Properties

Label 1232.2.q.j.177.3
Level $1232$
Weight $2$
Character 1232.177
Analytic conductor $9.838$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,2,Mod(177,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1232.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.83756952902\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1783323.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 308)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.3
Root \(0.356769 + 0.617942i\) of defining polynomial
Character \(\chi\) \(=\) 1232.177
Dual form 1232.2.q.j.529.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.745432 + 1.29113i) q^{3} +(0.143231 - 0.248083i) q^{5} +(-2.63409 + 0.248083i) q^{7} +(0.388663 - 0.673184i) q^{9} +(0.500000 + 0.866025i) q^{11} -3.49086 q^{13} +0.427076 q^{15} +(-0.888663 - 1.53921i) q^{17} +(-3.31574 + 5.74303i) q^{19} +(-2.28384 - 3.21602i) q^{21} +(-4.30660 + 7.45925i) q^{23} +(2.45897 + 4.25906i) q^{25} +5.63148 q^{27} -3.69527 q^{29} +(-0.929693 - 1.61028i) q^{31} +(-0.745432 + 1.29113i) q^{33} +(-0.315739 + 0.689008i) q^{35} +(-3.71354 + 6.43204i) q^{37} +(-2.60220 - 4.50714i) q^{39} -2.63671 q^{41} -10.8997 q^{43} +(-0.111337 - 0.192842i) q^{45} +(3.80660 - 6.59323i) q^{47} +(6.87691 - 1.30695i) q^{49} +(1.32488 - 2.29475i) q^{51} +(3.74543 + 6.48728i) q^{53} +0.286462 q^{55} -9.88663 q^{57} +(-1.18164 - 2.04667i) q^{59} +(-0.777326 + 1.34637i) q^{61} +(-0.856769 + 1.86965i) q^{63} +(-0.500000 + 0.866025i) q^{65} +(-3.06379 - 5.30664i) q^{67} -12.8411 q^{69} -12.3137 q^{71} +(4.22716 + 7.32165i) q^{73} +(-3.66599 + 6.34968i) q^{75} +(-1.53189 - 2.15715i) q^{77} +(5.19788 - 9.00300i) q^{79} +(3.03189 + 5.25139i) q^{81} +16.1861 q^{83} -0.509136 q^{85} +(-2.75457 - 4.77105i) q^{87} +(5.07031 - 8.78203i) q^{89} +(9.19527 - 0.866025i) q^{91} +(1.38605 - 2.40070i) q^{93} +(0.949833 + 1.64516i) q^{95} +3.04551 q^{97} +0.777326 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} + 2 q^{5} - 2 q^{7} - 4 q^{9} + 3 q^{11} - 6 q^{13} - 2 q^{15} + q^{17} - 9 q^{19} - 8 q^{21} + 5 q^{25} + 12 q^{27} + 10 q^{29} - 9 q^{31} + 3 q^{33} + 9 q^{35} - 20 q^{37} - 7 q^{39} - 10 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1232\mathbb{Z}\right)^\times\).

\(n\) \(309\) \(353\) \(463\) \(673\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.745432 + 1.29113i 0.430375 + 0.745432i 0.996906 0.0786091i \(-0.0250479\pi\)
−0.566530 + 0.824041i \(0.691715\pi\)
\(4\) 0 0
\(5\) 0.143231 0.248083i 0.0640549 0.110946i −0.832219 0.554446i \(-0.812930\pi\)
0.896274 + 0.443500i \(0.146263\pi\)
\(6\) 0 0
\(7\) −2.63409 + 0.248083i −0.995594 + 0.0937667i
\(8\) 0 0
\(9\) 0.388663 0.673184i 0.129554 0.224395i
\(10\) 0 0
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i
\(12\) 0 0
\(13\) −3.49086 −0.968191 −0.484096 0.875015i \(-0.660851\pi\)
−0.484096 + 0.875015i \(0.660851\pi\)
\(14\) 0 0
\(15\) 0.427076 0.110271
\(16\) 0 0
\(17\) −0.888663 1.53921i −0.215532 0.373313i 0.737905 0.674905i \(-0.235815\pi\)
−0.953437 + 0.301592i \(0.902482\pi\)
\(18\) 0 0
\(19\) −3.31574 + 5.74303i −0.760683 + 1.31754i 0.181817 + 0.983332i \(0.441802\pi\)
−0.942499 + 0.334208i \(0.891531\pi\)
\(20\) 0 0
\(21\) −2.28384 3.21602i −0.498376 0.701793i
\(22\) 0 0
\(23\) −4.30660 + 7.45925i −0.897989 + 1.55536i −0.0679270 + 0.997690i \(0.521639\pi\)
−0.830062 + 0.557672i \(0.811695\pi\)
\(24\) 0 0
\(25\) 2.45897 + 4.25906i 0.491794 + 0.851812i
\(26\) 0 0
\(27\) 5.63148 1.08378
\(28\) 0 0
\(29\) −3.69527 −0.686194 −0.343097 0.939300i \(-0.611476\pi\)
−0.343097 + 0.939300i \(0.611476\pi\)
\(30\) 0 0
\(31\) −0.929693 1.61028i −0.166978 0.289214i 0.770378 0.637587i \(-0.220067\pi\)
−0.937356 + 0.348373i \(0.886734\pi\)
\(32\) 0 0
\(33\) −0.745432 + 1.29113i −0.129763 + 0.224756i
\(34\) 0 0
\(35\) −0.315739 + 0.689008i −0.0533696 + 0.116464i
\(36\) 0 0
\(37\) −3.71354 + 6.43204i −0.610502 + 1.05742i 0.380654 + 0.924718i \(0.375699\pi\)
−0.991156 + 0.132703i \(0.957634\pi\)
\(38\) 0 0
\(39\) −2.60220 4.50714i −0.416686 0.721721i
\(40\) 0 0
\(41\) −2.63671 −0.411785 −0.205893 0.978575i \(-0.566010\pi\)
−0.205893 + 0.978575i \(0.566010\pi\)
\(42\) 0 0
\(43\) −10.8997 −1.66218 −0.831092 0.556135i \(-0.812284\pi\)
−0.831092 + 0.556135i \(0.812284\pi\)
\(44\) 0 0
\(45\) −0.111337 0.192842i −0.0165972 0.0287471i
\(46\) 0 0
\(47\) 3.80660 6.59323i 0.555250 0.961721i −0.442634 0.896702i \(-0.645956\pi\)
0.997884 0.0650189i \(-0.0207108\pi\)
\(48\) 0 0
\(49\) 6.87691 1.30695i 0.982416 0.186707i
\(50\) 0 0
\(51\) 1.32488 2.29475i 0.185520 0.321329i
\(52\) 0 0
\(53\) 3.74543 + 6.48728i 0.514475 + 0.891096i 0.999859 + 0.0167953i \(0.00534636\pi\)
−0.485384 + 0.874301i \(0.661320\pi\)
\(54\) 0 0
\(55\) 0.286462 0.0386265
\(56\) 0 0
\(57\) −9.88663 −1.30952
\(58\) 0 0
\(59\) −1.18164 2.04667i −0.153837 0.266453i 0.778798 0.627275i \(-0.215830\pi\)
−0.932635 + 0.360821i \(0.882496\pi\)
\(60\) 0 0
\(61\) −0.777326 + 1.34637i −0.0995264 + 0.172385i −0.911489 0.411325i \(-0.865066\pi\)
0.811962 + 0.583710i \(0.198399\pi\)
\(62\) 0 0
\(63\) −0.856769 + 1.86965i −0.107943 + 0.235554i
\(64\) 0 0
\(65\) −0.500000 + 0.866025i −0.0620174 + 0.107417i
\(66\) 0 0
\(67\) −3.06379 5.30664i −0.374301 0.648309i 0.615921 0.787808i \(-0.288784\pi\)
−0.990222 + 0.139499i \(0.955451\pi\)
