Properties

Label 1225.4.a.bd.1.4
Level $1225$
Weight $4$
Character 1225.1
Self dual yes
Analytic conductor $72.277$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} - 35x + 120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 175)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.84167\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.84167 q^{2} +9.58084 q^{3} +15.4418 q^{4} +46.3873 q^{6} +36.0308 q^{8} +64.7926 q^{9} +62.1962 q^{11} +147.945 q^{12} -14.0934 q^{13} +50.9148 q^{16} -63.5104 q^{17} +313.704 q^{18} -48.7094 q^{19} +301.134 q^{22} -99.3784 q^{23} +345.205 q^{24} -68.2354 q^{26} +362.085 q^{27} -69.0571 q^{29} +9.68658 q^{31} -41.7334 q^{32} +595.892 q^{33} -307.497 q^{34} +1000.51 q^{36} +240.290 q^{37} -235.835 q^{38} -135.026 q^{39} -335.306 q^{41} +51.2582 q^{43} +960.421 q^{44} -481.158 q^{46} +451.564 q^{47} +487.806 q^{48} -608.484 q^{51} -217.627 q^{52} -180.014 q^{53} +1753.10 q^{54} -466.677 q^{57} -334.352 q^{58} -268.600 q^{59} +323.925 q^{61} +46.8992 q^{62} -609.378 q^{64} +2885.12 q^{66} -541.910 q^{67} -980.715 q^{68} -952.129 q^{69} -161.433 q^{71} +2334.53 q^{72} -305.751 q^{73} +1163.40 q^{74} -752.161 q^{76} -653.753 q^{78} -504.722 q^{79} +1719.68 q^{81} -1623.44 q^{82} +513.838 q^{83} +248.176 q^{86} -661.625 q^{87} +2240.98 q^{88} -543.158 q^{89} -1534.58 q^{92} +92.8056 q^{93} +2186.32 q^{94} -399.842 q^{96} -1863.06 q^{97} +4029.85 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 3 q^{3} + 36 q^{4} - q^{6} + 27 q^{8} + 61 q^{9} + 100 q^{11} + 165 q^{12} - 44 q^{13} + 160 q^{16} + 53 q^{17} + 433 q^{18} + 29 q^{19} - 152 q^{22} + 295 q^{23} + 21 q^{24} - 700 q^{26}+ \cdots + 2383 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.84167 1.71179 0.855895 0.517150i \(-0.173007\pi\)
0.855895 + 0.517150i \(0.173007\pi\)
\(3\) 9.58084 1.84383 0.921917 0.387387i \(-0.126622\pi\)
0.921917 + 0.387387i \(0.126622\pi\)
\(4\) 15.4418 1.93022
\(5\) 0 0
\(6\) 46.3873 3.15626
\(7\) 0 0
\(8\) 36.0308 1.59235
\(9\) 64.7926 2.39972
\(10\) 0 0
\(11\) 62.1962 1.70481 0.852403 0.522886i \(-0.175145\pi\)
0.852403 + 0.522886i \(0.175145\pi\)
\(12\) 147.945 3.55901
\(13\) −14.0934 −0.300676 −0.150338 0.988635i \(-0.548036\pi\)
−0.150338 + 0.988635i \(0.548036\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 50.9148 0.795543
\(17\) −63.5104 −0.906091 −0.453045 0.891487i \(-0.649662\pi\)
−0.453045 + 0.891487i \(0.649662\pi\)
\(18\) 313.704 4.10782
\(19\) −48.7094 −0.588143 −0.294071 0.955783i \(-0.595010\pi\)
−0.294071 + 0.955783i \(0.595010\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 301.134 2.91827
\(23\) −99.3784 −0.900949 −0.450475 0.892789i \(-0.648745\pi\)
−0.450475 + 0.892789i \(0.648745\pi\)
\(24\) 345.205 2.93603
\(25\) 0 0
\(26\) −68.2354 −0.514695
\(27\) 362.085 2.58086
\(28\) 0 0
\(29\) −69.0571 −0.442193 −0.221096 0.975252i \(-0.570964\pi\)
−0.221096 + 0.975252i \(0.570964\pi\)
\(30\) 0 0
\(31\) 9.68658 0.0561213 0.0280607 0.999606i \(-0.491067\pi\)
0.0280607 + 0.999606i \(0.491067\pi\)
\(32\) −41.7334 −0.230547
\(33\) 595.892 3.14338
\(34\) −307.497 −1.55104
\(35\) 0 0
\(36\) 1000.51 4.63201
\(37\) 240.290 1.06766 0.533829 0.845592i \(-0.320752\pi\)
0.533829 + 0.845592i \(0.320752\pi\)
\(38\) −235.835 −1.00678
\(39\) −135.026 −0.554398
\(40\) 0 0
\(41\) −335.306 −1.27722 −0.638610 0.769531i \(-0.720490\pi\)
−0.638610 + 0.769531i \(0.720490\pi\)
\(42\) 0 0
\(43\) 51.2582 0.181786 0.0908931 0.995861i \(-0.471028\pi\)
0.0908931 + 0.995861i \(0.471028\pi\)
\(44\) 960.421 3.29066
\(45\) 0 0
\(46\) −481.158 −1.54224
\(47\) 451.564 1.40143 0.700716 0.713440i \(-0.252864\pi\)
0.700716 + 0.713440i \(0.252864\pi\)
\(48\) 487.806 1.46685
\(49\) 0 0
\(50\) 0 0
\(51\) −608.484 −1.67068
\(52\) −217.627 −0.580373
\(53\) −180.014 −0.466545 −0.233273 0.972411i \(-0.574943\pi\)
−0.233273 + 0.972411i \(0.574943\pi\)
\(54\) 1753.10 4.41789
\(55\) 0 0
\(56\) 0 0
\(57\) −466.677 −1.08444
\(58\) −334.352 −0.756941
\(59\) −268.600 −0.592691 −0.296345 0.955081i \(-0.595768\pi\)
−0.296345 + 0.955081i \(0.595768\pi\)
\(60\) 0 0
\(61\) 323.925 0.679906 0.339953 0.940442i \(-0.389589\pi\)
0.339953 + 0.940442i \(0.389589\pi\)
\(62\) 46.8992 0.0960679
\(63\) 0 0
\(64\) −609.378 −1.19019
\(65\) 0 0
\(66\) 2885.12 5.38080
\(67\) −541.910 −0.988132 −0.494066 0.869424i \(-0.664490\pi\)
−0.494066 + 0.869424i \(0.664490\pi\)
\(68\) −980.715 −1.74896
\(69\) −952.129 −1.66120
\(70\) 0 0
\(71\) −161.433 −0.269839 −0.134919 0.990857i \(-0.543078\pi\)
−0.134919 + 0.990857i \(0.543078\pi\)
