Properties

Label 1225.4.a.br.1.3
Level $1225$
Weight $4$
Character 1225.1
Self dual yes
Analytic conductor $72.277$
Analytic rank $1$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 83 x^{10} + 130 x^{9} + 2358 x^{8} - 2866 x^{7} - 28527 x^{6} + 24618 x^{5} + \cdots - 11012 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-4.73876\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.32455 q^{2} -6.52145 q^{3} +10.7017 q^{4} +28.2023 q^{6} -11.6837 q^{8} +15.5293 q^{9} +60.2876 q^{11} -69.7907 q^{12} +51.2386 q^{13} -35.0869 q^{16} -106.231 q^{17} -67.1571 q^{18} +87.0593 q^{19} -260.716 q^{22} -143.140 q^{23} +76.1949 q^{24} -221.584 q^{26} +74.8057 q^{27} -97.2962 q^{29} +111.587 q^{31} +245.205 q^{32} -393.162 q^{33} +459.403 q^{34} +166.190 q^{36} -345.001 q^{37} -376.492 q^{38} -334.150 q^{39} -237.933 q^{41} +162.845 q^{43} +645.181 q^{44} +619.017 q^{46} +125.041 q^{47} +228.817 q^{48} +692.783 q^{51} +548.341 q^{52} -436.168 q^{53} -323.501 q^{54} -567.753 q^{57} +420.762 q^{58} +512.605 q^{59} -597.469 q^{61} -482.566 q^{62} -779.705 q^{64} +1700.25 q^{66} -551.516 q^{67} -1136.86 q^{68} +933.481 q^{69} +736.134 q^{71} -181.440 q^{72} +578.126 q^{73} +1491.97 q^{74} +931.685 q^{76} +1445.05 q^{78} -412.915 q^{79} -907.132 q^{81} +1028.95 q^{82} +961.838 q^{83} -704.232 q^{86} +634.512 q^{87} -704.384 q^{88} -895.439 q^{89} -1531.85 q^{92} -727.712 q^{93} -540.748 q^{94} -1599.09 q^{96} +474.428 q^{97} +936.222 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 10 q^{2} + 58 q^{4} - 180 q^{8} + 140 q^{9} + 28 q^{11} + 386 q^{16} - 678 q^{18} - 118 q^{22} - 492 q^{23} - 488 q^{29} - 1390 q^{32} + 1810 q^{36} - 304 q^{37} - 80 q^{39} - 644 q^{43} + 610 q^{44}+ \cdots - 1048 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.32455 −1.52896 −0.764479 0.644648i \(-0.777004\pi\)
−0.764479 + 0.644648i \(0.777004\pi\)
\(3\) −6.52145 −1.25505 −0.627527 0.778595i \(-0.715933\pi\)
−0.627527 + 0.778595i \(0.715933\pi\)
\(4\) 10.7017 1.33772
\(5\) 0 0
\(6\) 28.2023 1.91892
\(7\) 0 0
\(8\) −11.6837 −0.516353
\(9\) 15.5293 0.575159
\(10\) 0 0
\(11\) 60.2876 1.65249 0.826245 0.563312i \(-0.190473\pi\)
0.826245 + 0.563312i \(0.190473\pi\)
\(12\) −69.7907 −1.67890
\(13\) 51.2386 1.09316 0.546578 0.837408i \(-0.315930\pi\)
0.546578 + 0.837408i \(0.315930\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −35.0869 −0.548233
\(17\) −106.231 −1.51558 −0.757792 0.652497i \(-0.773722\pi\)
−0.757792 + 0.652497i \(0.773722\pi\)
\(18\) −67.1571 −0.879394
\(19\) 87.0593 1.05120 0.525600 0.850732i \(-0.323841\pi\)
0.525600 + 0.850732i \(0.323841\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −260.716 −2.52659
\(23\) −143.140 −1.29769 −0.648843 0.760922i \(-0.724747\pi\)
−0.648843 + 0.760922i \(0.724747\pi\)
\(24\) 76.1949 0.648051
\(25\) 0 0
\(26\) −221.584 −1.67139
\(27\) 74.8057 0.533199
\(28\) 0 0
\(29\) −97.2962 −0.623016 −0.311508 0.950244i \(-0.600834\pi\)
−0.311508 + 0.950244i \(0.600834\pi\)
\(30\) 0 0
\(31\) 111.587 0.646507 0.323253 0.946312i \(-0.395223\pi\)
0.323253 + 0.946312i \(0.395223\pi\)
\(32\) 245.205 1.35458
\(33\) −393.162 −2.07396
\(34\) 459.403 2.31726
\(35\) 0 0
\(36\) 166.190 0.769399
\(37\) −345.001 −1.53291 −0.766457 0.642295i \(-0.777982\pi\)
−0.766457 + 0.642295i \(0.777982\pi\)
\(38\) −376.492 −1.60724
\(39\) −334.150 −1.37197
\(40\) 0 0
\(41\) −237.933 −0.906315 −0.453157 0.891431i \(-0.649702\pi\)
−0.453157 + 0.891431i \(0.649702\pi\)
\(42\) 0 0
\(43\) 162.845 0.577527 0.288764 0.957400i \(-0.406756\pi\)
0.288764 + 0.957400i \(0.406756\pi\)
\(44\) 645.181 2.21056
\(45\) 0 0
\(46\) 619.017 1.98411
\(47\) 125.041 0.388067 0.194034 0.980995i \(-0.437843\pi\)
0.194034 + 0.980995i \(0.437843\pi\)
\(48\) 228.817 0.688061
\(49\) 0 0
\(50\) 0 0
\(51\) 692.783 1.90214
\(52\) 548.341 1.46233
\(53\) −436.168 −1.13042 −0.565211 0.824947i \(-0.691205\pi\)
−0.565211 + 0.824947i \(0.691205\pi\)
\(54\) −323.501 −0.815239
\(55\) 0 0
\(56\) 0 0
\(57\) −567.753 −1.31931
\(58\) 420.762 0.952565
\(59\) 512.605 1.13111 0.565555 0.824711i \(-0.308662\pi\)
0.565555 + 0.824711i \(0.308662\pi\)
\(60\) 0 0
\(61\) −597.469 −1.25407 −0.627034 0.778992i \(-0.715731\pi\)
−0.627034 + 0.778992i \(0.715731\pi\)
\(62\) −482.566 −0.988482
\(63\) 0 0
\(64\) −779.705 −1.52286
\(65\) 0 0
\(66\) 1700.25 3.17100
\(67\) −551.516 −1.00565 −0.502824 0.864389i \(-0.667706\pi\)
−0.502824 + 0.864389i \(0.667706\pi\)
\(68\) −1136.86 −2.02742
\(69\) 933.481 1.62867
\(70\) 0 0
\(71\) 736.134 1.23047 0.615233 0.788345i \(-0.289062\pi\)