\(68\) 0 0
\(69\) −12.8411 −1.54589
\(70\) 0 0
\(71\) −12.3137 −1.46137 −0.730684 0.682716i \(-0.760799\pi\)
−0.730684 + 0.682716i \(0.760799\pi\)
\(72\) 0 0
\(73\) 4.22716 + 7.32165i 0.494752 + 0.856935i 0.999982 0.00604983i \(-0.00192573\pi\)
−0.505230 + 0.862985i \(0.668592\pi\)
\(74\) 0 0
\(75\) −3.66599 + 6.34968i −0.423312 + 0.733198i
\(76\) 0 0
\(77\) −1.53189 2.15715i −0.174576 0.245830i
\(78\) 0 0
\(79\) 5.19788 9.00300i 0.584807 1.01292i −0.410092 0.912044i \(-0.634503\pi\)
0.994899 0.100872i \(-0.0321633\pi\)
\(80\) 0 0
\(81\) 3.03189 + 5.25139i 0.336877 + 0.583488i
\(82\) 0 0
\(83\) 16.1861 1.77666 0.888329 0.459207i \(-0.151866\pi\)
0.888329 + 0.459207i \(0.151866\pi\)
\(84\) 0 0
\(85\) −0.509136 −0.0552236
\(86\) 0 0
\(87\) −2.75457 4.77105i −0.295321 0.511510i
\(88\) 0 0
\(89\) 5.07031 8.78203i 0.537451 0.930893i −0.461589 0.887094i \(-0.652720\pi\)
0.999040 0.0437993i \(-0.0139462\pi\)
\(90\) 0 0
\(91\) 9.19527 0.866025i 0.963926 0.0907841i
\(92\) 0 0
\(93\) 1.38605 2.40070i 0.143726 0.248941i
\(94\) 0 0
\(95\) 0.949833 + 1.64516i 0.0974508 + 0.168790i
\(96\) 0 0
\(97\) 3.04551 0.309225 0.154613 0.987975i \(-0.450587\pi\)
0.154613 + 0.987975i \(0.450587\pi\)
\(98\) 0 0
\(99\) 0.777326 0.0781242
\(100\) 0 0
\(101\) −2.18426 3.78325i −0.217342 0.376448i 0.736652 0.676272i \(-0.236405\pi\)
−0.953995 + 0.299824i \(0.903072\pi\)
\(102\) 0 0
\(103\) −2.61134 + 4.52297i −0.257303 + 0.445661i −0.965518 0.260335i \(-0.916167\pi\)
0.708216 + 0.705996i \(0.249500\pi\)
\(104\) 0 0
\(105\) −1.12496 + 0.105950i −0.109785 + 0.0103397i
\(106\) 0 0
\(107\) 5.26557 9.12024i 0.509042 0.881687i −0.490903 0.871214i \(-0.663333\pi\)
0.999945 0.0104725i \(-0.00333357\pi\)
\(108\) 0 0
\(109\) −1.77471 3.07389i −0.169986 0.294425i 0.768429 0.639936i \(-0.221039\pi\)
−0.938415 + 0.345511i \(0.887706\pi\)
\(110\) 0 0
\(111\) −11.0728 −1.05098
\(112\) 0 0
\(113\) −6.31370 −0.593943 −0.296972 0.954886i \(-0.595977\pi\)
−0.296972 + 0.954886i \(0.595977\pi\)
\(114\) 0 0
\(115\) 1.23368 + 2.13679i 0.115041 + 0.199257i
\(116\) 0 0
\(117\) −1.35677 + 2.34999i −0.125433 + 0.217257i
\(118\) 0 0
\(119\) 2.72267 + 3.83396i 0.249587 + 0.351459i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) −1.96549 3.40433i −0.177222 0.306958i
\(124\) 0 0
\(125\) 2.84111 0.254117
\(126\) 0 0
\(127\) −3.88139 −0.344418 −0.172209 0.985060i \(-0.555090\pi\)
−0.172209 + 0.985060i \(0.555090\pi\)
\(128\) 0 0
\(129\) −8.12496 14.0728i −0.715363 1.23904i
\(130\) 0 0
\(131\) −9.11582 + 15.7891i −0.796453 + 1.37950i 0.125459 + 0.992099i \(0.459960\pi\)
−0.921912 + 0.387398i \(0.873374\pi\)
\(132\) 0 0
\(133\) 7.30922 15.9503i 0.633790 1.38306i
\(134\) 0 0
\(135\) 0.806602 1.39708i 0.0694213 0.120241i
\(136\) 0 0
\(137\) 0.690780 + 1.19647i 0.0590174 + 0.102221i 0.894025 0.448018i \(-0.147870\pi\)
−0.835007 + 0.550239i \(0.814537\pi\)
\(138\) 0 0
\(139\) 0.591197 0.0501447 0.0250723 0.999686i \(-0.492018\pi\)
0.0250723 + 0.999686i \(0.492018\pi\)
\(140\) 0 0
\(141\) 11.3502 0.955863
\(142\) 0 0
\(143\) −1.74543 3.02318i −0.145960 0.252811i
\(144\) 0 0
\(145\) −0.529277 + 0.916734i −0.0439540 + 0.0761306i
\(146\) 0 0
\(147\) 6.81370 + 7.90471i 0.561985 + 0.651970i
\(148\) 0 0
\(149\) −6.39967 + 11.0845i −0.524281 + 0.908082i 0.475319 + 0.879813i \(0.342333\pi\)
−0.999600 + 0.0282682i \(0.991001\pi\)
\(150\) 0 0
\(151\) −2.82749 4.89736i −0.230098 0.398542i 0.727739 0.685854i \(-0.240571\pi\)
−0.957837 + 0.287313i \(0.907238\pi\)
\(152\) 0 0
\(153\) −1.38156 −0.111693
\(154\) 0 0
\(155\) −0.532644 −0.0427830
\(156\) 0 0
\(157\) 9.82674 + 17.0204i 0.784259 + 1.35838i 0.929440 + 0.368972i \(0.120290\pi\)
−0.145181 + 0.989405i \(0.546376\pi\)
\(158\) 0 0
\(159\) −5.58393 + 9.67165i −0.442834 + 0.767011i
\(160\) 0 0
\(161\) 9.49348 20.7168i 0.748191 1.63271i
\(162\) 0 0
\(163\) −4.50000 + 7.79423i −0.352467 + 0.610491i −0.986681 0.162667i \(-0.947991\pi\)
0.634214 + 0.773158i \(0.281324\pi\)
\(164\) 0 0
\(165\) 0.213538 + 0.369859i 0.0166239 + 0.0287934i
\(166\) 0 0
\(167\) 14.8046 1.14561 0.572806 0.819691i \(-0.305855\pi\)
0.572806 + 0.819691i \(0.305855\pi\)
\(168\) 0 0
\(169\) −0.813871 −0.0626055
\(170\) 0 0
\(171\) 2.57741 + 4.46420i 0.197099 + 0.341386i
\(172\) 0 0
\(173\) −7.59958 + 13.1629i −0.577786 + 1.00075i 0.417947 + 0.908471i \(0.362750\pi\)
−0.995733 + 0.0922828i \(0.970584\pi\)
\(174\) 0 0
\(175\) −7.53376 10.6087i −0.569499 0.801945i
\(176\) 0 0
\(177\) 1.76167 3.05130i 0.132415 0.229350i
\(178\) 0 0
\(179\) 9.22716 + 15.9819i 0.689670 + 1.19454i 0.971945 + 0.235210i \(0.0755778\pi\)
−0.282274 + 0.959334i \(0.591089\pi\)
\(180\) 0 0
\(181\) 19.0272 1.41428 0.707142 0.707072i \(-0.249984\pi\)
0.707142 + 0.707072i \(0.249984\pi\)
\(182\) 0 0
\(183\) −2.31777 −0.171335
\(184\) 0 0
\(185\) 1.06379 + 1.84253i 0.0782112 + 0.135466i
\(186\) 0 0
\(187\) 0.888663 1.53921i 0.0649855 0.112558i
\(188\) 0 0
\(189\) −14.8338 + 1.39708i −1.07900 + 0.101622i
\(190\) 0 0
\(191\) −5.13148 + 8.88798i −0.371301 + 0.643112i −0.989766 0.142701i \(-0.954421\pi\)
0.618465 + 0.785812i \(0.287755\pi\)
\(192\) 0 0
\(193\) −6.86777 11.8953i −0.494353 0.856245i 0.505626 0.862753i \(-0.331262\pi\)
−0.999979 + 0.00650824i \(0.997928\pi\)
\(194\) 0 0
\(195\) −1.49086 −0.106763
\(196\) 0 0