\(72\) 2334.53 3.82120
\(73\) −305.751 −0.490212 −0.245106 0.969496i \(-0.578823\pi\)
−0.245106 + 0.969496i \(0.578823\pi\)
\(74\) 1163.40 1.82761
\(75\) 0 0
\(76\) −752.161 −1.13525
\(77\) 0 0
\(78\) −653.753 −0.949012
\(79\) −504.722 −0.718805 −0.359403 0.933183i \(-0.617020\pi\)
−0.359403 + 0.933183i \(0.617020\pi\)
\(80\) 0 0
\(81\) 1719.68 2.35895
\(82\) −1623.44 −2.18633
\(83\) 513.838 0.679531 0.339766 0.940510i \(-0.389652\pi\)
0.339766 + 0.940510i \(0.389652\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 248.176 0.311180
\(87\) −661.625 −0.815330
\(88\) 2240.98 2.71465
\(89\) −543.158 −0.646907 −0.323453 0.946244i \(-0.604844\pi\)
−0.323453 + 0.946244i \(0.604844\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1534.58 −1.73903
\(93\) 92.8056 0.103478
\(94\) 2186.32 2.39896
\(95\) 0 0
\(96\) −399.842 −0.425090
\(97\) −1863.06 −1.95016 −0.975079 0.221857i \(-0.928788\pi\)
−0.975079 + 0.221857i \(0.928788\pi\)
\(98\) 0 0
\(99\) 4029.85 4.09106
\(100\) 0 0
\(101\) 1685.70 1.66073 0.830365 0.557221i \(-0.188132\pi\)
0.830365 + 0.557221i \(0.188132\pi\)
\(102\) −2946.08 −2.85986
\(103\) 1014.19 0.970203 0.485102 0.874458i \(-0.338783\pi\)
0.485102 + 0.874458i \(0.338783\pi\)
\(104\) −507.794 −0.478782
\(105\) 0 0
\(106\) −871.571 −0.798627
\(107\) 913.161 0.825033 0.412517 0.910950i \(-0.364650\pi\)
0.412517 + 0.910950i \(0.364650\pi\)
\(108\) 5591.24 4.98164
\(109\) −1397.13 −1.22772 −0.613859 0.789416i \(-0.710383\pi\)
−0.613859 + 0.789416i \(0.710383\pi\)
\(110\) 0 0
\(111\) 2302.18 1.96859
\(112\) 0 0
\(113\) 2082.49 1.73366 0.866831 0.498603i \(-0.166153\pi\)
0.866831 + 0.498603i \(0.166153\pi\)
\(114\) −2259.50 −1.85633
\(115\) 0 0
\(116\) −1066.37 −0.853531
\(117\) −913.145 −0.721541
\(118\) −1300.47 −1.01456
\(119\) 0 0
\(120\) 0 0
\(121\) 2537.37 1.90636
\(122\) 1568.34 1.16386
\(123\) −3212.51 −2.35498
\(124\) 149.578 0.108327
\(125\) 0 0
\(126\) 0 0
\(127\) −230.691 −0.161185 −0.0805925 0.996747i \(-0.525681\pi\)
−0.0805925 + 0.996747i \(0.525681\pi\)
\(128\) −2616.54 −1.80681
\(129\) 491.097 0.335184
\(130\) 0 0
\(131\) 973.877 0.649527 0.324764 0.945795i \(-0.394715\pi\)
0.324764 + 0.945795i \(0.394715\pi\)
\(132\) 9201.65 6.06743
\(133\) 0 0
\(134\) −2623.75 −1.69148
\(135\) 0 0
\(136\) −2288.33 −1.44281
\(137\) 695.734 0.433873 0.216936 0.976186i \(-0.430394\pi\)
0.216936 + 0.976186i \(0.430394\pi\)
\(138\) −4609.90 −2.84363
\(139\) 298.530 0.182165 0.0910826 0.995843i \(-0.470967\pi\)
0.0910826 + 0.995843i \(0.470967\pi\)
\(140\) 0 0
\(141\) 4326.36 2.58401
\(142\) −781.605 −0.461908
\(143\) −876.553 −0.512595
\(144\) 3298.90 1.90908
\(145\) 0 0
\(146\) −1480.35 −0.839140
\(147\) 0 0
\(148\) 3710.50 2.06082
\(149\) −1792.02 −0.985290 −0.492645 0.870230i \(-0.663970\pi\)
−0.492645 + 0.870230i \(0.663970\pi\)
\(150\) 0 0
\(151\) 1201.27 0.647403 0.323701 0.946159i \(-0.395073\pi\)
0.323701 + 0.946159i \(0.395073\pi\)
\(152\) −1755.04 −0.936529
\(153\) −4115.00 −2.17437
\(154\) 0 0
\(155\) 0 0
\(156\) −2085.05 −1.07011
\(157\) −409.798 −0.208315 −0.104158 0.994561i \(-0.533215\pi\)
−0.104158 + 0.994561i \(0.533215\pi\)
\(158\) −2443.70 −1.23044
\(159\) −1724.69 −0.860232
\(160\) 0 0
\(161\) 0 0
\(162\) 8326.12 4.03803
\(163\) −2030.71 −0.975811 −0.487905 0.872896i \(-0.662239\pi\)
−0.487905 + 0.872896i \(0.662239\pi\)
\(164\) −5177.73 −2.46532
\(165\) 0 0
\(166\) 2487.84 1.16321
\(167\) −520.014 −0.240958 −0.120479 0.992716i \(-0.538443\pi\)
−0.120479 + 0.992716i \(0.538443\pi\)
\(168\) 0 0
\(169\) −1998.38 −0.909594
\(170\) 0 0
\(171\) −3156.01 −1.41138
\(172\) 791.520 0.350888
\(173\) 2561.90 1.12588 0.562942 0.826497i \(-0.309669\pi\)
0.562942 + 0.826497i \(0.309669\pi\)
\(174\) −3203.37 −1.39567
\(175\) 0 0
\(176\) 3166.71 1.35625
\(177\) −2573.42 −1.09282
\(178\) −2629.80 −1.10737
\(179\) −3042.08 −1.27025 −0.635127 0.772408i \(-0.719052\pi\)
−0.635127 + 0.772408i \(0.719052\pi\)
\(180\) 0 0
\(181\) 3648.02 1.49809 0.749047 0.662516i \(-0.230512\pi\)
0.749047 + 0.662516i \(0.230512\pi\)
\(182\) 0 0
\(183\) 3103.47 1.25363
\(184\) −3580.68 −1.43463
\(185\) 0 0
\(186\) 449.334 0.177133
\(187\) −3950.11 −1.54471
\(188\) 6972.95 2.70508
\(189\) 0 0
\(190\) 0 0
\(191\) −4091.12 −1.54986 −0.774929 0.632049i \(-0.782214\pi\)
−0.774929 + 0.632049i \(0.782214\pi\)
\(192\) −5838.35 −2.19451
\(193\) 3051.70 1.13817 0.569084 0.822280i \(-0.307298\pi\)
0.569084 + 0.822280i \(0.307298\pi\)
\(194\) −9020.34 −3.33826
\(195\) 0 0
\(196\) 0 0
\(197\) 3011.44 1.08912 0.544560 0.838722i \(-0.316697\pi\)
