Properties

Label 1225.4.a.s.1.2
Level $1225$
Weight $4$
Character 1225.1
Self dual yes
Analytic conductor $72.277$
Analytic rank $0$
Dimension $2$
CM discriminant -35
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 245)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.94427 q^{3} -8.00000 q^{4} +53.0000 q^{9} +72.0000 q^{11} -71.5542 q^{12} +40.2492 q^{13} +64.0000 q^{16} -102.859 q^{17} +232.551 q^{27} +54.0000 q^{29} +643.988 q^{33} -424.000 q^{36} +360.000 q^{39} -576.000 q^{44} +178.885 q^{47} +572.433 q^{48} -920.000 q^{51} -321.994 q^{52} -512.000 q^{64} +822.873 q^{68} +828.000 q^{71} -523.240 q^{73} +236.000 q^{79} +649.000 q^{81} +1511.58 q^{83} +482.991 q^{87} +1650.22 q^{97} +3816.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{4} + 106 q^{9} + 144 q^{11} + 128 q^{16} + 108 q^{29} - 848 q^{36} + 720 q^{39} - 1152 q^{44} - 1840 q^{51} - 1024 q^{64} + 1656 q^{71} + 472 q^{79} + 1298 q^{81} + 7632 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 8.94427 1.72133 0.860663 0.509175i \(-0.170049\pi\)
0.860663 + 0.509175i \(0.170049\pi\)
\(4\) −8.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 53.0000 1.96296
\(10\) 0 0
\(11\) 72.0000 1.97353 0.986764 0.162160i \(-0.0518462\pi\)
0.986764 + 0.162160i \(0.0518462\pi\)
\(12\) −71.5542 −1.72133
\(13\) 40.2492 0.858702 0.429351 0.903138i \(-0.358742\pi\)
0.429351 + 0.903138i \(0.358742\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 64.0000 1.00000
\(17\) −102.859 −1.46747 −0.733735 0.679435i \(-0.762225\pi\)
−0.733735 + 0.679435i \(0.762225\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 232.551 1.65757
\(28\) 0 0
\(29\) 54.0000 0.345778 0.172889 0.984941i \(-0.444690\pi\)
0.172889 + 0.984941i \(0.444690\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 643.988 3.39709
\(34\) 0 0
\(35\) 0 0
\(36\) −424.000 −1.96296
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 360.000 1.47811
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −576.000 −1.97353
\(45\) 0 0
\(46\) 0 0
\(47\) 178.885 0.555173 0.277586 0.960701i \(-0.410466\pi\)
0.277586 + 0.960701i \(0.410466\pi\)
\(48\) 572.433 1.72133
\(49\) 0 0
\(50\) 0 0
\(51\) −920.000 −2.52600
\(52\) −321.994 −0.858702
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −512.000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 822.873 1.46747
\(69\) 0 0
\(70\) 0 0
\(71\) 828.000 1.38402 0.692011 0.721887i \(-0.256725\pi\)
0.692011 + 0.721887i \(0.256725\pi\)
\(72\) 0 0
\(73\) −523.240 −0.838912 −0.419456 0.907776i \(-0.637779\pi\)
−0.419456 + 0.907776i \(0.637779\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 236.000 0.336102 0.168051 0.985778i \(-0.446253\pi\)
0.168051 + 0.985778i \(0.446253\pi\)
\(80\) 0 0
\(81\) 649.000 0.890261
\(82\) 0 0
\(83\) 1511.58 1.99901 0.999504 0.0314901i \(-0.0100253\pi\)
0.999504 + 0.0314901i \(0.0100253\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 482.991 0.595196
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1650.22 1.72736 0.863682 0.504037i \(-0.168153\pi\)
0.863682 + 0.504037i \(0.168153\pi\)
\(98\) 0 0
\(99\) 3816.00 3.87396
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −1931.96 −1.84817 −0.924087 0.382182i \(-0.875173\pi\)
−0.924087 + 0.382182i \(0.875173\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −1860.41 −1.65757
\(109\) 2266.00 1.99122 0.995612 0.0935765i \(-0.0298300\pi\)
0.995612 + 0.0935765i \(0.0298300\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −432.000 −0.345778
\(117\) 2133.21 1.68560
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3853.00 2.89482
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −5151.90 −3.39709
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 1600.00 0.955633
\(142\) 0 0
\(143\) 2897.94 1.69467
\(144\) 3392.00 1.96296
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2466.00 −1.35586 −0.677928 0.735128i \(-0.737122\pi\)
−0.677928 + 0.735128i \(0.737122\pi\)
\(150\) 0 0
\(151\) 2788.00 1.50254 0.751272 0.659992i \(-0.229441\pi\)
0.751272 + 0.659992i \(0.229441\pi\)
\(152\) 0 0
\(153\) −5451.53 −2.88059