\(197\) 4.05075 0.288604 0.144302 0.989534i \(-0.453906\pi\)
0.144302 + 0.989534i \(0.453906\pi\)
\(198\) 0 0
\(199\) −12.8931 22.3316i −0.913971 1.58304i −0.808401 0.588632i \(-0.799667\pi\)
−0.105570 0.994412i \(-0.533667\pi\)
\(200\) 0 0
\(201\) 4.56769 7.91147i 0.322180 0.558032i
\(202\) 0 0
\(203\) 9.73368 0.916734i 0.683170 0.0643421i
\(204\) 0 0
\(205\) −0.377659 + 0.654125i −0.0263768 + 0.0456860i
\(206\) 0 0
\(207\) 3.34763 + 5.79827i 0.232677 + 0.403008i
\(208\) 0 0
\(209\) −6.63148 −0.458709
\(210\) 0 0
\(211\) 11.8359 0.814816 0.407408 0.913246i \(-0.366433\pi\)
0.407408 + 0.913246i \(0.366433\pi\)
\(212\) 0 0
\(213\) −9.17903 15.8985i −0.628937 1.08935i
\(214\) 0 0
\(215\) −1.56117 + 2.70403i −0.106471 + 0.184413i
\(216\) 0 0
\(217\) 2.84838 + 4.01098i 0.193361 + 0.272283i
\(218\) 0 0
\(219\) −6.30212 + 10.9156i −0.425858 + 0.737607i
\(220\) 0 0
\(221\) 3.10220 + 5.37317i 0.208677 + 0.361438i
\(222\) 0 0
\(223\) 17.7005 1.18531 0.592657 0.805455i \(-0.298079\pi\)
0.592657 + 0.805455i \(0.298079\pi\)
\(224\) 0 0
\(225\) 3.82284 0.254856
\(226\) 0 0
\(227\) 11.8568 + 20.5365i 0.786961 + 1.36306i 0.927820 + 0.373027i \(0.121680\pi\)
−0.140859 + 0.990030i \(0.544986\pi\)
\(228\) 0 0
\(229\) 9.39967 16.2807i 0.621147 1.07586i −0.368125 0.929776i \(-0.620000\pi\)
0.989272 0.146083i \(-0.0466665\pi\)
\(230\) 0 0
\(231\) 1.64323 3.58588i 0.108117 0.235933i
\(232\) 0 0
\(233\) −9.99086 + 17.3047i −0.654523 + 1.13367i 0.327490 + 0.944855i \(0.393797\pi\)
−0.982013 + 0.188813i \(0.939536\pi\)
\(234\) 0 0
\(235\) −1.09045 1.88871i −0.0711329 0.123206i
\(236\) 0 0
\(237\) 15.4987 1.00675
\(238\) 0 0
\(239\) −15.4946 −1.00226 −0.501131 0.865371i \(-0.667083\pi\)
−0.501131 + 0.865371i \(0.667083\pi\)
\(240\) 0 0
\(241\) 2.12309 + 3.67730i 0.136760 + 0.236876i 0.926269 0.376864i \(-0.122998\pi\)
−0.789508 + 0.613740i \(0.789664\pi\)
\(242\) 0 0
\(243\) 3.92708 6.80189i 0.251922 0.436342i
\(244\) 0 0
\(245\) 0.660754 1.89324i 0.0422140 0.120955i
\(246\) 0 0
\(247\) 11.5748 20.0481i 0.736486 1.27563i
\(248\) 0 0
\(249\) 12.0657 + 20.8983i 0.764630 + 1.32438i
\(250\) 0 0
\(251\) 3.77733 0.238423 0.119211 0.992869i \(-0.461963\pi\)
0.119211 + 0.992869i \(0.461963\pi\)
\(252\) 0 0
\(253\) −8.61320 −0.541508
\(254\) 0 0
\(255\) −0.379526 0.657359i −0.0237669 0.0411654i
\(256\) 0 0
\(257\) −9.17961 + 15.8996i −0.572608 + 0.991787i 0.423689 + 0.905808i \(0.360735\pi\)
−0.996297 + 0.0859788i \(0.972598\pi\)
\(258\) 0 0
\(259\) 8.18613 17.8639i 0.508661 1.11001i
\(260\) 0 0
\(261\) −1.43621 + 2.48759i −0.0888993 + 0.153978i
\(262\) 0 0
\(263\) 0.248049 + 0.429634i 0.0152954 + 0.0264923i 0.873572 0.486695i \(-0.161798\pi\)
−0.858276 + 0.513188i \(0.828464\pi\)
\(264\) 0 0
\(265\) 2.14585 0.131818
\(266\) 0 0
\(267\) 15.1183 0.925223
\(268\) 0 0
\(269\) −4.91142 8.50683i −0.299455 0.518671i 0.676557 0.736391i \(-0.263471\pi\)
−0.976011 + 0.217720i \(0.930138\pi\)
\(270\) 0 0
\(271\) 5.74992 9.95915i 0.349283 0.604975i −0.636840 0.770996i \(-0.719759\pi\)
0.986122 + 0.166021i \(0.0530920\pi\)
\(272\) 0 0
\(273\) 7.97259 + 11.2267i 0.482523 + 0.679470i
\(274\) 0 0
\(275\) −2.45897 + 4.25906i −0.148281 + 0.256831i
\(276\) 0 0
\(277\) 1.09958 + 1.90453i 0.0660676 + 0.114432i 0.897167 0.441691i \(-0.145621\pi\)
−0.831099 + 0.556124i \(0.812288\pi\)
\(278\) 0 0
\(279\) −1.44535 −0.0865308
\(280\) 0 0
\(281\) 16.6222 0.991596 0.495798 0.868438i \(-0.334876\pi\)
0.495798 + 0.868438i \(0.334876\pi\)
\(282\) 0 0
\(283\) −7.52928 13.0411i −0.447569 0.775212i 0.550658 0.834731i \(-0.314377\pi\)
−0.998227 + 0.0595185i \(0.981043\pi\)
\(284\) 0 0
\(285\) −1.41607 + 2.45271i −0.0838809 + 0.145286i
\(286\) 0 0
\(287\) 6.94535 0.654125i 0.409971 0.0386117i
\(288\) 0 0
\(289\) 6.92056 11.9868i 0.407092 0.705103i
\(290\) 0 0
\(291\) 2.27022 + 3.93214i 0.133083 + 0.230506i
\(292\) 0 0
\(293\) 26.3905 1.54175 0.770876 0.636986i \(-0.219819\pi\)
0.770876 + 0.636986i \(0.219819\pi\)
\(294\) 0 0
\(295\) −0.676992 −0.0394160
\(296\) 0 0
\(297\) 2.81574 + 4.87700i 0.163386 + 0.282992i
\(298\) 0 0
\(299\) 15.0338 26.0392i 0.869425 1.50589i
\(300\) 0 0
\(301\) 28.7108 2.70403i 1.65486 0.155858i
\(302\) 0 0
\(303\) 3.25644 5.64031i 0.187077 0.324027i
\(304\) 0 0
\(305\) 0.222674 + 0.385683i 0.0127503 + 0.0220842i
\(306\) 0 0
\(307\) 19.2316 1.09761 0.548804 0.835951i \(-0.315083\pi\)
0.548804 + 0.835951i \(0.315083\pi\)
\(308\) 0 0
\(309\) −7.78630 −0.442947
\(310\) 0 0
\(311\) −12.8385 22.2369i −0.728004 1.26094i −0.957725 0.287684i \(-0.907115\pi\)
0.229721 0.973257i \(-0.426219\pi\)
\(312\) 0 0
\(313\) 0.684261 1.18518i 0.0386767 0.0669901i −0.846039 0.533121i \(-0.821019\pi\)
0.884716 + 0.466131i \(0.154352\pi\)
\(314\) 0 0
\(315\) 0.341113 + 0.480342i 0.0192196 + 0.0270642i
\(316\) 0 0
\(317\) −1.74153 + 3.01642i −0.0978141 + 0.169419i −0.910780 0.412893i \(-0.864518\pi\)
0.812966 + 0.582312i \(0.197852\pi\)
\(318\) 0 0
\(319\) −1.84763 3.20019i −0.103448 0.179176i
\(320\) 0 0
\(321\) 15.7005 0.876316
\(322\) 0 0
\(323\) 11.7863 0.655807
\(324\) 0 0
\(325\) −8.58393 14.8678i −0.476151 0.824717i
\(326\) 0 0
\(327\) 2.64585 4.58274i 0.146316 0.253426i
\(328\) 0 0
\(329\) −8.39128 + 18.3115i −0.462626 + 1.00955i
\(330\) 0 0
\(331\) −8.95432 + 15.5093i −0.492174 + 0.852470i −0.999959 0.00901343i \(-0.997131\pi\)