0.544560 + 0.838722i \(0.316697\pi\)
\(198\) 19511.2 7.00304
\(199\) −199.943 −0.0712239 −0.0356119 0.999366i \(-0.511338\pi\)
−0.0356119 + 0.999366i \(0.511338\pi\)
\(200\) 0 0
\(201\) −5191.96 −1.82195
\(202\) 8161.62 2.84282
\(203\) 0 0
\(204\) −9396.08 −3.22479
\(205\) 0 0
\(206\) 4910.37 1.66078
\(207\) −6438.98 −2.16203
\(208\) −717.560 −0.239201
\(209\) −3029.54 −1.00267
\(210\) 0 0
\(211\) −297.442 −0.0970461 −0.0485231 0.998822i \(-0.515451\pi\)
−0.0485231 + 0.998822i \(0.515451\pi\)
\(212\) −2779.75 −0.900537
\(213\) −1546.66 −0.497538
\(214\) 4421.23 1.41228
\(215\) 0 0
\(216\) 13046.2 4.10963
\(217\) 0 0
\(218\) −6764.47 −2.10159
\(219\) −2929.36 −0.903870
\(220\) 0 0
\(221\) 895.075 0.272440
\(222\) 11146.4 3.36981
\(223\) 6282.68 1.88663 0.943317 0.331894i \(-0.107688\pi\)
0.943317 + 0.331894i \(0.107688\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 10082.7 2.96766
\(227\) 2357.28 0.689243 0.344621 0.938742i \(-0.388007\pi\)
0.344621 + 0.938742i \(0.388007\pi\)
\(228\) −7206.34 −2.09321
\(229\) 2476.81 0.714727 0.357363 0.933965i \(-0.383676\pi\)
0.357363 + 0.933965i \(0.383676\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2488.18 −0.704125
\(233\) −5142.47 −1.44590 −0.722950 0.690900i \(-0.757214\pi\)
−0.722950 + 0.690900i \(0.757214\pi\)
\(234\) −4421.15 −1.23513
\(235\) 0 0
\(236\) −4147.67 −1.14403
\(237\) −4835.66 −1.32536
\(238\) 0 0
\(239\) −831.250 −0.224975 −0.112488 0.993653i \(-0.535882\pi\)
−0.112488 + 0.993653i \(0.535882\pi\)
\(240\) 0 0
\(241\) −4538.85 −1.21317 −0.606584 0.795020i \(-0.707460\pi\)
−0.606584 + 0.795020i \(0.707460\pi\)
\(242\) 12285.1 3.26329
\(243\) 6699.68 1.76866
\(244\) 5001.98 1.31237
\(245\) 0 0
\(246\) −15553.9 −4.03123
\(247\) 686.479 0.176841
\(248\) 349.015 0.0893648
\(249\) 4923.01 1.25294
\(250\) 0 0
\(251\) −7232.00 −1.81865 −0.909323 0.416091i \(-0.863400\pi\)
−0.909323 + 0.416091i \(0.863400\pi\)
\(252\) 0 0
\(253\) −6180.96 −1.53594
\(254\) −1116.93 −0.275915
\(255\) 0 0
\(256\) −7793.41 −1.90269
\(257\) −4242.66 −1.02977 −0.514883 0.857260i \(-0.672165\pi\)
−0.514883 + 0.857260i \(0.672165\pi\)
\(258\) 2377.73 0.573764
\(259\) 0 0
\(260\) 0 0
\(261\) −4474.39 −1.06114
\(262\) 4715.20 1.11185
\(263\) 6604.75 1.54854 0.774271 0.632855i \(-0.218117\pi\)
0.774271 + 0.632855i \(0.218117\pi\)
\(264\) 21470.4 5.00536
\(265\) 0 0
\(266\) 0 0
\(267\) −5203.92 −1.19279
\(268\) −8368.07 −1.90732
\(269\) −4612.29 −1.04541 −0.522707 0.852512i \(-0.675078\pi\)
−0.522707 + 0.852512i \(0.675078\pi\)
\(270\) 0 0
\(271\) 3542.29 0.794018 0.397009 0.917815i \(-0.370048\pi\)
0.397009 + 0.917815i \(0.370048\pi\)
\(272\) −3233.62 −0.720834
\(273\) 0 0
\(274\) 3368.52 0.742699
\(275\) 0 0
\(276\) −14702.6 −3.20649
\(277\) 19.5351 0.00423737 0.00211868 0.999998i \(-0.499326\pi\)
0.00211868 + 0.999998i \(0.499326\pi\)
\(278\) 1445.38 0.311829
\(279\) 627.618 0.134676
\(280\) 0 0
\(281\) 6769.20 1.43707 0.718535 0.695491i \(-0.244813\pi\)
0.718535 + 0.695491i \(0.244813\pi\)
\(282\) 20946.8 4.42328
\(283\) −1269.89 −0.266740 −0.133370 0.991066i \(-0.542580\pi\)
−0.133370 + 0.991066i \(0.542580\pi\)
\(284\) −2492.81 −0.520850
\(285\) 0 0
\(286\) −4243.98 −0.877455
\(287\) 0 0
\(288\) −2704.02 −0.553249
\(289\) −879.424 −0.178999
\(290\) 0 0
\(291\) −17849.7 −3.59577
\(292\) −4721.35 −0.946220
\(293\) −6349.74 −1.26606 −0.633030 0.774127i \(-0.718189\pi\)
−0.633030 + 0.774127i \(0.718189\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 8657.82 1.70009
\(297\) 22520.3 4.39987
\(298\) −8676.39 −1.68661
\(299\) 1400.58 0.270894
\(300\) 0 0
\(301\) 0 0
\(302\) 5816.15 1.10822
\(303\) 16150.4 3.06211
\(304\) −2480.03 −0.467893
\(305\) 0 0
\(306\) −19923.5 −3.72206
\(307\) 4772.37 0.887211 0.443605 0.896222i \(-0.353699\pi\)
0.443605 + 0.896222i \(0.353699\pi\)
\(308\) 0 0
\(309\) 9716.78 1.78889
\(310\) 0 0
\(311\) −740.703 −0.135053 −0.0675264 0.997717i \(-0.521511\pi\)
−0.0675264 + 0.997717i \(0.521511\pi\)
\(312\) −4865.10 −0.882795
\(313\) 2279.68 0.411678 0.205839 0.978586i \(-0.434008\pi\)
0.205839 + 0.978586i \(0.434008\pi\)
\(314\) −1984.11 −0.356592
\(315\) 0 0
\(316\) −7793.81 −1.38746
\(317\) −10198.1 −1.80689 −0.903446 0.428702i \(-0.858971\pi\)
−0.903446 + 0.428702i \(0.858971\pi\)
\(318\) −8350.39 −1.47254
\(319\) −4295.09 −0.753852
\(320\) 0 0
\(321\) 8748.85 1.52122
\(322\) 0 0
\(323\) 3093.56 0.532911
\(324\) 26554.9 4.55331
\(325\) 0 0
\(326\) −9832.01 −1.67038
\(327\) −13385.7 −2.26371
\(328\) −12081.3 −2.03378
\(329\) 0 0
\(330\) 0 0
