Properties

Label 2156.2.a.g.1.3
Level $2156$
Weight $2$
Character 2156.1
Self dual yes
Analytic conductor $17.216$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(1,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.2157466758\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 308)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.713538\) of defining polynomial
Character \(\chi\) \(=\) 2156.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.49086 q^{3} -0.286462 q^{5} -0.777326 q^{9} +1.00000 q^{11} -3.49086 q^{13} -0.427076 q^{15} +1.77733 q^{17} -6.63148 q^{19} -8.61320 q^{23} -4.91794 q^{25} -5.63148 q^{27} -3.69527 q^{29} -1.85939 q^{31} +1.49086 q^{33} +7.42708 q^{37} -5.20440 q^{39} -2.63671 q^{41} +10.8997 q^{43} +0.222674 q^{45} +7.61320 q^{47} +2.64975 q^{51} -7.49086 q^{53} -0.286462 q^{55} -9.88663 q^{57} -2.36329 q^{59} +1.55465 q^{61} +1.00000 q^{65} -6.12758 q^{67} -12.8411 q^{69} +12.3137 q^{71} -8.45432 q^{73} -7.33198 q^{75} +10.3958 q^{79} -6.06379 q^{81} -16.1861 q^{83} -0.509136 q^{85} -5.50914 q^{87} -10.1406 q^{89} -2.77209 q^{93} +1.89967 q^{95} +3.04551 q^{97} -0.777326 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 2 q^{5} + 4 q^{9} + 3 q^{11} - 3 q^{13} + q^{15} - q^{17} - 9 q^{19} - 5 q^{25} - 6 q^{27} + 5 q^{29} - 9 q^{31} - 3 q^{33} + 20 q^{37} - 7 q^{39} - 5 q^{41} + 8 q^{43} + 7 q^{45} - 3 q^{47}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.49086 0.860751 0.430375 0.902650i \(-0.358381\pi\)
0.430375 + 0.902650i \(0.358381\pi\)
\(4\) 0 0
\(5\) −0.286462 −0.128110 −0.0640549 0.997946i \(-0.520403\pi\)
−0.0640549 + 0.997946i \(0.520403\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.777326 −0.259109
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −3.49086 −0.968191 −0.484096 0.875015i \(-0.660851\pi\)
−0.484096 + 0.875015i \(0.660851\pi\)
\(14\) 0 0
\(15\) −0.427076 −0.110271
\(16\) 0 0
\(17\) 1.77733 0.431065 0.215532 0.976497i \(-0.430851\pi\)
0.215532 + 0.976497i \(0.430851\pi\)
\(18\) 0 0
\(19\) −6.63148 −1.52137 −0.760683 0.649124i \(-0.775136\pi\)
−0.760683 + 0.649124i \(0.775136\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.61320 −1.79598 −0.897989 0.440019i \(-0.854972\pi\)
−0.897989 + 0.440019i \(0.854972\pi\)
\(24\) 0 0
\(25\) −4.91794 −0.983588
\(26\) 0 0
\(27\) −5.63148 −1.08378
\(28\) 0 0
\(29\) −3.69527 −0.686194 −0.343097 0.939300i \(-0.611476\pi\)
−0.343097 + 0.939300i \(0.611476\pi\)
\(30\) 0 0
\(31\) −1.85939 −0.333956 −0.166978 0.985961i \(-0.553401\pi\)
−0.166978 + 0.985961i \(0.553401\pi\)
\(32\) 0 0
\(33\) 1.49086 0.259526
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.42708 1.22100 0.610502 0.792015i \(-0.290968\pi\)
0.610502 + 0.792015i \(0.290968\pi\)
\(38\) 0 0
\(39\) −5.20440 −0.833371
\(40\) 0 0
\(41\) −2.63671 −0.411785 −0.205893 0.978575i \(-0.566010\pi\)
−0.205893 + 0.978575i \(0.566010\pi\)
\(42\) 0 0
\(43\) 10.8997 1.66218 0.831092 0.556135i \(-0.187716\pi\)
0.831092 + 0.556135i \(0.187716\pi\)
\(44\) 0 0
\(45\) 0.222674 0.0331943
\(46\) 0 0
\(47\) 7.61320 1.11050 0.555250 0.831683i \(-0.312623\pi\)
0.555250 + 0.831683i \(0.312623\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.64975 0.371039
\(52\) 0 0
\(53\) −7.49086 −1.02895 −0.514475 0.857506i \(-0.672013\pi\)
−0.514475 + 0.857506i \(0.672013\pi\)
\(54\) 0 0
\(55\) −0.286462 −0.0386265
\(56\) 0 0
\(57\) −9.88663 −1.30952
\(58\) 0 0
\(59\) −2.36329 −0.307674 −0.153837 0.988096i \(-0.549163\pi\)
−0.153837 + 0.988096i \(0.549163\pi\)
\(60\) 0 0
\(61\) 1.55465 0.199053 0.0995264 0.995035i \(-0.468267\pi\)
0.0995264 + 0.995035i \(0.468267\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) −6.12758 −0.748602 −0.374301 0.927307i \(-0.622117\pi\)
−0.374301 + 0.927307i \(0.622117\pi\)
\(68\) 0 0
\(69\) −12.8411 −1.54589
\(70\) 0 0
\(71\) 12.3137 1.46137 0.730684 0.682716i \(-0.239201\pi\)
0.730684 + 0.682716i \(0.239201\pi\)
\(72\) 0 0
\(73\) −8.45432 −0.989503 −0.494752 0.869034i \(-0.664741\pi\)
−0.494752 + 0.869034i \(0.664741\pi\)
\(74\) 0 0
\(75\) −7.33198 −0.846624
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.3958 1.16961 0.584807 0.811172i \(-0.301170\pi\)