\(154\) 0 0
\(155\) 0 0
\(156\) −2880.00 −1.47811
\(157\) 3904.17 1.98463 0.992315 0.123734i \(-0.0394868\pi\)
0.992315 + 0.123734i \(0.0394868\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2558.06 1.18532 0.592661 0.805452i \(-0.298077\pi\)
0.592661 + 0.805452i \(0.298077\pi\)
\(168\) 0 0
\(169\) −577.000 −0.262631
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4405.05 −1.93590 −0.967948 0.251150i \(-0.919191\pi\)
−0.967948 + 0.251150i \(0.919191\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4608.00 1.97353
\(177\) 0 0
\(178\) 0 0
\(179\) 936.000 0.390838 0.195419 0.980720i \(-0.437393\pi\)
0.195419 + 0.980720i \(0.437393\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −7405.86 −2.89610
\(188\) −1431.08 −0.555173
\(189\) 0 0
\(190\) 0 0
\(191\) −4212.00 −1.59565 −0.797826 0.602887i \(-0.794017\pi\)
−0.797826 + 0.602887i \(0.794017\pi\)
\(192\) −4579.47 −1.72133
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 7360.00 2.52600
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 2575.95 0.858702
\(209\) 0 0
\(210\) 0 0
\(211\) −2392.00 −0.780436 −0.390218 0.920722i \(-0.627600\pi\)
−0.390218 + 0.920722i \(0.627600\pi\)
\(212\) 0 0
\(213\) 7405.86 2.38235
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −4680.00 −1.44404
\(220\) 0 0
\(221\) −4140.00 −1.26012
\(222\) 0 0
\(223\) −4185.92 −1.25700 −0.628498 0.777812i \(-0.716330\pi\)
−0.628498 + 0.777812i \(0.716330\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4767.30 −1.39391 −0.696953 0.717117i \(-0.745461\pi\)
−0.696953 + 0.717117i \(0.745461\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2110.85 0.578541
\(238\) 0 0
\(239\) 5724.00 1.54918 0.774592 0.632462i \(-0.217955\pi\)
0.774592 + 0.632462i \(0.217955\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) −474.046 −0.125144
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 13520.0 3.44094
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 4096.00 1.00000
\(257\) −3358.57 −0.815183 −0.407592 0.913164i \(-0.633631\pi\)
−0.407592 + 0.913164i \(0.633631\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2862.00 0.678748
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) −6582.98 −1.46747
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8118.00 −1.72341 −0.861707 0.507406i \(-0.830604\pi\)
−0.861707 + 0.507406i \(0.830604\pi\)
\(282\) 0 0
\(283\) −9257.32 −1.94449 −0.972245 0.233965i \(-0.924830\pi\)
−0.972245 + 0.233965i \(0.924830\pi\)
\(284\) −6624.00 −1.38402
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5667.00 1.15347
\(290\) 0 0
\(291\) 14760.0 2.97336
\(292\) 4185.92 0.838912
\(293\) 6739.51 1.34378 0.671888 0.740653i \(-0.265484\pi\)
0.671888 + 0.740653i \(0.265484\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 16743.7 3.27127
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5876.39 1.09245 0.546227 0.837637i \(-0.316064\pi\)
0.546227 + 0.837637i \(0.316064\pi\)
\(308\) 0 0
\(309\) −17280.0 −3.18131
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 10746.5 1.94067 0.970336 0.241759i \(-0.0777244\pi\)
0.970336 + 0.241759i \(0.0777244\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −1888.00 −0.336102
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 3888.00 0.682402
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −5192.00 −0.890261
\(325\) 0 0
\(326\) 0 0
\(327\) 20267.7 3.42755
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −7432.00 −1.23414 −0.617069 0.786909i \(-0.711680\pi\)
−0.617069 + 0.786909i \(0.711680\pi\)
\(332\) −12092.7 −1.99901
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) −3863.93 −0.595196
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 9360.00 1.42336
\(352\) 0 0
\(353\) −6220.74 −0.937951 −0.468975 0.883211i \(-0.655377\pi\)
−0.468975 + 0.883211i \(0.655377\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7884.00 −1.15906 −0.579529 0.814952i \(-0.696763\pi\)
−0.579529 + 0.814952i \(0.696763\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 34462.3 4.98292
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 804.984 0.114495 0.0572477 0.998360i \(-0.481768\pi\)
