Properties

Label 1248.2.h.b.623.7
Level $1248$
Weight $2$
Character 1248.623
Analytic conductor $9.965$
Analytic rank $0$
Dimension $12$
CM discriminant -104
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1248,2,Mod(623,1248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1248.623");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{9} + 92x^{6} - 68x^{3} + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 623.7
Root \(-0.691788 - 1.95556i\) of defining polynomial
Character \(\chi\) \(=\) 1248.623
Dual form 1248.2.h.b.623.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.111731 + 1.72844i) q^{3} -4.04932i q^{5} -2.99062 q^{7} +(-2.97503 - 0.386242i) q^{9} +O(q^{10})\) \(q+(-0.111731 + 1.72844i) q^{3} -4.04932i q^{5} -2.99062 q^{7} +(-2.97503 - 0.386242i) q^{9} +3.60555 q^{13} +(6.99902 + 0.452435i) q^{15} +6.14129i q^{17} +(0.334145 - 5.16911i) q^{21} -11.3970 q^{25} +(1.00000 - 5.09902i) q^{27} -7.21110 q^{31} +12.1100i q^{35} -11.6757 q^{37} +(-0.402852 + 6.23199i) q^{39} -12.1236 q^{43} +(-1.56402 + 12.0469i) q^{45} +4.99739i q^{47} +1.94378 q^{49} +(-10.6149 - 0.686173i) q^{51} +(8.89718 + 1.15510i) q^{63} -14.6000i q^{65} +3.10125i q^{71} +(1.27340 - 19.6990i) q^{75} +(8.70163 + 2.29816i) q^{81} +24.8680 q^{85} -10.7828 q^{91} +(0.805704 - 12.4640i) q^{93} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 60 q^{25} + 12 q^{27} + 84 q^{49} - 60 q^{51} + 84 q^{75}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.111731 + 1.72844i −0.0645079 + 0.997917i
\(4\) 0 0
\(5\) 4.04932i 1.81091i −0.424441 0.905455i \(-0.639530\pi\)
0.424441 0.905455i \(-0.360470\pi\)
\(6\) 0 0
\(7\) −2.99062 −1.13035 −0.565173 0.824972i \(-0.691191\pi\)
−0.565173 + 0.824972i \(0.691191\pi\)
\(8\) 0 0
\(9\) −2.97503 0.386242i −0.991677 0.128747i
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 3.60555 1.00000
\(14\) 0 0
\(15\) 6.99902 + 0.452435i 1.80714 + 0.116818i
\(16\) 0 0
\(17\) 6.14129i 1.48948i 0.667354 + 0.744741i \(0.267427\pi\)
−0.667354 + 0.744741i \(0.732573\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0.334145 5.16911i 0.0729163 1.12799i
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −11.3970 −2.27940
\(26\) 0 0
\(27\) 1.00000 5.09902i 0.192450 0.981307i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −7.21110 −1.29515 −0.647576 0.762001i \(-0.724217\pi\)
−0.647576 + 0.762001i \(0.724217\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 12.1100i 2.04696i
\(36\) 0 0
\(37\) −11.6757 −1.91948 −0.959738 0.280898i \(-0.909368\pi\)
−0.959738 + 0.280898i \(0.909368\pi\)
\(38\) 0 0
\(39\) −0.402852 + 6.23199i −0.0645079 + 0.997917i
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −12.1236 −1.84883 −0.924415 0.381388i \(-0.875446\pi\)
−0.924415 + 0.381388i \(0.875446\pi\)
\(44\) 0 0
\(45\) −1.56402 + 12.0469i −0.233150 + 1.79584i
\(46\) 0 0
\(47\) 4.99739i 0.728944i 0.931214 + 0.364472i \(0.118751\pi\)
−0.931214 + 0.364472i \(0.881249\pi\)
\(48\) 0 0
\(49\) 1.94378 0.277683
\(50\) 0 0
\(51\) −10.6149 0.686173i −1.48638 0.0960834i
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 8.89718 + 1.15510i 1.12094 + 0.145529i
\(64\) 0 0
\(65\) 14.6000i 1.81091i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.10125i 0.368051i 0.982921 + 0.184025i \(0.0589129\pi\)
