Properties

Label 312.2.h.b.155.9
Level 312312
Weight 22
Character 312.155
Analytic conductor 2.4912.491
Analytic rank 00
Dimension 1212
CM discriminant -104
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,2,Mod(155,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.155"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 312=23313 312 = 2^{3} \cdot 3 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 312.h (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.491332543062.49133254306
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x1216x9+92x668x3+27 x^{12} - 16x^{9} + 92x^{6} - 68x^{3} + 27 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2632 2^{6}\cdot 3^{2}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 155.9
Root 0.8035190.227114i0.803519 - 0.227114i of defining polynomial
Character χ\chi == 312.155
Dual form 312.2.h.b.155.4

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.41421iq2+(0.1117311.72844i)q32.00000q4+4.04932iq5+(2.44439+0.158012i)q62.99062q72.82843iq8+(2.975030.386242i)q95.72660q10+(0.223462+3.45689i)q123.60555q134.22937iq14+(6.99902+0.452435i)q15+4.00000q16+6.14129iq17+(0.5462284.20733i)q188.09864iq20+(0.334145+5.16911i)q21+(4.888780.316023i)q2411.3970q255.09902iq26+(1.00000+5.09902i)q27+5.98123q28+(0.639839+9.89811i)q307.21110q31+5.65685iq328.68510q3412.1100iq35+(5.95006+0.772483i)q36+11.6757q37+(0.402852+6.23199i)q39+11.4532q40+(7.310230.472552i)q42+12.1236q43+(1.5640212.0469i)q45+4.99739iq47+(0.4469246.91377i)q48+1.94378q4916.1178iq50+(10.6149+0.686173i)q51+7.21110q52+(7.211101.41421i)q54+8.45874iq56+(13.99800.904869i)q6010.1980iq62+(8.89718+1.15510i)q638.00000q6414.6000iq6512.2826iq68+17.1261q70+3.10125iq71+(1.09246+8.41466i)q72+16.5119iq74+(1.27340+19.6990i)q75+(8.813370.569719i)q78+16.1973iq80+(8.70163+2.29816i)q81+(0.66828910.3382i)q8424.8680q85+17.1453iq86+(17.0368+2.21185i)q90+10.7828q91+(0.805704+12.4640i)q937.06738q94+(9.77755+0.632046i)q96+2.74893iq98+O(q100)q+1.41421i q^{2} +(0.111731 - 1.72844i) q^{3} -2.00000 q^{4} +4.04932i q^{5} +(2.44439 + 0.158012i) q^{6} -2.99062 q^{7} -2.82843i q^{8} +(-2.97503 - 0.386242i) q^{9} -5.72660 q^{10} +(-0.223462 + 3.45689i) q^{12} -3.60555 q^{13} -4.22937i q^{14} +(6.99902 + 0.452435i) q^{15} +4.00000 q^{16} +6.14129i q^{17} +(0.546228 - 4.20733i) q^{18} -8.09864i q^{20} +(-0.334145 + 5.16911i) q^{21} +(-4.88878 - 0.316023i) q^{24} -11.3970 q^{25} -5.09902i q^{26} +(-1.00000 + 5.09902i) q^{27} +5.98123 q^{28} +(-0.639839 + 9.89811i) q^{30} -7.21110 q^{31} +5.65685i q^{32} -8.68510 q^{34} -12.1100i q^{35} +(5.95006 + 0.772483i) q^{36} +11.6757 q^{37} +(-0.402852 + 6.23199i) q^{39} +11.4532 q^{40} +(-7.31023 - 0.472552i) q^{42} +12.1236 q^{43} +(1.56402 - 12.0469i) q^{45} +4.99739i q^{47} +(0.446924 - 6.91377i) q^{48} +1.94378 q^{49} -16.1178i q^{50} +(10.6149 + 0.686173i) q^{51} +7.21110 q^{52} +(-7.21110 - 1.41421i) q^{54} +8.45874i q^{56} +(-13.9980 - 0.904869i) q^{60} -10.1980i q^{62} +(8.89718 + 1.15510i) q^{63} -8.00000 q^{64} -14.6000i q^{65} -12.2826i q^{68} +17.1261 q^{70} +3.10125i q^{71} +(-1.09246 + 8.41466i) q^{72} +16.5119i q^{74} +(-1.27340 + 19.6990i) q^{75} +(-8.81337 - 0.569719i) q^{78} +16.1973i q^{80} +(8.70163 + 2.29816i) q^{81} +(0.668289 - 10.3382i) q^{84} -24.8680 q^{85} +17.1453i q^{86} +(17.0368 + 2.21185i) q^{90} +10.7828 q^{91} +(-0.805704 + 12.4640i) q^{93} -7.06738 q^{94} +(9.77755 + 0.632046i) q^{96} +2.74893i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q24q4+48q1660q2512q27+24q3048q42+84q49+60q5196q6484q75+96q90+O(q100) 12 q - 24 q^{4} + 48 q^{16} - 60 q^{25} - 12 q^{27} + 24 q^{30} - 48 q^{42} + 84 q^{49} + 60 q^{51} - 96 q^{64} - 84 q^{75} + 96 q^{90}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/312Z)×\left(\mathbb{Z}/312\mathbb{Z}\right)^\times.