0.0572477 + 0.998360i \(0.481768\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2173.46 0.296920
\(378\) 0 0
\(379\) 14096.0 1.91046 0.955228 0.295870i \(-0.0956097\pi\)
0.955228 + 0.295870i \(0.0956097\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4686.80 −0.625285 −0.312643 0.949871i \(-0.601214\pi\)
−0.312643 + 0.949871i \(0.601214\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −13201.7 −1.72736
\(389\) −13806.0 −1.79947 −0.899733 0.436442i \(-0.856239\pi\)
−0.899733 + 0.436442i \(0.856239\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −30528.0 −3.87396
\(397\) −15817.9 −1.99970 −0.999849 0.0173927i \(-0.994463\pi\)
−0.999849 + 0.0173927i \(0.994463\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12798.0 1.59377 0.796885 0.604131i \(-0.206480\pi\)
0.796885 + 0.604131i \(0.206480\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 15455.7 1.84817
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 3922.00 0.454030 0.227015 0.973891i \(-0.427103\pi\)
0.227015 + 0.973891i \(0.427103\pi\)
\(422\) 0 0
\(423\) 9480.93 1.08978
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 25920.0 2.91708
\(430\) 0 0
\(431\) 3852.00 0.430497 0.215249 0.976559i \(-0.430944\pi\)
0.215249 + 0.976559i \(0.430944\pi\)
\(432\) 14883.3 1.65757
\(433\) −12920.0 −1.43394 −0.716970 0.697105i \(-0.754471\pi\)
−0.716970 + 0.697105i \(0.754471\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −18128.0 −1.99122
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −22056.6 −2.33387
\(448\) 0 0
\(449\) 11394.0 1.19759 0.598793 0.800904i \(-0.295647\pi\)
0.598793 + 0.800904i \(0.295647\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 24936.6 2.58637
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) −23920.0 −2.43244
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 3456.00 0.345778
\(465\) 0 0
\(466\) 0 0
\(467\) −17164.1 −1.70077 −0.850383 0.526164i \(-0.823630\pi\)
−0.850383 + 0.526164i \(0.823630\pi\)
\(468\) −17065.7 −1.68560
\(469\) 0 0
\(470\) 0 0
\(471\) 34920.0 3.41620
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −30824.0 −2.89482
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12672.0 1.16472 0.582362 0.812930i \(-0.302129\pi\)
0.582362 + 0.812930i \(0.302129\pi\)
\(492\) 0 0
\(493\) −5554.39 −0.507418
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7544.00 0.676785 0.338393 0.941005i \(-0.390117\pi\)
0.338393 + 0.941005i \(0.390117\pi\)
\(500\) 0 0
\(501\) 22880.0 2.04033
\(502\) 0 0
\(503\) −2432.84 −0.215656 −0.107828 0.994170i \(-0.534390\pi\)
−0.107828 + 0.994170i \(0.534390\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −5160.84 −0.452073
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 12879.8 1.09565
\(518\) 0 0
\(519\) −39400.0 −3.33231
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −22781.1 −1.90468 −0.952339 0.305043i \(-0.901329\pi\)
−0.952339 + 0.305043i \(0.901329\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 41215.2 3.39709
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 8371.84 0.672759
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 9718.00 0.772291 0.386146 0.922438i \(-0.373806\pi\)
0.386146 + 0.922438i \(0.373806\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −66240.0 −4.98512
\(562\) 0 0
\(563\) 13908.3 1.04115 0.520574 0.853816i \(-0.325718\pi\)
0.520574 + 0.853816i \(0.325718\pi\)
\(564\) −12800.0 −0.955633
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10026.0 −0.738685 −0.369343 0.929293i \(-0.620417\pi\)
−0.369343 + 0.929293i \(0.620417\pi\)
\(570\) 0 0
\(571\) −22048.0 −1.61590 −0.807951 0.589250i \(-0.799423\pi\)
−0.807951 + 0.589250i \(0.799423\pi\)
\(572\) −23183.6 −1.69467
\(573\) −37673.3 −2.74664
\(574\) 0 0
\(575\) 0 0
\(576\) −27136.0 −1.96296
\(577\) −20325.9 −1.46651 −0.733255 0.679954i \(-0.762000\pi\)
−0.733255 + 0.679954i \(0.762000\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15035.3 −1.05720 −0.528598 0.848872i \(-0.677282\pi\)