0.615233 + 0.788345i \(0.289062\pi\)
\(72\) −181.440 −0.296985
\(73\) 578.126 0.926912 0.463456 0.886120i \(-0.346609\pi\)
0.463456 + 0.886120i \(0.346609\pi\)
\(74\) 1491.97 2.34376
\(75\) 0 0
\(76\) 931.685 1.40621
\(77\) 0 0
\(78\) 1445.05 2.09768
\(79\) −412.915 −0.588058 −0.294029 0.955796i \(-0.594996\pi\)
−0.294029 + 0.955796i \(0.594996\pi\)
\(80\) 0 0
\(81\) −907.132 −1.24435
\(82\) 1028.95 1.38572
\(83\) 961.838 1.27199 0.635996 0.771692i \(-0.280589\pi\)
0.635996 + 0.771692i \(0.280589\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −704.232 −0.883015
\(87\) 634.512 0.781918
\(88\) −704.384 −0.853268
\(89\) −895.439 −1.06648 −0.533238 0.845965i \(-0.679025\pi\)
−0.533238 + 0.845965i \(0.679025\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1531.85 −1.73594
\(93\) −727.712 −0.811400
\(94\) −540.748 −0.593339
\(95\) 0 0
\(96\) −1599.09 −1.70007
\(97\) 474.428 0.496607 0.248304 0.968682i \(-0.420127\pi\)
0.248304 + 0.968682i \(0.420127\pi\)
\(98\) 0 0
\(99\) 936.222 0.950443
\(100\) 0 0
\(101\) 376.277 0.370703 0.185351 0.982672i \(-0.440658\pi\)
0.185351 + 0.982672i \(0.440658\pi\)
\(102\) −2995.97 −2.90829
\(103\) 1293.76 1.23765 0.618823 0.785530i \(-0.287610\pi\)
0.618823 + 0.785530i \(0.287610\pi\)
\(104\) −598.658 −0.564454
\(105\) 0 0
\(106\) 1886.23 1.72837
\(107\) −1159.17 −1.04730 −0.523650 0.851933i \(-0.675430\pi\)
−0.523650 + 0.851933i \(0.675430\pi\)
\(108\) 800.550 0.713268
\(109\) 1632.06 1.43416 0.717079 0.696992i \(-0.245479\pi\)
0.717079 + 0.696992i \(0.245479\pi\)
\(110\) 0 0
\(111\) 2249.91 1.92389
\(112\) 0 0
\(113\) 1493.26 1.24314 0.621568 0.783360i \(-0.286496\pi\)
0.621568 + 0.783360i \(0.286496\pi\)
\(114\) 2455.28 2.01717
\(115\) 0 0
\(116\) −1041.24 −0.833418
\(117\) 795.698 0.628738
\(118\) −2216.79 −1.72942
\(119\) 0 0
\(120\) 0 0
\(121\) 2303.59 1.73072
\(122\) 2583.79 1.91742
\(123\) 1551.67 1.13747
\(124\) 1194.18 0.864842
\(125\) 0 0
\(126\) 0 0
\(127\) −54.8987 −0.0383580 −0.0191790 0.999816i \(-0.506105\pi\)
−0.0191790 + 0.999816i \(0.506105\pi\)
\(128\) 1410.24 0.973815
\(129\) −1061.99 −0.724827
\(130\) 0 0
\(131\) −1849.60 −1.23359 −0.616795 0.787124i \(-0.711569\pi\)
−0.616795 + 0.787124i \(0.711569\pi\)
\(132\) −4207.51 −2.77437
\(133\) 0 0
\(134\) 2385.06 1.53759
\(135\) 0 0
\(136\) 1241.18 0.782576
\(137\) 1758.35 1.09654 0.548269 0.836302i \(-0.315287\pi\)
0.548269 + 0.836302i \(0.315287\pi\)
\(138\) −4036.89 −2.49016
\(139\) 283.853 0.173209 0.0866047 0.996243i \(-0.472398\pi\)
0.0866047 + 0.996243i \(0.472398\pi\)
\(140\) 0 0
\(141\) −815.451 −0.487045
\(142\) −3183.45 −1.88133
\(143\) 3089.05 1.80643
\(144\) −544.874 −0.315321
\(145\) 0 0
\(146\) −2500.13 −1.41721
\(147\) 0 0
\(148\) −3692.11 −2.05060
\(149\) 653.719 0.359428 0.179714 0.983719i \(-0.442483\pi\)
0.179714 + 0.983719i \(0.442483\pi\)
\(150\) 0 0
\(151\) −1550.48 −0.835607 −0.417803 0.908537i \(-0.637200\pi\)
−0.417803 + 0.908537i \(0.637200\pi\)
\(152\) −1017.18 −0.542790
\(153\) −1649.70 −0.871701
\(154\) 0 0
\(155\) 0 0
\(156\) −3575.98 −1.83530
\(157\) −2059.46 −1.04690 −0.523449 0.852057i \(-0.675355\pi\)
−0.523449 + 0.852057i \(0.675355\pi\)
\(158\) 1785.67 0.899117
\(159\) 2844.45 1.41874
\(160\) 0 0
\(161\) 0 0
\(162\) 3922.94 1.90256
\(163\) −396.631 −0.190592 −0.0952962 0.995449i \(-0.530380\pi\)
−0.0952962 + 0.995449i \(0.530380\pi\)
\(164\) −2546.29 −1.21239
\(165\) 0 0
\(166\) −4159.51 −1.94483
\(167\) −1479.26 −0.685438 −0.342719 0.939438i \(-0.611348\pi\)
−0.342719 + 0.939438i \(0.611348\pi\)
\(168\) 0 0
\(169\) 428.390 0.194988
\(170\) 0 0
\(171\) 1351.97 0.604606
\(172\) 1742.72 0.772567
\(173\) 3375.25 1.48333 0.741664 0.670771i \(-0.234037\pi\)
0.741664 + 0.670771i \(0.234037\pi\)
\(174\) −2743.98 −1.19552
\(175\) 0 0
\(176\) −2115.30 −0.905949
\(177\) −3342.93 −1.41960
\(178\) 3872.37 1.63060
\(179\) −4072.82 −1.70065 −0.850326 0.526256i \(-0.823595\pi\)
−0.850326 + 0.526256i \(0.823595\pi\)
\(180\) 0 0
\(181\) −1909.31 −0.784079 −0.392039 0.919948i \(-0.628230\pi\)
−0.392039 + 0.919948i \(0.628230\pi\)
\(182\) 0 0
\(183\) 3896.36 1.57392
\(184\) 1672.41 0.670064
\(185\) 0 0
\(186\) 3147.03 1.24060
\(187\) −6404.44 −2.50449
\(188\) 1338.16 0.519124
\(189\) 0 0
\(190\) 0 0
\(191\) −3892.04 −1.47444 −0.737220 0.675652i \(-0.763862\pi\)
−0.737220 + 0.675652i \(0.763862\pi\)
\(192\) 5084.81 1.91127
\(193\) 2257.27 0.841877 0.420938 0.907089i \(-0.361701\pi\)
0.420938 + 0.907089i \(0.361701\pi\)
\(194\) −2051.69 −0.759292
\(195\) 0 0
\(196\) 0 0