nn 7979 145145 157157 209209
χ(n)\chi(n) 1-1 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.41421i 1.00000i
33 0.111731 1.72844i 0.0645079 0.997917i
44 −2.00000 −1.00000
55 4.04932i 1.81091i 0.424441 + 0.905455i 0.360470π0.360470\pi
−0.424441 + 0.905455i 0.639530π0.639530\pi
66 2.44439 + 0.158012i 0.997917 + 0.0645079i
77 −2.99062 −1.13035 −0.565173 0.824972i 0.691191π-0.691191\pi
−0.565173 + 0.824972i 0.691191π0.691191\pi
88 2.82843i 1.00000i
99 −2.97503 0.386242i −0.991677 0.128747i
1010 −5.72660 −1.81091
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 −0.223462 + 3.45689i −0.0645079 + 0.997917i
1313 −3.60555 −1.00000
1414 4.22937i 1.13035i
1515 6.99902 + 0.452435i 1.80714 + 0.116818i
1616 4.00000 1.00000
1717 6.14129i 1.48948i 0.667354 + 0.744741i 0.267427π0.267427\pi
−0.667354 + 0.744741i 0.732573π0.732573\pi
1818 0.546228 4.20733i 0.128747 0.991677i
1919 0 0 1.00000 00
−1.00000 π\pi
2020 8.09864i 1.81091i
2121 −0.334145 + 5.16911i −0.0729163 + 1.12799i
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 −4.88878 0.316023i −0.997917 0.0645079i
2525 −11.3970 −2.27940
2626 5.09902i 1.00000i
2727 −1.00000 + 5.09902i −0.192450 + 0.981307i
2828 5.98123 1.13035
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 −0.639839 + 9.89811i −0.116818 + 1.80714i
3131 −7.21110 −1.29515 −0.647576 0.762001i 0.724217π-0.724217\pi
−0.647576 + 0.762001i 0.724217π0.724217\pi
3232 5.65685i 1.00000i
3333 0 0
3434 −8.68510 −1.48948
3535 12.1100i 2.04696i
3636 5.95006 + 0.772483i 0.991677 + 0.128747i
3737 11.6757 1.91948 0.959738 0.280898i 0.0906323π-0.0906323\pi
0.959738 + 0.280898i 0.0906323π0.0906323\pi
3838 0 0
3939 −0.402852 + 6.23199i −0.0645079 + 0.997917i
4040 11.4532 1.81091
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 −7.31023 0.472552i −1.12799 0.0729163i
4343 12.1236 1.84883 0.924415 0.381388i 0.124554π-0.124554\pi
0.924415 + 0.381388i 0.124554π0.124554\pi
4444 0 0
4545 1.56402 12.0469i 0.233150 1.79584i
4646 0 0
4747 4.99739i 0.728944i 0.931214 + 0.364472i 0.118751π0.118751\pi
−0.931214 + 0.364472i 0.881249π0.881249\pi
4848 0.446924 6.91377i 0.0645079 0.997917i
4949 1.94378 0.277683
5050 16.1178i 2.27940i
5151 10.6149 + 0.686173i 1.48638 + 0.0960834i
5252 7.21110 1.00000
5353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
5454 −7.21110 1.41421i −0.981307 0.192450i
5555 0 0
5656 8.45874i 1.13035i
5757 0 0
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 −13.9980 0.904869i −1.80714 0.116818i
6161 0 0 1.00000 00
−1.00000 π\pi
6262 10.1980i 1.29515i
6363 8.89718 + 1.15510i 1.12094 + 0.145529i
6464 −8.00000 −1.00000
6565 14.6000i 1.81091i
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 12.2826i 1.48948i
6969 0 0
7070 17.1261 2.04696
7171 3.10125i 0.368051i 0.982921 + 0.184025i 0.0589129π0.0589129\pi
−0.982921 + 0.184025i 0.941087π0.941087\pi
7272 −1.09246 + 8.41466i −0.128747 + 0.991677i
7373 0 0 1.00000 00
−1.00000 π\pi
7474 16.5119i 1.91948i
7575 −1.27340 + 19.6990i −0.147039 + 2.27465i
7676 0 0
7777 0 0
7878 −8.81337 0.569719i −0.997917 0.0645079i
7979 0 0 1.00000 00
−1.00000 π\pi
8080 16.1973i 1.81091i
8181 8.70163 + 2.29816i 0.966848 + 0.255351i
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0.668289 10.3382i 0.0729163 1.12799i
8585 −24.8680 −2.69732
8686 17.1453i 1.84883i
