Properties

Label 1232.2.j.b.111.17
Level $1232$
Weight $2$
Character 1232.111
Analytic conductor $9.838$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,2,Mod(111,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.111");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1232.j (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.83756952902\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 111.17
Character \(\chi\) \(=\) 1232.111
Dual form 1232.2.j.b.111.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.03324 q^{3} +2.56834i q^{5} +(0.330305 + 2.62505i) q^{7} -1.93241 q^{9} -1.00000i q^{11} +5.65534i q^{13} +2.65372i q^{15} -6.89874i q^{17} +1.66593 q^{19} +(0.341285 + 2.71232i) q^{21} +4.31770i q^{23} -1.59638 q^{25} -5.09638 q^{27} -6.82475 q^{29} -0.123697 q^{31} -1.03324i q^{33} +(-6.74203 + 0.848336i) q^{35} -4.80039 q^{37} +5.84334i q^{39} +1.10144i q^{41} +10.6896i q^{43} -4.96309i q^{45} -0.692255 q^{47} +(-6.78180 + 1.73413i) q^{49} -7.12808i q^{51} +6.59218 q^{53} +2.56834 q^{55} +1.72131 q^{57} +2.59067 q^{59} -13.1465i q^{61} +(-0.638284 - 5.07267i) q^{63} -14.5249 q^{65} +10.1610i q^{67} +4.46123i q^{69} -1.82448i q^{71} +0.300337i q^{73} -1.64945 q^{75} +(2.62505 - 0.330305i) q^{77} +10.8148i q^{79} +0.531427 q^{81} +11.8395 q^{83} +17.7183 q^{85} -7.05162 q^{87} -1.88568i q^{89} +(-14.8456 + 1.86799i) q^{91} -0.127809 q^{93} +4.27869i q^{95} -6.52449i q^{97} +1.93241i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 16 q^{9} + 20 q^{21} - 56 q^{29} + 40 q^{37} - 8 q^{49} + 16 q^{53} + 8 q^{57} - 96 q^{65} - 4 q^{77} + 40 q^{81} - 32 q^{85} + 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1232\mathbb{Z}\right)^\times\).

\(n\) \(309\) \(353\) \(463\) \(673\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.03324 0.596543 0.298272 0.954481i \(-0.403590\pi\)
0.298272 + 0.954481i \(0.403590\pi\)
\(4\) 0 0
\(5\) 2.56834i 1.14860i 0.818646 + 0.574299i \(0.194725\pi\)
−0.818646 + 0.574299i \(0.805275\pi\)
\(6\) 0 0
\(7\) 0.330305 + 2.62505i 0.124843 + 0.992176i
\(8\) 0 0
\(9\) −1.93241 −0.644136
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 5.65534i 1.56851i 0.620439 + 0.784255i \(0.286954\pi\)
−0.620439 + 0.784255i \(0.713046\pi\)
\(14\) 0 0
\(15\) 2.65372i 0.685188i
\(16\) 0 0
\(17\) 6.89874i 1.67319i −0.547822 0.836595i \(-0.684543\pi\)
0.547822 0.836595i \(-0.315457\pi\)
\(18\) 0 0
\(19\) 1.66593 0.382191 0.191096 0.981571i \(-0.438796\pi\)
0.191096 + 0.981571i \(0.438796\pi\)
\(20\) 0 0
\(21\) 0.341285 + 2.71232i 0.0744745 + 0.591876i
\(22\) 0 0
\(23\) 4.31770i 0.900302i 0.892952 + 0.450151i \(0.148630\pi\)
−0.892952 + 0.450151i \(0.851370\pi\)
\(24\) 0 0
\(25\) −1.59638 −0.319276
\(26\) 0 0
\(27\) −5.09638 −0.980798
\(28\) 0 0
\(29\) −6.82475 −1.26732 −0.633662 0.773610i \(-0.718449\pi\)
−0.633662 + 0.773610i \(0.718449\pi\)
\(30\) 0 0
\(31\) −0.123697 −0.0222166 −0.0111083 0.999938i \(-0.503536\pi\)
−0.0111083 + 0.999938i \(0.503536\pi\)
\(32\) 0 0
\(33\) 1.03324i 0.179865i
\(34\) 0 0
\(35\) −6.74203 + 0.848336i −1.13961 + 0.143395i
\(36\) 0 0
\(37\) −4.80039 −0.789180 −0.394590 0.918857i \(-0.629113\pi\)
−0.394590 + 0.918857i \(0.629113\pi\)
\(38\) 0 0
\(39\) 5.84334i 0.935684i
\(40\) 0 0
\(41\) 1.10144i 0.172017i 0.996294 + 0.0860084i \(0.0274112\pi\)
−0.996294 + 0.0860084i \(0.972589\pi\)
\(42\) 0 0
\(43\) 10.6896i 1.63014i 0.579360 + 0.815072i \(0.303302\pi\)
−0.579360 + 0.815072i \(0.696698\pi\)
\(44\) 0 0
\(45\) 4.96309i 0.739853i
\(46\) 0 0
\(47\) −0.692255 −0.100976 −0.0504879 0.998725i \(-0.516078\pi\)
−0.0504879 + 0.998725i \(0.516078\pi\)
\(48\) 0 0
\(49\) −6.78180 + 1.73413i −0.968828 + 0.247733i
\(50\) 0 0
\(51\) 7.12808i 0.998130i
\(52\) 0 0
\(53\) 6.59218 0.905505 0.452753 0.891636i \(-0.350442\pi\)
0.452753 + 0.891636i \(0.350442\pi\)
\(54\) 0 0
\(55\) 2.56834 0.346315
\(56\) 0 0
\(57\) 1.72131 0.227994
\(58\) 0 0
\(59\) 2.59067 0.337276 0.168638 0.985678i \(-0.446063\pi\)
0.168638 + 0.985678i \(0.446063\pi\)
\(60\) 0 0
\(61\) 13.1465i 1.68323i −0.540076 0.841616i \(-0.681605\pi\)
0.540076 0.841616i \(-0.318395\pi\)
\(62\) 0 0
\(63\) −0.638284 5.07267i −0.0804162 0.639097i
\(64\) 0 0
\(65\) −14.5249 −1.80159
\(66\) 0 0
\(67\) 10.1610i 1.24137i 0.784061 + 0.620684i \(0.213145\pi\)
−0.784061 + 0.620684i \(0.786855\pi\)
\(68\) 0 0
\(69\) 4.46123i 0.537069i
\(70\) 0 0
\(71\) 1.82448i 0.216526i −0.994122 0.108263i \(-0.965471\pi\)