0.584807 + 0.811172i \(0.301170\pi\)
\(80\) 0 0
\(81\) −6.06379 −0.673754
\(82\) 0 0
\(83\) −16.1861 −1.77666 −0.888329 0.459207i \(-0.848134\pi\)
−0.888329 + 0.459207i \(0.848134\pi\)
\(84\) 0 0
\(85\) −0.509136 −0.0552236
\(86\) 0 0
\(87\) −5.50914 −0.590641
\(88\) 0 0
\(89\) −10.1406 −1.07490 −0.537451 0.843295i \(-0.680613\pi\)
−0.537451 + 0.843295i \(0.680613\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.77209 −0.287452
\(94\) 0 0
\(95\) 1.89967 0.194902
\(96\) 0 0
\(97\) 3.04551 0.309225 0.154613 0.987975i \(-0.450587\pi\)
0.154613 + 0.987975i \(0.450587\pi\)
\(98\) 0 0
\(99\) −0.777326 −0.0781242
\(100\) 0 0
\(101\) 4.36852 0.434684 0.217342 0.976095i \(-0.430261\pi\)
0.217342 + 0.976095i \(0.430261\pi\)
\(102\) 0 0
\(103\) −5.22267 −0.514605 −0.257303 0.966331i \(-0.582834\pi\)
−0.257303 + 0.966331i \(0.582834\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.5311 1.01808 0.509042 0.860742i \(-0.330000\pi\)
0.509042 + 0.860742i \(0.330000\pi\)
\(108\) 0 0
\(109\) 3.54942 0.339972 0.169986 0.985446i \(-0.445628\pi\)
0.169986 + 0.985446i \(0.445628\pi\)
\(110\) 0 0
\(111\) 11.0728 1.05098
\(112\) 0 0
\(113\) −6.31370 −0.593943 −0.296972 0.954886i \(-0.595977\pi\)
−0.296972 + 0.954886i \(0.595977\pi\)
\(114\) 0 0
\(115\) 2.46736 0.230082
\(116\) 0 0
\(117\) 2.71354 0.250867
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −3.93098 −0.354444
\(124\) 0 0
\(125\) 2.84111 0.254117
\(126\) 0 0
\(127\) 3.88139 0.344418 0.172209 0.985060i \(-0.444910\pi\)
0.172209 + 0.985060i \(0.444910\pi\)
\(128\) 0 0
\(129\) 16.2499 1.43073
\(130\) 0 0
\(131\) −18.2316 −1.59291 −0.796453 0.604700i \(-0.793293\pi\)
−0.796453 + 0.604700i \(0.793293\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.61320 0.138843
\(136\) 0 0
\(137\) −1.38156 −0.118035 −0.0590174 0.998257i \(-0.518797\pi\)
−0.0590174 + 0.998257i \(0.518797\pi\)
\(138\) 0 0
\(139\) −0.591197 −0.0501447 −0.0250723 0.999686i \(-0.507982\pi\)
−0.0250723 + 0.999686i \(0.507982\pi\)
\(140\) 0 0
\(141\) 11.3502 0.955863
\(142\) 0 0
\(143\) −3.49086 −0.291921
\(144\) 0 0
\(145\) 1.05855 0.0879081
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.7993 1.04856 0.524281 0.851545i \(-0.324334\pi\)
0.524281 + 0.851545i \(0.324334\pi\)
\(150\) 0 0
\(151\) −5.65498 −0.460196 −0.230098 0.973167i \(-0.573905\pi\)
−0.230098 + 0.973167i \(0.573905\pi\)
\(152\) 0 0
\(153\) −1.38156 −0.111693
\(154\) 0 0
\(155\) 0.532644 0.0427830
\(156\) 0 0
\(157\) −19.6535 −1.56852 −0.784259 0.620433i \(-0.786957\pi\)
−0.784259 + 0.620433i \(0.786957\pi\)
\(158\) 0 0
\(159\) −11.1679 −0.885669
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.00000 −0.704934 −0.352467 0.935824i \(-0.614657\pi\)
−0.352467 + 0.935824i \(0.614657\pi\)
\(164\) 0 0
\(165\) −0.427076 −0.0332478
\(166\) 0 0
\(167\) −14.8046 −1.14561 −0.572806 0.819691i \(-0.694145\pi\)
−0.572806 + 0.819691i \(0.694145\pi\)
\(168\) 0 0
\(169\) −0.813871 −0.0626055
\(170\) 0 0
\(171\) 5.15482 0.394199
\(172\) 0 0
\(173\) 15.1992 1.15557 0.577786 0.816189i \(-0.303917\pi\)
0.577786 + 0.816189i \(0.303917\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.52334 −0.264830
\(178\) 0 0
\(179\) 18.4543 1.37934 0.689670 0.724124i \(-0.257755\pi\)
0.689670 + 0.724124i \(0.257755\pi\)
\(180\) 0 0
\(181\) 19.0272 1.41428 0.707142 0.707072i \(-0.249984\pi\)
0.707142 + 0.707072i \(0.249984\pi\)
\(182\) 0 0
\(183\) 2.31777 0.171335
\(184\) 0 0
\(185\) −2.12758 −0.156422
\(186\) 0 0
\(187\) 1.77733 0.129971
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.2630 −0.742601 −0.371301 0.928513i \(-0.621088\pi\)
−0.371301 + 0.928513i \(0.621088\pi\)
\(192\) 0 0
\(193\) 13.7355 0.988706 0.494353 0.869261i \(-0.335405\pi\)
0.494353 + 0.869261i \(0.335405\pi\)
\(194\) 0 0
\(195\) 1.49086 0.106763
\(196\) 0 0
\(197\) 4.05075 0.288604 0.144302 0.989534i \(-0.453906\pi\)
0.144302 + 0.989534i \(0.453906\pi\)
\(198\) 0 0
\(199\) −25.7863 −1.82794 −0.913971 0.405780i \(-0.867000\pi\)
−0.913971 + 0.405780i \(0.867000\pi\)
\(200\) 0 0
\(201\) −9.13538 −0.644360
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.755318 0.0527537