\(331\) −78.0380 −0.0129588 −0.00647939 0.999979i \(-0.502062\pi\)
−0.00647939 + 0.999979i \(0.502062\pi\)
\(332\) 7934.59 1.31165
\(333\) 15569.0 2.56209
\(334\) −2517.74 −0.412469
\(335\) 0 0
\(336\) 0 0
\(337\) −4164.73 −0.673196 −0.336598 0.941648i \(-0.609276\pi\)
−0.336598 + 0.941648i \(0.609276\pi\)
\(338\) −9675.49 −1.55703
\(339\) 19952.0 3.19658
\(340\) 0 0
\(341\) 602.468 0.0956759
\(342\) −15280.4 −2.41599
\(343\) 0 0
\(344\) 1846.87 0.289467
\(345\) 0 0
\(346\) 12403.9 1.92728
\(347\) 1795.19 0.277726 0.138863 0.990312i \(-0.455655\pi\)
0.138863 + 0.990312i \(0.455655\pi\)
\(348\) −10216.7 −1.57377
\(349\) 11751.4 1.80241 0.901203 0.433398i \(-0.142686\pi\)
0.901203 + 0.433398i \(0.142686\pi\)
\(350\) 0 0
\(351\) −5102.99 −0.776004
\(352\) −2595.66 −0.393038
\(353\) −2882.32 −0.434590 −0.217295 0.976106i \(-0.569723\pi\)
−0.217295 + 0.976106i \(0.569723\pi\)
\(354\) −12459.6 −1.87069
\(355\) 0 0
\(356\) −8387.34 −1.24868
\(357\) 0 0
\(358\) −14728.7 −2.17441
\(359\) −1193.78 −0.175503 −0.0877513 0.996142i \(-0.527968\pi\)
−0.0877513 + 0.996142i \(0.527968\pi\)
\(360\) 0 0
\(361\) −4486.39 −0.654088
\(362\) 17662.5 2.56442
\(363\) 24310.1 3.51502
\(364\) 0 0
\(365\) 0 0
\(366\) 15026.0 2.14596
\(367\) −8858.80 −1.26001 −0.630007 0.776589i \(-0.716948\pi\)
−0.630007 + 0.776589i \(0.716948\pi\)
\(368\) −5059.83 −0.716744
\(369\) −21725.3 −3.06497
\(370\) 0 0
\(371\) 0 0
\(372\) 1433.09 0.199737
\(373\) −2287.78 −0.317578 −0.158789 0.987313i \(-0.550759\pi\)
−0.158789 + 0.987313i \(0.550759\pi\)
\(374\) −19125.1 −2.64422
\(375\) 0 0
\(376\) 16270.2 2.23157
\(377\) 973.246 0.132957
\(378\) 0 0
\(379\) 8870.18 1.20219 0.601095 0.799177i \(-0.294731\pi\)
0.601095 + 0.799177i \(0.294731\pi\)
\(380\) 0 0
\(381\) −2210.21 −0.297198
\(382\) −19807.8 −2.65303
\(383\) −13359.2 −1.78231 −0.891155 0.453700i \(-0.850104\pi\)
−0.891155 + 0.453700i \(0.850104\pi\)
\(384\) −25068.7 −3.33146
\(385\) 0 0
\(386\) 14775.3 1.94830
\(387\) 3321.15 0.436237
\(388\) −28769.0 −3.76424
\(389\) 11324.7 1.47605 0.738025 0.674773i \(-0.235759\pi\)
0.738025 + 0.674773i \(0.235759\pi\)
\(390\) 0 0
\(391\) 6311.57 0.816342
\(392\) 0 0
\(393\) 9330.57 1.19762
\(394\) 14580.4 1.86434
\(395\) 0 0
\(396\) 62228.2 7.89667
\(397\) 13242.8 1.67415 0.837076 0.547087i \(-0.184263\pi\)
0.837076 + 0.547087i \(0.184263\pi\)
\(398\) −968.056 −0.121920
\(399\) 0 0
\(400\) 0 0
\(401\) 1952.96 0.243207 0.121604 0.992579i \(-0.461196\pi\)
0.121604 + 0.992579i \(0.461196\pi\)
\(402\) −25137.8 −3.11880
\(403\) −136.516 −0.0168744
\(404\) 26030.3 3.20558
\(405\) 0 0
\(406\) 0 0
\(407\) 14945.1 1.82015
\(408\) −21924.1 −2.66031
\(409\) 10597.8 1.28124 0.640618 0.767860i \(-0.278678\pi\)
0.640618 + 0.767860i \(0.278678\pi\)
\(410\) 0 0
\(411\) 6665.72 0.799989
\(412\) 15660.9 1.87271
\(413\) 0 0
\(414\) −31175.5 −3.70094
\(415\) 0 0
\(416\) 588.164 0.0693200
\(417\) 2860.17 0.335882
\(418\) −14668.1 −1.71636
\(419\) 1631.18 0.190187 0.0950935 0.995468i \(-0.469685\pi\)
0.0950935 + 0.995468i \(0.469685\pi\)
\(420\) 0 0
\(421\) 13181.2 1.52592 0.762961 0.646445i \(-0.223745\pi\)
0.762961 + 0.646445i \(0.223745\pi\)
\(422\) −1440.12 −0.166123
\(423\) 29258.0 3.36305
\(424\) −6486.06 −0.742903
\(425\) 0 0
\(426\) −7488.44 −0.851681
\(427\) 0 0
\(428\) 14100.8 1.59250
\(429\) −8398.12 −0.945140
\(430\) 0 0
\(431\) 9159.40 1.02365 0.511825 0.859090i \(-0.328970\pi\)
0.511825 + 0.859090i \(0.328970\pi\)
\(432\) 18435.5 2.05319
\(433\) −270.519 −0.0300238 −0.0150119 0.999887i \(-0.504779\pi\)
−0.0150119 + 0.999887i \(0.504779\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −21574.3 −2.36977
\(437\) 4840.67 0.529887
\(438\) −14183.0 −1.54724
\(439\) −17008.0 −1.84908 −0.924541 0.381082i \(-0.875552\pi\)
−0.924541 + 0.381082i \(0.875552\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4333.66 0.466360
\(443\) 3968.12 0.425578 0.212789 0.977098i \(-0.431745\pi\)
0.212789 + 0.977098i \(0.431745\pi\)
\(444\) 35549.8 3.79981
\(445\) 0 0
\(446\) 30418.7 3.22952
\(447\) −17169.1 −1.81671
\(448\) 0 0
\(449\) −12480.3 −1.31177 −0.655884 0.754862i \(-0.727704\pi\)
−0.655884 + 0.754862i \(0.727704\pi\)
\(450\) 0 0
\(451\) −20854.8 −2.17741
\(452\) 32157.3 3.34636
\(453\) 11509.2 1.19370
\(454\) 11413.2 1.17984
\(455\) 0 0
\(456\) −16814.7 −1.72680
\(457\) 5782.90 0.591932 0.295966 0.955199i \(-0.404359\pi\)
0.295966 + 0.955199i \(0.404359\pi\)
\(458\) 11991.9 1.22346
\(459\) −22996.2 −2.33849
\(460\) 0 0
\(461\) −10049.6 −1.01531 −0.507653 0.861562i \(-0.669487\pi\)
−0.507653 + 0.861562i \(0.669487\pi\)