0.994122 0.108263i \(-0.0345289\pi\)
\(72\) 0 0
\(73\) 0.300337i 0.0351518i 0.999846 + 0.0175759i \(0.00559488\pi\)
−0.999846 + 0.0175759i \(0.994405\pi\)
\(74\) 0 0
\(75\) −1.64945 −0.190462
\(76\) 0 0
\(77\) 2.62505 0.330305i 0.299152 0.0376417i
\(78\) 0 0
\(79\) 10.8148i 1.21676i 0.793648 + 0.608378i \(0.208179\pi\)
−0.793648 + 0.608378i \(0.791821\pi\)
\(80\) 0 0
\(81\) 0.531427 0.0590474
\(82\) 0 0
\(83\) 11.8395 1.29955 0.649777 0.760125i \(-0.274862\pi\)
0.649777 + 0.760125i \(0.274862\pi\)
\(84\) 0 0
\(85\) 17.7183 1.92182
\(86\) 0 0
\(87\) −7.05162 −0.756013
\(88\) 0 0
\(89\) 1.88568i 0.199882i −0.994993 0.0999409i \(-0.968135\pi\)
0.994993 0.0999409i \(-0.0318654\pi\)
\(90\) 0 0
\(91\) −14.8456 + 1.86799i −1.55624 + 0.195818i
\(92\) 0 0
\(93\) −0.127809 −0.0132532
\(94\) 0 0
\(95\) 4.27869i 0.438984i
\(96\) 0 0
\(97\) 6.52449i 0.662462i −0.943550 0.331231i \(-0.892536\pi\)
0.943550 0.331231i \(-0.107464\pi\)
\(98\) 0 0
\(99\) 1.93241i 0.194214i
\(100\) 0 0
\(101\) 2.45583i 0.244365i 0.992508 + 0.122182i \(0.0389892\pi\)
−0.992508 + 0.122182i \(0.961011\pi\)
\(102\) 0 0
\(103\) 7.80667 0.769214 0.384607 0.923080i \(-0.374337\pi\)
0.384607 + 0.923080i \(0.374337\pi\)
\(104\) 0 0
\(105\) −6.96616 + 0.876537i −0.679828 + 0.0855413i
\(106\) 0 0
\(107\) 7.56360i 0.731200i 0.930772 + 0.365600i \(0.119136\pi\)
−0.930772 + 0.365600i \(0.880864\pi\)
\(108\) 0 0
\(109\) 3.20689 0.307164 0.153582 0.988136i \(-0.450919\pi\)
0.153582 + 0.988136i \(0.450919\pi\)
\(110\) 0 0
\(111\) −4.95998 −0.470780
\(112\) 0 0
\(113\) −9.34645 −0.879240 −0.439620 0.898184i \(-0.644887\pi\)
−0.439620 + 0.898184i \(0.644887\pi\)
\(114\) 0 0
\(115\) −11.0893 −1.03408
\(116\) 0 0
\(117\) 10.9284i 1.01033i
\(118\) 0 0
\(119\) 18.1095 2.27869i 1.66010 0.208887i
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 1.13806i 0.102615i
\(124\) 0 0
\(125\) 8.74166i 0.781877i
\(126\) 0 0
\(127\) 0.504172i 0.0447380i −0.999750 0.0223690i \(-0.992879\pi\)
0.999750 0.0223690i \(-0.00712087\pi\)
\(128\) 0 0
\(129\) 11.0449i 0.972451i
\(130\) 0 0
\(131\) 20.2061 1.76541 0.882706 0.469925i \(-0.155719\pi\)
0.882706 + 0.469925i \(0.155719\pi\)
\(132\) 0 0
\(133\) 0.550266 + 4.37316i 0.0477141 + 0.379201i
\(134\) 0 0
\(135\) 13.0892i 1.12654i
\(136\) 0 0
\(137\) 10.2860 0.878790 0.439395 0.898294i \(-0.355193\pi\)
0.439395 + 0.898294i \(0.355193\pi\)
\(138\) 0 0
\(139\) 11.0425 0.936611 0.468306 0.883566i \(-0.344865\pi\)
0.468306 + 0.883566i \(0.344865\pi\)
\(140\) 0 0
\(141\) −0.715268 −0.0602364
\(142\) 0 0
\(143\) 5.65534 0.472923
\(144\) 0 0
\(145\) 17.5283i 1.45564i
\(146\) 0 0
\(147\) −7.00725 + 1.79178i −0.577948 + 0.147784i
\(148\) 0 0
\(149\) 1.59665 0.130803 0.0654013 0.997859i \(-0.479167\pi\)
0.0654013 + 0.997859i \(0.479167\pi\)
\(150\) 0 0
\(151\) 15.2616i 1.24197i 0.783822 + 0.620985i \(0.213267\pi\)
−0.783822 + 0.620985i \(0.786733\pi\)
\(152\) 0 0
\(153\) 13.3312i 1.07776i
\(154\) 0 0
\(155\) 0.317696i 0.0255180i
\(156\) 0 0
\(157\) 14.5610i 1.16209i 0.813870 + 0.581047i \(0.197357\pi\)
−0.813870 + 0.581047i \(0.802643\pi\)
\(158\) 0 0
\(159\) 6.81132 0.540173
\(160\) 0 0
\(161\) −11.3342 + 1.42616i −0.893258 + 0.112397i
\(162\) 0 0
\(163\) 16.0995i 1.26101i −0.776185 0.630505i \(-0.782848\pi\)
0.776185 0.630505i \(-0.217152\pi\)
\(164\) 0 0
\(165\) 2.65372 0.206592
\(166\) 0 0
\(167\) 13.6205 1.05398 0.526992 0.849870i \(-0.323320\pi\)
0.526992 + 0.849870i \(0.323320\pi\)
\(168\) 0 0
\(169\) −18.9829 −1.46022
\(170\) 0 0
\(171\) −3.21926 −0.246183
\(172\) 0 0
\(173\) 21.8928i 1.66448i 0.554417 + 0.832239i \(0.312941\pi\)
−0.554417 + 0.832239i \(0.687059\pi\)
\(174\) 0 0
\(175\) −0.527293 4.19059i −0.0398596 0.316779i
\(176\) 0 0
\(177\) 2.67679 0.201200
\(178\) 0 0
\(179\) 3.19661i 0.238926i −0.992839 0.119463i \(-0.961883\pi\)
0.992839 0.119463i \(-0.0381173\pi\)
\(180\) 0 0
\(181\) 12.7053i 0.944374i −0.881498 0.472187i \(-0.843465\pi\)
0.881498 0.472187i \(-0.156535\pi\)
\(182\) 0 0
\(183\) 13.5835i 1.00412i
\(184\) 0 0
\(185\) 12.3291i 0.906450i
\(186\) 0 0
\(187\) −6.89874 −0.504486
\(188\) 0 0
\(189\) −1.68336 13.3783i −0.122446 0.973125i
\(190\) 0 0
\(191\) 25.7678i 1.86450i −0.361820 0.932248i \(-0.617844\pi\)
0.361820 0.932248i \(-0.382156\pi\)
\(192\) 0 0
\(193\) −4.86479 −0.350175 −0.175088 0.984553i \(-0.556021\pi\)
−0.175088 + 0.984553i \(0.556021\pi\)
\(194\) 0 0
\(195\) −15.0077 −1.07472
\(196\) 0 0