0.507786 + 0.861484i \(0.330464\pi\)
\(332\) 0 0
\(333\) 2.88663 + 4.99979i 0.158186 + 0.273987i
\(334\) 0 0
\(335\) −1.75532 −0.0959033
\(336\) 0 0
\(337\) −34.1496 −1.86025 −0.930123 0.367248i \(-0.880300\pi\)
−0.930123 + 0.367248i \(0.880300\pi\)
\(338\) 0 0
\(339\) −4.70644 8.15179i −0.255619 0.442744i
\(340\) 0 0
\(341\) 0.929693 1.61028i 0.0503457 0.0872013i
\(342\) 0 0
\(343\) −17.7902 + 5.14868i −0.960580 + 0.278003i
\(344\) 0 0
\(345\) −1.83925 + 3.18567i −0.0990217 + 0.171511i
\(346\) 0 0
\(347\) 3.15237 + 5.46006i 0.169228 + 0.293111i 0.938149 0.346233i \(-0.112539\pi\)
−0.768921 + 0.639344i \(0.779206\pi\)
\(348\) 0 0
\(349\) −10.7628 −0.576119 −0.288059 0.957613i \(-0.593010\pi\)
−0.288059 + 0.957613i \(0.593010\pi\)
\(350\) 0 0
\(351\) −19.6587 −1.04930
\(352\) 0 0
\(353\) 3.93156 + 6.80966i 0.209256 + 0.362442i 0.951480 0.307710i \(-0.0995625\pi\)
−0.742224 + 0.670151i \(0.766229\pi\)
\(354\) 0 0
\(355\) −1.76370 + 3.05483i −0.0936077 + 0.162133i
\(356\) 0 0
\(357\) −2.92056 + 6.37327i −0.154572 + 0.337309i
\(358\) 0 0
\(359\) −9.49797 + 16.4510i −0.501283 + 0.868248i 0.498715 + 0.866766i \(0.333805\pi\)
−0.999999 + 0.00148263i \(0.999528\pi\)
\(360\) 0 0
\(361\) −12.4882 21.6303i −0.657276 1.13844i
\(362\) 0 0
\(363\) −1.49086 −0.0782500
\(364\) 0 0
\(365\) 2.42184 0.126765
\(366\) 0 0
\(367\) 9.19788 + 15.9312i 0.480126 + 0.831602i 0.999740 0.0227990i \(-0.00725776\pi\)
−0.519615 + 0.854401i \(0.673924\pi\)
\(368\) 0 0
\(369\) −1.02479 + 1.77499i −0.0533485 + 0.0924024i
\(370\) 0 0
\(371\) −11.4752 16.1589i −0.595763 0.838930i
\(372\) 0 0
\(373\) 11.6276 20.1396i 0.602053 1.04279i −0.390457 0.920621i \(-0.627683\pi\)
0.992510 0.122165i \(-0.0389838\pi\)
\(374\) 0 0
\(375\) 2.11786 + 3.66823i 0.109366 + 0.189427i
\(376\) 0 0
\(377\) 12.8997 0.664367
\(378\) 0 0
\(379\) 3.53264 0.181460 0.0907299 0.995876i \(-0.471080\pi\)
0.0907299 + 0.995876i \(0.471080\pi\)
\(380\) 0 0
\(381\) −2.89331 5.01137i −0.148229 0.256740i
\(382\) 0 0
\(383\) 12.2818 21.2727i 0.627571 1.08699i −0.360466 0.932772i \(-0.617382\pi\)
0.988038 0.154213i \(-0.0492842\pi\)
\(384\) 0 0
\(385\) −0.754568 + 0.0710665i −0.0384564 + 0.00362188i
\(386\) 0 0
\(387\) −4.23630 + 7.33748i −0.215343 + 0.372985i
\(388\) 0 0
\(389\) 0.661504 + 1.14576i 0.0335396 + 0.0580922i 0.882308 0.470673i \(-0.155989\pi\)
−0.848768 + 0.528765i \(0.822655\pi\)
\(390\) 0 0
\(391\) 15.3085 0.774183
\(392\) 0 0
\(393\) −27.1809 −1.37109
\(394\) 0 0
\(395\) −1.48900 2.57902i −0.0749195 0.129764i
\(396\) 0 0
\(397\) −7.67699 + 13.2969i −0.385297 + 0.667354i −0.991810 0.127719i \(-0.959234\pi\)
0.606513 + 0.795073i \(0.292568\pi\)
\(398\) 0 0
\(399\) 26.0423 2.45271i 1.30375 0.122789i
\(400\) 0 0
\(401\) 7.22716 12.5178i 0.360907 0.625109i −0.627203 0.778856i \(-0.715800\pi\)
0.988110 + 0.153746i \(0.0491338\pi\)
\(402\) 0 0
\(403\) 3.24543 + 5.62125i 0.161666 + 0.280015i
\(404\) 0 0
\(405\) 1.73705 0.0863145
\(406\) 0 0
\(407\) −7.42708 −0.368146
\(408\) 0 0
\(409\) −16.1561 27.9832i −0.798868 1.38368i −0.920354 0.391087i \(-0.872099\pi\)
0.121486 0.992593i \(-0.461234\pi\)
\(410\) 0 0
\(411\) −1.02986 + 1.78377i −0.0507992 + 0.0879868i
\(412\) 0 0
\(413\) 3.62031 + 5.09797i 0.178144 + 0.250855i
\(414\) 0 0
\(415\) 2.31836 4.01551i 0.113804 0.197114i
\(416\) 0 0
\(417\) 0.440697 + 0.763310i 0.0215810 + 0.0373794i
\(418\) 0 0
\(419\) −15.5259 −0.758490 −0.379245 0.925296i \(-0.623816\pi\)
−0.379245 + 0.925296i \(0.623816\pi\)
\(420\) 0 0
\(421\) 10.9049 0.531472 0.265736 0.964046i \(-0.414385\pi\)
0.265736 + 0.964046i \(0.414385\pi\)
\(422\) 0 0
\(423\) −2.95897 5.12509i −0.143870 0.249190i
\(424\) 0 0
\(425\) 4.37039 7.56974i 0.211995 0.367186i
\(426\) 0 0
\(427\) 1.71354 3.73930i 0.0829239 0.180957i
\(428\) 0 0
\(429\) 2.60220 4.50714i 0.125635 0.217607i
\(430\) 0 0
\(431\) 8.41271 + 14.5712i 0.405226 + 0.701872i 0.994348 0.106173i \(-0.0338596\pi\)
−0.589122 + 0.808044i \(0.700526\pi\)
\(432\) 0 0
\(433\) 12.1641 0.584570 0.292285 0.956331i \(-0.405584\pi\)
0.292285 + 0.956331i \(0.405584\pi\)
\(434\) 0 0
\(435\) −1.57816 −0.0756669
\(436\) 0 0
\(437\) −28.5591 49.4659i −1.36617 2.36627i
\(438\) 0 0
\(439\) 3.49273 6.04959i 0.166699 0.288731i −0.770558 0.637369i \(-0.780023\pi\)
0.937257 + 0.348638i \(0.113356\pi\)
\(440\) 0 0
\(441\) 1.79298 5.13739i 0.0853801 0.244637i
\(442\) 0 0
\(443\) −19.6796 + 34.0861i −0.935006 + 1.61948i −0.160384 + 0.987055i \(0.551273\pi\)
−0.774622 + 0.632424i \(0.782060\pi\)
\(444\) 0 0
\(445\) −1.45245 2.51572i −0.0688528 0.119256i
\(446\) 0 0
\(447\) −19.0821 −0.902550
\(448\) 0 0
\(449\) 13.3723 0.631076 0.315538 0.948913i \(-0.397815\pi\)
0.315538 + 0.948913i \(0.397815\pi\)
\(450\) 0 0
\(451\) −1.31836 2.28346i −0.0620790 0.107524i
\(452\) 0 0
\(453\) 4.21541 7.30130i 0.198057 0.343045i
\(454\) 0 0
\(455\) 1.10220 2.40523i 0.0516720 0.112759i
\(456\) 0 0
\(457\) −3.44331 + 5.96400i −0.161071 + 0.278984i −0.935253 0.353979i \(-0.884828\pi\)
0.774182 + 0.632963i \(0.218162\pi\)
\(458\) 0 0
\(459\) −5.00448 8.66802i −0.233589 0.404589i
\(460\) 0 0
\(461\) −5.16786 −0.240691 −0.120346 0.992732i \(-0.538400\pi\)
−0.120346 + 0.992732i \(0.538400\pi\)
\(462\) 0 0
\(463\) 18.6039 0.864597 0.432298 0.901731i \(-0.357703\pi\)
0.432298 + 0.901731i \(0.357703\pi\)