\(462\) 0 0
\(463\) −659.842 −0.0662321 −0.0331161 0.999452i \(-0.510543\pi\)
−0.0331161 + 0.999452i \(0.510543\pi\)
\(464\) −3516.03 −0.351783
\(465\) 0 0
\(466\) −24898.2 −2.47508
\(467\) 4467.60 0.442690 0.221345 0.975196i \(-0.428955\pi\)
0.221345 + 0.975196i \(0.428955\pi\)
\(468\) −14100.6 −1.39274
\(469\) 0 0
\(470\) 0 0
\(471\) −3926.21 −0.384099
\(472\) −9677.87 −0.943771
\(473\) 3188.07 0.309910
\(474\) −23412.7 −2.26873
\(475\) 0 0
\(476\) 0 0
\(477\) −11663.6 −1.11958
\(478\) −4024.64 −0.385110
\(479\) −7633.87 −0.728185 −0.364092 0.931363i \(-0.618621\pi\)
−0.364092 + 0.931363i \(0.618621\pi\)
\(480\) 0 0
\(481\) −3386.49 −0.321020
\(482\) −21975.6 −2.07669
\(483\) 0 0
\(484\) 39181.5 3.67971
\(485\) 0 0
\(486\) 32437.6 3.02758
\(487\) 6289.84 0.585256 0.292628 0.956226i \(-0.405470\pi\)
0.292628 + 0.956226i \(0.405470\pi\)
\(488\) 11671.2 1.08265
\(489\) −19455.9 −1.79923
\(490\) 0 0
\(491\) 3562.54 0.327445 0.163722 0.986506i \(-0.447650\pi\)
0.163722 + 0.986506i \(0.447650\pi\)
\(492\) −49607.0 −4.54564
\(493\) 4385.85 0.400667
\(494\) 3323.71 0.302714
\(495\) 0 0
\(496\) 493.190 0.0446469
\(497\) 0 0
\(498\) 23835.6 2.14478
\(499\) −18916.9 −1.69706 −0.848532 0.529144i \(-0.822513\pi\)
−0.848532 + 0.529144i \(0.822513\pi\)
\(500\) 0 0
\(501\) −4982.17 −0.444286
\(502\) −35015.0 −3.11314
\(503\) −2565.91 −0.227452 −0.113726 0.993512i \(-0.536279\pi\)
−0.113726 + 0.993512i \(0.536279\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −29926.2 −2.62921
\(507\) −19146.1 −1.67714
\(508\) −3562.28 −0.311123
\(509\) −5447.84 −0.474403 −0.237202 0.971460i \(-0.576230\pi\)
−0.237202 + 0.971460i \(0.576230\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16800.8 −1.45019
\(513\) −17636.9 −1.51791
\(514\) −20541.6 −1.76274
\(515\) 0 0
\(516\) 7583.42 0.646980
\(517\) 28085.5 2.38917
\(518\) 0 0
\(519\) 24545.2 2.07594
\(520\) 0 0
\(521\) 4732.95 0.397993 0.198997 0.980000i \(-0.436232\pi\)
0.198997 + 0.980000i \(0.436232\pi\)
\(522\) −21663.5 −1.81645
\(523\) 9182.96 0.767769 0.383884 0.923381i \(-0.374586\pi\)
0.383884 + 0.923381i \(0.374586\pi\)
\(524\) 15038.4 1.25373
\(525\) 0 0
\(526\) 31978.0 2.65078
\(527\) −615.199 −0.0508510
\(528\) 30339.7 2.50069
\(529\) −2290.93 −0.188290
\(530\) 0 0
\(531\) −17403.3 −1.42230
\(532\) 0 0
\(533\) 4725.59 0.384030
\(534\) −25195.7 −2.04180
\(535\) 0 0
\(536\) −19525.4 −1.57345
\(537\) −29145.7 −2.34214
\(538\) −22331.2 −1.78953
\(539\) 0 0
\(540\) 0 0
\(541\) 14572.9 1.15811 0.579055 0.815288i \(-0.303422\pi\)
0.579055 + 0.815288i \(0.303422\pi\)
\(542\) 17150.6 1.35919
\(543\) 34951.1 2.76224
\(544\) 2650.51 0.208896
\(545\) 0 0
\(546\) 0 0
\(547\) 11290.3 0.882519 0.441260 0.897380i \(-0.354532\pi\)
0.441260 + 0.897380i \(0.354532\pi\)
\(548\) 10743.4 0.837472
\(549\) 20987.9 1.63159
\(550\) 0 0
\(551\) 3363.73 0.260072
\(552\) −34305.9 −2.64521
\(553\) 0 0
\(554\) 94.5826 0.00725349
\(555\) 0 0
\(556\) 4609.84 0.351620
\(557\) 3919.93 0.298191 0.149096 0.988823i \(-0.452364\pi\)
0.149096 + 0.988823i \(0.452364\pi\)
\(558\) 3038.72 0.230537
\(559\) −722.401 −0.0546588
\(560\) 0 0
\(561\) −37845.4 −2.84819
\(562\) 32774.2 2.45996
\(563\) 7444.71 0.557295 0.278647 0.960393i \(-0.410114\pi\)
0.278647 + 0.960393i \(0.410114\pi\)
\(564\) 66806.8 4.98772
\(565\) 0 0
\(566\) −6148.41 −0.456602
\(567\) 0 0
\(568\) −5816.55 −0.429678
\(569\) 8529.24 0.628408 0.314204 0.949355i \(-0.398262\pi\)
0.314204 + 0.949355i \(0.398262\pi\)
\(570\) 0 0
\(571\) 10324.8 0.756706 0.378353 0.925661i \(-0.376491\pi\)
0.378353 + 0.925661i \(0.376491\pi\)
\(572\) −13535.6 −0.989423
\(573\) −39196.3 −2.85768
\(574\) 0 0
\(575\) 0 0
\(576\) −39483.1 −2.85613
\(577\) −6467.10 −0.466601 −0.233301 0.972405i \(-0.574953\pi\)
−0.233301 + 0.972405i \(0.574953\pi\)
\(578\) −4257.88 −0.306409
\(579\) 29237.9 2.09859
\(580\) 0 0
\(581\) 0 0
\(582\) −86422.5 −6.15520
\(583\) −11196.2 −0.795369
\(584\) −11016.5 −0.780589
\(585\) 0 0
\(586\) −30743.4 −2.16723
\(587\) −7114.68 −0.500263 −0.250131 0.968212i \(-0.580474\pi\)
−0.250131 + 0.968212i \(0.580474\pi\)
\(588\) 0 0
\(589\) −471.828 −0.0330073
\(590\) 0 0
\(591\) 28852.2 2.00816
\(592\) 12234.3 0.849369
\(593\) 21270.8 1.47299 0.736497 0.676441i \(-0.236478\pi\)
0.736497 + 0.676441i \(0.236478\pi\)
\(594\) 109036. 7.53165
\(595\) 0 0
\(596\) −27672.1 −1.90183
\(597\) −1915.62 −0.131325
\(598\) 6781.13 0.463714
\(599\) −4697.43 −0.320420 −0.160210 0.987083i \(-0.551217\pi\)
−0.160210 + 0.987083i \(0.551217\pi\)
\(600\) 0 0