\(206\) 0 0
\(207\) 6.69527 0.465353
\(208\) 0 0
\(209\) −6.63148 −0.458709
\(210\) 0 0
\(211\) −11.8359 −0.814816 −0.407408 0.913246i \(-0.633567\pi\)
−0.407408 + 0.913246i \(0.633567\pi\)
\(212\) 0 0
\(213\) 18.3581 1.25787
\(214\) 0 0
\(215\) −3.12234 −0.212942
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −12.6042 −0.851715
\(220\) 0 0
\(221\) −6.20440 −0.417353
\(222\) 0 0
\(223\) −17.7005 −1.18531 −0.592657 0.805455i \(-0.701921\pi\)
−0.592657 + 0.805455i \(0.701921\pi\)
\(224\) 0 0
\(225\) 3.82284 0.254856
\(226\) 0 0
\(227\) 23.7135 1.57392 0.786961 0.617002i \(-0.211653\pi\)
0.786961 + 0.617002i \(0.211653\pi\)
\(228\) 0 0
\(229\) −18.7993 −1.24229 −0.621147 0.783694i \(-0.713333\pi\)
−0.621147 + 0.783694i \(0.713333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.9817 1.30905 0.654523 0.756042i \(-0.272869\pi\)
0.654523 + 0.756042i \(0.272869\pi\)
\(234\) 0 0
\(235\) −2.18089 −0.142266
\(236\) 0 0
\(237\) 15.4987 1.00675
\(238\) 0 0
\(239\) 15.4946 1.00226 0.501131 0.865371i \(-0.332917\pi\)
0.501131 + 0.865371i \(0.332917\pi\)
\(240\) 0 0
\(241\) −4.24618 −0.273521 −0.136760 0.990604i \(-0.543669\pi\)
−0.136760 + 0.990604i \(0.543669\pi\)
\(242\) 0 0
\(243\) 7.85415 0.503844
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 23.1496 1.47297
\(248\) 0 0
\(249\) −24.1313 −1.52926
\(250\) 0 0
\(251\) −3.77733 −0.238423 −0.119211 0.992869i \(-0.538037\pi\)
−0.119211 + 0.992869i \(0.538037\pi\)
\(252\) 0 0
\(253\) −8.61320 −0.541508
\(254\) 0 0
\(255\) −0.759053 −0.0475337
\(256\) 0 0
\(257\) 18.3592 1.14522 0.572608 0.819829i \(-0.305932\pi\)
0.572608 + 0.819829i \(0.305932\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.87242 0.177799
\(262\) 0 0
\(263\) 0.496098 0.0305907 0.0152954 0.999883i \(-0.495131\pi\)
0.0152954 + 0.999883i \(0.495131\pi\)
\(264\) 0 0
\(265\) 2.14585 0.131818
\(266\) 0 0
\(267\) −15.1183 −0.925223
\(268\) 0 0
\(269\) 9.82284 0.598909 0.299455 0.954111i \(-0.403195\pi\)
0.299455 + 0.954111i \(0.403195\pi\)
\(270\) 0 0
\(271\) 11.4998 0.698565 0.349283 0.937017i \(-0.386425\pi\)
0.349283 + 0.937017i \(0.386425\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.91794 −0.296563
\(276\) 0 0
\(277\) −2.19917 −0.132135 −0.0660676 0.997815i \(-0.521045\pi\)
−0.0660676 + 0.997815i \(0.521045\pi\)
\(278\) 0 0
\(279\) 1.44535 0.0865308
\(280\) 0 0
\(281\) 16.6222 0.991596 0.495798 0.868438i \(-0.334876\pi\)
0.495798 + 0.868438i \(0.334876\pi\)
\(282\) 0 0
\(283\) −15.0586 −0.895138 −0.447569 0.894249i \(-0.647710\pi\)
−0.447569 + 0.894249i \(0.647710\pi\)
\(284\) 0 0
\(285\) 2.83214 0.167762
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.8411 −0.814183
\(290\) 0 0
\(291\) 4.54045 0.266166
\(292\) 0 0
\(293\) 26.3905 1.54175 0.770876 0.636986i \(-0.219819\pi\)
0.770876 + 0.636986i \(0.219819\pi\)
\(294\) 0 0
\(295\) 0.676992 0.0394160
\(296\) 0 0
\(297\) −5.63148 −0.326771
\(298\) 0 0
\(299\) 30.0675 1.73885
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 6.51287 0.374155
\(304\) 0 0
\(305\) −0.445349 −0.0255006
\(306\) 0 0
\(307\) −19.2316 −1.09761 −0.548804 0.835951i \(-0.684917\pi\)
−0.548804 + 0.835951i \(0.684917\pi\)
\(308\) 0 0
\(309\) −7.78630 −0.442947
\(310\) 0 0
\(311\) −25.6770 −1.45601 −0.728004 0.685573i \(-0.759552\pi\)
−0.728004 + 0.685573i \(0.759552\pi\)
\(312\) 0 0
\(313\) −1.36852 −0.0773535 −0.0386767 0.999252i \(-0.512314\pi\)
−0.0386767 + 0.999252i \(0.512314\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.48306 0.195628 0.0978141 0.995205i \(-0.468815\pi\)
0.0978141 + 0.995205i \(0.468815\pi\)
\(318\) 0 0
\(319\) −3.69527 −0.206895
\(320\) 0 0
\(321\) 15.7005 0.876316
\(322\) 0 0
\(323\) −11.7863 −0.655807
\(324\) 0 0
\(325\) 17.1679 0.952301
\(326\) 0 0
\(327\) 5.29170 0.292631
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −17.9086 −0.984348 −0.492174 0.870497i \(-0.663798\pi\)
−0.492174 + 0.870497i \(0.663798\pi\)
\(332\) 0 0
\(333\) −5.77326 −0.316373
\(334\) 0 0
\(335\) 1.75532 0.0959033
\(336\) 0 0
\(337\) −34.1496 −1.86025 −0.930123 0.367248i \(-0.880300\pi\)
−0.930123 + 0.367248i \(0.880300\pi\)
\(338\) 0 0