\(464\) 0 0
\(465\) −0.397049 0.687710i −0.0184127 0.0318918i
\(466\) 0 0
\(467\) −7.63858 + 13.2304i −0.353471 + 0.612230i −0.986855 0.161608i \(-0.948332\pi\)
0.633384 + 0.773838i \(0.281665\pi\)
\(468\) 0 0
\(469\) 9.38680 + 13.2181i 0.433442 + 0.610355i
\(470\) 0 0
\(471\) −14.6503 + 25.3751i −0.675052 + 1.16922i
\(472\) 0 0
\(473\) −5.44983 9.43939i −0.250584 0.434024i
\(474\) 0 0
\(475\) −32.6132 −1.49640
\(476\) 0 0
\(477\) 5.82284 0.266610
\(478\) 0 0
\(479\) 6.46084 + 11.1905i 0.295203 + 0.511307i 0.975032 0.222064i \(-0.0712793\pi\)
−0.679829 + 0.733371i \(0.737946\pi\)
\(480\) 0 0
\(481\) 12.9635 22.4534i 0.591083 1.02379i
\(482\) 0 0
\(483\) 33.8247 3.18567i 1.53908 0.144953i
\(484\) 0 0
\(485\) 0.436212 0.755542i 0.0198074 0.0343074i
\(486\) 0 0
\(487\) 7.23239 + 12.5269i 0.327731 + 0.567647i 0.982061 0.188562i \(-0.0603827\pi\)
−0.654330 + 0.756209i \(0.727049\pi\)
\(488\) 0 0
\(489\) −13.4178 −0.606773
\(490\) 0 0
\(491\) 40.8799 1.84488 0.922442 0.386136i \(-0.126190\pi\)
0.922442 + 0.386136i \(0.126190\pi\)
\(492\) 0 0
\(493\) 3.28384 + 5.68779i 0.147897 + 0.256165i
\(494\) 0 0
\(495\) 0.111337 0.192842i 0.00500423 0.00866759i
\(496\) 0 0
\(497\) 32.4355 3.05483i 1.45493 0.137028i
\(498\) 0 0
\(499\) 8.84240 15.3155i 0.395840 0.685615i −0.597368 0.801967i \(-0.703787\pi\)
0.993208 + 0.116352i \(0.0371201\pi\)
\(500\) 0 0
\(501\) 11.0358 + 19.1146i 0.493043 + 0.853976i
\(502\) 0 0
\(503\) −43.8266 −1.95413 −0.977065 0.212940i \(-0.931696\pi\)
−0.977065 + 0.212940i \(0.931696\pi\)
\(504\) 0 0
\(505\) −1.25142 −0.0556873
\(506\) 0 0
\(507\) −0.606685 1.05081i −0.0269438 0.0466681i
\(508\) 0 0
\(509\) −16.3652 + 28.3453i −0.725373 + 1.25638i 0.233448 + 0.972369i \(0.424999\pi\)
−0.958820 + 0.284013i \(0.908334\pi\)
\(510\) 0 0
\(511\) −12.9511 18.2372i −0.572924 0.806768i
\(512\) 0 0
\(513\) −18.6725 + 32.3417i −0.824411 + 1.42792i
\(514\) 0 0
\(515\) 0.748049 + 1.29566i 0.0329630 + 0.0570936i
\(516\) 0 0
\(517\) 7.61320 0.334828
\(518\) 0 0
\(519\) −22.6599 −0.994659
\(520\) 0 0
\(521\) 20.2335 + 35.0455i 0.886446 + 1.53537i 0.844047 + 0.536269i \(0.180167\pi\)
0.0423992 + 0.999101i \(0.486500\pi\)
\(522\) 0 0
\(523\) −17.3430 + 30.0389i −0.758356 + 1.31351i 0.185333 + 0.982676i \(0.440664\pi\)
−0.943689 + 0.330835i \(0.892670\pi\)
\(524\) 0 0
\(525\) 8.08131 17.6351i 0.352697 0.769660i
\(526\) 0 0
\(527\) −1.65237 + 2.86198i −0.0719783 + 0.124670i
\(528\) 0 0
\(529\) −25.5936 44.3295i −1.11277 1.92737i
\(530\) 0 0
\(531\) −1.83704 −0.0797209
\(532\) 0 0
\(533\) 9.20440 0.398687
\(534\) 0 0
\(535\) −1.50839 2.61260i −0.0652132 0.112953i
\(536\) 0 0
\(537\) −13.7564 + 23.8268i −0.593634 + 1.02820i
\(538\) 0 0
\(539\) 4.57031 + 5.30210i 0.196857 + 0.228378i
\(540\) 0 0
\(541\) 2.97521 5.15321i 0.127914 0.221554i −0.794954 0.606670i \(-0.792505\pi\)
0.922868 + 0.385116i \(0.125838\pi\)
\(542\) 0 0
\(543\) 14.1835 + 24.5666i 0.608673 + 1.05425i
\(544\) 0 0
\(545\) −1.01677 −0.0435538
\(546\) 0 0
\(547\) 1.32824 0.0567915 0.0283958 0.999597i \(-0.490960\pi\)
0.0283958 + 0.999597i \(0.490960\pi\)
\(548\) 0 0
\(549\) 0.604235 + 1.04657i 0.0257881 + 0.0446664i
\(550\) 0 0
\(551\) 12.2525 21.2220i 0.521975 0.904088i
\(552\) 0 0
\(553\) −11.4582 + 25.0043i −0.487253 + 1.06329i
\(554\) 0 0
\(555\) −1.58596 + 2.74697i −0.0673204 + 0.116602i
\(556\) 0 0
\(557\) 5.55727 + 9.62547i 0.235469 + 0.407844i 0.959409 0.282019i \(-0.0910040\pi\)
−0.723940 + 0.689863i \(0.757671\pi\)
\(558\) 0 0
\(559\) 38.0492 1.60931
\(560\) 0 0
\(561\) 2.64975 0.111873
\(562\) 0 0
\(563\) −9.73816 16.8670i −0.410415 0.710859i 0.584520 0.811379i \(-0.301283\pi\)
−0.994935 + 0.100520i \(0.967949\pi\)
\(564\) 0 0
\(565\) −0.904318 + 1.56633i −0.0380450 + 0.0658958i
\(566\) 0 0
\(567\) −9.28908 13.0805i −0.390105 0.549330i
\(568\) 0 0
\(569\) −14.1112 + 24.4413i −0.591571 + 1.02463i 0.402450 + 0.915442i \(0.368159\pi\)
−0.994021 + 0.109189i \(0.965175\pi\)
\(570\) 0 0
\(571\) 11.9655 + 20.7248i 0.500740 + 0.867307i 1.00000 0.000854835i \(0.000272102\pi\)
−0.499260 + 0.866453i \(0.666395\pi\)
\(572\) 0 0
\(573\) −15.3007 −0.639194
\(574\) 0 0
\(575\) −42.3592 −1.76650
\(576\) 0 0
\(577\) −13.6477 23.6385i −0.568162 0.984085i −0.996748 0.0805842i \(-0.974321\pi\)
0.428586 0.903501i \(-0.359012\pi\)
\(578\) 0 0
\(579\) 10.2389 17.7343i 0.425515 0.737013i
\(580\) 0 0
\(581\) −42.6358 + 4.01551i −1.76883 + 0.166591i
\(582\) 0 0
\(583\) −3.74543 + 6.48728i −0.155120 + 0.268676i
\(584\) 0 0
\(585\) 0.388663 + 0.673184i 0.0160692 + 0.0278327i
\(586\) 0 0
\(587\) −15.9179 −0.657004 −0.328502 0.944503i \(-0.606544\pi\)
−0.328502 + 0.944503i \(0.606544\pi\)
\(588\) 0 0
\(589\) 12.3305 0.508068
\(590\) 0 0
\(591\) 3.01956 + 5.23003i 0.124208 + 0.215135i
\(592\) 0 0
\(593\) 3.21092 5.56148i 0.131857 0.228383i −0.792536 0.609826i \(-0.791239\pi\)
0.924392 + 0.381443i \(0.124573\pi\)
\(594\) 0 0
\(595\) 1.34111 0.126308i 0.0549803 0.00517814i
\(596\) 0 0
\(597\) 19.2219 33.2933i 0.786701 1.36261i
\(598\) 0 0
\(599\) −2.11786 3.66823i −0.0865333 0.149880i 0.819510 0.573064i \(-0.194246\pi\)
−0.906044 + 0.423184i \(0.860912\pi\)
\(600\) 0 0
\(601\) 26.4946 1.08074 0.540369 0.841428i \(-0.318285\pi\)
0.540369 + 0.841428i \(0.318285\pi\)
\(602\) 0 0
\(603\) −4.76312 −0.193969