\(197\) 20.6424 1.47071 0.735355 0.677683i \(-0.237016\pi\)
0.735355 + 0.677683i \(0.237016\pi\)
\(198\) 0 0
\(199\) −26.5679 −1.88335 −0.941675 0.336524i \(-0.890749\pi\)
−0.941675 + 0.336524i \(0.890749\pi\)
\(200\) 0 0
\(201\) 10.4988i 0.740530i
\(202\) 0 0
\(203\) −2.25425 17.9153i −0.158217 1.25741i
\(204\) 0 0
\(205\) −2.82889 −0.197578
\(206\) 0 0
\(207\) 8.34355i 0.579917i
\(208\) 0 0
\(209\) 1.66593i 0.115235i
\(210\) 0 0
\(211\) 5.53329i 0.380927i 0.981694 + 0.190464i \(0.0609991\pi\)
−0.981694 + 0.190464i \(0.939001\pi\)
\(212\) 0 0
\(213\) 1.88513i 0.129167i
\(214\) 0 0
\(215\) −27.4545 −1.87238
\(216\) 0 0
\(217\) −0.0408577 0.324711i −0.00277360 0.0220428i
\(218\) 0 0
\(219\) 0.310322i 0.0209696i
\(220\) 0 0
\(221\) 39.0147 2.62441
\(222\) 0 0
\(223\) −17.9287 −1.20060 −0.600299 0.799776i \(-0.704952\pi\)
−0.600299 + 0.799776i \(0.704952\pi\)
\(224\) 0 0
\(225\) 3.08486 0.205657
\(226\) 0 0
\(227\) −5.50686 −0.365503 −0.182752 0.983159i \(-0.558500\pi\)
−0.182752 + 0.983159i \(0.558500\pi\)
\(228\) 0 0
\(229\) 10.1077i 0.667933i −0.942585 0.333966i \(-0.891613\pi\)
0.942585 0.333966i \(-0.108387\pi\)
\(230\) 0 0
\(231\) 2.71232 0.341285i 0.178457 0.0224549i
\(232\) 0 0
\(233\) 6.25458 0.409751 0.204875 0.978788i \(-0.434321\pi\)
0.204875 + 0.978788i \(0.434321\pi\)
\(234\) 0 0
\(235\) 1.77795i 0.115981i
\(236\) 0 0
\(237\) 11.1743i 0.725847i
\(238\) 0 0
\(239\) 14.6194i 0.945649i −0.881157 0.472825i \(-0.843234\pi\)
0.881157 0.472825i \(-0.156766\pi\)
\(240\) 0 0
\(241\) 10.8953i 0.701829i −0.936408 0.350914i \(-0.885871\pi\)
0.936408 0.350914i \(-0.114129\pi\)
\(242\) 0 0
\(243\) 15.8382 1.01602
\(244\) 0 0
\(245\) −4.45385 17.4180i −0.284546 1.11279i
\(246\) 0 0
\(247\) 9.42142i 0.599471i
\(248\) 0 0
\(249\) 12.2331 0.775240
\(250\) 0 0
\(251\) 4.37307 0.276026 0.138013 0.990430i \(-0.455928\pi\)
0.138013 + 0.990430i \(0.455928\pi\)
\(252\) 0 0
\(253\) 4.31770 0.271451
\(254\) 0 0
\(255\) 18.3073 1.14645
\(256\) 0 0
\(257\) 27.8008i 1.73417i 0.498164 + 0.867083i \(0.334008\pi\)
−0.498164 + 0.867083i \(0.665992\pi\)
\(258\) 0 0
\(259\) −1.58559 12.6013i −0.0985240 0.783006i
\(260\) 0 0
\(261\) 13.1882 0.816329
\(262\) 0 0
\(263\) 5.55290i 0.342407i 0.985236 + 0.171203i \(0.0547655\pi\)
−0.985236 + 0.171203i \(0.945235\pi\)
\(264\) 0 0
\(265\) 16.9310i 1.04006i
\(266\) 0 0
\(267\) 1.94837i 0.119238i
\(268\) 0 0
\(269\) 0.221248i 0.0134897i −0.999977 0.00674486i \(-0.997853\pi\)
0.999977 0.00674486i \(-0.00214697\pi\)
\(270\) 0 0
\(271\) −4.23577 −0.257305 −0.128652 0.991690i \(-0.541065\pi\)
−0.128652 + 0.991690i \(0.541065\pi\)
\(272\) 0 0
\(273\) −15.3391 + 1.93008i −0.928363 + 0.116814i
\(274\) 0 0
\(275\) 1.59638i 0.0962655i
\(276\) 0 0
\(277\) 28.8794 1.73519 0.867596 0.497269i \(-0.165664\pi\)
0.867596 + 0.497269i \(0.165664\pi\)
\(278\) 0 0
\(279\) 0.239033 0.0143105
\(280\) 0 0
\(281\) 21.1251 1.26022 0.630108 0.776507i \(-0.283010\pi\)
0.630108 + 0.776507i \(0.283010\pi\)
\(282\) 0 0
\(283\) 20.8403 1.23883 0.619415 0.785064i \(-0.287370\pi\)
0.619415 + 0.785064i \(0.287370\pi\)
\(284\) 0 0
\(285\) 4.42092i 0.261873i
\(286\) 0 0
\(287\) −2.89135 + 0.363812i −0.170671 + 0.0214752i
\(288\) 0 0
\(289\) −30.5926 −1.79956
\(290\) 0 0
\(291\) 6.74139i 0.395187i
\(292\) 0 0
\(293\) 6.02385i 0.351917i −0.984398 0.175959i \(-0.943697\pi\)
0.984398 0.175959i \(-0.0563025\pi\)
\(294\) 0 0
\(295\) 6.65372i 0.387395i
\(296\) 0 0
\(297\) 5.09638i 0.295722i
\(298\) 0 0
\(299\) −24.4180 −1.41213
\(300\) 0 0
\(301\) −28.0607 + 3.53081i −1.61739 + 0.203513i
\(302\) 0 0
\(303\) 2.53747i 0.145774i
\(304\) 0 0
\(305\) 33.7646 1.93336
\(306\) 0 0
\(307\) 32.6711 1.86464 0.932320 0.361634i \(-0.117781\pi\)
0.932320 + 0.361634i \(0.117781\pi\)
\(308\) 0 0
\(309\) 8.06619 0.458870
\(310\) 0 0
\(311\) 29.5383 1.67496 0.837482 0.546465i \(-0.184027\pi\)
0.837482 + 0.546465i \(0.184027\pi\)
\(312\) 0 0
\(313\) 17.5767i 0.993496i 0.867895 + 0.496748i \(0.165473\pi\)
−0.867895 + 0.496748i \(0.834527\pi\)
\(314\) 0 0
\(315\) 13.0284 1.63933i 0.734065 0.0923658i
\(316\) 0 0
\(317\) −26.0280 −1.46188 −0.730938 0.682444i \(-0.760917\pi\)
−0.730938 + 0.682444i \(0.760917\pi\)
\(318\) 0 0
\(319\) 6.82475i 0.382112i
\(320\) 0 0
\(321\) 7.81503i 0.436193i
\(322\) 0 0
\(323\) 11.4928i 0.639478i
\(324\) 0 0
\(325\) 9.02808i 0.500788i
\(326\) 0 0
\(327\) 3.31350 0.183237
\(328\) 0 0
\(329\) −0.228655 1.81721i −0.0126062 0.100186i