\(197\) −4042.45 −1.46199 −0.730997 0.682380i \(-0.760945\pi\)
−0.730997 + 0.682380i \(0.760945\pi\)
\(198\) −4048.74 −1.45319
\(199\) −3783.70 −1.34784 −0.673918 0.738806i \(-0.735390\pi\)
−0.673918 + 0.738806i \(0.735390\pi\)
\(200\) 0 0
\(201\) 3596.68 1.26214
\(202\) −1627.23 −0.566790
\(203\) 0 0
\(204\) 7413.97 2.54452
\(205\) 0 0
\(206\) −5594.91 −1.89231
\(207\) −2222.86 −0.746376
\(208\) −1797.80 −0.599304
\(209\) 5248.59 1.73710
\(210\) 0 0
\(211\) 1912.30 0.623924 0.311962 0.950095i \(-0.399014\pi\)
0.311962 + 0.950095i \(0.399014\pi\)
\(212\) −4667.75 −1.51218
\(213\) −4800.66 −1.54430
\(214\) 5012.89 1.60128
\(215\) 0 0
\(216\) −874.010 −0.275319
\(217\) 0 0
\(218\) −7057.93 −2.19277
\(219\) −3770.22 −1.16332
\(220\) 0 0
\(221\) −5443.15 −1.65677
\(222\) −9729.83 −2.94155
\(223\) 1450.22 0.435489 0.217744 0.976006i \(-0.430130\pi\)
0.217744 + 0.976006i \(0.430130\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −6457.69 −1.90070
\(227\) −2182.90 −0.638256 −0.319128 0.947712i \(-0.603390\pi\)
−0.319128 + 0.947712i \(0.603390\pi\)
\(228\) −6075.94 −1.76486
\(229\) 3599.67 1.03875 0.519373 0.854548i \(-0.326165\pi\)
0.519373 + 0.854548i \(0.326165\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1136.78 0.321696
\(233\) 1722.93 0.484433 0.242217 0.970222i \(-0.422125\pi\)
0.242217 + 0.970222i \(0.422125\pi\)
\(234\) −3441.03 −0.961314
\(235\) 0 0
\(236\) 5485.76 1.51310
\(237\) 2692.81 0.738045
\(238\) 0 0
\(239\) −5594.30 −1.51408 −0.757040 0.653369i \(-0.773355\pi\)
−0.757040 + 0.653369i \(0.773355\pi\)
\(240\) 0 0
\(241\) 2374.82 0.634753 0.317376 0.948300i \(-0.397198\pi\)
0.317376 + 0.948300i \(0.397198\pi\)
\(242\) −9961.98 −2.64620
\(243\) 3896.06 1.02853
\(244\) −6393.95 −1.67759
\(245\) 0 0
\(246\) −6710.26 −1.73915
\(247\) 4460.79 1.14912
\(248\) −1303.76 −0.333826
\(249\) −6272.58 −1.59642
\(250\) 0 0
\(251\) −3420.57 −0.860178 −0.430089 0.902787i \(-0.641518\pi\)
−0.430089 + 0.902787i \(0.641518\pi\)
\(252\) 0 0
\(253\) −8629.57 −2.14441
\(254\) 237.412 0.0586478
\(255\) 0 0
\(256\) 139.013 0.0339387
\(257\) 4847.27 1.17652 0.588258 0.808673i \(-0.299814\pi\)
0.588258 + 0.808673i \(0.299814\pi\)
\(258\) 4592.61 1.10823
\(259\) 0 0
\(260\) 0 0
\(261\) −1510.94 −0.358333
\(262\) 7998.68 1.88611
\(263\) −6046.80 −1.41773 −0.708863 0.705347i \(-0.750791\pi\)
−0.708863 + 0.705347i \(0.750791\pi\)
\(264\) 4593.60 1.07090
\(265\) 0 0
\(266\) 0 0
\(267\) 5839.56 1.33848
\(268\) −5902.17 −1.34527
\(269\) 46.0036 0.0104271 0.00521354 0.999986i \(-0.498340\pi\)
0.00521354 + 0.999986i \(0.498340\pi\)
\(270\) 0 0
\(271\) 4806.85 1.07747 0.538736 0.842474i \(-0.318902\pi\)
0.538736 + 0.842474i \(0.318902\pi\)
\(272\) 3727.33 0.830893
\(273\) 0 0
\(274\) −7604.06 −1.67656
\(275\) 0 0
\(276\) 9989.86 2.17869
\(277\) −2568.38 −0.557108 −0.278554 0.960421i \(-0.589855\pi\)
−0.278554 + 0.960421i \(0.589855\pi\)
\(278\) −1227.54 −0.264830
\(279\) 1732.87 0.371844
\(280\) 0 0
\(281\) −3056.49 −0.648879 −0.324440 0.945906i \(-0.605176\pi\)
−0.324440 + 0.945906i \(0.605176\pi\)
\(282\) 3526.46 0.744672
\(283\) 3732.87 0.784085 0.392042 0.919947i \(-0.371769\pi\)
0.392042 + 0.919947i \(0.371769\pi\)
\(284\) 7877.91 1.64601
\(285\) 0 0
\(286\) −13358.7 −2.76195
\(287\) 0 0
\(288\) 3807.86 0.779097
\(289\) 6372.13 1.29699
\(290\) 0 0
\(291\) −3093.96 −0.623268
\(292\) 6186.95 1.23994
\(293\) −9110.55 −1.81653 −0.908266 0.418393i \(-0.862594\pi\)
−0.908266 + 0.418393i \(0.862594\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4030.90 0.791525
\(297\) 4509.85 0.881105
\(298\) −2827.04 −0.549550
\(299\) −7334.30 −1.41857
\(300\) 0 0
\(301\) 0 0
\(302\) 6705.15 1.27761
\(303\) −2453.87 −0.465252
\(304\) −3054.64 −0.576302
\(305\) 0 0
\(306\) 7134.20 1.33279
\(307\) 8496.89 1.57962 0.789810 0.613352i \(-0.210179\pi\)
0.789810 + 0.613352i \(0.210179\pi\)
\(308\) 0 0
\(309\) −8437.16 −1.55331
\(310\) 0 0
\(311\) −179.361 −0.0327029 −0.0163515 0.999866i \(-0.505205\pi\)
−0.0163515 + 0.999866i \(0.505205\pi\)
\(312\) 3904.12 0.708420
\(313\) 4622.25 0.834712 0.417356 0.908743i \(-0.362957\pi\)
0.417356 + 0.908743i \(0.362957\pi\)
\(314\) 8906.24 1.60066
\(315\) 0 0
\(316\) −4418.91 −0.786655
\(317\) −4251.64 −0.753300 −0.376650 0.926356i \(-0.622924\pi\)
−0.376650 + 0.926356i \(0.622924\pi\)
\(318\) −12301.0 −2.16919
\(319\) −5865.75 −1.02953
\(320\) 0 0
\(321\) 7559.46 1.31442
\(322\) 0 0
\(323\) −9248.44 −1.59318
\(324\) −9707.88 −1.66459
\(325\) 0 0
\(326\) 1715.25 0.291408
\(327\) −10643.4 −1.79994