\(604\) 0 0
\(605\) 0.143231 + 0.248083i 0.00582317 + 0.0100860i
\(606\) 0 0
\(607\) −15.3131 + 26.5231i −0.621540 + 1.07654i 0.367659 + 0.929961i \(0.380160\pi\)
−0.989199 + 0.146579i \(0.953174\pi\)
\(608\) 0 0
\(609\) 8.43941 + 11.8840i 0.341982 + 0.481566i
\(610\) 0 0
\(611\) −13.2883 + 23.0161i −0.537588 + 0.931130i
\(612\) 0 0
\(613\) −14.1679 24.5394i −0.572234 0.991139i −0.996336 0.0855244i \(-0.972743\pi\)
0.424102 0.905615i \(-0.360590\pi\)
\(614\) 0 0
\(615\) −1.12608 −0.0454078
\(616\) 0 0
\(617\) −49.3279 −1.98587 −0.992933 0.118673i \(-0.962136\pi\)
−0.992933 + 0.118673i \(0.962136\pi\)
\(618\) 0 0
\(619\) −20.0638 34.7515i −0.806432 1.39678i −0.915320 0.402727i \(-0.868062\pi\)
0.108889 0.994054i \(-0.465271\pi\)
\(620\) 0 0
\(621\) −24.2525 + 42.0066i −0.973221 + 1.68567i
\(622\) 0 0
\(623\) −11.1770 + 24.3906i −0.447797 + 0.977187i
\(624\) 0 0
\(625\) −11.8879 + 20.5905i −0.475517 + 0.823619i
\(626\) 0 0
\(627\) −4.94331 8.56207i −0.197417 0.341936i
\(628\) 0 0
\(629\) 13.2003 0.526332
\(630\) 0 0
\(631\) 39.2354 1.56194 0.780968 0.624571i \(-0.214726\pi\)
0.780968 + 0.624571i \(0.214726\pi\)
\(632\) 0 0
\(633\) 8.82284 + 15.2816i 0.350676 + 0.607389i
\(634\) 0 0
\(635\) −0.555936 + 0.962910i −0.0220616 + 0.0382119i
\(636\) 0 0
\(637\) −24.0064 + 4.56239i −0.951166 + 0.180768i
\(638\) 0 0
\(639\) −4.78588 + 8.28939i −0.189326 + 0.327923i
\(640\) 0 0
\(641\) 2.48434 + 4.30301i 0.0981257 + 0.169959i 0.910909 0.412608i \(-0.135382\pi\)
−0.812783 + 0.582566i \(0.802049\pi\)
\(642\) 0 0
\(643\) 1.88289 0.0742541 0.0371270 0.999311i \(-0.488179\pi\)
0.0371270 + 0.999311i \(0.488179\pi\)
\(644\) 0 0
\(645\) −4.65498 −0.183290
\(646\) 0 0
\(647\) −7.45955 12.9203i −0.293265 0.507950i 0.681315 0.731991i \(-0.261409\pi\)
−0.974580 + 0.224040i \(0.928075\pi\)
\(648\) 0 0
\(649\) 1.18164 2.04667i 0.0463836 0.0803387i
\(650\) 0 0
\(651\) −3.05540 + 6.66753i −0.119751 + 0.261321i
\(652\) 0 0
\(653\) −20.7674 + 35.9703i −0.812693 + 1.40763i 0.0982802 + 0.995159i \(0.468666\pi\)
−0.910973 + 0.412466i \(0.864667\pi\)
\(654\) 0 0
\(655\) 2.61134 + 4.52297i 0.102033 + 0.176727i
\(656\) 0 0
\(657\) 6.57176 0.256389
\(658\) 0 0
\(659\) −12.4596 −0.485355 −0.242678 0.970107i \(-0.578026\pi\)
−0.242678 + 0.970107i \(0.578026\pi\)
\(660\) 0 0
\(661\) −2.63409 4.56239i −0.102454 0.177456i 0.810241 0.586097i \(-0.199336\pi\)
−0.912695 + 0.408641i \(0.866003\pi\)
\(662\) 0 0
\(663\) −4.62496 + 8.01066i −0.179618 + 0.311108i
\(664\) 0 0
\(665\) −2.91009 4.09787i −0.112848 0.158909i
\(666\) 0 0
\(667\) 15.9140 27.5639i 0.616194 1.06728i
\(668\) 0 0
\(669\) 13.1945 + 22.8536i 0.510129 + 0.883570i
\(670\) 0 0
\(671\) −1.55465 −0.0600167
\(672\) 0 0
\(673\) −27.8254 −1.07259 −0.536295 0.844030i \(-0.680177\pi\)
−0.536295 + 0.844030i \(0.680177\pi\)
\(674\) 0 0
\(675\) 13.8476 + 23.9848i 0.532996 + 0.923176i
\(676\) 0 0
\(677\) −10.5436 + 18.2621i −0.405225 + 0.701871i −0.994348 0.106173i \(-0.966140\pi\)
0.589122 + 0.808044i \(0.299474\pi\)
\(678\) 0 0
\(679\) −8.02217 + 0.755542i −0.307863 + 0.0289950i
\(680\) 0 0
\(681\) −17.6768 + 30.6172i −0.677377 + 1.17325i
\(682\) 0 0
\(683\) −23.9536 41.4888i −0.916558 1.58752i −0.804604 0.593811i \(-0.797623\pi\)
−0.111953 0.993713i \(-0.535711\pi\)
\(684\) 0 0
\(685\) 0.395765 0.0151214
\(686\) 0 0
\(687\) 28.0272 1.06931
\(688\) 0 0
\(689\) −13.0748 22.6462i −0.498110 0.862752i
\(690\) 0 0
\(691\) −2.73705 + 4.74070i −0.104122 + 0.180345i −0.913379 0.407110i \(-0.866537\pi\)
0.809257 + 0.587455i \(0.199870\pi\)
\(692\) 0 0
\(693\) −2.04755 + 0.192842i −0.0777800 + 0.00732545i
\(694\) 0 0
\(695\) 0.0846777 0.146666i 0.00321201 0.00556336i
\(696\) 0 0
\(697\) 2.34315 + 4.05845i 0.0887531 + 0.153725i
\(698\) 0 0
\(699\) −29.7900 −1.12676
\(700\) 0 0
\(701\) 31.1679 1.17719 0.588597 0.808427i \(-0.299681\pi\)
0.588597 + 0.808427i \(0.299681\pi\)
\(702\) 0 0
\(703\) −24.6262 42.6539i −0.928796 1.60872i
\(704\) 0 0
\(705\) 1.62571 2.81581i 0.0612277 0.106049i
\(706\) 0 0
\(707\) 6.69211 + 9.42356i 0.251683 + 0.354410i
\(708\) 0 0
\(709\) −24.1833 + 41.8868i −0.908225 + 1.57309i −0.0916953 + 0.995787i \(0.529229\pi\)
−0.816529 + 0.577304i \(0.804105\pi\)
\(710\) 0 0
\(711\) −4.04045 6.99826i −0.151529 0.262455i
\(712\) 0 0
\(713\) 16.0153 0.599777
\(714\) 0 0
\(715\) −1.00000 −0.0373979
\(716\) 0 0
\(717\) −11.5502 20.0055i −0.431349 0.747118i
\(718\) 0 0
\(719\) 0.893315 1.54727i 0.0333150 0.0577033i −0.848887 0.528574i \(-0.822727\pi\)
0.882202 + 0.470871i \(0.156060\pi\)
\(720\) 0 0
\(721\) 5.75644 12.5618i 0.214381 0.467824i
\(722\) 0 0
\(723\) −3.16524 + 5.48235i −0.117716 + 0.203891i
\(724\) 0 0
\(725\) −9.08655 15.7384i −0.337466 0.584508i
\(726\) 0 0
\(727\) 22.5494 0.836312 0.418156 0.908375i \(-0.362677\pi\)
0.418156 + 0.908375i \(0.362677\pi\)
\(728\) 0 0
\(729\) 29.9008 1.10744
\(730\) 0 0
\(731\) 9.68613 + 16.7769i 0.358254 + 0.620515i
\(732\) 0 0
\(733\) −2.72978 + 4.72811i −0.100827 + 0.174637i −0.912025 0.410134i \(-0.865482\pi\)
0.811199 + 0.584770i \(0.198815\pi\)
\(734\) 0 0
\(735\) 2.93696 0.558167i 0.108331 0.0205883i
\(736\) 0 0
\(737\) 3.06379 5.30664i 0.112856 0.195472i
\(738\) 0 0
\(739\) −7.45507 12.9126i −0.274239 0.474996i 0.695704 0.718329i \(-0.255093\pi\)
−0.969943 + 0.243333i \(0.921759\pi\)