−0.528598 + 0.848872i \(0.677282\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1104.62 0.0764944 0.0382472 0.999268i \(-0.487823\pi\)
0.0382472 + 0.999268i \(0.487823\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 19728.0 1.35586
\(597\) 0 0
\(598\) 0 0
\(599\) 10764.0 0.734232 0.367116 0.930175i \(-0.380345\pi\)
0.367116 + 0.930175i \(0.380345\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −22304.0 −1.50254
\(605\) 0 0
\(606\) 0 0
\(607\) −28496.5 −1.90549 −0.952747 0.303764i \(-0.901757\pi\)
−0.952747 + 0.303764i \(0.901757\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7200.00 0.476728
\(612\) 43612.3 2.88059
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 23040.0 1.47811
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) −31233.4 −1.98463
\(629\) 0 0
\(630\) 0 0
\(631\) −14852.0 −0.937003 −0.468501 0.883463i \(-0.655206\pi\)
−0.468501 + 0.883463i \(0.655206\pi\)
\(632\) 0 0
\(633\) −21394.7 −1.34339
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 43884.0 2.71678
\(640\) 0 0
\(641\) −28782.0 −1.77351 −0.886756 0.462239i \(-0.847046\pi\)
−0.886756 + 0.462239i \(0.847046\pi\)
\(642\) 0 0
\(643\) −12638.3 −0.775123 −0.387562 0.921844i \(-0.626683\pi\)
−0.387562 + 0.921844i \(0.626683\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −28997.3 −1.76198 −0.880991 0.473133i \(-0.843123\pi\)
−0.880991 + 0.473133i \(0.843123\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −27731.7 −1.64675
\(658\) 0 0
\(659\) −31824.0 −1.88116 −0.940582 0.339567i \(-0.889720\pi\)
−0.940582 + 0.339567i \(0.889720\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) −37029.3 −2.16908
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −20464.5 −1.18532
\(669\) −37440.0 −2.16370
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 4616.00 0.262631
\(677\) 31577.8 1.79266 0.896331 0.443386i \(-0.146223\pi\)
0.896331 + 0.443386i \(0.146223\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −42640.0 −2.39937
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 35240.4 1.93590
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33462.0 1.80291 0.901457 0.432869i \(-0.142499\pi\)
0.901457 + 0.432869i \(0.142499\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −36864.0 −1.97353
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2126.00 0.112614 0.0563072 0.998413i \(-0.482067\pi\)
0.0563072 + 0.998413i \(0.482067\pi\)
\(710\) 0 0
\(711\) 12508.0 0.659756
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −7488.00 −0.390838
\(717\) 51197.0 2.66665
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −37512.3 −1.91369 −0.956845 0.290597i \(-0.906146\pi\)
−0.956845 + 0.290597i \(0.906146\pi\)
\(728\) 0 0
\(729\) −21763.0 −1.10567
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 36103.6 1.81926 0.909628 0.415423i \(-0.136366\pi\)
0.909628 + 0.415423i \(0.136366\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 23056.0 1.14767 0.573835 0.818971i \(-0.305455\pi\)
0.573835 + 0.818971i \(0.305455\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 80113.8 3.92398
\(748\) 59246.9 2.89610
\(749\) 0 0
\(750\) 0 0
\(751\) 27092.0 1.31638 0.658190 0.752852i \(-0.271322\pi\)
0.658190 + 0.752852i \(0.271322\pi\)
\(752\) 11448.7 0.555173
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 33696.0 1.59565
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 36635.7 1.72133
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −30040.0 −1.40320
\(772\) 0 0
\(773\) 5174.26 0.240757 0.120379 0.992728i \(-0.461589\pi\)
0.120379 + 0.992728i \(0.461589\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 59616.0 2.73141
\(782\) 0 0
\(783\) 12557.8 0.573152
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −41456.7 −1.87773 −0.938864 0.344289i \(-0.888120\pi\)
−0.938864 + 0.344289i \(0.888120\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 41031.8 1.82362 0.911808 0.410616i \(-0.134686\pi\)
0.911808 + 0.410616i \(0.134686\pi\)
\(798\) 0 0
\(799\) −18400.0 −0.814700
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −37673.3 −1.65562