−0.982921 + 0.184025i \(0.941087\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 1.27340 19.6990i 0.147039 2.27465i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 8.70163 + 2.29816i 0.966848 + 0.255351i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 24.8680 2.69732
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) −10.7828 −1.13035
\(92\) 0 0
\(93\) 0.805704 12.4640i 0.0835476 1.29245i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) −20.9314 1.35306i −2.04269 0.132045i
\(106\) 0 0
\(107\) 10.1980i 0.985882i 0.870063 + 0.492941i \(0.164078\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) −0.286752 −0.0274659 −0.0137329 0.999906i \(-0.504371\pi\)
−0.0137329 + 0.999906i \(0.504371\pi\)
\(110\) 0 0
\(111\) 1.30454 20.1808i 0.123821 1.91548i
\(112\) 0 0
\(113\) 20.3961i 1.91870i 0.282216 + 0.959351i \(0.408930\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −10.7266 1.39261i −0.991677 0.128747i
\(118\) 0 0
\(119\) 18.3662i 1.68363i
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 25.9035i 2.31688i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 1.35458 20.9549i 0.119264 1.84498i
\(130\) 0 0
\(131\) 18.8294i 1.64513i −0.568669 0.822566i \(-0.692542\pi\)
0.568669 0.822566i \(-0.307458\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −20.6476 4.04932i −1.77706 0.348510i
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 23.5768 1.99976 0.999879 0.0155623i \(-0.00495384\pi\)
0.999879 + 0.0155623i \(0.00495384\pi\)
\(140\) 0 0
\(141\) −8.63770 0.558363i −0.727426 0.0470227i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −0.217181 + 3.35972i −0.0179128 + 0.277105i
\(148\) 0 0
\(149\) 11.3137i 0.926855i −0.886135 0.463428i \(-0.846619\pi\)
0.886135 0.463428i \(-0.153381\pi\)
\(150\) 0 0
\(151\) −14.3796 −1.17019 −0.585097 0.810964i \(-0.698943\pi\)
−0.585097 + 0.810964i \(0.698943\pi\)
\(152\) 0 0
\(153\) 2.37202 18.2705i 0.191767 1.47709i
\(154\) 0 0
\(155\) 29.2001i 2.34541i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.1421i 1.09435i −0.837018 0.547176i \(-0.815703\pi\)
0.837018 0.547176i \(-0.184297\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 34.0840 2.57651
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.1945i 1.06095i −0.847702 0.530473i \(-0.822014\pi\)
0.847702 0.530473i \(-0.177986\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 47.2787i 3.47600i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.99062 + 15.2492i −0.217535 + 1.10922i
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 25.2353 + 1.63128i 1.80714 + 0.116818i
\(196\) 0 0
\(197\) 5.94546i 0.423596i −0.977313 0.211798i \(-0.932068\pi\)
0.977313 0.211798i \(-0.0679319\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −13.4644 −0.926925 −0.463463 0.886117i \(-0.653393\pi\)
−0.463463 + 0.886117i \(0.653393\pi\)
\(212\) 0 0
\(213\) −5.36034 0.346506i −0.367284 0.0237422i
\(214\) 0 0
\(215\) 49.0923i 3.34807i
\(216\) 0 0
\(217\) 21.5656 1.46397
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 22.1427i 1.48948i
\(222\) 0 0
\(223\) 8.39834 0.562395 0.281197 0.959650i \(-0.409268\pi\)
0.281197 + 0.959650i \(0.409268\pi\)
\(224\) 0 0
\(225\) 33.9064 + 4.40199i 2.26043 + 0.293466i
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 6.26798 0.414200 0.207100 0.978320i \(-0.433597\pi\)
