i | 0.342393i | 0.985237 | + | 0.171197i | \(0.0547634\pi\) | ||||
−0.985237 | + | 0.171197i | \(0.945237\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 30.0000i | 1.02478i | 0.858753 | + | 0.512390i | \(0.171240\pi\) | ||||
−0.858753 | + | 0.512390i | \(0.828760\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 4.00000 | 0.136478 | 0.0682391 | − | 0.997669i | \(-0.478262\pi\) | ||||
0.0682391 | + | 0.997669i | \(0.478262\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 24.0000i | 0.816970i | 0.912765 | + | 0.408485i | \(0.133943\pi\) | ||||
−0.912765 | + | 0.408485i | \(0.866057\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | − 8.00000i | − 0.271538i | ||||||||
\(869\) | 3.00000 | 0.101768 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −20.0000 | −0.677674 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 50.0000i | 1.68838i | 0.536044 | + | 0.844190i | \(0.319918\pi\) | ||||
−0.536044 | + | 0.844190i | \(0.680082\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 20.0000i | − 0.673054i | −0.941674 | − | 0.336527i | \(-0.890748\pi\) | ||||
0.941674 | − | 0.336527i | \(-0.109252\pi\) | |||||||
\(884\) | −30.0000 | −1.00901 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 24.0000i | 0.805841i | 0.915235 | + | 0.402921i | \(0.132005\pi\) | ||||
−0.915235 | + | 0.402921i | \(0.867995\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 16.0000 | 0.536623 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 38.0000i | 1.27233i | ||||||||
\(893\) | 18.0000i | 0.602347i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −12.0000 | −0.400222 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 36.0000 | 1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 26.0000i | 0.863316i | 0.902037 | + | 0.431658i | \(0.142071\pi\) | ||||
−0.902037 | + | 0.431658i | \(0.857929\pi\) | |||||||
\(908\) | 6.00000i | 0.199117i | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 24.0000 | 0.795155 | 0.397578 | − | 0.917568i | \(-0.369851\pi\) | ||||
0.397578 | + | 0.917568i | \(0.369851\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 36.0000i | 1.19143i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 8.00000 | 0.264327 | ||||||||
\(917\) | 6.00000i | 0.198137i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −11.0000 | −0.362857 | −0.181428 | − | 0.983404i | \(-0.558072\pi\) | ||||
−0.181428 | + | 0.983404i | \(0.558072\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 36.0000 | 1.18112 | 0.590561 | − | 0.806993i | \(-0.298907\pi\) | ||||
0.590561 | + | 0.806993i | \(0.298907\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 2.00000 | 0.0655474 | ||||||||
\(932\) | 48.0000i | 1.57229i | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 47.0000i | 1.53542i | 0.640796 | + | 0.767712i | \(0.278605\pi\) | ||||
−0.640796 | + | 0.767712i | \(0.721395\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 72.0000i | − 2.34464i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −10.0000 | −0.324614 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | −42.0000 | −1.35838 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −12.0000 | −0.387500 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | −20.0000 | −0.644157 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 22.0000i | − 0.707472i | −0.935345 | − | 0.353736i | \(-0.884911\pi\) | ||||
0.935345 | − | 0.353736i | \(-0.115089\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 48.0000 | 1.54039 | 0.770197 | − | 0.637806i | \(-0.220158\pi\) | ||||