\(328\) 2779.95 0.467978
\(329\) 0 0
\(330\) 0 0
\(331\) 11024.5 1.83069 0.915347 0.402667i \(-0.131917\pi\)
0.915347 + 0.402667i \(0.131917\pi\)
\(332\) 10293.3 1.70156
\(333\) −5357.62 −0.881669
\(334\) 6397.11 1.04801
\(335\) 0 0
\(336\) 0 0
\(337\) −2758.01 −0.445812 −0.222906 0.974840i \(-0.571554\pi\)
−0.222906 + 0.974840i \(0.571554\pi\)
\(338\) −1852.59 −0.298129
\(339\) −9738.24 −1.56020
\(340\) 0 0
\(341\) 6727.34 1.06835
\(342\) −5846.66 −0.924418
\(343\) 0 0
\(344\) −1902.64 −0.298208
\(345\) 0 0
\(346\) −14596.5 −2.26795
\(347\) 1450.14 0.224345 0.112172 0.993689i \(-0.464219\pi\)
0.112172 + 0.993689i \(0.464219\pi\)
\(348\) 6790.37 1.04598
\(349\) 7518.18 1.15312 0.576560 0.817055i \(-0.304395\pi\)
0.576560 + 0.817055i \(0.304395\pi\)
\(350\) 0 0
\(351\) 3832.94 0.582869
\(352\) 14782.8 2.23843
\(353\) −453.117 −0.0683201 −0.0341600 0.999416i \(-0.510876\pi\)
−0.0341600 + 0.999416i \(0.510876\pi\)
\(354\) 14456.7 2.17052
\(355\) 0 0
\(356\) −9582.74 −1.42664
\(357\) 0 0
\(358\) 17613.1 2.60023
\(359\) 2575.76 0.378673 0.189336 0.981912i \(-0.439366\pi\)
0.189336 + 0.981912i \(0.439366\pi\)
\(360\) 0 0
\(361\) 720.329 0.105020
\(362\) 8256.93 1.19882
\(363\) −15022.7 −2.17215
\(364\) 0 0
\(365\) 0 0
\(366\) −16850.0 −2.40646
\(367\) −3489.74 −0.496356 −0.248178 0.968714i \(-0.579832\pi\)
−0.248178 + 0.968714i \(0.579832\pi\)
\(368\) 5022.35 0.711434
\(369\) −3694.93 −0.521275
\(370\) 0 0
\(371\) 0 0
\(372\) −7787.77 −1.08542
\(373\) 6276.24 0.871237 0.435619 0.900131i \(-0.356530\pi\)
0.435619 + 0.900131i \(0.356530\pi\)
\(374\) 27696.3 3.82925
\(375\) 0 0
\(376\) −1460.95 −0.200380
\(377\) −4985.32 −0.681053
\(378\) 0 0
\(379\) −6156.67 −0.834425 −0.417212 0.908809i \(-0.636993\pi\)
−0.417212 + 0.908809i \(0.636993\pi\)
\(380\) 0 0
\(381\) 358.019 0.0481413
\(382\) 16831.3 2.25436
\(383\) 1191.17 0.158918 0.0794592 0.996838i \(-0.474681\pi\)
0.0794592 + 0.996838i \(0.474681\pi\)
\(384\) −9196.77 −1.22219
\(385\) 0 0
\(386\) −9761.70 −1.28719
\(387\) 2528.87 0.332170
\(388\) 5077.20 0.664319
\(389\) −5766.53 −0.751606 −0.375803 0.926700i \(-0.622633\pi\)
−0.375803 + 0.926700i \(0.622633\pi\)
\(390\) 0 0
\(391\) 15206.0 1.96675
\(392\) 0 0
\(393\) 12062.1 1.54822
\(394\) 17481.8 2.23533
\(395\) 0 0
\(396\) 10019.2 1.27142
\(397\) −7299.37 −0.922783 −0.461392 0.887197i \(-0.652650\pi\)
−0.461392 + 0.887197i \(0.652650\pi\)
\(398\) 16362.8 2.06078
\(399\) 0 0
\(400\) 0 0
\(401\) −12087.8 −1.50533 −0.752664 0.658404i \(-0.771232\pi\)
−0.752664 + 0.658404i \(0.771232\pi\)
\(402\) −15554.0 −1.92976
\(403\) 5717.58 0.706732
\(404\) 4026.82 0.495895
\(405\) 0 0
\(406\) 0 0
\(407\) −20799.3 −2.53313
\(408\) −8094.29 −0.982175
\(409\) 3828.88 0.462900 0.231450 0.972847i \(-0.425653\pi\)
0.231450 + 0.972847i \(0.425653\pi\)
\(410\) 0 0
\(411\) −11467.0 −1.37621
\(412\) 13845.4 1.65562
\(413\) 0 0
\(414\) 9612.88 1.14118
\(415\) 0 0
\(416\) 12563.9 1.48076
\(417\) −1851.13 −0.217387
\(418\) −22697.8 −2.65595
\(419\) −16111.9 −1.87857 −0.939283 0.343142i \(-0.888509\pi\)
−0.939283 + 0.343142i \(0.888509\pi\)
\(420\) 0 0
\(421\) −3002.01 −0.347528 −0.173764 0.984787i \(-0.555593\pi\)
−0.173764 + 0.984787i \(0.555593\pi\)
\(422\) −8269.82 −0.953954
\(423\) 1941.80 0.223200
\(424\) 5096.08 0.583697
\(425\) 0 0
\(426\) 20760.7 2.36117
\(427\) 0 0
\(428\) −12405.1 −1.40099
\(429\) −20145.1 −2.26716
\(430\) 0 0
\(431\) −593.283 −0.0663050 −0.0331525 0.999450i \(-0.510555\pi\)
−0.0331525 + 0.999450i \(0.510555\pi\)
\(432\) −2624.70 −0.292317
\(433\) −15946.6 −1.76985 −0.884924 0.465736i \(-0.845790\pi\)
−0.884924 + 0.465736i \(0.845790\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 17465.9 1.91849
\(437\) −12461.7 −1.36413
\(438\) 16304.5 1.77867
\(439\) 11007.6 1.19673 0.598363 0.801225i \(-0.295818\pi\)
0.598363 + 0.801225i \(0.295818\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 23539.2 2.53313
\(443\) 1208.79 0.129641 0.0648207 0.997897i \(-0.479352\pi\)
0.0648207 + 0.997897i \(0.479352\pi\)
\(444\) 24077.9 2.57362
\(445\) 0 0
\(446\) −6271.55 −0.665844
\(447\) −4263.19 −0.451101
\(448\) 0 0
\(449\) 4508.55 0.473878 0.236939 0.971524i \(-0.423856\pi\)
0.236939 + 0.971524i \(0.423856\pi\)
\(450\) 0 0
\(451\) −14344.4 −1.49768
\(452\) 15980.5 1.66296
\(453\) 10111.4 1.04873
\(454\) 9440.05 0.975867
\(455\) 0 0
\(456\) 6633.48 0.681230
\(457\) −5260.69 −0.538478 −0.269239 0.963073i \(-0.586772\pi\)
−0.269239 + 0.963073i \(0.586772\pi\)
\(458\) −15567.0 −1.58820
\(459\) −7946.72 −0.808107
\(460\) 0 0