0.207100 + 0.978320i \(0.433597\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.96513i 0.652837i −0.945225 0.326419i \(-0.894158\pi\)
0.945225 0.326419i \(-0.105842\pi\)
\(234\) 0 0
\(235\) 20.2360 1.32005
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 19.2985i 1.24832i −0.781297 0.624159i \(-0.785442\pi\)
0.781297 0.624159i \(-0.214558\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) −4.94449 + 14.7835i −0.317189 + 0.948362i
\(244\) 0 0
\(245\) 7.87100i 0.502860i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.1980i 0.643695i 0.946792 + 0.321847i \(0.104304\pi\)
−0.946792 + 0.321847i \(0.895696\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −2.77853 + 42.9830i −0.173998 + 2.69170i
\(256\) 0 0
\(257\) 10.7762i 0.672200i 0.941826 + 0.336100i \(0.109108\pi\)
−0.941826 + 0.336100i \(0.890892\pi\)
\(258\) 0 0
\(259\) 34.9176 2.16967
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −32.3233 −1.96350 −0.981749 0.190179i \(-0.939093\pi\)
−0.981749 + 0.190179i \(0.939093\pi\)
\(272\) 0 0
\(273\) 1.20478 18.6375i 0.0729163 1.12799i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 21.4533 + 2.78523i 1.28437 + 0.166747i
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −20.7154 −1.21856
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 30.2414i 1.76672i −0.468695 0.883360i \(-0.655276\pi\)
0.468695 0.883360i \(-0.344724\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 36.2570 2.08982
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 30.6442 1.73211 0.866055 0.499948i \(-0.166648\pi\)
0.866055 + 0.499948i \(0.166648\pi\)
\(314\) 0 0
\(315\) 4.67737 36.0275i 0.263540 2.02992i
\(316\) 0 0
\(317\) 28.2843i 1.58860i −0.607524 0.794301i \(-0.707837\pi\)
0.607524 0.794301i \(-0.292163\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −17.6267 1.13944i −0.983828 0.0635972i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −41.0924 −2.27940
\(326\) 0 0
\(327\) 0.0320391 0.495635i 0.00177177 0.0274087i
\(328\) 0 0
\(329\) 14.9453i 0.823959i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 34.7356 + 4.50964i 1.90350 + 0.247127i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 27.9626 1.52322 0.761611 0.648035i \(-0.224409\pi\)
0.761611 + 0.648035i \(0.224409\pi\)
\(338\) 0 0
\(339\) −35.2535 2.27887i −1.91471 0.123771i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 15.1212 0.816468
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.2881i 1.46490i 0.680819 + 0.732452i \(0.261624\pi\)
−0.680819 + 0.732452i \(0.738376\pi\)
\(348\) 0 0
\(349\) −29.6194 −1.58549 −0.792745 0.609553i \(-0.791349\pi\)
−0.792745 + 0.609553i \(0.791349\pi\)
\(350\) 0 0
\(351\) 3.60555 18.3848i 0.192450 0.981307i
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 12.5580 0.666507
\(356\) 0 0
\(357\) 31.7450 + 2.05208i 1.68012 + 0.108608i
\(358\) 0 0
\(359\) 31.1127i 1.64207i −0.570881 0.821033i \(-0.693398\pi\)
0.570881 0.821033i \(-0.306602\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 1.22904 19.0129i 0.0645079 0.997917i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −44.7726 2.89422i −2.31205 0.149457i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 27.3972i 1.39993i 0.714177 + 0.699965i \(0.246801\pi\)