\(740\) 0 0
\(741\) 34.5129 1.26786
\(742\) 0 0
\(743\) 12.7680 0.468413 0.234207 0.972187i \(-0.424751\pi\)
0.234207 + 0.972187i \(0.424751\pi\)
\(744\) 0 0
\(745\) 1.83326 + 3.17530i 0.0671655 + 0.116334i
\(746\) 0 0
\(747\) 6.29095 10.8962i 0.230174 0.398673i
\(748\) 0 0
\(749\) −11.6074 + 25.3299i −0.424126 + 0.925533i
\(750\) 0 0
\(751\) −15.7564 + 27.2909i −0.574961 + 0.995861i 0.421085 + 0.907021i \(0.361649\pi\)
−0.996046 + 0.0888398i \(0.971684\pi\)
\(752\) 0 0
\(753\) 2.81574 + 4.87700i 0.102611 + 0.177728i
\(754\) 0 0
\(755\) −1.61994 −0.0589556
\(756\) 0 0
\(757\) −19.0936 −0.693969 −0.346984 0.937871i \(-0.612794\pi\)
−0.346984 + 0.937871i \(0.612794\pi\)
\(758\) 0 0
\(759\) −6.42056 11.1207i −0.233051 0.403657i
\(760\) 0 0
\(761\) 6.51100 11.2774i 0.236024 0.408805i −0.723546 0.690276i \(-0.757489\pi\)
0.959570 + 0.281471i \(0.0908224\pi\)
\(762\) 0 0
\(763\) 5.43733 + 7.65663i 0.196845 + 0.277189i
\(764\) 0 0
\(765\) −0.197882 + 0.342742i −0.00715445 + 0.0123919i
\(766\) 0 0
\(767\) 4.12496 + 7.14464i 0.148944 + 0.257978i
\(768\) 0 0
\(769\) −25.5103 −0.919925 −0.459963 0.887938i \(-0.652137\pi\)
−0.459963 + 0.887938i \(0.652137\pi\)
\(770\) 0 0
\(771\) −27.3711 −0.985746
\(772\) 0 0
\(773\) 23.9342 + 41.4552i 0.860853 + 1.49104i 0.871107 + 0.491093i \(0.163402\pi\)
−0.0102547 + 0.999947i \(0.503264\pi\)
\(774\) 0 0
\(775\) 4.57217 7.91924i 0.164237 0.284467i
\(776\) 0 0
\(777\) 29.1667 2.74697i 1.04635 0.0985469i
\(778\) 0 0
\(779\) 8.74265 15.1427i 0.313238 0.542544i
\(780\) 0 0
\(781\) −6.15685 10.6640i −0.220309 0.381587i
\(782\) 0 0
\(783\) −20.8098 −0.743682
\(784\) 0 0
\(785\) 5.62998 0.200943
\(786\) 0 0
\(787\) −13.7909 23.8866i −0.491594 0.851466i 0.508359 0.861145i \(-0.330252\pi\)
−0.999953 + 0.00967918i \(0.996919\pi\)
\(788\) 0 0
\(789\) −0.369807 + 0.640525i −0.0131655 + 0.0228033i
\(790\) 0 0
\(791\) 16.6309 1.56633i 0.591327 0.0556921i
\(792\) 0 0
\(793\) 2.71354 4.69999i 0.0963606 0.166901i
\(794\) 0 0
\(795\) 1.59958 + 2.77056i 0.0567314 + 0.0982616i
\(796\) 0 0
\(797\) −26.7773 −0.948502 −0.474251 0.880390i \(-0.657281\pi\)
−0.474251 + 0.880390i \(0.657281\pi\)
\(798\) 0 0
\(799\) −13.5311 −0.478697
\(800\) 0 0
\(801\) −3.94128 6.82650i −0.139258 0.241202i
\(802\) 0 0
\(803\) −4.22716 + 7.32165i −0.149173 + 0.258376i
\(804\) 0 0
\(805\) −3.77973 5.32246i −0.133218 0.187592i
\(806\) 0 0
\(807\) 7.32226 12.6825i 0.257756 0.446446i
\(808\) 0 0
\(809\) −18.5806 32.1825i −0.653258 1.13148i −0.982328 0.187170i \(-0.940068\pi\)
0.329070 0.944306i \(-0.393265\pi\)
\(810\) 0 0
\(811\) −15.0414 −0.528177 −0.264088 0.964499i \(-0.585071\pi\)
−0.264088 + 0.964499i \(0.585071\pi\)
\(812\) 0 0
\(813\) 17.1447 0.601290
\(814\) 0 0
\(815\) 1.28908 + 2.23275i 0.0451545 + 0.0782099i
\(816\) 0 0
\(817\) 36.1404 62.5971i 1.26439 2.18999i
\(818\) 0 0
\(819\) 2.99086 6.52670i 0.104509 0.228061i
\(820\) 0 0
\(821\) 0.106685 0.184785i 0.00372335 0.00644903i −0.864158 0.503221i \(-0.832148\pi\)
0.867881 + 0.496772i \(0.165481\pi\)
\(822\) 0 0
\(823\) 20.2199 + 35.0219i 0.704821 + 1.22079i 0.966756 + 0.255700i \(0.0823061\pi\)
−0.261935 + 0.965086i \(0.584361\pi\)
\(824\) 0 0
\(825\) −7.33198 −0.255267
\(826\) 0 0
\(827\) −50.0713 −1.74115 −0.870574 0.492037i \(-0.836252\pi\)
−0.870574 + 0.492037i \(0.836252\pi\)
\(828\) 0 0
\(829\) −16.4133 28.4286i −0.570057 0.987368i −0.996559 0.0828813i \(-0.973588\pi\)
0.426502 0.904486i \(-0.359746\pi\)
\(830\) 0 0
\(831\) −1.63933 + 2.83940i −0.0568677 + 0.0984977i
\(832\) 0 0
\(833\) −8.12292 9.42356i −0.281443 0.326507i
\(834\) 0 0
\(835\) 2.12047 3.67277i 0.0733820 0.127101i
\(836\) 0 0
\(837\) −5.23555 9.06823i −0.180967 0.313444i
\(838\) 0 0
\(839\) 36.7758 1.26964 0.634821 0.772659i \(-0.281074\pi\)
0.634821 + 0.772659i \(0.281074\pi\)
\(840\) 0 0
\(841\) −15.3450 −0.529138
\(842\) 0 0
\(843\) 12.3907 + 21.4613i 0.426758 + 0.739167i
\(844\) 0 0
\(845\) −0.116572 + 0.201908i −0.00401019 + 0.00694584i
\(846\) 0 0
\(847\) 1.10220 2.40523i 0.0378721 0.0826448i
\(848\) 0 0
\(849\) 11.2251 19.4425i 0.385245 0.667264i
\(850\) 0 0
\(851\) −31.9855 55.4004i −1.09645 1.89910i
\(852\) 0 0
\(853\) −21.6613 −0.741668 −0.370834 0.928699i \(-0.620928\pi\)
−0.370834 + 0.928699i \(0.620928\pi\)
\(854\) 0 0
\(855\) 1.47666 0.0505007
\(856\) 0 0
\(857\) 2.18426 + 3.78325i 0.0746129 + 0.129233i 0.900918 0.433990i \(-0.142895\pi\)
−0.826305 + 0.563223i \(0.809561\pi\)
\(858\) 0 0
\(859\) −6.58131 + 11.3992i −0.224551 + 0.388934i −0.956185 0.292764i \(-0.905425\pi\)
0.731633 + 0.681698i \(0.238758\pi\)
\(860\) 0 0
\(861\) 6.02184 + 8.47971i 0.205224 + 0.288988i
\(862\) 0 0
\(863\) −14.8892 + 25.7889i −0.506836 + 0.877865i 0.493133 + 0.869954i \(0.335852\pi\)
−0.999969 + 0.00791139i \(0.997482\pi\)
\(864\) 0 0
\(865\) 2.17699 + 3.77066i 0.0740200 + 0.128206i
\(866\) 0 0
\(867\) 20.6352 0.700809
\(868\) 0 0
\(869\) 10.3958 0.352652
\(870\) 0 0
\(871\) 10.6953 + 18.5247i 0.362395 + 0.627687i
\(872\) 0 0
\(873\) 1.18368 2.05019i 0.0400614 0.0693885i
\(874\) 0 0
\(875\) −7.48376 + 0.704833i −0.252997 + 0.0238277i
\(876\) 0 0
\(877\) −6.62699 + 11.4783i −0.223778 + 0.387594i −0.955952 0.293523i \(-0.905172\pi\)
0.732174 + 0.681117i \(0.238506\pi\)
\(878\) 0 0
\(879\) 19.6723 + 34.0735i 0.663532 + 1.14927i
\(880\) 0 0