\(330\) 0 0
\(331\) 23.3821i 1.28519i −0.766204 0.642597i \(-0.777857\pi\)
0.766204 0.642597i \(-0.222143\pi\)
\(332\) 0 0
\(333\) 9.27632 0.508339
\(334\) 0 0
\(335\) −26.0970 −1.42583
\(336\) 0 0
\(337\) −10.3551 −0.564080 −0.282040 0.959403i \(-0.591011\pi\)
−0.282040 + 0.959403i \(0.591011\pi\)
\(338\) 0 0
\(339\) −9.65716 −0.524505
\(340\) 0 0
\(341\) 0.123697i 0.00669856i
\(342\) 0 0
\(343\) −6.79225 17.2298i −0.366747 0.930321i
\(344\) 0 0
\(345\) −11.4580 −0.616876
\(346\) 0 0
\(347\) 10.4742i 0.562287i −0.959666 0.281143i \(-0.909286\pi\)
0.959666 0.281143i \(-0.0907136\pi\)
\(348\) 0 0
\(349\) 25.6330i 1.37210i −0.727554 0.686050i \(-0.759343\pi\)
0.727554 0.686050i \(-0.240657\pi\)
\(350\) 0 0
\(351\) 28.8218i 1.53839i
\(352\) 0 0
\(353\) 33.9304i 1.80593i −0.429709 0.902967i \(-0.641384\pi\)
0.429709 0.902967i \(-0.358616\pi\)
\(354\) 0 0
\(355\) 4.68589 0.248701
\(356\) 0 0
\(357\) 18.7116 2.35444i 0.990321 0.124610i
\(358\) 0 0
\(359\) 12.8824i 0.679905i −0.940443 0.339952i \(-0.889589\pi\)
0.940443 0.339952i \(-0.110411\pi\)
\(360\) 0 0
\(361\) −16.2247 −0.853930
\(362\) 0 0
\(363\) −1.03324 −0.0542312
\(364\) 0 0
\(365\) −0.771369 −0.0403753
\(366\) 0 0
\(367\) 19.2390 1.00427 0.502133 0.864790i \(-0.332549\pi\)
0.502133 + 0.864790i \(0.332549\pi\)
\(368\) 0 0
\(369\) 2.12844i 0.110802i
\(370\) 0 0
\(371\) 2.17743 + 17.3048i 0.113046 + 0.898421i
\(372\) 0 0
\(373\) 11.1961 0.579713 0.289856 0.957070i \(-0.406392\pi\)
0.289856 + 0.957070i \(0.406392\pi\)
\(374\) 0 0
\(375\) 9.03226i 0.466424i
\(376\) 0 0
\(377\) 38.5963i 1.98781i
\(378\) 0 0
\(379\) 33.0992i 1.70019i 0.526630 + 0.850095i \(0.323455\pi\)
−0.526630 + 0.850095i \(0.676545\pi\)
\(380\) 0 0
\(381\) 0.520932i 0.0266882i
\(382\) 0 0
\(383\) −31.7510 −1.62240 −0.811200 0.584769i \(-0.801185\pi\)
−0.811200 + 0.584769i \(0.801185\pi\)
\(384\) 0 0
\(385\) 0.848336 + 6.74203i 0.0432352 + 0.343606i
\(386\) 0 0
\(387\) 20.6566i 1.05003i
\(388\) 0 0
\(389\) −13.9441 −0.706996 −0.353498 0.935435i \(-0.615008\pi\)
−0.353498 + 0.935435i \(0.615008\pi\)
\(390\) 0 0
\(391\) 29.7867 1.50638
\(392\) 0 0
\(393\) 20.8778 1.05314
\(394\) 0 0
\(395\) −27.7760 −1.39756
\(396\) 0 0
\(397\) 29.3923i 1.47516i 0.675262 + 0.737578i \(0.264030\pi\)
−0.675262 + 0.737578i \(0.735970\pi\)
\(398\) 0 0
\(399\) 0.568558 + 4.51854i 0.0284635 + 0.226210i
\(400\) 0 0
\(401\) −18.6982 −0.933744 −0.466872 0.884325i \(-0.654619\pi\)
−0.466872 + 0.884325i \(0.654619\pi\)
\(402\) 0 0
\(403\) 0.699548i 0.0348470i
\(404\) 0 0
\(405\) 1.36489i 0.0678218i
\(406\) 0 0
\(407\) 4.80039i 0.237947i
\(408\) 0 0
\(409\) 29.4308i 1.45526i 0.685970 + 0.727630i \(0.259378\pi\)
−0.685970 + 0.727630i \(0.740622\pi\)
\(410\) 0 0
\(411\) 10.6279 0.524236
\(412\) 0 0
\(413\) 0.855710 + 6.80064i 0.0421067 + 0.334638i
\(414\) 0 0
\(415\) 30.4079i 1.49266i
\(416\) 0 0
\(417\) 11.4096 0.558729
\(418\) 0 0
\(419\) 27.6027 1.34848 0.674240 0.738513i \(-0.264472\pi\)
0.674240 + 0.738513i \(0.264472\pi\)
\(420\) 0 0
\(421\) 14.3711 0.700404 0.350202 0.936674i \(-0.386113\pi\)
0.350202 + 0.936674i \(0.386113\pi\)
\(422\) 0 0
\(423\) 1.33772 0.0650421
\(424\) 0 0
\(425\) 11.0130i 0.534210i
\(426\) 0 0
\(427\) 34.5101 4.34234i 1.67006 0.210141i
\(428\) 0 0
\(429\) 5.84334 0.282119
\(430\) 0 0
\(431\) 3.74252i 0.180271i 0.995930 + 0.0901355i \(0.0287300\pi\)
−0.995930 + 0.0901355i \(0.971270\pi\)
\(432\) 0 0
\(433\) 34.0829i 1.63792i −0.573850 0.818961i \(-0.694551\pi\)
0.573850 0.818961i \(-0.305449\pi\)
\(434\) 0 0
\(435\) 18.1110i 0.868355i
\(436\) 0 0
\(437\) 7.19299i 0.344087i
\(438\) 0 0
\(439\) 11.7494 0.560766 0.280383 0.959888i \(-0.409538\pi\)
0.280383 + 0.959888i \(0.409538\pi\)
\(440\) 0 0
\(441\) 13.1052 3.35106i 0.624057 0.159574i
\(442\) 0 0
\(443\) 37.4757i 1.78053i −0.455447 0.890263i \(-0.650520\pi\)
0.455447 0.890263i \(-0.349480\pi\)
\(444\) 0 0
\(445\) 4.84308 0.229584
\(446\) 0 0
\(447\) 1.64973 0.0780294
\(448\) 0 0
\(449\) −11.2634 −0.531553 −0.265777 0.964035i \(-0.585628\pi\)
−0.265777 + 0.964035i \(0.585628\pi\)
\(450\) 0 0
\(451\) 1.10144 0.0518650
\(452\) 0 0
\(453\) 15.7689i 0.740889i
\(454\) 0 0
\(455\) −4.79763 38.1285i −0.224916 1.78749i
\(456\) 0 0
\(457\) −36.3818 −1.70187 −0.850934 0.525272i \(-0.823963\pi\)
−0.850934 + 0.525272i \(0.823963\pi\)
\(458\) 0 0
\(459\) 35.1586i 1.64106i
\(460\) 0 0
\(461\) 1.36268i 0.0634664i 0.999496 + 0.0317332i \(0.0101027\pi\)