−0.714177 + 0.699965i \(0.753199\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 36.0681 + 4.68263i 1.83344 + 0.238032i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 32.5455 + 2.10383i 1.64171 + 0.106124i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −36.0555 −1.80957 −0.904787 0.425864i \(-0.859970\pi\)
−0.904787 + 0.425864i \(0.859970\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) −26.0000 −1.29515
\(404\) 0 0
\(405\) 9.30599 35.2357i 0.462418 1.75088i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −2.63426 + 40.7512i −0.129000 + 1.99559i
\(418\) 0 0
\(419\) 34.9358i 1.70673i −0.521317 0.853363i \(-0.674559\pi\)
0.521317 0.853363i \(-0.325441\pi\)
\(420\) 0 0
\(421\) −41.0084 −1.99863 −0.999313 0.0370678i \(-0.988198\pi\)
−0.999313 + 0.0370678i \(0.988198\pi\)
\(422\) 0 0
\(423\) 1.93020 14.8674i 0.0938495 0.722877i
\(424\) 0 0
\(425\) 69.9922i 3.39512i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 23.0908i 1.11224i −0.831100 0.556122i \(-0.812289\pi\)
0.831100 0.556122i \(-0.187711\pi\)
\(432\) 0 0
\(433\) −40.7566 −1.95864 −0.979319 0.202324i \(-0.935151\pi\)
−0.979319 + 0.202324i \(0.935151\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −5.78282 0.750770i −0.275372 0.0357509i
\(442\) 0 0
\(443\) 39.5707i 1.88006i −0.341090 0.940031i \(-0.610796\pi\)
0.341090 0.940031i \(-0.389204\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 19.5551 + 1.26409i 0.924925 + 0.0597895i
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 1.60664 24.8543i 0.0754868 1.16776i
\(454\) 0 0
\(455\) 43.6631i 2.04696i
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 31.3146 + 6.14129i 1.46164 + 0.286651i
\(460\) 0 0
\(461\) 18.3505i 0.854666i 0.904094 + 0.427333i \(0.140547\pi\)
−0.904094 + 0.427333i \(0.859453\pi\)
\(462\) 0 0
\(463\) −7.21110 −0.335128 −0.167564 0.985861i \(-0.553590\pi\)
−0.167564 + 0.985861i \(0.553590\pi\)
\(464\) 0 0
\(465\) −50.4706 3.26255i −2.34052 0.151297i
\(466\) 0 0
\(467\) 10.1980i 0.471909i 0.971764 + 0.235954i \(0.0758216\pi\)
−0.971764 + 0.235954i \(0.924178\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 31.1894i 1.42508i 0.701630 + 0.712541i \(0.252456\pi\)
−0.701630 + 0.712541i \(0.747544\pi\)
\(480\) 0 0
\(481\) −42.0974 −1.91948
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 36.0555 1.63383 0.816916 0.576757i \(-0.195682\pi\)
0.816916 + 0.576757i \(0.195682\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 43.3946i 1.95837i 0.202972 + 0.979185i \(0.434940\pi\)
−0.202972 + 0.979185i \(0.565060\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.27465i 0.416025i
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 24.4439 + 1.58012i 1.09207 + 0.0705944i
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.45250 + 22.4698i −0.0645079 + 0.997917i
\(508\) 0 0
\(509\) 39.5980i 1.75515i 0.479440 + 0.877575i \(0.340840\pi\)
−0.479440 + 0.877575i \(0.659160\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22.2477i 0.974690i 0.873210 + 0.487345i \(0.162035\pi\)
−0.873210 + 0.487345i \(0.837965\pi\)
\(522\) 0 0
\(523\) 34.0000 1.48672 0.743358 0.668894i \(-0.233232\pi\)
0.743358 + 0.668894i \(0.233232\pi\)
\(524\) 0 0
\(525\) −3.80824 + 58.9123i −0.166205 + 2.57114i
\(526\) 0 0
\(527\) 44.2855i 1.92911i
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 41.2951 1.78534
\(536\) 0 0
\(537\) 24.5344 + 1.58597i 1.05874 + 0.0684395i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 11.1022 0.477321 0.238661 0.971103i \(-0.423292\pi\)