\(601\) −8719.81 −0.591828 −0.295914 0.955215i \(-0.595624\pi\)
−0.295914 + 0.955215i \(0.595624\pi\)
\(602\) 0 0
\(603\) −35111.8 −2.37125
\(604\) 18549.7 1.24963
\(605\) 0 0
\(606\) 78195.2 5.24169
\(607\) 23097.1 1.54445 0.772227 0.635347i \(-0.219143\pi\)
0.772227 + 0.635347i \(0.219143\pi\)
\(608\) 2032.81 0.135594
\(609\) 0 0
\(610\) 0 0
\(611\) −6364.05 −0.421378
\(612\) −63543.1 −4.19702
\(613\) −16846.2 −1.10997 −0.554986 0.831860i \(-0.687276\pi\)
−0.554986 + 0.831860i \(0.687276\pi\)
\(614\) 23106.3 1.51872
\(615\) 0 0
\(616\) 0 0
\(617\) 3476.46 0.226834 0.113417 0.993547i \(-0.463820\pi\)
0.113417 + 0.993547i \(0.463820\pi\)
\(618\) 47045.5 3.06221
\(619\) 5407.16 0.351102 0.175551 0.984470i \(-0.443829\pi\)
0.175551 + 0.984470i \(0.443829\pi\)
\(620\) 0 0
\(621\) −35983.4 −2.32522
\(622\) −3586.24 −0.231182
\(623\) 0 0
\(624\) −6874.83 −0.441047
\(625\) 0 0
\(626\) 11037.5 0.704706
\(627\) −29025.6 −1.84876
\(628\) −6328.02 −0.402095
\(629\) −15260.9 −0.967396
\(630\) 0 0
\(631\) −10498.7 −0.662358 −0.331179 0.943568i \(-0.607446\pi\)
−0.331179 + 0.943568i \(0.607446\pi\)
\(632\) −18185.5 −1.14459
\(633\) −2849.74 −0.178937
\(634\) −49376.1 −3.09302
\(635\) 0 0
\(636\) −26632.3 −1.66044
\(637\) 0 0
\(638\) −20795.4 −1.29044
\(639\) −10459.7 −0.647539
\(640\) 0 0
\(641\) 14363.3 0.885050 0.442525 0.896756i \(-0.354083\pi\)
0.442525 + 0.896756i \(0.354083\pi\)
\(642\) 42359.1 2.60402
\(643\) −16883.3 −1.03548 −0.517739 0.855539i \(-0.673226\pi\)
−0.517739 + 0.855539i \(0.673226\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 14978.0 0.912231
\(647\) 27365.2 1.66281 0.831404 0.555668i \(-0.187538\pi\)
0.831404 + 0.555668i \(0.187538\pi\)
\(648\) 61961.3 3.75628
\(649\) −16705.9 −1.01042
\(650\) 0 0
\(651\) 0 0
\(652\) −31357.8 −1.88353
\(653\) 28643.3 1.71654 0.858269 0.513200i \(-0.171540\pi\)
0.858269 + 0.513200i \(0.171540\pi\)
\(654\) −64809.3 −3.87499
\(655\) 0 0
\(656\) −17072.0 −1.01608
\(657\) −19810.4 −1.17637
\(658\) 0 0
\(659\) −4102.07 −0.242480 −0.121240 0.992623i \(-0.538687\pi\)
−0.121240 + 0.992623i \(0.538687\pi\)
\(660\) 0 0
\(661\) 13784.0 0.811098 0.405549 0.914073i \(-0.367080\pi\)
0.405549 + 0.914073i \(0.367080\pi\)
\(662\) −377.834 −0.0221827
\(663\) 8575.58 0.502334
\(664\) 18514.0 1.08205
\(665\) 0 0
\(666\) 75379.9 4.38576
\(667\) 6862.79 0.398393
\(668\) −8029.95 −0.465102
\(669\) 60193.4 3.47864
\(670\) 0 0
\(671\) 20146.9 1.15911
\(672\) 0 0
\(673\) 4676.98 0.267882 0.133941 0.990989i \(-0.457237\pi\)
0.133941 + 0.990989i \(0.457237\pi\)
\(674\) −20164.2 −1.15237
\(675\) 0 0
\(676\) −30858.5 −1.75572
\(677\) −3849.54 −0.218537 −0.109269 0.994012i \(-0.534851\pi\)
−0.109269 + 0.994012i \(0.534851\pi\)
\(678\) 96600.9 5.47188
\(679\) 0 0
\(680\) 0 0
\(681\) 22584.7 1.27085
\(682\) 2916.96 0.163777
\(683\) −10647.5 −0.596508 −0.298254 0.954487i \(-0.596404\pi\)
−0.298254 + 0.954487i \(0.596404\pi\)
\(684\) −48734.5 −2.72428
\(685\) 0 0
\(686\) 0 0
\(687\) 23730.0 1.31784
\(688\) 2609.80 0.144619
\(689\) 2537.01 0.140279
\(690\) 0 0
\(691\) −22410.8 −1.23379 −0.616894 0.787046i \(-0.711609\pi\)
−0.616894 + 0.787046i \(0.711609\pi\)
\(692\) 39560.4 2.17321
\(693\) 0 0
\(694\) 8691.72 0.475408
\(695\) 0 0
\(696\) −23838.9 −1.29829
\(697\) 21295.4 1.15728
\(698\) 56896.6 3.08534
\(699\) −49269.2 −2.66600
\(700\) 0 0
\(701\) 6040.55 0.325461 0.162731 0.986671i \(-0.447970\pi\)
0.162731 + 0.986671i \(0.447970\pi\)
\(702\) −24707.0 −1.32836
\(703\) −11704.4 −0.627936
\(704\) −37901.0 −2.02904
\(705\) 0 0
\(706\) −13955.2 −0.743926
\(707\) 0 0
\(708\) −39738.2 −2.10940
\(709\) 19582.2 1.03727 0.518634 0.854996i \(-0.326441\pi\)
0.518634 + 0.854996i \(0.326441\pi\)
\(710\) 0 0
\(711\) −32702.2 −1.72493
\(712\) −19570.4 −1.03010
\(713\) −962.637 −0.0505625
\(714\) 0 0
\(715\) 0 0
\(716\) −46975.2 −2.45188
\(717\) −7964.07 −0.414817
\(718\) −5779.91 −0.300424
\(719\) −9257.31 −0.480166 −0.240083 0.970752i \(-0.577175\pi\)
−0.240083 + 0.970752i \(0.577175\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −21721.6 −1.11966
\(723\) −43486.1 −2.23688
\(724\) 56332.0 2.89166
\(725\) 0 0
\(726\) 117702. 6.01697
\(727\) −11915.5 −0.607870 −0.303935 0.952693i \(-0.598301\pi\)
−0.303935 + 0.952693i \(0.598301\pi\)
\(728\) 0 0
\(729\) 17757.3 0.902162
\(730\) 0 0
\(731\) −3255.43 −0.164715
\(732\) 47923.2 2.41980
\(733\) 15608.0 0.786486 0.393243 0.919435i \(-0.371353\pi\)
0.393243 + 0.919435i \(0.371353\pi\)
\(734\) −42891.4 −2.15688
\(735\) 0 0
\(736\) 4147.40 0.207711
\(737\) −33704.8 −1.68457
\(738\) −105187. −5.24659