0.770197 | + | 0.637806i | \(0.220158\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 14.0000i | − 0.448819i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 32.0000 | 1.02430 | ||||||||
\(977\) | − 54.0000i | − 1.72761i | −0.503824 | − | 0.863807i | \(-0.668074\pi\) | ||||
0.503824 | − | 0.863807i | \(-0.331926\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −36.0000 | −1.15056 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 21.0000i | − 0.669796i | −0.942254 | − | 0.334898i | \(-0.891298\pi\) | ||||
0.942254 | − | 0.334898i | \(-0.108702\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 20.0000i | 0.636285i | ||||||||
\(989\) | 60.0000 | 1.90789 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 56.0000 | 1.77890 | 0.889449 | − | 0.457034i | \(-0.151088\pi\) | ||||
0.889449 | + | 0.457034i | \(0.151088\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 37.0000i | − 1.17180i | −0.810383 | − | 0.585901i | \(-0.800741\pi\) | ||||
0.810383 | − | 0.585901i | \(-0.199259\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1575.2.d.c.1324.2 | 2 | ||
3.2 | odd | 2 | 175.2.b.a.99.1 | 2 | |||
5.2 | odd | 4 | 1575.2.a.f.1.1 | 1 | |||
5.3 | odd | 4 | 315.2.a.b.1.1 | 1 | |||
5.4 | even | 2 | inner | 1575.2.d.c.1324.1 | 2 | ||
12.11 | even | 2 | 2800.2.g.l.449.2 | 2 | |||
15.2 | even | 4 | 175.2.a.b.1.1 | 1 | |||
15.8 | even | 4 | 35.2.a.a.1.1 | ✓ | 1 | ||
15.14 | odd | 2 | 175.2.b.a.99.2 | 2 | |||
20.3 | even | 4 | 5040.2.a.v.1.1 | 1 | |||
21.20 | even | 2 | 1225.2.b.d.99.2 | 2 | |||
35.13 | even | 4 | 2205.2.a.e.1.1 | 1 | |||
60.23 | odd | 4 | 560.2.a.b.1.1 | 1 | |||
60.47 | odd | 4 | 2800.2.a.z.1.1 | 1 | |||
60.59 | even | 2 | 2800.2.g.l.449.1 | 2 | |||
105.23 | even | 12 | 245.2.e.a.116.1 | 2 | |||
105.38 | odd | 12 | 245.2.e.b.226.1 | 2 | |||
105.53 | even | 12 | 245.2.e.a.226.1 | 2 | |||
105.62 | odd | 4 | 1225.2.a.e.1.1 | 1 | |||
105.68 | odd | 12 | 245.2.e.b.116.1 | 2 | |||
105.83 | odd | 4 | 245.2.a.c.1.1 | 1 | |||
105.104 | even | 2 | 1225.2.b.d.99.1 | 2 | |||
120.53 | even | 4 | 2240.2.a.k.1.1 | 1 | |||
120.83 | odd | 4 | 2240.2.a.u.1.1 | 1 | |||
165.98 | odd | 4 | 4235.2.a.c.1.1 | 1 | |||
195.38 | even | 4 | 5915.2.a.f.1.1 | 1 | |||
420.83 | even | 4 | 3920.2.a.ba.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
35.2.a.a.1.1 | ✓ | 1 | 15.8 | even | 4 | ||
175.2.a.b.1.1 | 1 | 15.2 | even | 4 | |||
175.2.b.a.99.1 | 2 | 3.2 | odd | 2 | |||
175.2.b.a.99.2 | 2 | 15.14 | odd | 2 | |||
245.2.a.c.1.1 | 1 | 105.83 | odd | 4 | |||
245.2.e.a.116.1 | 2 | 105.23 | even | 12 | |||
245.2.e.a.226.1 | 2 | 105.53 | even | 12 | |||
245.2.e.b.116.1 | 2 | 105.68 | odd | 12 | |||
245.2.e.b.226.1 | 2 | 105.38 | odd | 12 | |||
315.2.a.b.1.1 | 1 | 5.3 | odd | 4 | |||
560.2.a.b.1.1 | 1 | 60.23 | odd | 4 | |||
1225.2.a.e.1.1 | 1 | 105.62 | odd | 4 | |||
1225.2.b.d.99.1 | 2 | 105.104 | even | 2 | |||
1225.2.b.d.99.2 | 2 | 21.20 | even | 2 | |||
1575.2.a.f.1.1 | 1 | 5.2 | odd | 4 | |||
1575.2.d.c.1324.1 | 2 | 5.4 | even | 2 | inner | ||
1575.2.d.c.1324.2 | 2 | 1.1 | even | 1 | trivial | ||
2205.2.a.e.1.1 | 1 | 35.13 | even | 4 | |||
2240.2.a.k.1.1 | 1 | 120.53 | even | 4 | |||
2240.2.a.u.1.1 | 1 | 120.83 | odd | 4 | |||
2800.2.a.z.1.1 | 1 | 60.47 | odd | 4 | |||
2800.2.g.l.449.1 | 2 | 60.59 | even | 2 | |||
2800.2.g.l.449.2 | 2 | 12.11 | even | 2 | |||
3920.2.a.ba.1.1 | 1 | 420.83 | even | 4 | |||
4235.2.a.c.1.1 | 1 | 165.98 | odd | 4 | |||
5040.2.a.v.1.1 | 1 | 20.3 | even | 4 | |||
5915.2.a.f.1.1 | 1 | 195.38 | even | 4 |