0.238661 + 0.971103i \(0.423292\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.16115i 0.0497382i
\(546\) 0 0
\(547\) 20.8953 0.893416 0.446708 0.894680i \(-0.352596\pi\)
0.446708 + 0.894680i \(0.352596\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −81.7185 5.28250i −3.46876 0.224229i
\(556\) 0 0
\(557\) 46.4387i 1.96767i 0.179080 + 0.983834i \(0.442688\pi\)
−0.179080 + 0.983834i \(0.557312\pi\)
\(558\) 0 0
\(559\) −43.7122 −1.84883
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.72298i 0.114760i −0.998352 0.0573799i \(-0.981725\pi\)
0.998352 0.0573799i \(-0.0182746\pi\)
\(564\) 0 0
\(565\) 82.5902 3.47460
\(566\) 0 0
\(567\) −26.0232 6.87292i −1.09287 0.288636i
\(568\) 0 0
\(569\) 47.6239i 1.99650i 0.0591437 + 0.998249i \(0.481163\pi\)
−0.0591437 + 0.998249i \(0.518837\pi\)
\(570\) 0 0
\(571\) −46.4832 −1.94526 −0.972631 0.232356i \(-0.925357\pi\)
−0.972631 + 0.232356i \(0.925357\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −5.63914 + 43.4356i −0.233150 + 1.79584i
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 10.2764 + 0.664292i 0.422714 + 0.0273253i
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) −74.3708 −3.04890
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −39.4158 −1.60781 −0.803903 0.594761i \(-0.797247\pi\)
−0.803903 + 0.594761i \(0.797247\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 44.5425i 1.81091i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 18.0183i 0.728944i
\(612\) 0 0
\(613\) −36.0555 −1.45627 −0.728134 0.685435i \(-0.759612\pi\)
−0.728134 + 0.685435i \(0.759612\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 47.9064 1.91626
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 71.7039i 2.85902i
\(630\) 0 0
\(631\) 44.2857 1.76299 0.881494 0.472196i \(-0.156539\pi\)
0.881494 + 0.472196i \(0.156539\pi\)
\(632\) 0 0
\(633\) 1.50439 23.2724i 0.0597940 0.924994i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 7.00841 0.277683
\(638\) 0 0
\(639\) 1.19783 9.22632i 0.0473855 0.364988i
\(640\) 0 0
\(641\) 40.7922i 1.61119i −0.592464 0.805597i \(-0.701845\pi\)
0.592464 0.805597i \(-0.298155\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) −84.8532 5.48513i −3.34109 0.215977i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −2.40955 + 37.2750i −0.0944378 + 1.46092i
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) −76.2463 −2.97919
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 50.9902i 1.98630i −0.116863 0.993148i \(-0.537284\pi\)
0.116863 0.993148i \(-0.462716\pi\)
\(660\) 0 0
\(661\) 7.21110 0.280479 0.140240 0.990118i \(-0.455213\pi\)
0.140240 + 0.990118i \(0.455213\pi\)
\(662\) 0 0
\(663\) −38.2725 2.47403i −1.48638 0.0960834i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −0.938356 + 14.5161i −0.0362789 + 0.561223i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 26.6219 1.02620 0.513099 0.858330i \(-0.328498\pi\)
0.513099 + 0.858330i \(0.328498\pi\)
\(674\) 0 0
\(675\) −11.3970 + 58.1135i −0.438670 + 2.23679i
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −0.700328 + 10.8339i −0.0267192 + 0.413337i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 95.4700i 3.62138i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 17.2242 + 1.11341i 0.651478 + 0.0421132i