\(461\) 2852.94 0.288231 0.144116 0.989561i \(-0.453966\pi\)
0.144116 + 0.989561i \(0.453966\pi\)
\(462\) 0 0
\(463\) 3579.03 0.359248 0.179624 0.983735i \(-0.442512\pi\)
0.179624 + 0.983735i \(0.442512\pi\)
\(464\) 3413.82 0.341558
\(465\) 0 0
\(466\) −7450.90 −0.740679
\(467\) 9949.10 0.985845 0.492922 0.870073i \(-0.335929\pi\)
0.492922 + 0.870073i \(0.335929\pi\)
\(468\) 8515.34 0.841072
\(469\) 0 0
\(470\) 0 0
\(471\) 13430.7 1.31391
\(472\) −5989.14 −0.584052
\(473\) 9817.54 0.954357
\(474\) −11645.2 −1.12844
\(475\) 0 0
\(476\) 0 0
\(477\) −6773.38 −0.650171
\(478\) 24192.8 2.31497
\(479\) 7005.69 0.668263 0.334132 0.942526i \(-0.391557\pi\)
0.334132 + 0.942526i \(0.391557\pi\)
\(480\) 0 0
\(481\) −17677.4 −1.67571
\(482\) −10270.0 −0.970511
\(483\) 0 0
\(484\) 24652.4 2.31521
\(485\) 0 0
\(486\) −16848.7 −1.57258
\(487\) −4772.63 −0.444083 −0.222041 0.975037i \(-0.571272\pi\)
−0.222041 + 0.975037i \(0.571272\pi\)
\(488\) 6980.67 0.647541
\(489\) 2586.61 0.239204
\(490\) 0 0
\(491\) 4640.45 0.426519 0.213259 0.976996i \(-0.431592\pi\)
0.213259 + 0.976996i \(0.431592\pi\)
\(492\) 16605.5 1.52162
\(493\) 10335.9 0.944232
\(494\) −19290.9 −1.75696
\(495\) 0 0
\(496\) −3915.26 −0.354436
\(497\) 0 0
\(498\) 27126.1 2.44086
\(499\) 15389.5 1.38062 0.690308 0.723515i \(-0.257475\pi\)
0.690308 + 0.723515i \(0.257475\pi\)
\(500\) 0 0
\(501\) 9646.89 0.860262
\(502\) 14792.4 1.31518
\(503\) −3679.31 −0.326148 −0.163074 0.986614i \(-0.552141\pi\)
−0.163074 + 0.986614i \(0.552141\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 37319.0 3.27872
\(507\) −2793.72 −0.244721
\(508\) −587.510 −0.0513121
\(509\) −5349.69 −0.465856 −0.232928 0.972494i \(-0.574831\pi\)
−0.232928 + 0.972494i \(0.574831\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −11883.0 −1.02571
\(513\) 6512.53 0.560498
\(514\) −20962.3 −1.79884
\(515\) 0 0
\(516\) −11365.1 −0.969613
\(517\) 7538.44 0.641277
\(518\) 0 0
\(519\) −22011.5 −1.86166
\(520\) 0 0
\(521\) 4032.59 0.339100 0.169550 0.985522i \(-0.445769\pi\)
0.169550 + 0.985522i \(0.445769\pi\)
\(522\) 6534.14 0.547876
\(523\) −10125.6 −0.846580 −0.423290 0.905994i \(-0.639125\pi\)
−0.423290 + 0.905994i \(0.639125\pi\)
\(524\) −19793.9 −1.65019
\(525\) 0 0
\(526\) 26149.7 2.16764
\(527\) −11854.1 −0.979835
\(528\) 13794.8 1.13701
\(529\) 8322.11 0.683990
\(530\) 0 0
\(531\) 7960.39 0.650568
\(532\) 0 0
\(533\) −12191.3 −0.990743
\(534\) −25253.5 −2.04649
\(535\) 0 0
\(536\) 6443.77 0.519269
\(537\) 26560.7 2.13441
\(538\) −198.945 −0.0159426
\(539\) 0 0
\(540\) 0 0
\(541\) −5016.75 −0.398682 −0.199341 0.979930i \(-0.563880\pi\)
−0.199341 + 0.979930i \(0.563880\pi\)
\(542\) −20787.4 −1.64741
\(543\) 12451.5 0.984061
\(544\) −26048.5 −2.05298
\(545\) 0 0
\(546\) 0 0
\(547\) 7622.97 0.595858 0.297929 0.954588i \(-0.403704\pi\)
0.297929 + 0.954588i \(0.403704\pi\)
\(548\) 18817.3 1.46686
\(549\) −9278.27 −0.721288
\(550\) 0 0
\(551\) −8470.54 −0.654914
\(552\) −10906.5 −0.840967
\(553\) 0 0
\(554\) 11107.1 0.851795
\(555\) 0 0
\(556\) 3037.72 0.231705
\(557\) −6853.84 −0.521376 −0.260688 0.965423i \(-0.583949\pi\)
−0.260688 + 0.965423i \(0.583949\pi\)
\(558\) −7493.90 −0.568534
\(559\) 8343.96 0.631327
\(560\) 0 0
\(561\) 41766.2 3.14326
\(562\) 13217.9 0.992110
\(563\) −12704.7 −0.951050 −0.475525 0.879702i \(-0.657742\pi\)
−0.475525 + 0.879702i \(0.657742\pi\)
\(564\) −8726.73 −0.651528
\(565\) 0 0
\(566\) −16143.0 −1.19883
\(567\) 0 0
\(568\) −8600.80 −0.635355
\(569\) −21069.9 −1.55236 −0.776182 0.630509i \(-0.782846\pi\)
−0.776182 + 0.630509i \(0.782846\pi\)
\(570\) 0 0
\(571\) −6627.96 −0.485764 −0.242882 0.970056i \(-0.578093\pi\)
−0.242882 + 0.970056i \(0.578093\pi\)
\(572\) 33058.1 2.41649
\(573\) 25381.7 1.85050
\(574\) 0 0
\(575\) 0 0
\(576\) −12108.3 −0.875887
\(577\) −18977.9 −1.36926 −0.684629 0.728892i \(-0.740036\pi\)
−0.684629 + 0.728892i \(0.740036\pi\)
\(578\) −27556.6 −1.98305
\(579\) −14720.7 −1.05660
\(580\) 0 0
\(581\) 0 0
\(582\) 13380.0 0.952952
\(583\) −26295.5 −1.86801
\(584\) −6754.67 −0.478614
\(585\) 0 0
\(586\) 39399.0 2.77740
\(587\) −1824.82 −0.128311 −0.0641554 0.997940i \(-0.520435\pi\)
−0.0641554 + 0.997940i \(0.520435\pi\)
\(588\) 0 0
\(589\) 9714.73 0.679607
\(590\) 0 0
\(591\) 26362.7 1.83488
\(592\) 12105.0 0.840394
\(593\) 8897.81 0.616171 0.308085 0.951359i \(-0.400312\pi\)
0.308085 + 0.951359i \(0.400312\pi\)
\(594\) −19503.1 −1.34717
\(595\) 0 0
\(596\) 6995.92 0.480812
\(597\) 24675.2 1.69160
\(598\) 31717.5 2.16894