−0.999496 + 0.0317332i \(0.989897\pi\)
\(462\) 0 0
\(463\) 32.9746i 1.53246i 0.642565 + 0.766231i \(0.277870\pi\)
−0.642565 + 0.766231i \(0.722130\pi\)
\(464\) 0 0
\(465\) 0.328257i 0.0152226i
\(466\) 0 0
\(467\) 11.8571 0.548681 0.274341 0.961633i \(-0.411540\pi\)
0.274341 + 0.961633i \(0.411540\pi\)
\(468\) 0 0
\(469\) −26.6733 + 3.35624i −1.23166 + 0.154977i
\(470\) 0 0
\(471\) 15.0451i 0.693240i
\(472\) 0 0
\(473\) 10.6896 0.491507
\(474\) 0 0
\(475\) −2.65947 −0.122025
\(476\) 0 0
\(477\) −12.7388 −0.583269
\(478\) 0 0
\(479\) 9.84814 0.449973 0.224987 0.974362i \(-0.427766\pi\)
0.224987 + 0.974362i \(0.427766\pi\)
\(480\) 0 0
\(481\) 27.1479i 1.23784i
\(482\) 0 0
\(483\) −11.7110 + 1.47357i −0.532867 + 0.0670496i
\(484\) 0 0
\(485\) 16.7571 0.760902
\(486\) 0 0
\(487\) 6.86298i 0.310991i 0.987837 + 0.155496i \(0.0496974\pi\)
−0.987837 + 0.155496i \(0.950303\pi\)
\(488\) 0 0
\(489\) 16.6347i 0.752247i
\(490\) 0 0
\(491\) 12.3303i 0.556458i 0.960515 + 0.278229i \(0.0897475\pi\)
−0.960515 + 0.278229i \(0.910253\pi\)
\(492\) 0 0
\(493\) 47.0821i 2.12047i
\(494\) 0 0
\(495\) −4.96309 −0.223074
\(496\) 0 0
\(497\) 4.78936 0.602634i 0.214832 0.0270318i
\(498\) 0 0
\(499\) 22.2649i 0.996714i 0.866972 + 0.498357i \(0.166063\pi\)
−0.866972 + 0.498357i \(0.833937\pi\)
\(500\) 0 0
\(501\) 14.0733 0.628747
\(502\) 0 0
\(503\) −29.8936 −1.33289 −0.666444 0.745555i \(-0.732184\pi\)
−0.666444 + 0.745555i \(0.732184\pi\)
\(504\) 0 0
\(505\) −6.30742 −0.280677
\(506\) 0 0
\(507\) −19.6139 −0.871085
\(508\) 0 0
\(509\) 24.8759i 1.10261i −0.834305 0.551303i \(-0.814131\pi\)
0.834305 0.551303i \(-0.185869\pi\)
\(510\) 0 0
\(511\) −0.788401 + 0.0992029i −0.0348768 + 0.00438848i
\(512\) 0 0
\(513\) −8.49022 −0.374853
\(514\) 0 0
\(515\) 20.0502i 0.883518i
\(516\) 0 0
\(517\) 0.692255i 0.0304453i
\(518\) 0 0
\(519\) 22.6206i 0.992933i
\(520\) 0 0
\(521\) 30.3413i 1.32927i −0.747166 0.664637i \(-0.768586\pi\)
0.747166 0.664637i \(-0.231414\pi\)
\(522\) 0 0
\(523\) −36.2616 −1.58561 −0.792804 0.609476i \(-0.791380\pi\)
−0.792804 + 0.609476i \(0.791380\pi\)
\(524\) 0 0
\(525\) −0.544821 4.32989i −0.0237780 0.188972i
\(526\) 0 0
\(527\) 0.853353i 0.0371726i
\(528\) 0 0
\(529\) 4.35750 0.189457
\(530\) 0 0
\(531\) −5.00623 −0.217252
\(532\) 0 0
\(533\) −6.22904 −0.269810
\(534\) 0 0
\(535\) −19.4259 −0.839855
\(536\) 0 0
\(537\) 3.30288i 0.142530i
\(538\) 0 0
\(539\) 1.73413 + 6.78180i 0.0746945 + 0.292113i
\(540\) 0 0
\(541\) −9.46437 −0.406905 −0.203452 0.979085i \(-0.565216\pi\)
−0.203452 + 0.979085i \(0.565216\pi\)
\(542\) 0 0
\(543\) 13.1276i 0.563360i
\(544\) 0 0
\(545\) 8.23639i 0.352808i
\(546\) 0 0
\(547\) 34.3136i 1.46714i 0.679612 + 0.733572i \(0.262148\pi\)
−0.679612 + 0.733572i \(0.737852\pi\)
\(548\) 0 0
\(549\) 25.4043i 1.08423i
\(550\) 0 0
\(551\) −11.3696 −0.484360
\(552\) 0 0
\(553\) −28.3893 + 3.57217i −1.20724 + 0.151904i
\(554\) 0 0
\(555\) 12.7389i 0.540737i
\(556\) 0 0
\(557\) −11.9210 −0.505111 −0.252555 0.967582i \(-0.581271\pi\)
−0.252555 + 0.967582i \(0.581271\pi\)
\(558\) 0 0
\(559\) −60.4531 −2.55689
\(560\) 0 0
\(561\) −7.12808 −0.300948
\(562\) 0 0
\(563\) −32.3576 −1.36371 −0.681855 0.731487i \(-0.738826\pi\)
−0.681855 + 0.731487i \(0.738826\pi\)
\(564\) 0 0
\(565\) 24.0049i 1.00989i
\(566\) 0 0
\(567\) 0.175533 + 1.39502i 0.00737169 + 0.0585855i
\(568\) 0 0
\(569\) 23.0580 0.966643 0.483321 0.875443i \(-0.339430\pi\)
0.483321 + 0.875443i \(0.339430\pi\)
\(570\) 0 0
\(571\) 14.0722i 0.588904i 0.955666 + 0.294452i \(0.0951371\pi\)
−0.955666 + 0.294452i \(0.904863\pi\)
\(572\) 0 0
\(573\) 26.6245i 1.11225i
\(574\) 0 0
\(575\) 6.89269i 0.287445i
\(576\) 0 0
\(577\) 3.28465i 0.136742i −0.997660 0.0683710i \(-0.978220\pi\)
0.997660 0.0683710i \(-0.0217802\pi\)
\(578\) 0 0
\(579\) −5.02651 −0.208895
\(580\) 0 0
\(581\) 3.91064 + 31.0793i 0.162241 + 1.28939i
\(582\) 0 0
\(583\) 6.59218i 0.273020i
\(584\) 0 0
\(585\) 28.0679 1.16047
\(586\) 0 0
\(587\) 4.30261 0.177588 0.0887940 0.996050i \(-0.471699\pi\)
0.0887940 + 0.996050i \(0.471699\pi\)
\(588\) 0 0
\(589\) −0.206071 −0.00849100
\(590\) 0 0
\(591\) 21.3286 0.877342
\(592\) 0 0
\(593\) 19.8929i 0.816905i 0.912780 + 0.408452i \(0.133931\pi\)
−0.912780 + 0.408452i \(0.866069\pi\)
\(594\) 0 0
\(595\) 5.85245 + 46.5115i 0.239927 + 1.90679i
\(596\) 0 0
\(597\) −27.4511 −1.12350
\(598\) 0 0