\(339\) −9.41287 −0.511237
\(340\) 0 0
\(341\) −1.85939 −0.100691
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 3.67849 0.198043
\(346\) 0 0
\(347\) 6.30473 0.338456 0.169228 0.985577i \(-0.445873\pi\)
0.169228 + 0.985577i \(0.445873\pi\)
\(348\) 0 0
\(349\) −10.7628 −0.576119 −0.288059 0.957613i \(-0.593010\pi\)
−0.288059 + 0.957613i \(0.593010\pi\)
\(350\) 0 0
\(351\) 19.6587 1.04930
\(352\) 0 0
\(353\) −7.86312 −0.418512 −0.209256 0.977861i \(-0.567104\pi\)
−0.209256 + 0.977861i \(0.567104\pi\)
\(354\) 0 0
\(355\) −3.52741 −0.187215
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.9959 −1.00257 −0.501283 0.865283i \(-0.667139\pi\)
−0.501283 + 0.865283i \(0.667139\pi\)
\(360\) 0 0
\(361\) 24.9765 1.31455
\(362\) 0 0
\(363\) 1.49086 0.0782500
\(364\) 0 0
\(365\) 2.42184 0.126765
\(366\) 0 0
\(367\) 18.3958 0.960251 0.480126 0.877200i \(-0.340591\pi\)
0.480126 + 0.877200i \(0.340591\pi\)
\(368\) 0 0
\(369\) 2.04958 0.106697
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −23.2552 −1.20411 −0.602053 0.798456i \(-0.705650\pi\)
−0.602053 + 0.798456i \(0.705650\pi\)
\(374\) 0 0
\(375\) 4.23571 0.218731
\(376\) 0 0
\(377\) 12.8997 0.664367
\(378\) 0 0
\(379\) −3.53264 −0.181460 −0.0907299 0.995876i \(-0.528920\pi\)
−0.0907299 + 0.995876i \(0.528920\pi\)
\(380\) 0 0
\(381\) 5.78663 0.296458
\(382\) 0 0
\(383\) 24.5636 1.25514 0.627571 0.778559i \(-0.284049\pi\)
0.627571 + 0.778559i \(0.284049\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.47259 −0.430686
\(388\) 0 0
\(389\) −1.32301 −0.0670791 −0.0335396 0.999437i \(-0.510678\pi\)
−0.0335396 + 0.999437i \(0.510678\pi\)
\(390\) 0 0
\(391\) −15.3085 −0.774183
\(392\) 0 0
\(393\) −27.1809 −1.37109
\(394\) 0 0
\(395\) −2.97799 −0.149839
\(396\) 0 0
\(397\) 15.3540 0.770594 0.385297 0.922793i \(-0.374099\pi\)
0.385297 + 0.922793i \(0.374099\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.4543 −0.721814 −0.360907 0.932602i \(-0.617533\pi\)
−0.360907 + 0.932602i \(0.617533\pi\)
\(402\) 0 0
\(403\) 6.49086 0.323333
\(404\) 0 0
\(405\) 1.73705 0.0863145
\(406\) 0 0
\(407\) 7.42708 0.368146
\(408\) 0 0
\(409\) 32.3122 1.59774 0.798868 0.601507i \(-0.205433\pi\)
0.798868 + 0.601507i \(0.205433\pi\)
\(410\) 0 0
\(411\) −2.05972 −0.101598
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.63671 0.227607
\(416\) 0 0
\(417\) −0.881394 −0.0431620
\(418\) 0 0
\(419\) 15.5259 0.758490 0.379245 0.925296i \(-0.376184\pi\)
0.379245 + 0.925296i \(0.376184\pi\)
\(420\) 0 0
\(421\) 10.9049 0.531472 0.265736 0.964046i \(-0.414385\pi\)
0.265736 + 0.964046i \(0.414385\pi\)
\(422\) 0 0
\(423\) −5.91794 −0.287740
\(424\) 0 0
\(425\) −8.74078 −0.423990
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −5.20440 −0.251271
\(430\) 0 0
\(431\) 16.8254 0.810451 0.405226 0.914217i \(-0.367193\pi\)
0.405226 + 0.914217i \(0.367193\pi\)
\(432\) 0 0
\(433\) 12.1641 0.584570 0.292285 0.956331i \(-0.405584\pi\)
0.292285 + 0.956331i \(0.405584\pi\)
\(434\) 0 0
\(435\) 1.57816 0.0756669
\(436\) 0 0
\(437\) 57.1183 2.73234
\(438\) 0 0
\(439\) 6.98546 0.333398 0.166699 0.986008i \(-0.446689\pi\)
0.166699 + 0.986008i \(0.446689\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −39.3592 −1.87001 −0.935006 0.354631i \(-0.884607\pi\)
−0.935006 + 0.354631i \(0.884607\pi\)
\(444\) 0 0
\(445\) 2.90490 0.137706
\(446\) 0 0
\(447\) 19.0821 0.902550
\(448\) 0 0
\(449\) 13.3723 0.631076 0.315538 0.948913i \(-0.397815\pi\)
0.315538 + 0.948913i \(0.397815\pi\)
\(450\) 0 0
\(451\) −2.63671 −0.124158
\(452\) 0 0
\(453\) −8.43081 −0.396114
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.88663 0.322143 0.161071 0.986943i \(-0.448505\pi\)
0.161071 + 0.986943i \(0.448505\pi\)
\(458\) 0 0
\(459\) −10.0090 −0.467179
\(460\) 0 0
\(461\) −5.16786 −0.240691 −0.120346 0.992732i \(-0.538400\pi\)
−0.120346 + 0.992732i \(0.538400\pi\)
\(462\) 0 0
\(463\) −18.6039 −0.864597 −0.432298 0.901731i \(-0.642297\pi\)
−0.432298 + 0.901731i \(0.642297\pi\)
\(464\) 0 0
\(465\) 0.794099 0.0368255
\(466\) 0 0
\(467\) −15.2772 −0.706943 −0.353471 0.935445i \(-0.614999\pi\)