\(599\) −4699.67 −0.320573 −0.160286 0.987071i \(-0.551242\pi\)
−0.160286 + 0.987071i \(0.551242\pi\)
\(600\) 0 0
\(601\) 24866.7 1.68774 0.843871 0.536547i \(-0.180272\pi\)
0.843871 + 0.536547i \(0.180272\pi\)
\(602\) 0 0
\(603\) −8564.65 −0.578407
\(604\) −16592.9 −1.11780
\(605\) 0 0
\(606\) 10611.9 0.711351
\(607\) 17790.9 1.18964 0.594819 0.803860i \(-0.297224\pi\)
0.594819 + 0.803860i \(0.297224\pi\)
\(608\) 21347.4 1.42393
\(609\) 0 0
\(610\) 0 0
\(611\) 6406.94 0.424218
\(612\) −17654.6 −1.16609
\(613\) −14474.5 −0.953700 −0.476850 0.878985i \(-0.658222\pi\)
−0.476850 + 0.878985i \(0.658222\pi\)
\(614\) −36745.2 −2.41517
\(615\) 0 0
\(616\) 0 0
\(617\) 13157.5 0.858509 0.429255 0.903184i \(-0.358776\pi\)
0.429255 + 0.903184i \(0.358776\pi\)
\(618\) 36486.9 2.37495
\(619\) −17436.0 −1.13217 −0.566084 0.824348i \(-0.691542\pi\)
−0.566084 + 0.824348i \(0.691542\pi\)
\(620\) 0 0
\(621\) −10707.7 −0.691925
\(622\) 775.654 0.0500015
\(623\) 0 0
\(624\) 11724.3 0.752158
\(625\) 0 0
\(626\) −19989.1 −1.27624
\(627\) −34228.4 −2.18015
\(628\) −22039.8 −1.40045
\(629\) 36650.0 2.32326
\(630\) 0 0
\(631\) −17388.4 −1.09702 −0.548512 0.836143i \(-0.684806\pi\)
−0.548512 + 0.836143i \(0.684806\pi\)
\(632\) 4824.39 0.303646
\(633\) −12470.9 −0.783058
\(634\) 18386.4 1.15177
\(635\) 0 0
\(636\) 30440.5 1.89787
\(637\) 0 0
\(638\) 25366.7 1.57410
\(639\) 11431.6 0.707713
\(640\) 0 0
\(641\) 10838.2 0.667839 0.333919 0.942602i \(-0.391629\pi\)
0.333919 + 0.942602i \(0.391629\pi\)
\(642\) −32691.3 −2.00969
\(643\) 21318.7 1.30751 0.653754 0.756707i \(-0.273193\pi\)
0.653754 + 0.756707i \(0.273193\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 39995.3 2.43591
\(647\) −2324.42 −0.141240 −0.0706200 0.997503i \(-0.522498\pi\)
−0.0706200 + 0.997503i \(0.522498\pi\)
\(648\) 10598.7 0.642525
\(649\) 30903.7 1.86915
\(650\) 0 0
\(651\) 0 0
\(652\) −4244.64 −0.254958
\(653\) −4990.89 −0.299094 −0.149547 0.988755i \(-0.547782\pi\)
−0.149547 + 0.988755i \(0.547782\pi\)
\(654\) 46027.9 2.75204
\(655\) 0 0
\(656\) 8348.33 0.496871
\(657\) 8977.88 0.533121
\(658\) 0 0
\(659\) 5720.85 0.338168 0.169084 0.985602i \(-0.445919\pi\)
0.169084 + 0.985602i \(0.445919\pi\)
\(660\) 0 0
\(661\) −3357.64 −0.197575 −0.0987876 0.995109i \(-0.531496\pi\)
−0.0987876 + 0.995109i \(0.531496\pi\)
\(662\) −47675.8 −2.79905
\(663\) 35497.2 2.07933
\(664\) −11237.9 −0.656797
\(665\) 0 0
\(666\) 23169.3 1.34804
\(667\) 13927.0 0.808479
\(668\) −15830.6 −0.916922
\(669\) −9457.54 −0.546561
\(670\) 0 0
\(671\) −36020.0 −2.07233
\(672\) 0 0
\(673\) −16048.7 −0.919213 −0.459606 0.888123i \(-0.652010\pi\)
−0.459606 + 0.888123i \(0.652010\pi\)
\(674\) 11927.2 0.681628
\(675\) 0 0
\(676\) 4584.51 0.260839
\(677\) −15438.9 −0.876463 −0.438232 0.898862i \(-0.644395\pi\)
−0.438232 + 0.898862i \(0.644395\pi\)
\(678\) 42113.5 2.38549
\(679\) 0 0
\(680\) 0 0
\(681\) 14235.7 0.801045
\(682\) −29092.7 −1.63346
\(683\) 12079.0 0.676708 0.338354 0.941019i \(-0.390130\pi\)
0.338354 + 0.941019i \(0.390130\pi\)
\(684\) 14468.4 0.808791
\(685\) 0 0
\(686\) 0 0
\(687\) −23475.1 −1.30368
\(688\) −5713.74 −0.316619
\(689\) −22348.6 −1.23573
\(690\) 0 0
\(691\) −30561.1 −1.68249 −0.841243 0.540658i \(-0.818175\pi\)
−0.841243 + 0.540658i \(0.818175\pi\)
\(692\) 36121.0 1.98427
\(693\) 0 0
\(694\) −6271.21 −0.343014
\(695\) 0 0
\(696\) −7413.47 −0.403746
\(697\) 25276.0 1.37360
\(698\) −32512.7 −1.76307
\(699\) −11236.0 −0.607990
\(700\) 0 0
\(701\) 502.506 0.0270747 0.0135374 0.999908i \(-0.495691\pi\)
0.0135374 + 0.999908i \(0.495691\pi\)
\(702\) −16575.7 −0.891183
\(703\) −30035.6 −1.61140
\(704\) −47006.5 −2.51651
\(705\) 0 0
\(706\) 1959.53 0.104459
\(707\) 0 0
\(708\) −35775.1 −1.89903
\(709\) −23820.1 −1.26175 −0.630876 0.775884i \(-0.717304\pi\)
−0.630876 + 0.775884i \(0.717304\pi\)
\(710\) 0 0
\(711\) −6412.28 −0.338227
\(712\) 10462.1 0.550678
\(713\) −15972.7 −0.838963
\(714\) 0 0
\(715\) 0 0
\(716\) −43586.2 −2.27499
\(717\) 36482.9 1.90025
\(718\) −11139.0 −0.578975
\(719\) −28061.7 −1.45553 −0.727764 0.685828i \(-0.759440\pi\)
−0.727764 + 0.685828i \(0.759440\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −3115.10 −0.160571
\(723\) −15487.2 −0.796648
\(724\) −20433.0 −1.04887
\(725\) 0 0
\(726\) 64966.5 3.32112
\(727\) 13296.5 0.678324 0.339162 0.940728i \(-0.389857\pi\)
0.339162 + 0.940728i \(0.389857\pi\)
\(728\) 0 0
\(729\) −915.390 −0.0465066
\(730\) 0 0
\(731\) −17299.3 −0.875291
\(732\) 41697.8 2.10546
\(733\) −18117.3 −0.912929 −0.456464 0.889742i \(-0.650884\pi\)