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −2.26099 + 34.9768i −0.0851539 + 1.31730i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 50.4777 1.89573 0.947865 0.318671i \(-0.103237\pi\)
0.947865 + 0.318671i \(0.103237\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 33.3564 + 2.15624i 1.24572 + 0.0805264i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −25.0000 10.1980i −0.925926 0.377705i
\(730\) 0 0
\(731\) 74.4545i 2.75380i
\(732\) 0 0
\(733\) −5.12098 −0.189148 −0.0945738 0.995518i \(-0.530149\pi\)
−0.0945738 + 0.995518i \(0.530149\pi\)
\(734\) 0 0
\(735\) 13.6046 + 0.879435i 0.501812 + 0.0324385i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 53.5892i 1.96600i 0.183611 + 0.982999i \(0.441221\pi\)
−0.183611 + 0.982999i \(0.558779\pi\)
\(744\) 0 0
\(745\) −45.8128 −1.67845
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 30.4984i 1.11439i
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) −17.6267 1.13944i −0.642354 0.0415234i
\(754\) 0 0
\(755\) 58.2275i 2.11912i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0.857565 0.0310459
\(764\) 0 0
\(765\) −73.9832 9.60507i −2.67487 0.347272i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −18.6260 1.20403i −0.670800 0.0433622i
\(772\) 0 0
\(773\) 32.1375i 1.15591i −0.816070 0.577953i \(-0.803852\pi\)
0.816070 0.577953i \(-0.196148\pi\)
\(774\) 0 0
\(775\) 82.1849 2.95217
\(776\) 0 0
\(777\) −3.90138 + 60.3530i −0.139961 + 2.16515i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 60.9968i 2.16880i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) −30.6904 −1.08575
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 56.0827i 1.97176i −0.167449 0.985881i \(-0.553553\pi\)
0.167449 0.985881i \(-0.446447\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 3.61151 55.8689i 0.126661 1.95941i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 32.0792 + 4.16477i 1.12094 + 0.145529i
\(820\) 0 0
\(821\) 7.84160i 0.273674i −0.990594 0.136837i \(-0.956306\pi\)
0.990594 0.136837i \(-0.0436936\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 11.9373i 0.413604i
\(834\) 0 0
\(835\) −57.2660 −1.98177
\(836\) 0 0
\(837\) −7.21110 + 36.7696i −0.249252 + 1.27094i
\(838\) 0 0
\(839\) 53.7401i 1.85531i 0.373432 + 0.927657i \(0.378181\pi\)
−0.373432 + 0.927657i \(0.621819\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 52.6412i 1.81091i
\(846\) 0 0
\(847\) 32.8968 1.13035
\(848\) 0 0
\(849\) 1.56423 24.1982i 0.0536844 0.830480i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −52.3973 −1.79405 −0.897025 0.441980i \(-0.854276\pi\)
−0.897025 + 0.441980i \(0.854276\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40.7922i 1.39343i −0.717346 0.696717i \(-0.754643\pi\)
0.717346 0.696717i \(-0.245357\pi\)
\(858\) 0 0
\(859\) −50.0000 −1.70598 −0.852989 0.521929i \(-0.825213\pi\)
−0.852989 + 0.521929i \(0.825213\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 55.4854i 1.88874i 0.328880 + 0.944372i \(0.393329\pi\)
−0.328880 + 0.944372i \(0.606671\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 2.31456 35.8055i 0.0786065 1.21602i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 77.4673i 2.61887i
\(876\) 0 0
\(877\) 40.4349 1.36539 0.682694 0.730704i \(-0.260808\pi\)
0.682694 + 0.730704i \(0.260808\pi\)
\(878\) 0 0
\(879\) 52.2705 + 3.37890i 1.76304 + 0.113967i
\(880\) 0 0