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 35334.0 1.53557 0.767786 0.640707i \(-0.221359\pi\)
0.767786 + 0.640707i \(0.221359\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −58880.0 −2.52600
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 44802.0 1.90451 0.952254 0.305308i \(-0.0987594\pi\)
0.952254 + 0.305308i \(0.0987594\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −20607.6 −0.858702
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −21473.0 −0.880438
\(842\) 0 0
\(843\) −72609.6 −2.96656
\(844\) 19136.0 0.780436
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −82800.0 −3.34710
\(850\) 0 0
\(851\) 0 0
\(852\) −59246.9 −2.38235
\(853\) 37794.0 1.51705 0.758524 0.651645i \(-0.225921\pi\)
0.758524 + 0.651645i \(0.225921\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −7428.22 −0.296083 −0.148041 0.988981i \(-0.547297\pi\)
−0.148041 + 0.988981i \(0.547297\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 50687.2 1.98550
\(868\) 0 0
\(869\) 16992.0 0.663307
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 87461.6 3.39075
\(874\) 0 0
\(875\) 0 0
\(876\) 37440.0 1.44404
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 60280.0 2.31308
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 33120.0 1.26012
\(885\) 0 0
\(886\) 0 0
\(887\) −49408.2 −1.87031 −0.935154 0.354241i \(-0.884739\pi\)
−0.935154 + 0.354241i \(0.884739\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 46728.0 1.75695
\(892\) 33487.4 1.25700
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 38138.4 1.39391
\(909\) 0 0
\(910\) 0 0
\(911\) 31068.0 1.12989 0.564944 0.825129i \(-0.308898\pi\)
0.564944 + 0.825129i \(0.308898\pi\)
\(912\) 0 0
\(913\) 108834. 3.94510
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 55564.0 1.99444 0.997218 0.0745363i \(-0.0237477\pi\)
0.997218 + 0.0745363i \(0.0237477\pi\)
\(920\) 0 0
\(921\) 52560.0 1.88047
\(922\) 0 0
\(923\) 33326.4 1.18846
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −102394. −3.62790
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 18554.9 0.646918 0.323459 0.946242i \(-0.395154\pi\)
0.323459 + 0.946242i \(0.395154\pi\)
\(938\) 0 0
\(939\) 96120.0 3.34053
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) −16886.8 −0.578541
\(949\) −21060.0 −0.720376
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −45792.0 −1.54918
\(957\) 34775.3 1.17464
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29791.0 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 3792.37 0.125144
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 120098. 3.90870
\(982\) 0 0
\(983\) −61160.9 −1.98447 −0.992233 0.124390i \(-0.960302\pi\)
−0.992233 + 0.124390i \(0.960302\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 13988.0 0.448379 0.224189 0.974546i \(-0.428027\pi\)
0.224189 + 0.974546i \(0.428027\pi\)
\(992\) 0 0
\(993\) −66473.8 −2.12435
\(994\) 0 0
\(995\) 0 0
\(996\) −108160. −3.44094
\(997\) −39484.5 −1.25425 −0.627125 0.778919i \(-0.715768\pi\)
−0.627125 + 0.778919i \(0.715768\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.4.a.s.1.2 2
5.2 odd 4 245.4.b.a.99.1 2
5.3 odd 4 245.4.b.a.99.2 yes 2
5.4 even 2 inner 1225.4.a.s.1.1 2
7.6 odd 2 inner 1225.4.a.s.1.1 2
35.2 odd 12 245.4.j.a.214.2 4
35.3 even 12 245.4.j.a.79.1 4
35.12 even 12 245.4.j.a.214.1 4
35.13 even 4 245.4.b.a.99.1 2
35.17 even 12 245.4.j.a.79.2 4
35.18 odd 12 245.4.j.a.79.2 4
35.23 odd 12 245.4.j.a.214.1 4
35.27 even 4 245.4.b.a.99.2 yes 2
35.32 odd 12 245.4.j.a.79.1 4
35.33 even 12 245.4.j.a.214.2 4
35.34 odd 2 CM 1225.4.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.4.b.a.99.1 2 5.2 odd 4
245.4.b.a.99.1 2 35.13 even 4
245.4.b.a.99.2 yes 2 5.3 odd 4
245.4.b.a.99.2 yes 2 35.27 even 4
245.4.j.a.79.1 4 35.3 even 12
245.4.j.a.79.1 4 35.32 odd 12
245.4.j.a.79.2 4 35.17 even 12
245.4.j.a.79.2 4 35.18 odd 12
245.4.j.a.214.1 4 35.12 even 12
245.4.j.a.214.1 4 35.23 odd 12
245.4.j.a.214.2 4 35.2 odd 12
245.4.j.a.214.2 4 35.33 even 12
1225.4.a.s.1.1 2 5.4 even 2 inner
1225.4.a.s.1.1 2 7.6 odd 2 inner
1225.4.a.s.1.2 2 1.1 even 1 trivial
1225.4.a.s.1.2 2 35.34 odd 2 CM