Properties

Label 1225.4.a.f
Level $1225$
Weight $4$
Character orbit 1225.a
Self dual yes
Analytic conductor $72.277$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 245)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - 6 q^{3} - 7 q^{4} + 6 q^{6} + 15 q^{8} + 9 q^{9} - 44 q^{11} + 42 q^{12} - 6 q^{13} + 41 q^{16} + 24 q^{17} - 9 q^{18} - 114 q^{19} + 44 q^{22} + 52 q^{23} - 90 q^{24} + 6 q^{26} + 108 q^{27}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −6.00000 −7.00000 0 6.00000 0 15.0000 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1225.4.a.f 1
5.b even 2 1 245.4.a.c yes 1
7.b odd 2 1 1225.4.a.g 1
15.d odd 2 1 2205.4.a.n 1
35.c odd 2 1 245.4.a.b 1
35.i odd 6 2 245.4.e.d 2
35.j even 6 2 245.4.e.c 2
105.g even 2 1 2205.4.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
245.4.a.b 1 35.c odd 2 1
245.4.a.c yes 1 5.b even 2 1
245.4.e.c 2 35.j even 6 2
245.4.e.d 2 35.i odd 6 2
1225.4.a.f 1 1.a even 1 1 trivial
1225.4.a.g 1 7.b odd 2 1
2205.4.a.k 1 105.g even 2 1
2205.4.a.n 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1225))\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{3} + 6 \) Copy content Toggle raw display
\( T_{19} + 114 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 6 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 44 \) Copy content Toggle raw display
$13$ \( T + 6 \) Copy content Toggle raw display
$17$ \( T - 24 \) Copy content Toggle raw display
$19$ \( T + 114 \) Copy content Toggle raw display
$23$ \( T - 52 \) Copy content Toggle raw display
$29$ \( T - 146 \) Copy content Toggle raw display
$31$ \( T + 276 \) Copy content Toggle raw display
$37$ \( T - 210 \) Copy content Toggle raw display
$41$ \( T - 444 \) Copy content Toggle raw display
$43$ \( T + 492 \) Copy content Toggle raw display
$47$ \( T - 612 \) Copy content Toggle raw display
$53$ \( T + 50 \) Copy content Toggle raw display
$59$ \( T - 294 \) Copy content Toggle raw display
$61$ \( T - 450 \) Copy content Toggle raw display
$67$ \( T - 668 \) Copy content Toggle raw display
$71$ \( T + 308 \) Copy content Toggle raw display
$73$ \( T + 12 \) Copy content Toggle raw display
$79$ \( T - 596 \) Copy content Toggle raw display
$83$ \( T - 966 \) Copy content Toggle raw display
$89$ \( T + 408 \) Copy content Toggle raw display
$97$ \( T - 1200 \) Copy content Toggle raw display
show more
show less