−0.353471 + 0.935445i \(0.614999\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −29.3007 −1.35010
\(472\) 0 0
\(473\) 10.8997 0.501167
\(474\) 0 0
\(475\) 32.6132 1.49640
\(476\) 0 0
\(477\) 5.82284 0.266610
\(478\) 0 0
\(479\) 12.9217 0.590406 0.295203 0.955434i \(-0.404613\pi\)
0.295203 + 0.955434i \(0.404613\pi\)
\(480\) 0 0
\(481\) −25.9269 −1.18217
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.872425 −0.0396148
\(486\) 0 0
\(487\) 14.4648 0.655462 0.327731 0.944771i \(-0.393716\pi\)
0.327731 + 0.944771i \(0.393716\pi\)
\(488\) 0 0
\(489\) −13.4178 −0.606773
\(490\) 0 0
\(491\) −40.8799 −1.84488 −0.922442 0.386136i \(-0.873810\pi\)
−0.922442 + 0.386136i \(0.873810\pi\)
\(492\) 0 0
\(493\) −6.56769 −0.295794
\(494\) 0 0
\(495\) 0.222674 0.0100085
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 17.6848 0.791680 0.395840 0.918319i \(-0.370453\pi\)
0.395840 + 0.918319i \(0.370453\pi\)
\(500\) 0 0
\(501\) −22.0716 −0.986086
\(502\) 0 0
\(503\) 43.8266 1.95413 0.977065 0.212940i \(-0.0683040\pi\)
0.977065 + 0.212940i \(0.0683040\pi\)
\(504\) 0 0
\(505\) −1.25142 −0.0556873
\(506\) 0 0
\(507\) −1.21337 −0.0538877
\(508\) 0 0
\(509\) 32.7303 1.45075 0.725373 0.688356i \(-0.241667\pi\)
0.725373 + 0.688356i \(0.241667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 37.3450 1.64882
\(514\) 0 0
\(515\) 1.49610 0.0659260
\(516\) 0 0
\(517\) 7.61320 0.334828
\(518\) 0 0
\(519\) 22.6599 0.994659
\(520\) 0 0
\(521\) −40.4670 −1.77289 −0.886446 0.462832i \(-0.846833\pi\)
−0.886446 + 0.462832i \(0.846833\pi\)
\(522\) 0 0
\(523\) −34.6860 −1.51671 −0.758356 0.651841i \(-0.773997\pi\)
−0.758356 + 0.651841i \(0.773997\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.30473 −0.143957
\(528\) 0 0
\(529\) 51.1873 2.22553
\(530\) 0 0
\(531\) 1.83704 0.0797209
\(532\) 0 0
\(533\) 9.20440 0.398687
\(534\) 0 0
\(535\) −3.01677 −0.130426
\(536\) 0 0
\(537\) 27.5129 1.18727
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −5.95042 −0.255828 −0.127914 0.991785i \(-0.540828\pi\)
−0.127914 + 0.991785i \(0.540828\pi\)
\(542\) 0 0
\(543\) 28.3670 1.21735
\(544\) 0 0
\(545\) −1.01677 −0.0435538
\(546\) 0 0
\(547\) −1.32824 −0.0567915 −0.0283958 0.999597i \(-0.509040\pi\)
−0.0283958 + 0.999597i \(0.509040\pi\)
\(548\) 0 0
\(549\) −1.20847 −0.0515763
\(550\) 0 0
\(551\) 24.5051 1.04395
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −3.17192 −0.134641
\(556\) 0 0
\(557\) −11.1145 −0.470938 −0.235469 0.971882i \(-0.575663\pi\)
−0.235469 + 0.971882i \(0.575663\pi\)
\(558\) 0 0
\(559\) −38.0492 −1.60931
\(560\) 0 0
\(561\) 2.64975 0.111873
\(562\) 0 0
\(563\) −19.4763 −0.820829 −0.410415 0.911899i \(-0.634616\pi\)
−0.410415 + 0.911899i \(0.634616\pi\)
\(564\) 0 0
\(565\) 1.80864 0.0760899
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.2223 1.18314 0.591571 0.806253i \(-0.298508\pi\)
0.591571 + 0.806253i \(0.298508\pi\)
\(570\) 0 0
\(571\) 23.9310 1.00148 0.500740 0.865598i \(-0.333061\pi\)
0.500740 + 0.865598i \(0.333061\pi\)
\(572\) 0 0
\(573\) −15.3007 −0.639194
\(574\) 0 0
\(575\) 42.3592 1.76650
\(576\) 0 0
\(577\) 27.2954 1.13632 0.568162 0.822917i \(-0.307655\pi\)
0.568162 + 0.822917i \(0.307655\pi\)
\(578\) 0 0
\(579\) 20.4778 0.851029
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −7.49086 −0.310240
\(584\) 0 0
\(585\) −0.777326 −0.0321385
\(586\) 0 0
\(587\) 15.9179 0.657004 0.328502 0.944503i \(-0.393456\pi\)
0.328502 + 0.944503i \(0.393456\pi\)
\(588\) 0 0
\(589\) 12.3305 0.508068
\(590\) 0 0
\(591\) 6.03911 0.248416
\(592\) 0 0
\(593\) −6.42184 −0.263713 −0.131857 0.991269i \(-0.542094\pi\)
−0.131857 + 0.991269i \(0.542094\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −38.4438 −1.57340
\(598\) 0 0
\(599\) −4.23571 −0.173067 −0.0865333 0.996249i \(-0.527579\pi\)
−0.0865333 + 0.996249i \(0.527579\pi\)
\(600\) 0 0
\(601\) 26.4946 1.08074 0.540369 0.841428i \(-0.318285\pi\)
0.540369 + 0.841428i \(0.318285\pi\)
\(602\) 0 0
\(603\) 4.76312 0.193969
\(604\) 0 0
\(605\) −0.286462 −0.0116463
\(606\) 0 0
\(607\) −30.6262 −1.24308 −0.621540 0.783382i \(-0.713493\pi\)
−0.621540 + 0.783382i \(0.713493\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −26.5767 −1.07518