−0.456464 + 0.889742i \(0.650884\pi\)
\(734\) 15091.5 0.758909
\(735\) 0 0
\(736\) −35098.7 −1.75782
\(737\) −33249.6 −1.66182
\(738\) 15978.9 0.797007
\(739\) 5254.97 0.261579 0.130790 0.991410i \(-0.458249\pi\)
0.130790 + 0.991410i \(0.458249\pi\)
\(740\) 0 0
\(741\) −29090.8 −1.44221
\(742\) 0 0
\(743\) 11949.0 0.589993 0.294997 0.955498i \(-0.404681\pi\)
0.294997 + 0.955498i \(0.404681\pi\)
\(744\) 8502.39 0.418969
\(745\) 0 0
\(746\) −27141.9 −1.33209
\(747\) 14936.7 0.731598
\(748\) −68538.5 −3.35029
\(749\) 0 0
\(750\) 0 0
\(751\) 2096.54 0.101869 0.0509346 0.998702i \(-0.483780\pi\)
0.0509346 + 0.998702i \(0.483780\pi\)
\(752\) −4387.32 −0.212751
\(753\) 22307.1 1.07957
\(754\) 21559.3 1.04130
\(755\) 0 0
\(756\) 0 0
\(757\) 27081.7 1.30026 0.650132 0.759821i \(-0.274713\pi\)
0.650132 + 0.759821i \(0.274713\pi\)
\(758\) 26624.8 1.27580
\(759\) 56277.3 2.69135
\(760\) 0 0
\(761\) −23196.2 −1.10494 −0.552472 0.833531i \(-0.686315\pi\)
−0.552472 + 0.833531i \(0.686315\pi\)
\(762\) −1548.27 −0.0736061
\(763\) 0 0
\(764\) −41651.5 −1.97238
\(765\) 0 0
\(766\) −5151.26 −0.242980
\(767\) 26265.1 1.23648
\(768\) −906.566 −0.0425949
\(769\) −36309.1 −1.70265 −0.851327 0.524636i \(-0.824202\pi\)
−0.851327 + 0.524636i \(0.824202\pi\)
\(770\) 0 0
\(771\) −31611.2 −1.47659
\(772\) 24156.7 1.12619
\(773\) −28040.3 −1.30471 −0.652355 0.757914i \(-0.726219\pi\)
−0.652355 + 0.757914i \(0.726219\pi\)
\(774\) −10936.2 −0.507874
\(775\) 0 0
\(776\) −5543.09 −0.256425
\(777\) 0 0
\(778\) 24937.7 1.14917
\(779\) −20714.3 −0.952717
\(780\) 0 0
\(781\) 44379.7 2.03333
\(782\) −65759.1 −3.00708
\(783\) −7278.31 −0.332191
\(784\) 0 0
\(785\) 0 0
\(786\) −52163.0 −2.36716
\(787\) −24756.0 −1.12129 −0.560647 0.828055i \(-0.689447\pi\)
−0.560647 + 0.828055i \(0.689447\pi\)
\(788\) −43261.2 −1.95573
\(789\) 39433.9 1.77932
\(790\) 0 0
\(791\) 0 0
\(792\) −10938.6 −0.490764
\(793\) −30613.5 −1.37089
\(794\) 31566.5 1.41090
\(795\) 0 0
\(796\) −40492.1 −1.80302
\(797\) −13483.6 −0.599264 −0.299632 0.954055i \(-0.596864\pi\)
−0.299632 + 0.954055i \(0.596864\pi\)
\(798\) 0 0
\(799\) −13283.3 −0.588148
\(800\) 0 0
\(801\) −13905.5 −0.613393
\(802\) 52274.4 2.30159
\(803\) 34853.8 1.53171
\(804\) 38490.7 1.68839
\(805\) 0 0
\(806\) −24726.0 −1.08056
\(807\) −300.010 −0.0130866
\(808\) −4396.33 −0.191414
\(809\) 11458.7 0.497980 0.248990 0.968506i \(-0.419901\pi\)
0.248990 + 0.968506i \(0.419901\pi\)
\(810\) 0 0
\(811\) −15792.8 −0.683799 −0.341900 0.939737i \(-0.611070\pi\)
−0.341900 + 0.939737i \(0.611070\pi\)
\(812\) 0 0
\(813\) −31347.6 −1.35229
\(814\) 89947.5 3.87304
\(815\) 0 0
\(816\) −24307.6 −1.04281
\(817\) 14177.2 0.607096
\(818\) −16558.2 −0.707755
\(819\) 0 0
\(820\) 0 0
\(821\) 20959.5 0.890977 0.445488 0.895288i \(-0.353030\pi\)
0.445488 + 0.895288i \(0.353030\pi\)
\(822\) 49589.5 2.10417
\(823\) −20675.3 −0.875693 −0.437846 0.899050i \(-0.644259\pi\)
−0.437846 + 0.899050i \(0.644259\pi\)
\(824\) −15115.9 −0.639062
\(825\) 0 0
\(826\) 0 0
\(827\) −22034.0 −0.926480 −0.463240 0.886233i \(-0.653313\pi\)
−0.463240 + 0.886233i \(0.653313\pi\)
\(828\) −23788.5 −0.998438
\(829\) −38175.7 −1.59939 −0.799696 0.600405i \(-0.795006\pi\)
−0.799696 + 0.600405i \(0.795006\pi\)
\(830\) 0 0
\(831\) 16749.5 0.699200
\(832\) −39951.0 −1.66472
\(833\) 0 0
\(834\) 8005.32 0.332376
\(835\) 0 0
\(836\) 56169.0 2.32374
\(837\) 8347.38 0.344716
\(838\) 69676.9 2.87225
\(839\) −35043.1 −1.44198 −0.720991 0.692944i \(-0.756313\pi\)
−0.720991 + 0.692944i \(0.756313\pi\)
\(840\) 0 0
\(841\) −14922.4 −0.611851
\(842\) 12982.3 0.531355
\(843\) 19932.8 0.814378
\(844\) 20464.9 0.834633
\(845\) 0 0
\(846\) −8397.42 −0.341264
\(847\) 0 0
\(848\) 15303.8 0.619734
\(849\) −24343.7 −0.984068
\(850\) 0 0
\(851\) 49383.5 1.98924
\(852\) −51375.4 −2.06583
\(853\) −39514.9 −1.58612 −0.793062 0.609140i \(-0.791515\pi\)
−0.793062 + 0.609140i \(0.791515\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 13543.4 0.540777
\(857\) 43288.3 1.72544 0.862719 0.505683i \(-0.168759\pi\)
0.862719 + 0.505683i \(0.168759\pi\)
\(858\) 87118.3 3.46640
\(859\) 34716.8 1.37896 0.689478 0.724307i \(-0.257840\pi\)
0.689478 + 0.724307i \(0.257840\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 2565.68 0.101378
\(863\) −11893.4 −0.469124 −0.234562 0.972101i \(-0.575366\pi\)
−0.234562 + 0.972101i \(0.575366\pi\)
\(864\) 18342.7 0.722259
\(865\) 0 0
\(866\) 68961.8 2.70602
\(867\) −41555.5 −1.62780
\(868\) 0 0
\(869\) −24893.7 −0.971760
\(870\) 0 0
\(871\) −28258.9 −1.09933