\(881\) 39.9762i 1.34683i −0.739263 0.673417i \(-0.764826\pi\)
0.739263 0.673417i \(-0.235174\pi\)
\(882\) 0 0
\(883\) 59.2772 1.99484 0.997418 0.0718139i \(-0.0228788\pi\)
0.997418 + 0.0718139i \(0.0228788\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −57.4781 −1.92128
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −4.05103 + 62.6682i −0.134810 + 2.08547i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 57.9364 1.92375 0.961874 0.273495i \(-0.0881796\pi\)
0.961874 + 0.273495i \(0.0881796\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 56.3115i 1.85957i
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11.1817i 0.368051i
\(924\) 0 0
\(925\) 133.068 4.37525
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) −3.42391 + 52.9667i −0.111735 + 1.72850i
\(940\) 0 0
\(941\) 48.3348i 1.57567i 0.615887 + 0.787835i \(0.288798\pi\)
−0.615887 + 0.787835i \(0.711202\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 61.7489 + 12.1100i 2.00869 + 0.393937i
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 48.8878 + 3.16023i 1.58529 + 0.102478i
\(952\) 0 0
\(953\) 52.2588i 1.69283i 0.532524 + 0.846415i \(0.321244\pi\)
−0.532524 + 0.846415i \(0.678756\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 21.0000 0.677419
\(962\) 0 0
\(963\) 3.93891 30.3395i 0.126929 0.977677i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −61.6559 −1.98272 −0.991360 0.131166i \(-0.958128\pi\)
−0.991360 + 0.131166i \(0.958128\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 60.3120i 1.93551i −0.251902 0.967753i \(-0.581056\pi\)
0.251902 0.967753i \(-0.418944\pi\)
\(972\) 0 0
\(973\) −70.5091 −2.26042
\(974\) 0 0
\(975\) 4.59130 71.0259i 0.147039 2.27465i
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.853097 + 0.110756i 0.0272373 + 0.00353615i
\(982\) 0 0
\(983\) 25.5010i 0.813357i 0.913571 + 0.406678i \(0.133313\pi\)
−0.913571 + 0.406678i \(0.866687\pi\)
\(984\) 0 0
\(985\) −24.0751 −0.767095
\(986\) 0 0
\(987\) 25.8321 + 1.66985i 0.822243 + 0.0531519i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) −11.6757 + 59.5347i −0.369403 + 1.88359i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.h.b.623.7 12
3.2 odd 2 inner 1248.2.h.b.623.6 12
4.3 odd 2 312.2.h.b.155.3 12
8.3 odd 2 inner 1248.2.h.b.623.8 12
8.5 even 2 312.2.h.b.155.9 yes 12
12.11 even 2 312.2.h.b.155.10 yes 12
13.12 even 2 inner 1248.2.h.b.623.8 12
24.5 odd 2 312.2.h.b.155.4 yes 12
24.11 even 2 inner 1248.2.h.b.623.5 12
39.38 odd 2 inner 1248.2.h.b.623.5 12
52.51 odd 2 312.2.h.b.155.9 yes 12
104.51 odd 2 CM 1248.2.h.b.623.7 12
104.77 even 2 312.2.h.b.155.3 12
156.155 even 2 312.2.h.b.155.4 yes 12
312.77 odd 2 312.2.h.b.155.10 yes 12
312.155 even 2 inner 1248.2.h.b.623.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.h.b.155.3 12 4.3 odd 2
312.2.h.b.155.3 12 104.77 even 2
312.2.h.b.155.4 yes 12 24.5 odd 2
312.2.h.b.155.4 yes 12 156.155 even 2
312.2.h.b.155.9 yes 12 8.5 even 2
312.2.h.b.155.9 yes 12 52.51 odd 2
312.2.h.b.155.10 yes 12 12.11 even 2
312.2.h.b.155.10 yes 12 312.77 odd 2
1248.2.h.b.623.5 12 24.11 even 2 inner
1248.2.h.b.623.5 12 39.38 odd 2 inner
1248.2.h.b.623.6 12 3.2 odd 2 inner
1248.2.h.b.623.6 12 312.155 even 2 inner
1248.2.h.b.623.7 12 1.1 even 1 trivial
1248.2.h.b.623.7 12 104.51 odd 2 CM
1248.2.h.b.623.8 12 8.3 odd 2 inner
1248.2.h.b.623.8 12 13.12 even 2 inner