\(599\) 25.1206i 1.02640i 0.858269 + 0.513200i \(0.171540\pi\)
−0.858269 + 0.513200i \(0.828460\pi\)
\(600\) 0 0
\(601\) 19.2710i 0.786079i 0.919522 + 0.393039i \(0.128576\pi\)
−0.919522 + 0.393039i \(0.871424\pi\)
\(602\) 0 0
\(603\) 19.6353i 0.799610i
\(604\) 0 0
\(605\) 2.56834i 0.104418i
\(606\) 0 0
\(607\) 24.8640 1.00920 0.504599 0.863354i \(-0.331640\pi\)
0.504599 + 0.863354i \(0.331640\pi\)
\(608\) 0 0
\(609\) −2.32918 18.5109i −0.0943833 0.750099i
\(610\) 0 0
\(611\) 3.91494i 0.158381i
\(612\) 0 0
\(613\) 25.5282 1.03107 0.515537 0.856868i \(-0.327593\pi\)
0.515537 + 0.856868i \(0.327593\pi\)
\(614\) 0 0
\(615\) −2.92293 −0.117864
\(616\) 0 0
\(617\) 28.6758 1.15444 0.577222 0.816587i \(-0.304137\pi\)
0.577222 + 0.816587i \(0.304137\pi\)
\(618\) 0 0
\(619\) −4.75382 −0.191072 −0.0955361 0.995426i \(-0.530457\pi\)
−0.0955361 + 0.995426i \(0.530457\pi\)
\(620\) 0 0
\(621\) 22.0046i 0.883015i
\(622\) 0 0
\(623\) 4.95001 0.622850i 0.198318 0.0249539i
\(624\) 0 0
\(625\) −30.4335 −1.21734
\(626\) 0 0
\(627\) 1.72131i 0.0687427i
\(628\) 0 0
\(629\) 33.1167i 1.32045i
\(630\) 0 0
\(631\) 3.70192i 0.147371i −0.997282 0.0736856i \(-0.976524\pi\)
0.997282 0.0736856i \(-0.0234761\pi\)
\(632\) 0 0
\(633\) 5.71723i 0.227240i
\(634\) 0 0
\(635\) 1.29489 0.0513860
\(636\) 0 0
\(637\) −9.80712 38.3534i −0.388572 1.51962i
\(638\) 0 0
\(639\) 3.52564i 0.139472i
\(640\) 0 0
\(641\) −37.8206 −1.49382 −0.746912 0.664922i \(-0.768465\pi\)
−0.746912 + 0.664922i \(0.768465\pi\)
\(642\) 0 0
\(643\) 3.36636 0.132756 0.0663782 0.997795i \(-0.478856\pi\)
0.0663782 + 0.997795i \(0.478856\pi\)
\(644\) 0 0
\(645\) −28.3671 −1.11695
\(646\) 0 0
\(647\) 20.3678 0.800742 0.400371 0.916353i \(-0.368881\pi\)
0.400371 + 0.916353i \(0.368881\pi\)
\(648\) 0 0
\(649\) 2.59067i 0.101693i
\(650\) 0 0
\(651\) −0.0422159 0.335505i −0.00165457 0.0131495i
\(652\) 0 0
\(653\) −32.7229 −1.28055 −0.640274 0.768147i \(-0.721179\pi\)
−0.640274 + 0.768147i \(0.721179\pi\)
\(654\) 0 0
\(655\) 51.8961i 2.02775i
\(656\) 0 0
\(657\) 0.580375i 0.0226426i
\(658\) 0 0
\(659\) 25.5161i 0.993965i 0.867760 + 0.496983i \(0.165559\pi\)
−0.867760 + 0.496983i \(0.834441\pi\)
\(660\) 0 0
\(661\) 28.9252i 1.12506i 0.826776 + 0.562531i \(0.190172\pi\)
−0.826776 + 0.562531i \(0.809828\pi\)
\(662\) 0 0
\(663\) 40.3117 1.56558
\(664\) 0 0
\(665\) −11.2318 + 1.41327i −0.435550 + 0.0548043i
\(666\) 0 0
\(667\) 29.4672i 1.14097i
\(668\) 0 0
\(669\) −18.5248 −0.716208
\(670\) 0 0
\(671\) −13.1465 −0.507514
\(672\) 0 0
\(673\) 15.1886 0.585477 0.292738 0.956193i \(-0.405433\pi\)
0.292738 + 0.956193i \(0.405433\pi\)
\(674\) 0 0
\(675\) 8.13577 0.313146
\(676\) 0 0
\(677\) 26.1796i 1.00616i 0.864239 + 0.503082i \(0.167801\pi\)
−0.864239 + 0.503082i \(0.832199\pi\)
\(678\) 0 0
\(679\) 17.1271 2.15507i 0.657279 0.0827040i
\(680\) 0 0
\(681\) −5.68993 −0.218038
\(682\) 0 0
\(683\) 5.73500i 0.219444i −0.993962 0.109722i \(-0.965004\pi\)
0.993962 0.109722i \(-0.0349960\pi\)
\(684\) 0 0
\(685\) 26.4179i 1.00938i
\(686\) 0 0
\(687\) 10.4437i 0.398451i
\(688\) 0 0
\(689\) 37.2810i 1.42029i
\(690\) 0 0
\(691\) 3.04444 0.115816 0.0579080 0.998322i \(-0.481557\pi\)
0.0579080 + 0.998322i \(0.481557\pi\)
\(692\) 0 0
\(693\) −5.07267 + 0.638284i −0.192695 + 0.0242464i
\(694\) 0 0
\(695\) 28.3609i 1.07579i
\(696\) 0 0
\(697\) 7.59858 0.287817
\(698\) 0 0
\(699\) 6.46250 0.244434
\(700\) 0 0
\(701\) 8.52274 0.321900 0.160950 0.986963i \(-0.448544\pi\)
0.160950 + 0.986963i \(0.448544\pi\)
\(702\) 0 0
\(703\) −7.99713 −0.301618
\(704\) 0 0
\(705\) 1.83705i 0.0691874i
\(706\) 0 0
\(707\) −6.44669 + 0.811173i −0.242453 + 0.0305073i
\(708\) 0 0
\(709\) −22.6340 −0.850039 −0.425020 0.905184i \(-0.639733\pi\)
−0.425020 + 0.905184i \(0.639733\pi\)
\(710\) 0 0
\(711\) 20.8985i 0.783756i
\(712\) 0 0
\(713\) 0.534086i 0.0200017i
\(714\) 0 0
\(715\) 14.5249i 0.543199i
\(716\) 0 0
\(717\) 15.1054i 0.564121i
\(718\) 0 0
\(719\) −4.00245 −0.149266 −0.0746332 0.997211i \(-0.523779\pi\)
−0.0746332 + 0.997211i \(0.523779\pi\)
\(720\) 0 0
\(721\) 2.57858 + 20.4929i 0.0960314 + 0.763196i
\(722\) 0 0
\(723\) 11.2575i 0.418671i
\(724\) 0 0
\(725\) 10.8949 0.404627
\(726\) 0 0
\(727\) −2.40403 −0.0891604 −0.0445802 0.999006i \(-0.514195\pi\)
−0.0445802 + 0.999006i \(0.514195\pi\)
\(728\) 0 0
\(729\) 14.7705 0.547054
\(730\) 0 0
\(731\) 73.7445 2.72754
\(732\) 0 0
\(733\) 27.7267i 1.02411i −0.858953 0.512054i \(-0.828885\pi\)