\(872\) −19068.6 −0.740532
\(873\) 7367.53 0.285628
\(874\) 53891.2 2.08569
\(875\) 0 0
\(876\) −40347.8 −1.55620
\(877\) −21641.8 −0.833286 −0.416643 0.909070i \(-0.636793\pi\)
−0.416643 + 0.909070i \(0.636793\pi\)
\(878\) −47602.7 −1.82974
\(879\) 59414.0 2.27985
\(880\) 0 0
\(881\) 20072.1 0.767591 0.383795 0.923418i \(-0.374617\pi\)
0.383795 + 0.923418i \(0.374617\pi\)
\(882\) 0 0
\(883\) −13244.6 −0.504774 −0.252387 0.967626i \(-0.581216\pi\)
−0.252387 + 0.967626i \(0.581216\pi\)
\(884\) −58251.1 −2.21628
\(885\) 0 0
\(886\) −5227.45 −0.198216
\(887\) −17615.9 −0.666837 −0.333419 0.942779i \(-0.608202\pi\)
−0.333419 + 0.942779i \(0.608202\pi\)
\(888\) −26287.3 −0.993406
\(889\) 0 0
\(890\) 0 0
\(891\) −54688.8 −2.05628
\(892\) 15519.9 0.582560
\(893\) 10886.0 0.407936
\(894\) 18436.4 0.689715
\(895\) 0 0
\(896\) 0 0
\(897\) 47830.2 1.78038
\(898\) −19497.4 −0.724541
\(899\) −10857.0 −0.402784
\(900\) 0 0
\(901\) 46334.8 1.71325
\(902\) 62033.1 2.28988
\(903\) 0 0
\(904\) −17446.9 −0.641897
\(905\) 0 0
\(906\) −43727.3 −1.60347
\(907\) −7469.99 −0.273470 −0.136735 0.990608i \(-0.543661\pi\)
−0.136735 + 0.990608i \(0.543661\pi\)
\(908\) −23360.8 −0.853805
\(909\) 5843.32 0.213213
\(910\) 0 0
\(911\) −11906.6 −0.433023 −0.216511 0.976280i \(-0.569468\pi\)
−0.216511 + 0.976280i \(0.569468\pi\)
\(912\) 19920.7 0.723289
\(913\) 57986.8 2.10195
\(914\) 22750.1 0.823311
\(915\) 0 0
\(916\) 38522.7 1.38955
\(917\) 0 0
\(918\) 34366.0 1.23556
\(919\) 52532.1 1.88561 0.942804 0.333348i \(-0.108179\pi\)
0.942804 + 0.333348i \(0.108179\pi\)
\(920\) 0 0
\(921\) −55412.0 −1.98251
\(922\) −12337.7 −0.440694
\(923\) 37718.5 1.34509
\(924\) 0 0
\(925\) 0 0
\(926\) −15477.7 −0.549275
\(927\) 20091.1 0.711843
\(928\) −23857.5 −0.843924
\(929\) 35727.3 1.26176 0.630880 0.775880i \(-0.282694\pi\)
0.630880 + 0.775880i \(0.282694\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 18438.3 0.648034
\(933\) 1169.69 0.0410439
\(934\) −43025.4 −1.50732
\(935\) 0 0
\(936\) −9296.73 −0.324651
\(937\) 26877.8 0.937096 0.468548 0.883438i \(-0.344777\pi\)
0.468548 + 0.883438i \(0.344777\pi\)
\(938\) 0 0
\(939\) −30143.7 −1.04761
\(940\) 0 0
\(941\) 27316.9 0.946341 0.473170 0.880971i \(-0.343110\pi\)
0.473170 + 0.880971i \(0.343110\pi\)
\(942\) −58081.6 −2.00892
\(943\) 34057.8 1.17611
\(944\) −17985.7 −0.620112
\(945\) 0 0
\(946\) −42456.4 −1.45917
\(947\) 23707.0 0.813489 0.406744 0.913542i \(-0.366664\pi\)
0.406744 + 0.913542i \(0.366664\pi\)
\(948\) 28817.7 0.987294
\(949\) 29622.3 1.01326
\(950\) 0 0
\(951\) 27726.9 0.945432
\(952\) 0 0
\(953\) −7942.04 −0.269956 −0.134978 0.990849i \(-0.543096\pi\)
−0.134978 + 0.990849i \(0.543096\pi\)
\(954\) 29291.8 0.994086
\(955\) 0 0
\(956\) −59868.6 −2.02541
\(957\) 38253.2 1.29211
\(958\) −30296.4 −1.02175
\(959\) 0 0
\(960\) 0 0
\(961\) −17339.2 −0.582029
\(962\) 76446.6 2.56210
\(963\) −18001.1 −0.602364
\(964\) 25414.6 0.849118
\(965\) 0 0
\(966\) 0 0
\(967\) −29259.7 −0.973039 −0.486519 0.873670i \(-0.661734\pi\)
−0.486519 + 0.873670i \(0.661734\pi\)
\(968\) −26914.5 −0.893663
\(969\) 60313.2 1.99953
\(970\) 0 0
\(971\) −21397.3 −0.707179 −0.353590 0.935401i \(-0.615039\pi\)
−0.353590 + 0.935401i \(0.615039\pi\)
\(972\) 41694.6 1.37588
\(973\) 0 0
\(974\) 20639.5 0.678984
\(975\) 0 0
\(976\) 20963.3 0.687521
\(977\) 4992.24 0.163476 0.0817380 0.996654i \(-0.473953\pi\)
0.0817380 + 0.996654i \(0.473953\pi\)
\(978\) −11185.9 −0.365732
\(979\) −53983.8 −1.76234
\(980\) 0 0
\(981\) 25344.7 0.824868
\(982\) −20067.9 −0.652129
\(983\) −22123.4 −0.717830 −0.358915 0.933370i \(-0.616853\pi\)
−0.358915 + 0.933370i \(0.616853\pi\)
\(984\) −18129.3 −0.587338
\(985\) 0 0
\(986\) −44698.2 −1.44369
\(987\) 0 0
\(988\) 47738.2 1.53720
\(989\) −23309.7 −0.749449
\(990\) 0 0
\(991\) −49240.9 −1.57839 −0.789197 0.614140i \(-0.789503\pi\)
−0.789197 + 0.614140i \(0.789503\pi\)
\(992\) 27361.8 0.875744
\(993\) −71895.5 −2.29762
\(994\) 0 0
\(995\) 0 0
\(996\) −67127.4 −2.13555
\(997\) −13190.2 −0.418994 −0.209497 0.977809i \(-0.567183\pi\)
−0.209497 + 0.977809i \(0.567183\pi\)
\(998\) −66552.6 −2.11091
\(999\) −25808.1 −0.817348
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.4.a.br.1.3 12
5.4 even 2 1225.4.a.bt.1.10 yes 12
7.6 odd 2 inner 1225.4.a.br.1.4 yes 12
35.34 odd 2 1225.4.a.bt.1.9 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1225.4.a.br.1.3 12 1.1 even 1 trivial
1225.4.a.br.1.4 yes 12 7.6 odd 2 inner
1225.4.a.bt.1.9 yes 12 35.34 odd 2
1225.4.a.bt.1.10 yes 12 5.4 even 2