\(612\) 0 0
\(613\) 28.3357 1.14447 0.572234 0.820090i \(-0.306077\pi\)
0.572234 + 0.820090i \(0.306077\pi\)
\(614\) 0 0
\(615\) 1.12608 0.0454078
\(616\) 0 0
\(617\) −49.3279 −1.98587 −0.992933 0.118673i \(-0.962136\pi\)
−0.992933 + 0.118673i \(0.962136\pi\)
\(618\) 0 0
\(619\) −40.1276 −1.61286 −0.806432 0.591327i \(-0.798604\pi\)
−0.806432 + 0.591327i \(0.798604\pi\)
\(620\) 0 0
\(621\) 48.5051 1.94644
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 23.7758 0.951033
\(626\) 0 0
\(627\) −9.88663 −0.394834
\(628\) 0 0
\(629\) 13.2003 0.526332
\(630\) 0 0
\(631\) −39.2354 −1.56194 −0.780968 0.624571i \(-0.785274\pi\)
−0.780968 + 0.624571i \(0.785274\pi\)
\(632\) 0 0
\(633\) −17.6457 −0.701353
\(634\) 0 0
\(635\) −1.11187 −0.0441233
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −9.57176 −0.378653
\(640\) 0 0
\(641\) −4.96869 −0.196251 −0.0981257 0.995174i \(-0.531285\pi\)
−0.0981257 + 0.995174i \(0.531285\pi\)
\(642\) 0 0
\(643\) −1.88289 −0.0742541 −0.0371270 0.999311i \(-0.511821\pi\)
−0.0371270 + 0.999311i \(0.511821\pi\)
\(644\) 0 0
\(645\) −4.65498 −0.183290
\(646\) 0 0
\(647\) −14.9191 −0.586531 −0.293265 0.956031i \(-0.594742\pi\)
−0.293265 + 0.956031i \(0.594742\pi\)
\(648\) 0 0
\(649\) −2.36329 −0.0927672
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 41.5349 1.62539 0.812693 0.582693i \(-0.198001\pi\)
0.812693 + 0.582693i \(0.198001\pi\)
\(654\) 0 0
\(655\) 5.22267 0.204067
\(656\) 0 0
\(657\) 6.57176 0.256389
\(658\) 0 0
\(659\) 12.4596 0.485355 0.242678 0.970107i \(-0.421974\pi\)
0.242678 + 0.970107i \(0.421974\pi\)
\(660\) 0 0
\(661\) 5.26819 0.204909 0.102454 0.994738i \(-0.467330\pi\)
0.102454 + 0.994738i \(0.467330\pi\)
\(662\) 0 0
\(663\) −9.24992 −0.359237
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 31.8281 1.23239
\(668\) 0 0
\(669\) −26.3890 −1.02026
\(670\) 0 0
\(671\) 1.55465 0.0600167
\(672\) 0 0
\(673\) −27.8254 −1.07259 −0.536295 0.844030i \(-0.680177\pi\)
−0.536295 + 0.844030i \(0.680177\pi\)
\(674\) 0 0
\(675\) 27.6953 1.06599
\(676\) 0 0
\(677\) 21.0873 0.810451 0.405225 0.914217i \(-0.367193\pi\)
0.405225 + 0.914217i \(0.367193\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 35.3537 1.35475
\(682\) 0 0
\(683\) −47.9071 −1.83312 −0.916558 0.399902i \(-0.869044\pi\)
−0.916558 + 0.399902i \(0.869044\pi\)
\(684\) 0 0
\(685\) 0.395765 0.0151214
\(686\) 0 0
\(687\) −28.0272 −1.06931
\(688\) 0 0
\(689\) 26.1496 0.996220
\(690\) 0 0
\(691\) −5.47409 −0.208244 −0.104122 0.994565i \(-0.533203\pi\)
−0.104122 + 0.994565i \(0.533203\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.169355 0.00642402
\(696\) 0 0
\(697\) −4.68630 −0.177506
\(698\) 0 0
\(699\) 29.7900 1.12676
\(700\) 0 0
\(701\) 31.1679 1.17719 0.588597 0.808427i \(-0.299681\pi\)
0.588597 + 0.808427i \(0.299681\pi\)
\(702\) 0 0
\(703\) −49.2525 −1.85759
\(704\) 0 0
\(705\) −3.25142 −0.122455
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 48.3667 1.81645 0.908225 0.418483i \(-0.137438\pi\)
0.908225 + 0.418483i \(0.137438\pi\)
\(710\) 0 0
\(711\) −8.08089 −0.303057
\(712\) 0 0
\(713\) 16.0153 0.599777
\(714\) 0 0
\(715\) 1.00000 0.0373979
\(716\) 0 0
\(717\) 23.1003 0.862698
\(718\) 0 0
\(719\) 1.78663 0.0666300 0.0333150 0.999445i \(-0.489394\pi\)
0.0333150 + 0.999445i \(0.489394\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −6.33048 −0.235433
\(724\) 0 0
\(725\) 18.1731 0.674932
\(726\) 0 0
\(727\) −22.5494 −0.836312 −0.418156 0.908375i \(-0.637323\pi\)
−0.418156 + 0.908375i \(0.637323\pi\)
\(728\) 0 0
\(729\) 29.9008 1.10744
\(730\) 0 0
\(731\) 19.3723 0.716509
\(732\) 0 0
\(733\) 5.45955 0.201653 0.100827 0.994904i \(-0.467851\pi\)
0.100827 + 0.994904i \(0.467851\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.12758 −0.225712
\(738\) 0 0
\(739\) −14.9101 −0.548478 −0.274239 0.961662i \(-0.588426\pi\)
−0.274239 + 0.961662i \(0.588426\pi\)
\(740\) 0 0
\(741\) 34.5129 1.26786
\(742\) 0 0
\(743\) −12.7680 −0.468413 −0.234207 0.972187i \(-0.575249\pi\)
−0.234207 + 0.972187i \(0.575249\pi\)
\(744\) 0 0
\(745\) −3.66652 −0.134331
\(746\) 0 0