\(881\) −46.3890 −1.56289 −0.781443 0.623977i \(-0.785516\pi\)
−0.781443 + 0.623977i \(0.785516\pi\)
\(882\) 0 0
\(883\) −11.6550 −0.392221 −0.196111 0.980582i \(-0.562831\pi\)
−0.196111 + 0.980582i \(0.562831\pi\)
\(884\) 0 0
\(885\) −0.504652 0.874082i −0.0169637 0.0293820i
\(886\) 0 0
\(887\) 13.8599 24.0061i 0.465371 0.806046i −0.533848 0.845581i \(-0.679254\pi\)
0.999218 + 0.0395352i \(0.0125877\pi\)
\(888\) 0 0
\(889\) 10.2240 0.962910i 0.342901 0.0322949i
\(890\) 0 0
\(891\) −3.03189 + 5.25139i −0.101572 + 0.175928i
\(892\) 0 0
\(893\) 25.2434 + 43.7228i 0.844738 + 1.46313i
\(894\) 0 0
\(895\) 5.28646 0.176707
\(896\) 0 0
\(897\) 44.8266 1.49672
\(898\) 0 0
\(899\) 3.43546 + 5.95040i 0.114579 + 0.198457i
\(900\) 0 0
\(901\) 6.65685 11.5300i 0.221772 0.384120i
\(902\) 0 0
\(903\) 24.8931 + 35.0535i 0.828392 + 1.16651i
\(904\) 0 0
\(905\) 2.72529 4.72034i 0.0905918 0.156910i
\(906\) 0 0
\(907\) 1.86329 + 3.22731i 0.0618695 + 0.107161i 0.895301 0.445462i \(-0.146960\pi\)
−0.833432 + 0.552623i \(0.813627\pi\)
\(908\) 0 0
\(909\) −3.39576 −0.112630
\(910\) 0 0
\(911\) 42.4685 1.40704 0.703522 0.710673i \(-0.251609\pi\)
0.703522 + 0.710673i \(0.251609\pi\)
\(912\) 0 0
\(913\) 8.09306 + 14.0176i 0.267841 + 0.463915i
\(914\) 0 0
\(915\) −0.331977 + 0.575001i −0.0109748 + 0.0190090i
\(916\) 0 0
\(917\) 20.0949 43.8514i 0.663593 1.44810i
\(918\) 0 0
\(919\) −1.03114 + 1.78599i −0.0340143 + 0.0589145i −0.882531 0.470253i \(-0.844163\pi\)
0.848517 + 0.529168i \(0.177496\pi\)
\(920\) 0 0
\(921\) 14.3359 + 24.8305i 0.472383 + 0.818192i
\(922\) 0 0
\(923\) 42.9855 1.41488
\(924\) 0 0
\(925\) −36.5259 −1.20096
\(926\) 0 0
\(927\) 2.02986 + 3.51582i 0.0666693 + 0.115475i
\(928\) 0 0
\(929\) 25.3111 43.8401i 0.830430 1.43835i −0.0672680 0.997735i \(-0.521428\pi\)
0.897698 0.440612i \(-0.145238\pi\)
\(930\) 0 0
\(931\) −15.2962 + 43.8278i −0.501312 + 1.43640i
\(932\) 0 0
\(933\) 19.1404 33.1522i 0.626630 1.08536i
\(934\) 0 0
\(935\) −0.254568 0.440925i −0.00832527 0.0144198i
\(936\) 0 0
\(937\) 32.5129 1.06215 0.531075 0.847325i \(-0.321788\pi\)
0.531075 + 0.847325i \(0.321788\pi\)
\(938\) 0 0
\(939\) 2.04028 0.0665820
\(940\) 0 0
\(941\) −13.0996 22.6891i −0.427034 0.739645i 0.569574 0.821940i \(-0.307108\pi\)
−0.996608 + 0.0822953i \(0.973775\pi\)
\(942\) 0 0
\(943\) 11.3553 19.6679i 0.369778 0.640475i
\(944\) 0 0
\(945\) −1.77808 + 3.88014i −0.0578408 + 0.126221i
\(946\) 0 0
\(947\) 28.1015 48.6731i 0.913174 1.58166i 0.103622 0.994617i \(-0.466957\pi\)
0.809552 0.587048i \(-0.199710\pi\)
\(948\) 0 0
\(949\) −14.7564 25.5589i −0.479014 0.829677i
\(950\) 0 0
\(951\) −5.19277 −0.168387
\(952\) 0 0
\(953\) 14.9855 0.485427 0.242713 0.970098i \(-0.421963\pi\)
0.242713 + 0.970098i \(0.421963\pi\)
\(954\) 0 0
\(955\) 1.46997 + 2.54607i 0.0475672 + 0.0823889i
\(956\) 0 0
\(957\) 2.75457 4.77105i 0.0890425 0.154226i
\(958\) 0 0
\(959\) −2.11640 2.98024i −0.0683423 0.0962368i
\(960\) 0 0
\(961\) 13.7713 23.8527i 0.444237 0.769441i
\(962\) 0 0
\(963\) −4.09306 7.08940i −0.131897 0.228453i
\(964\) 0 0
\(965\) −3.93471 −0.126663
\(966\) 0 0
\(967\) 38.8161 1.24824 0.624121 0.781328i \(-0.285457\pi\)
0.624121 + 0.781328i \(0.285457\pi\)
\(968\) 0 0
\(969\) 8.78588 + 15.2176i 0.282243 + 0.488859i
\(970\) 0 0
\(971\) −13.9836 + 24.2203i −0.448755 + 0.777266i −0.998305 0.0581943i \(-0.981466\pi\)
0.549550 + 0.835461i \(0.314799\pi\)
\(972\) 0 0
\(973\) −1.55727 + 0.146666i −0.0499237 + 0.00470190i
\(974\) 0 0
\(975\) 12.7975 22.1659i 0.409847 0.709876i
\(976\) 0 0
\(977\) 22.1750 + 38.4082i 0.709440 + 1.22879i 0.965065 + 0.262010i \(0.0843853\pi\)
−0.255625 + 0.966776i \(0.582281\pi\)
\(978\) 0 0
\(979\) 10.1406 0.324095
\(980\) 0 0
\(981\) −2.75905 −0.0880898
\(982\) 0 0
\(983\) 26.3495 + 45.6387i 0.840419 + 1.45565i 0.889541 + 0.456855i \(0.151024\pi\)
−0.0491227 + 0.998793i \(0.515643\pi\)
\(984\) 0 0
\(985\) 0.580193 1.00492i 0.0184865 0.0320195i
\(986\) 0 0
\(987\) −29.8976 + 2.81581i −0.951652 + 0.0896282i
\(988\) 0 0
\(989\) 46.9405 81.3034i 1.49262 2.58530i
\(990\) 0 0
\(991\) −16.2740 28.1873i −0.516959 0.895400i −0.999806 0.0196949i \(-0.993731\pi\)
0.482847 0.875705i \(-0.339603\pi\)
\(992\) 0 0
\(993\) −26.6993 −0.847278
\(994\) 0 0
\(995\) −7.38680 −0.234177
\(996\) 0 0
\(997\) −18.2128 31.5455i −0.576805 0.999055i −0.995843 0.0910866i \(-0.970966\pi\)
0.419038 0.907969i \(-0.362367\pi\)
\(998\) 0 0
\(999\) −20.9127 + 36.2219i −0.661649 + 1.14601i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.2.q.j.177.3 6
4.3 odd 2 308.2.i.b.177.1 6
7.2 even 3 8624.2.a.cp.1.1 3
7.4 even 3 inner 1232.2.q.j.529.3 6
7.5 odd 6 8624.2.a.cg.1.3 3
12.11 even 2 2772.2.s.e.793.2 6
28.3 even 6 2156.2.i.j.1145.3 6
28.11 odd 6 308.2.i.b.221.1 yes 6
28.19 even 6 2156.2.a.k.1.1 3
28.23 odd 6 2156.2.a.g.1.3 3
28.27 even 2 2156.2.i.j.177.3 6
84.11 even 6 2772.2.s.e.2377.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.i.b.177.1 6 4.3 odd 2
308.2.i.b.221.1 yes 6 28.11 odd 6
1232.2.q.j.177.3 6 1.1 even 1 trivial
1232.2.q.j.529.3 6 7.4 even 3 inner
2156.2.a.g.1.3 3 28.23 odd 6
2156.2.a.k.1.1 3 28.19 even 6
2156.2.i.j.177.3 6 28.27 even 2
2156.2.i.j.1145.3 6 28.3 even 6
2772.2.s.e.793.2 6 12.11 even 2
2772.2.s.e.2377.2 6 84.11 even 6
8624.2.a.cg.1.3 3 7.5 odd 6
8624.2.a.cp.1.1 3 7.2 even 3