\(739\) −26189.9 −1.30367 −0.651835 0.758361i \(-0.726000\pi\)
−0.651835 + 0.758361i \(0.726000\pi\)
\(740\) 0 0
\(741\) 6577.05 0.326065
\(742\) 0 0
\(743\) 37914.9 1.87209 0.936044 0.351882i \(-0.114458\pi\)
0.936044 + 0.351882i \(0.114458\pi\)
\(744\) 3343.86 0.164774
\(745\) 0 0
\(746\) −11076.7 −0.543627
\(747\) 33292.9 1.63069
\(748\) −60996.8 −2.98164
\(749\) 0 0
\(750\) 0 0
\(751\) −21401.6 −1.03989 −0.519944 0.854200i \(-0.674047\pi\)
−0.519944 + 0.854200i \(0.674047\pi\)
\(752\) 22991.3 1.11490
\(753\) −69288.7 −3.35328
\(754\) 4712.14 0.227594
\(755\) 0 0
\(756\) 0 0
\(757\) 24094.8 1.15686 0.578428 0.815734i \(-0.303667\pi\)
0.578428 + 0.815734i \(0.303667\pi\)
\(758\) 42946.5 2.05790
\(759\) −59218.8 −2.83203
\(760\) 0 0
\(761\) −19101.1 −0.909872 −0.454936 0.890524i \(-0.650338\pi\)
−0.454936 + 0.890524i \(0.650338\pi\)
\(762\) −10701.1 −0.508741
\(763\) 0 0
\(764\) −63174.2 −2.99157
\(765\) 0 0
\(766\) −64681.0 −3.05094
\(767\) 3785.48 0.178208
\(768\) −74667.5 −3.50824
\(769\) 32718.1 1.53426 0.767129 0.641493i \(-0.221685\pi\)
0.767129 + 0.641493i \(0.221685\pi\)
\(770\) 0 0
\(771\) −40648.3 −1.89872
\(772\) 47123.8 2.19692
\(773\) 4707.97 0.219061 0.109530 0.993983i \(-0.465065\pi\)
0.109530 + 0.993983i \(0.465065\pi\)
\(774\) 16079.9 0.746746
\(775\) 0 0
\(776\) −67127.6 −3.10533
\(777\) 0 0
\(778\) 54830.3 2.52669
\(779\) 16332.6 0.751187
\(780\) 0 0
\(781\) −10040.5 −0.460023
\(782\) 30558.5 1.39741
\(783\) −25004.5 −1.14124
\(784\) 0 0
\(785\) 0 0
\(786\) 45175.6 2.05007
\(787\) −3218.47 −0.145776 −0.0728882 0.997340i \(-0.523222\pi\)
−0.0728882 + 0.997340i \(0.523222\pi\)
\(788\) 46502.1 2.10224
\(789\) 63279.1 2.85525
\(790\) 0 0
\(791\) 0 0
\(792\) 145199. 6.51440
\(793\) −4565.18 −0.204432
\(794\) 64117.4 2.86580
\(795\) 0 0
\(796\) −3087.47 −0.137478
\(797\) 15548.9 0.691054 0.345527 0.938409i \(-0.387700\pi\)
0.345527 + 0.938409i \(0.387700\pi\)
\(798\) 0 0
\(799\) −28679.0 −1.26982
\(800\) 0 0
\(801\) −35192.6 −1.55240
\(802\) 9455.58 0.416319
\(803\) −19016.6 −0.835717
\(804\) −80173.2 −3.51678
\(805\) 0 0
\(806\) −660.968 −0.0288854
\(807\) −44189.6 −1.92757
\(808\) 60737.1 2.64446
\(809\) −3106.83 −0.135019 −0.0675095 0.997719i \(-0.521505\pi\)
−0.0675095 + 0.997719i \(0.521505\pi\)
\(810\) 0 0
\(811\) 44061.1 1.90776 0.953882 0.300183i \(-0.0970477\pi\)
0.953882 + 0.300183i \(0.0970477\pi\)
\(812\) 0 0
\(813\) 33938.1 1.46404
\(814\) 72359.3 3.11572
\(815\) 0 0
\(816\) −30980.8 −1.32910
\(817\) −2496.76 −0.106916
\(818\) 51310.9 2.19321
\(819\) 0 0
\(820\) 0 0
\(821\) 13977.3 0.594169 0.297084 0.954851i \(-0.403986\pi\)
0.297084 + 0.954851i \(0.403986\pi\)
\(822\) 32273.2 1.36941
\(823\) 3287.14 0.139225 0.0696127 0.997574i \(-0.477824\pi\)
0.0696127 + 0.997574i \(0.477824\pi\)
\(824\) 36542.0 1.54490
\(825\) 0 0
\(826\) 0 0
\(827\) −2454.69 −0.103214 −0.0516069 0.998667i \(-0.516434\pi\)
−0.0516069 + 0.998667i \(0.516434\pi\)
\(828\) −99429.5 −4.17320
\(829\) 38510.6 1.61342 0.806711 0.590946i \(-0.201245\pi\)
0.806711 + 0.590946i \(0.201245\pi\)
\(830\) 0 0
\(831\) 187.163 0.00781301
\(832\) 8588.18 0.357862
\(833\) 0 0
\(834\) 13848.0 0.574960
\(835\) 0 0
\(836\) −46781.6 −1.93538
\(837\) 3507.36 0.144841
\(838\) 7897.64 0.325560
\(839\) −32983.5 −1.35723 −0.678616 0.734493i \(-0.737420\pi\)
−0.678616 + 0.734493i \(0.737420\pi\)
\(840\) 0 0
\(841\) −19620.1 −0.804466
\(842\) 63819.1 2.61206
\(843\) 64854.6 2.64972
\(844\) −4593.04 −0.187321
\(845\) 0 0
\(846\) 141658. 5.75684
\(847\) 0 0
\(848\) −9165.39 −0.371157
\(849\) −12166.7 −0.491824
\(850\) 0 0
\(851\) −23879.6 −0.961906
\(852\) −23883.3 −0.960361
\(853\) 13620.1 0.546710 0.273355 0.961913i \(-0.411867\pi\)
0.273355 + 0.961913i \(0.411867\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 32901.9 1.31374
\(857\) −24493.2 −0.976279 −0.488139 0.872766i \(-0.662324\pi\)
−0.488139 + 0.872766i \(0.662324\pi\)
\(858\) −40661.0 −1.61788
\(859\) −3742.34 −0.148646 −0.0743231 0.997234i \(-0.523680\pi\)
−0.0743231 + 0.997234i \(0.523680\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 44346.8 1.75227
\(863\) 165.238 0.00651770 0.00325885 0.999995i \(-0.498963\pi\)
0.00325885 + 0.999995i \(0.498963\pi\)
\(864\) −15111.0 −0.595009
\(865\) 0 0
\(866\) −1309.77 −0.0513945
\(867\) −8425.63 −0.330045
\(868\) 0 0
\(869\) −31391.8 −1.22542
\(870\) 0 0
\(871\) 7637.33 0.297108
\(872\) −50339.8 −1.95495
\(873\) −120713. −4.67984
\(874\) 23436.9 0.907055
\(875\) 0 0
\(876\) −45234.5 −1.74467
\(877\) 7230.06 0.278383 0.139192 0.990265i \(-0.455550\pi\)