\(747\) 12.5819 0.460347
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −31.5129 −1.14992 −0.574961 0.818181i \(-0.694983\pi\)
−0.574961 + 0.818181i \(0.694983\pi\)
\(752\) 0 0
\(753\) −5.63148 −0.205222
\(754\) 0 0
\(755\) 1.61994 0.0589556
\(756\) 0 0
\(757\) −19.0936 −0.693969 −0.346984 0.937871i \(-0.612794\pi\)
−0.346984 + 0.937871i \(0.612794\pi\)
\(758\) 0 0
\(759\) −12.8411 −0.466103
\(760\) 0 0
\(761\) −13.0220 −0.472047 −0.236024 0.971747i \(-0.575844\pi\)
−0.236024 + 0.971747i \(0.575844\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.395765 0.0143089
\(766\) 0 0
\(767\) 8.24992 0.297887
\(768\) 0 0
\(769\) −25.5103 −0.919925 −0.459963 0.887938i \(-0.652137\pi\)
−0.459963 + 0.887938i \(0.652137\pi\)
\(770\) 0 0
\(771\) 27.3711 0.985746
\(772\) 0 0
\(773\) −47.8684 −1.72171 −0.860853 0.508854i \(-0.830069\pi\)
−0.860853 + 0.508854i \(0.830069\pi\)
\(774\) 0 0
\(775\) 9.14435 0.328475
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 17.4853 0.626476
\(780\) 0 0
\(781\) 12.3137 0.440619
\(782\) 0 0
\(783\) 20.8098 0.743682
\(784\) 0 0
\(785\) 5.62998 0.200943
\(786\) 0 0
\(787\) −27.5819 −0.983188 −0.491594 0.870824i \(-0.663586\pi\)
−0.491594 + 0.870824i \(0.663586\pi\)
\(788\) 0 0
\(789\) 0.739615 0.0263310
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −5.42708 −0.192721
\(794\) 0 0
\(795\) 3.19917 0.113463
\(796\) 0 0
\(797\) −26.7773 −0.948502 −0.474251 0.880390i \(-0.657281\pi\)
−0.474251 + 0.880390i \(0.657281\pi\)
\(798\) 0 0
\(799\) 13.5311 0.478697
\(800\) 0 0
\(801\) 7.88256 0.278517
\(802\) 0 0
\(803\) −8.45432 −0.298346
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 14.6445 0.515511
\(808\) 0 0
\(809\) 37.1611 1.30652 0.653258 0.757136i \(-0.273402\pi\)
0.653258 + 0.757136i \(0.273402\pi\)
\(810\) 0 0
\(811\) 15.0414 0.528177 0.264088 0.964499i \(-0.414929\pi\)
0.264088 + 0.964499i \(0.414929\pi\)
\(812\) 0 0
\(813\) 17.1447 0.601290
\(814\) 0 0
\(815\) 2.57816 0.0903090
\(816\) 0 0
\(817\) −72.2809 −2.52879
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.213371 −0.00744670 −0.00372335 0.999993i \(-0.501185\pi\)
−0.00372335 + 0.999993i \(0.501185\pi\)
\(822\) 0 0
\(823\) 40.4398 1.40964 0.704821 0.709385i \(-0.251027\pi\)
0.704821 + 0.709385i \(0.251027\pi\)
\(824\) 0 0
\(825\) −7.33198 −0.255267
\(826\) 0 0
\(827\) 50.0713 1.74115 0.870574 0.492037i \(-0.163748\pi\)
0.870574 + 0.492037i \(0.163748\pi\)
\(828\) 0 0
\(829\) 32.8266 1.14011 0.570057 0.821605i \(-0.306921\pi\)
0.570057 + 0.821605i \(0.306921\pi\)
\(830\) 0 0
\(831\) −3.27866 −0.113735
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 4.24095 0.146764
\(836\) 0 0
\(837\) 10.4711 0.361934
\(838\) 0 0
\(839\) −36.7758 −1.26964 −0.634821 0.772659i \(-0.718926\pi\)
−0.634821 + 0.772659i \(0.718926\pi\)
\(840\) 0 0
\(841\) −15.3450 −0.529138
\(842\) 0 0
\(843\) 24.7814 0.853517
\(844\) 0 0
\(845\) 0.233143 0.00802037
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −22.4502 −0.770491
\(850\) 0 0
\(851\) −63.9709 −2.19290
\(852\) 0 0
\(853\) −21.6613 −0.741668 −0.370834 0.928699i \(-0.620928\pi\)
−0.370834 + 0.928699i \(0.620928\pi\)
\(854\) 0 0
\(855\) −1.47666 −0.0505007
\(856\) 0 0
\(857\) −4.36852 −0.149226 −0.0746129 0.997213i \(-0.523772\pi\)
−0.0746129 + 0.997213i \(0.523772\pi\)
\(858\) 0 0
\(859\) −13.1626 −0.449103 −0.224551 0.974462i \(-0.572092\pi\)
−0.224551 + 0.974462i \(0.572092\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −29.7785 −1.01367 −0.506836 0.862043i \(-0.669185\pi\)
−0.506836 + 0.862043i \(0.669185\pi\)
\(864\) 0 0
\(865\) −4.35398 −0.148040
\(866\) 0 0
\(867\) −20.6352 −0.700809
\(868\) 0 0
\(869\) 10.3958 0.352652
\(870\) 0 0
\(871\) 21.3905 0.724790
\(872\) 0 0
\(873\) −2.36736 −0.0801229
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.2540 0.447555 0.223778 0.974640i \(-0.428161\pi\)
0.223778 + 0.974640i \(0.428161\pi\)
\(878\) 0 0
\(879\) 39.3447 1.32706
\(880\) 0 0
\(881\) −46.3890 −1.56289 −0.781443 0.623977i \(-0.785516\pi\)
−0.781443 + 0.623977i \(0.785516\pi\)
\(882\) 0 0
\(883\) 11.6550 0.392221 0.196111 0.980582i \(-0.437169\pi\)
0.196111 + 0.980582i \(0.437169\pi\)
