Properties

Label 1225.4.a.q
Level $1225$
Weight $4$
Character orbit 1225.a
Self dual yes
Analytic conductor $72.277$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{11}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 245)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{11}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{2} + 5 q^{3} + ( - 2 \beta + 4) q^{4} + (5 \beta - 5) q^{6} + ( - 2 \beta - 18) q^{8} - 2 q^{9} + (4 \beta + 33) q^{11} + ( - 10 \beta + 20) q^{12} + ( - 20 \beta + 5) q^{13} - 36 q^{16}+ \cdots + ( - 8 \beta - 66) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 10 q^{3} + 8 q^{4} - 10 q^{6} - 36 q^{8} - 4 q^{9} + 66 q^{11} + 40 q^{12} + 10 q^{13} - 72 q^{16} + 70 q^{17} + 4 q^{18} - 140 q^{19} + 22 q^{22} + 16 q^{23} - 180 q^{24} - 450 q^{26} - 290 q^{27}+ \cdots - 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.31662
3.31662
−4.31662 5.00000 10.6332 0 −21.5831 0 −11.3668 −2.00000 0
1.2 2.31662 5.00000 −2.63325 0 11.5831 0 −24.6332 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1225.4.a.q 2
5.b even 2 1 245.4.a.i 2
7.b odd 2 1 1225.4.a.p 2
15.d odd 2 1 2205.4.a.x 2
35.c odd 2 1 245.4.a.j yes 2
35.i odd 6 2 245.4.e.j 4
35.j even 6 2 245.4.e.k 4
105.g even 2 1 2205.4.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
245.4.a.i 2 5.b even 2 1
245.4.a.j yes 2 35.c odd 2 1
245.4.e.j 4 35.i odd 6 2
245.4.e.k 4 35.j even 6 2
1225.4.a.p 2 7.b odd 2 1
1225.4.a.q 2 1.a even 1 1 trivial
2205.4.a.w 2 105.g even 2 1
2205.4.a.x 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1225))\):

\( T_{2}^{2} + 2T_{2} - 10 \) Copy content Toggle raw display
\( T_{3} - 5 \) Copy content Toggle raw display
\( T_{19}^{2} + 140T_{19} + 500 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 10 \) Copy content Toggle raw display
$3$ \( (T - 5)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 66T + 913 \) Copy content Toggle raw display
$13$ \( T^{2} - 10T - 4375 \) Copy content Toggle raw display
$17$ \( T^{2} - 70T - 3175 \) Copy content Toggle raw display
$19$ \( T^{2} + 140T + 500 \) Copy content Toggle raw display
$23$ \( T^{2} - 16T - 8560 \) Copy content Toggle raw display
$29$ \( T^{2} + 258T - 8703 \) Copy content Toggle raw display
$31$ \( T^{2} - 20T - 39500 \) Copy content Toggle raw display
$37$ \( T^{2} + 328T + 5600 \) Copy content Toggle raw display
$41$ \( T^{2} + 300T - 87500 \) Copy content Toggle raw display
$43$ \( T^{2} - 116T + 1780 \) Copy content Toggle raw display
$47$ \( T^{2} + 30T - 17375 \) Copy content Toggle raw display
$53$ \( T^{2} + 540T - 85500 \) Copy content Toggle raw display
$59$ \( T^{2} + 380T + 18500 \) Copy content Toggle raw display
$61$ \( T^{2} + 1080 T + 252000 \) Copy content Toggle raw display
$67$ \( T^{2} + 468T - 46620 \) Copy content Toggle raw display
$71$ \( T^{2} + 1056 T + 233728 \) Copy content Toggle raw display
$73$ \( T^{2} + 860T - 255100 \) Copy content Toggle raw display
$79$ \( T^{2} - 158 T - 1325903 \) Copy content Toggle raw display
$83$ \( T^{2} - 40T - 439600 \) Copy content Toggle raw display
$89$ \( T^{2} - 240 T - 1574000 \) Copy content Toggle raw display
$97$ \( T^{2} - 1630 T + 307825 \) Copy content Toggle raw display
show more
show less