0.139192 + 0.990265i \(0.455550\pi\)
\(878\) −82347.2 −3.16524
\(879\) −60835.9 −2.33441
\(880\) 0 0
\(881\) 18707.9 0.715422 0.357711 0.933832i \(-0.383557\pi\)
0.357711 + 0.933832i \(0.383557\pi\)
\(882\) 0 0
\(883\) −28766.9 −1.09636 −0.548179 0.836361i \(-0.684679\pi\)
−0.548179 + 0.836361i \(0.684679\pi\)
\(884\) 13821.6 0.525871
\(885\) 0 0
\(886\) 19212.3 0.728500
\(887\) 33980.4 1.28630 0.643152 0.765738i \(-0.277626\pi\)
0.643152 + 0.765738i \(0.277626\pi\)
\(888\) 82949.2 3.13468
\(889\) 0 0
\(890\) 0 0
\(891\) 106957. 4.02156
\(892\) 97015.8 3.64163
\(893\) −21995.4 −0.824242
\(894\) −83127.1 −3.10983
\(895\) 0 0
\(896\) 0 0
\(897\) 13418.7 0.499484
\(898\) −60425.7 −2.24547
\(899\) −668.927 −0.0248164
\(900\) 0 0
\(901\) 11432.8 0.422732
\(902\) −100972. −3.72727
\(903\) 0 0
\(904\) 75033.5 2.76059
\(905\) 0 0
\(906\) 55723.6 2.04337
\(907\) −35753.2 −1.30889 −0.654446 0.756109i \(-0.727098\pi\)
−0.654446 + 0.756109i \(0.727098\pi\)
\(908\) 36400.6 1.33039
\(909\) 109221. 3.98529
\(910\) 0 0
\(911\) 16039.7 0.583334 0.291667 0.956520i \(-0.405790\pi\)
0.291667 + 0.956520i \(0.405790\pi\)
\(912\) −23760.8 −0.862717
\(913\) 31958.8 1.15847
\(914\) 27998.9 1.01326
\(915\) 0 0
\(916\) 38246.5 1.37958
\(917\) 0 0
\(918\) −111340. −4.00301
\(919\) 22104.9 0.793441 0.396720 0.917940i \(-0.370148\pi\)
0.396720 + 0.917940i \(0.370148\pi\)
\(920\) 0 0
\(921\) 45723.3 1.63587
\(922\) −48656.8 −1.73799
\(923\) 2275.13 0.0811342
\(924\) 0 0
\(925\) 0 0
\(926\) −3194.74 −0.113376
\(927\) 65711.9 2.32822
\(928\) 2881.99 0.101946
\(929\) −20234.8 −0.714621 −0.357310 0.933986i \(-0.616306\pi\)
−0.357310 + 0.933986i \(0.616306\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −79409.1 −2.79091
\(933\) −7096.56 −0.249015
\(934\) 21630.7 0.757792
\(935\) 0 0
\(936\) −32901.3 −1.14894
\(937\) 37551.2 1.30923 0.654614 0.755964i \(-0.272831\pi\)
0.654614 + 0.755964i \(0.272831\pi\)
\(938\) 0 0
\(939\) 21841.3 0.759066
\(940\) 0 0
\(941\) −19093.3 −0.661449 −0.330725 0.943727i \(-0.607293\pi\)
−0.330725 + 0.943727i \(0.607293\pi\)
\(942\) −19009.4 −0.657496
\(943\) 33322.2 1.15071
\(944\) −13675.7 −0.471511
\(945\) 0 0
\(946\) 15435.6 0.530501
\(947\) −10117.0 −0.347158 −0.173579 0.984820i \(-0.555533\pi\)
−0.173579 + 0.984820i \(0.555533\pi\)
\(948\) −74671.3 −2.55824
\(949\) 4309.06 0.147395
\(950\) 0 0
\(951\) −97706.8 −3.33161
\(952\) 0 0
\(953\) 6272.48 0.213206 0.106603 0.994302i \(-0.466003\pi\)
0.106603 + 0.994302i \(0.466003\pi\)
\(954\) −56471.3 −1.91649
\(955\) 0 0
\(956\) −12836.0 −0.434253
\(957\) −41150.6 −1.38998
\(958\) −36960.7 −1.24650
\(959\) 0 0
\(960\) 0 0
\(961\) −29697.2 −0.996850
\(962\) −16396.3 −0.549519
\(963\) 59166.0 1.97985
\(964\) −70088.1 −2.34169
\(965\) 0 0
\(966\) 0 0
\(967\) 26660.8 0.886613 0.443307 0.896370i \(-0.353805\pi\)
0.443307 + 0.896370i \(0.353805\pi\)
\(968\) 91423.3 3.03560
\(969\) 29638.9 0.982599
\(970\) 0 0
\(971\) 461.190 0.0152423 0.00762116 0.999971i \(-0.497574\pi\)
0.00762116 + 0.999971i \(0.497574\pi\)
\(972\) 103455. 3.41391
\(973\) 0 0
\(974\) 30453.3 1.00184
\(975\) 0 0
\(976\) 16492.5 0.540895
\(977\) −4058.08 −0.132886 −0.0664429 0.997790i \(-0.521165\pi\)
−0.0664429 + 0.997790i \(0.521165\pi\)
\(978\) −94199.0 −3.07991
\(979\) −33782.4 −1.10285
\(980\) 0 0
\(981\) −90523.9 −2.94618
\(982\) 17248.7 0.560517
\(983\) −3259.92 −0.105773 −0.0528867 0.998601i \(-0.516842\pi\)
−0.0528867 + 0.998601i \(0.516842\pi\)
\(984\) −115749. −3.74995
\(985\) 0 0
\(986\) 21234.8 0.685857
\(987\) 0 0
\(988\) 10600.5 0.341342
\(989\) −5093.96 −0.163780
\(990\) 0 0
\(991\) −21398.9 −0.685933 −0.342967 0.939348i \(-0.611432\pi\)
−0.342967 + 0.939348i \(0.611432\pi\)
\(992\) −404.254 −0.0129386
\(993\) −747.669 −0.0238938
\(994\) 0 0
\(995\) 0 0
\(996\) 76020.1 2.41846
\(997\) 28609.5 0.908798 0.454399 0.890798i \(-0.349854\pi\)
0.454399 + 0.890798i \(0.349854\pi\)
\(998\) −91589.2 −2.90502
\(999\) 87005.2 2.75548
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.4.a.bd.1.4 4
5.4 even 2 1225.4.a.z.1.1 4
7.6 odd 2 175.4.a.h.1.4 yes 4
21.20 even 2 1575.4.a.bg.1.1 4
35.13 even 4 175.4.b.f.99.2 8
35.27 even 4 175.4.b.f.99.7 8
35.34 odd 2 175.4.a.g.1.1 4
105.104 even 2 1575.4.a.bl.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.1 4 35.34 odd 2
175.4.a.h.1.4 yes 4 7.6 odd 2
175.4.b.f.99.2 8 35.13 even 4
175.4.b.f.99.7 8 35.27 even 4
1225.4.a.z.1.1 4 5.4 even 2
1225.4.a.bd.1.4 4 1.1 even 1 trivial
1575.4.a.bg.1.1 4 21.20 even 2
1575.4.a.bl.1.4 4 105.104 even 2