0.858953 0.512054i \(-0.171115\pi\)
\(734\) 0 0
\(735\) −4.60191 17.9970i −0.169744 0.663830i
\(736\) 0 0
\(737\) 10.1610 0.374287
\(738\) 0 0
\(739\) 22.2649i 0.819028i 0.912304 + 0.409514i \(0.134302\pi\)
−0.912304 + 0.409514i \(0.865698\pi\)
\(740\) 0 0
\(741\) 9.73462i 0.357610i
\(742\) 0 0
\(743\) 37.6151i 1.37996i −0.723827 0.689982i \(-0.757618\pi\)
0.723827 0.689982i \(-0.242382\pi\)
\(744\) 0 0
\(745\) 4.10074i 0.150239i
\(746\) 0 0
\(747\) −22.8787 −0.837090
\(748\) 0 0
\(749\) −19.8548 + 2.49829i −0.725480 + 0.0912856i
\(750\) 0 0
\(751\) 26.6026i 0.970742i 0.874308 + 0.485371i \(0.161315\pi\)
−0.874308 + 0.485371i \(0.838685\pi\)
\(752\) 0 0
\(753\) 4.51845 0.164661
\(754\) 0 0
\(755\) −39.1970 −1.42652
\(756\) 0 0
\(757\) −10.1671 −0.369530 −0.184765 0.982783i \(-0.559152\pi\)
−0.184765 + 0.982783i \(0.559152\pi\)
\(758\) 0 0
\(759\) 4.46123 0.161932
\(760\) 0 0
\(761\) 29.4369i 1.06709i −0.845773 0.533543i \(-0.820860\pi\)
0.845773 0.533543i \(-0.179140\pi\)
\(762\) 0 0
\(763\) 1.05925 + 8.41825i 0.0383474 + 0.304761i
\(764\) 0 0
\(765\) −34.2390 −1.23791
\(766\) 0 0
\(767\) 14.6511i 0.529021i
\(768\) 0 0
\(769\) 12.9246i 0.466073i 0.972468 + 0.233036i \(0.0748661\pi\)
−0.972468 + 0.233036i \(0.925134\pi\)
\(770\) 0 0
\(771\) 28.7250i 1.03450i
\(772\) 0 0
\(773\) 25.2123i 0.906823i −0.891301 0.453411i \(-0.850207\pi\)
0.891301 0.453411i \(-0.149793\pi\)
\(774\) 0 0
\(775\) 0.197467 0.00709324
\(776\) 0 0
\(777\) −1.63830 13.0202i −0.0587738 0.467097i
\(778\) 0 0
\(779\) 1.83493i 0.0657433i
\(780\) 0 0
\(781\) −1.82448 −0.0652850
\(782\) 0 0
\(783\) 34.7815 1.24299
\(784\) 0 0
\(785\) −37.3976 −1.33478
\(786\) 0 0
\(787\) −34.7440 −1.23849 −0.619245 0.785197i \(-0.712561\pi\)
−0.619245 + 0.785197i \(0.712561\pi\)
\(788\) 0 0
\(789\) 5.73750i 0.204260i
\(790\) 0 0
\(791\) −3.08718 24.5349i −0.109767 0.872362i
\(792\) 0 0
\(793\) 74.3477 2.64017
\(794\) 0 0
\(795\) 17.4938i 0.620441i
\(796\) 0 0
\(797\) 23.0793i 0.817511i −0.912644 0.408755i \(-0.865963\pi\)
0.912644 0.408755i \(-0.134037\pi\)
\(798\) 0 0
\(799\) 4.77569i 0.168952i
\(800\) 0 0
\(801\) 3.64391i 0.128751i
\(802\) 0 0
\(803\) 0.300337 0.0105987
\(804\) 0 0
\(805\) −3.66286 29.1100i −0.129099 1.02599i
\(806\) 0 0
\(807\) 0.228603i 0.00804721i
\(808\) 0 0
\(809\) 10.6783 0.375427 0.187714 0.982224i \(-0.439892\pi\)
0.187714 + 0.982224i \(0.439892\pi\)
\(810\) 0 0
\(811\) −47.1085 −1.65420 −0.827102 0.562051i \(-0.810012\pi\)
−0.827102 + 0.562051i \(0.810012\pi\)
\(812\) 0 0
\(813\) −4.37659 −0.153494
\(814\) 0 0
\(815\) 41.3490 1.44839
\(816\) 0 0
\(817\) 17.8081i 0.623026i
\(818\) 0 0
\(819\) 28.6877 3.60971i 1.00243 0.126134i
\(820\) 0 0
\(821\) −9.75162 −0.340334 −0.170167 0.985415i \(-0.554431\pi\)
−0.170167 + 0.985415i \(0.554431\pi\)
\(822\) 0 0
\(823\) 8.64641i 0.301395i −0.988580 0.150698i \(-0.951848\pi\)
0.988580 0.150698i \(-0.0481519\pi\)
\(824\) 0 0
\(825\) 1.64945i 0.0574265i
\(826\) 0 0
\(827\) 31.4994i 1.09534i 0.836694 + 0.547671i \(0.184486\pi\)
−0.836694 + 0.547671i \(0.815514\pi\)
\(828\) 0 0
\(829\) 39.1594i 1.36006i −0.733184 0.680031i \(-0.761966\pi\)
0.733184 0.680031i \(-0.238034\pi\)
\(830\) 0 0
\(831\) 29.8394 1.03512
\(832\) 0 0
\(833\) 11.9633 + 46.7858i 0.414505 + 1.62103i
\(834\) 0 0
\(835\) 34.9820i 1.21060i
\(836\) 0 0
\(837\) 0.630406 0.0217900
\(838\) 0 0
\(839\) 13.2453 0.457280 0.228640 0.973511i \(-0.426572\pi\)
0.228640 + 0.973511i \(0.426572\pi\)
\(840\) 0 0
\(841\) 17.5772 0.606109
\(842\) 0 0
\(843\) 21.8273 0.751774
\(844\) 0 0
\(845\) 48.7545i 1.67721i
\(846\) 0 0
\(847\) −0.330305 2.62505i −0.0113494 0.0901979i
\(848\) 0 0
\(849\) 21.5331 0.739016
\(850\) 0 0
\(851\) 20.7266i 0.710500i
\(852\) 0 0
\(853\) 37.2833i 1.27656i 0.769806 + 0.638278i \(0.220353\pi\)
−0.769806 + 0.638278i \(0.779647\pi\)
\(854\) 0 0
\(855\) 8.26817i 0.282765i
\(856\) 0 0
\(857\) 38.3501i 1.31001i −0.755623 0.655007i \(-0.772666\pi\)
0.755623 0.655007i \(-0.227334\pi\)
\(858\) 0 0
\(859\) −12.0408 −0.410828 −0.205414 0.978675i \(-0.565854\pi\)
−0.205414 + 0.978675i \(0.565854\pi\)
\(860\) 0 0
\(861\) −2.98747 + 0.375907i −0.101813 + 0.0128109i
\(862\) 0 0
\(863\) 50.8073i 1.72950i 0.502203 + 0.864750i \(0.332523\pi\)
−0.502203 + 0.864750i \(0.667477\pi\)
\(864\) 0 0
\(865\) −56.2282 −1.91181
\(866\) 0 0
\(867\) −31.6096 −1.07352
\(868\) 0 0
\(869\) 10.8148 0.366866
\(870\) 0 0
\(871\) −57.4641 −1.94710