\(884\) 0 0
\(885\) 1.00930 0.0339274
\(886\) 0 0
\(887\) 27.7198 0.930741 0.465371 0.885116i \(-0.345921\pi\)
0.465371 + 0.885116i \(0.345921\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −6.06379 −0.203145
\(892\) 0 0
\(893\) −50.4868 −1.68948
\(894\) 0 0
\(895\) −5.28646 −0.176707
\(896\) 0 0
\(897\) 44.8266 1.49672
\(898\) 0 0
\(899\) 6.87093 0.229158
\(900\) 0 0
\(901\) −13.3137 −0.443544
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.45058 −0.181184
\(906\) 0 0
\(907\) 3.72658 0.123739 0.0618695 0.998084i \(-0.480294\pi\)
0.0618695 + 0.998084i \(0.480294\pi\)
\(908\) 0 0
\(909\) −3.39576 −0.112630
\(910\) 0 0
\(911\) −42.4685 −1.40704 −0.703522 0.710673i \(-0.748391\pi\)
−0.703522 + 0.710673i \(0.748391\pi\)
\(912\) 0 0
\(913\) −16.1861 −0.535683
\(914\) 0 0
\(915\) −0.663954 −0.0219496
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −2.06229 −0.0680286 −0.0340143 0.999421i \(-0.510829\pi\)
−0.0340143 + 0.999421i \(0.510829\pi\)
\(920\) 0 0
\(921\) −28.6718 −0.944767
\(922\) 0 0
\(923\) −42.9855 −1.41488
\(924\) 0 0
\(925\) −36.5259 −1.20096
\(926\) 0 0
\(927\) 4.05972 0.133339
\(928\) 0 0
\(929\) −50.6222 −1.66086 −0.830430 0.557123i \(-0.811905\pi\)
−0.830430 + 0.557123i \(0.811905\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −38.2809 −1.25326
\(934\) 0 0
\(935\) −0.509136 −0.0166505
\(936\) 0 0
\(937\) 32.5129 1.06215 0.531075 0.847325i \(-0.321788\pi\)
0.531075 + 0.847325i \(0.321788\pi\)
\(938\) 0 0
\(939\) −2.04028 −0.0665820
\(940\) 0 0
\(941\) 26.1992 0.854068 0.427034 0.904235i \(-0.359558\pi\)
0.427034 + 0.904235i \(0.359558\pi\)
\(942\) 0 0
\(943\) 22.7105 0.739557
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 56.2029 1.82635 0.913174 0.407569i \(-0.133623\pi\)
0.913174 + 0.407569i \(0.133623\pi\)
\(948\) 0 0
\(949\) 29.5129 0.958028
\(950\) 0 0
\(951\) 5.19277 0.168387
\(952\) 0 0
\(953\) 14.9855 0.485427 0.242713 0.970098i \(-0.421963\pi\)
0.242713 + 0.970098i \(0.421963\pi\)
\(954\) 0 0
\(955\) 2.93995 0.0951345
\(956\) 0 0
\(957\) −5.50914 −0.178085
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −27.5427 −0.888474
\(962\) 0 0
\(963\) −8.18613 −0.263794
\(964\) 0 0
\(965\) −3.93471 −0.126663
\(966\) 0 0
\(967\) −38.8161 −1.24824 −0.624121 0.781328i \(-0.714543\pi\)
−0.624121 + 0.781328i \(0.714543\pi\)
\(968\) 0 0
\(969\) −17.5718 −0.564486
\(970\) 0 0
\(971\) −27.9672 −0.897510 −0.448755 0.893655i \(-0.648132\pi\)
−0.448755 + 0.893655i \(0.648132\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 25.5949 0.819694
\(976\) 0 0
\(977\) −44.3499 −1.41888 −0.709440 0.704766i \(-0.751052\pi\)
−0.709440 + 0.704766i \(0.751052\pi\)
\(978\) 0 0
\(979\) −10.1406 −0.324095
\(980\) 0 0
\(981\) −2.75905 −0.0880898
\(982\) 0 0
\(983\) 52.6990 1.68084 0.840419 0.541938i \(-0.182309\pi\)
0.840419 + 0.541938i \(0.182309\pi\)
\(984\) 0 0
\(985\) −1.16039 −0.0369730
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −93.8811 −2.98524
\(990\) 0 0
\(991\) −32.5479 −1.03392 −0.516959 0.856010i \(-0.672936\pi\)
−0.516959 + 0.856010i \(0.672936\pi\)
\(992\) 0 0
\(993\) −26.6993 −0.847278
\(994\) 0 0
\(995\) 7.38680 0.234177
\(996\) 0 0
\(997\) 36.4256 1.15361 0.576805 0.816882i \(-0.304299\pi\)
0.576805 + 0.816882i \(0.304299\pi\)
\(998\) 0 0
\(999\) −41.8254 −1.32330
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2156.2.a.g.1.3 3
4.3 odd 2 8624.2.a.cp.1.1 3
7.2 even 3 308.2.i.b.221.1 yes 6
7.3 odd 6 2156.2.i.j.177.3 6
7.4 even 3 308.2.i.b.177.1 6
7.5 odd 6 2156.2.i.j.1145.3 6
7.6 odd 2 2156.2.a.k.1.1 3
21.2 odd 6 2772.2.s.e.2377.2 6
21.11 odd 6 2772.2.s.e.793.2 6
28.11 odd 6 1232.2.q.j.177.3 6
28.23 odd 6 1232.2.q.j.529.3 6
28.27 even 2 8624.2.a.cg.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.i.b.177.1 6 7.4 even 3
308.2.i.b.221.1 yes 6 7.2 even 3
1232.2.q.j.177.3 6 28.11 odd 6
1232.2.q.j.529.3 6 28.23 odd 6
2156.2.a.g.1.3 3 1.1 even 1 trivial
2156.2.a.k.1.1 3 7.6 odd 2
2156.2.i.j.177.3 6 7.3 odd 6
2156.2.i.j.1145.3 6 7.5 odd 6
2772.2.s.e.793.2 6 21.11 odd 6
2772.2.s.e.2377.2 6 21.2 odd 6
8624.2.a.cg.1.3 3 28.27 even 2
8624.2.a.cp.1.1 3 4.3 odd 2