\(872\) 0 0
\(873\) 12.6080i 0.426716i
\(874\) 0 0
\(875\) −22.9473 + 2.88741i −0.775760 + 0.0976123i
\(876\) 0 0
\(877\) 22.5865 0.762694 0.381347 0.924432i \(-0.375460\pi\)
0.381347 + 0.924432i \(0.375460\pi\)
\(878\) 0 0
\(879\) 6.22411i 0.209934i
\(880\) 0 0
\(881\) 48.7337i 1.64188i 0.571015 + 0.820940i \(0.306550\pi\)
−0.571015 + 0.820940i \(0.693450\pi\)
\(882\) 0 0
\(883\) 30.9872i 1.04280i −0.853312 0.521401i \(-0.825410\pi\)
0.853312 0.521401i \(-0.174590\pi\)
\(884\) 0 0
\(885\) 6.87491i 0.231098i
\(886\) 0 0
\(887\) 6.53593 0.219455 0.109728 0.993962i \(-0.465002\pi\)
0.109728 + 0.993962i \(0.465002\pi\)
\(888\) 0 0
\(889\) 1.32348 0.166530i 0.0443880 0.00558525i
\(890\) 0 0
\(891\) 0.531427i 0.0178035i
\(892\) 0 0
\(893\) −1.15325 −0.0385921
\(894\) 0 0
\(895\) 8.21000 0.274430
\(896\) 0 0
\(897\) −25.2298 −0.842398
\(898\) 0 0
\(899\) 0.844200 0.0281556
\(900\) 0 0
\(901\) 45.4777i 1.51508i
\(902\) 0 0
\(903\) −28.9935 + 3.64819i −0.964843 + 0.121404i
\(904\) 0 0
\(905\) 32.6315 1.08471
\(906\) 0 0
\(907\) 41.4719i 1.37705i −0.725212 0.688526i \(-0.758258\pi\)
0.725212 0.688526i \(-0.241742\pi\)
\(908\) 0 0
\(909\) 4.74567i 0.157404i
\(910\) 0 0
\(911\) 31.5421i 1.04504i −0.852628 0.522519i \(-0.824993\pi\)
0.852628 0.522519i \(-0.175007\pi\)
\(912\) 0 0
\(913\) 11.8395i 0.391830i
\(914\) 0 0
\(915\) 34.8871 1.15333
\(916\) 0 0
\(917\) 6.67416 + 53.0420i 0.220400 + 1.75160i
\(918\) 0 0
\(919\) 50.6805i 1.67179i 0.548886 + 0.835897i \(0.315052\pi\)
−0.548886 + 0.835897i \(0.684948\pi\)
\(920\) 0 0
\(921\) 33.7572 1.11234
\(922\) 0 0
\(923\) 10.3181 0.339623
\(924\) 0 0
\(925\) 7.66326 0.251967
\(926\) 0 0
\(927\) −15.0857 −0.495479
\(928\) 0 0
\(929\) 15.4072i 0.505494i −0.967532 0.252747i \(-0.918666\pi\)
0.967532 0.252747i \(-0.0813340\pi\)
\(930\) 0 0
\(931\) −11.2980 + 2.88895i −0.370278 + 0.0946816i
\(932\) 0 0
\(933\) 30.5203 0.999189
\(934\) 0 0
\(935\) 17.7183i 0.579451i
\(936\) 0 0
\(937\) 35.7306i 1.16727i −0.812017 0.583633i \(-0.801631\pi\)
0.812017 0.583633i \(-0.198369\pi\)
\(938\) 0 0
\(939\) 18.1610i 0.592663i
\(940\) 0 0
\(941\) 37.9057i 1.23569i −0.786300 0.617845i \(-0.788006\pi\)
0.786300 0.617845i \(-0.211994\pi\)
\(942\) 0 0
\(943\) −4.75570 −0.154867
\(944\) 0 0
\(945\) 34.3599 4.32344i 1.11773 0.140641i
\(946\) 0 0
\(947\) 54.7739i 1.77991i −0.456047 0.889956i \(-0.650735\pi\)
0.456047 0.889956i \(-0.349265\pi\)
\(948\) 0 0
\(949\) −1.69851 −0.0551360
\(950\) 0 0
\(951\) −26.8932 −0.872072
\(952\) 0 0
\(953\) 8.28906 0.268509 0.134255 0.990947i \(-0.457136\pi\)
0.134255 + 0.990947i \(0.457136\pi\)
\(954\) 0 0
\(955\) 66.1807 2.14156
\(956\) 0 0
\(957\) 7.05162i 0.227947i
\(958\) 0 0
\(959\) 3.39750 + 27.0012i 0.109711 + 0.871914i
\(960\) 0 0
\(961\) −30.9847 −0.999506
\(962\) 0 0
\(963\) 14.6160i 0.470993i
\(964\) 0 0
\(965\) 12.4945i 0.402211i
\(966\) 0 0
\(967\) 31.8644i 1.02469i −0.858780 0.512345i \(-0.828777\pi\)
0.858780 0.512345i \(-0.171223\pi\)
\(968\) 0 0
\(969\) 11.8749i 0.381477i
\(970\) 0 0
\(971\) −6.49583 −0.208461 −0.104231 0.994553i \(-0.533238\pi\)
−0.104231 + 0.994553i \(0.533238\pi\)
\(972\) 0 0
\(973\) 3.64739 + 28.9871i 0.116930 + 0.929284i
\(974\) 0 0
\(975\) 9.32821i 0.298742i
\(976\) 0 0
\(977\) 59.0021 1.88764 0.943822 0.330455i \(-0.107202\pi\)
0.943822 + 0.330455i \(0.107202\pi\)
\(978\) 0 0
\(979\) −1.88568 −0.0602667
\(980\) 0 0
\(981\) −6.19702 −0.197856
\(982\) 0 0
\(983\) −33.3603 −1.06403 −0.532014 0.846735i \(-0.678565\pi\)
−0.532014 + 0.846735i \(0.678565\pi\)
\(984\) 0 0
\(985\) 53.0167i 1.68925i
\(986\) 0 0
\(987\) −0.236256 1.87762i −0.00752012 0.0597652i
\(988\) 0 0
\(989\) −46.1543 −1.46762
\(990\) 0 0
\(991\) 6.80745i 0.216246i 0.994138 + 0.108123i \(0.0344840\pi\)
−0.994138 + 0.108123i \(0.965516\pi\)
\(992\) 0 0
\(993\) 24.1593i 0.766674i
\(994\) 0 0
\(995\) 68.2355i 2.16321i
\(996\) 0 0
\(997\) 32.2250i 1.02058i −0.860003 0.510288i \(-0.829539\pi\)
0.860003 0.510288i \(-0.170461\pi\)
\(998\) 0 0
\(999\) 24.4646 0.774026
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.2.j.b.111.17 yes 24
4.3 odd 2 inner 1232.2.j.b.111.7 24
7.6 odd 2 inner 1232.2.j.b.111.8 yes 24
28.27 even 2 inner 1232.2.j.b.111.18 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1232.2.j.b.111.7 24 4.3 odd 2 inner
1232.2.j.b.111.8 yes 24 7.6 odd 2 inner
1232.2.j.b.111.17 yes 24 1.1 even 1 trivial
1232.2.j.b.111.18 yes 24 28.27 even 2 inner