8787 0 0
8888 0 0
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 17.0368 + 2.21185i 1.79584 + 0.233150i
9191 10.7828 1.13035
9292 0 0
9393 −0.805704 + 12.4640i −0.0835476 + 1.29245i
9494 −7.06738 −0.728944
9595 0 0
9696 9.77755 + 0.632046i 0.997917 + 0.0645079i
9797 0 0 1.00000 00
−1.00000 π\pi
9898 2.74893i 0.277683i
9999 0 0
100100 22.7940 2.27940
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 −0.970395 + 15.0117i −0.0960834 + 1.48638i
103103 0 0 1.00000 00
−1.00000 π\pi
104104 10.1980i 1.00000i
105105 −20.9314 1.35306i −2.04269 0.132045i
106106 0 0
107107 10.1980i 0.985882i −0.870063 0.492941i 0.835922π-0.835922\pi
0.870063 0.492941i 0.164078π-0.164078\pi
108108 2.00000 10.1980i 0.192450 0.981307i
109109 0.286752 0.0274659 0.0137329 0.999906i 0.495629π-0.495629\pi
0.0137329 + 0.999906i 0.495629π0.495629\pi
110110 0 0
111111 1.30454 20.1808i 0.123821 1.91548i
112112 −11.9625 −1.13035
113113 20.3961i 1.91870i 0.282216 + 0.959351i 0.408930π0.408930\pi
−0.282216 + 0.959351i 0.591070π0.591070\pi
114114 0 0
115115 0 0
116116 0 0
117117 10.7266 + 1.39261i 0.991677 + 0.128747i
118118 0 0
119119 18.3662i 1.68363i
120120 1.27968 19.7962i 0.116818 1.80714i
121121 −11.0000 −1.00000
122122 0 0
123123 0 0
124124 14.4222 1.29515
125125 25.9035i 2.31688i
126126 −1.63356 + 12.5825i −0.145529 + 1.12094i
127127 0 0 1.00000 00
−1.00000 π\pi
128128 11.3137i 1.00000i
129129 1.35458 20.9549i 0.119264 1.84498i
130130 20.6476 1.81091
131131 18.8294i 1.64513i 0.568669 + 0.822566i 0.307458π0.307458\pi
−0.568669 + 0.822566i 0.692542π0.692542\pi
132132 0 0
133133 0 0
134134 0 0
135135 −20.6476 4.04932i −1.77706 0.348510i
136136 17.3702 1.48948
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 −23.5768 −1.99976 −0.999879 0.0155623i 0.995046π-0.995046\pi
−0.999879 + 0.0155623i 0.995046π0.995046\pi
140140 24.2199i 2.04696i
141141 8.63770 + 0.558363i 0.727426 + 0.0470227i
142142 −4.38583 −0.368051
143143 0 0
144144 −11.9001 1.54497i −0.991677 0.128747i
145145 0 0
146146 0 0
147147 0.217181 3.35972i 0.0179128 0.277105i
148148 −23.3514 −1.91948
149149 11.3137i 0.926855i 0.886135 + 0.463428i 0.153381π0.153381\pi
−0.886135 + 0.463428i 0.846619π0.846619\pi
150150 −27.8587 1.80086i −2.27465 0.147039i
151151 −14.3796 −1.17019 −0.585097 0.810964i 0.698943π-0.698943\pi
−0.585097 + 0.810964i 0.698943π0.698943\pi
152152 0 0
153153 2.37202 18.2705i 0.191767 1.47709i
154154 0 0
155155 29.2001i 2.34541i
156156 0.805704 12.4640i 0.0645079 0.997917i
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 −22.9064 −1.81091
161161 0 0
162162 −3.25009 + 12.3060i −0.255351 + 0.966848i
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 14.1421i 1.09435i −0.837018 0.547176i 0.815703π-0.815703\pi
0.837018 0.547176i 0.184297π-0.184297\pi
168168 14.6205 + 0.945104i 1.12799 + 0.0729163i
169169 13.0000 1.00000
170170 35.1687i 2.69732i
171171 0 0
172172 −24.2472 −1.84883
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 34.0840 2.57651
176176 0 0
177177 0 0
178178 0 0
179179 14.1945i 1.06095i 0.847702 + 0.530473i 0.177986π0.177986\pi
−0.847702 + 0.530473i 0.822014π0.822014\pi
180180 −3.12803 + 24.0937i −0.233150 + 1.79584i
181181 0 0 1.00000 00
−1.00000 π\pi
182182 15.2492i 1.13035i
183183 0 0
184184 0 0
185185 47.2787i 3.47600i
186186 −17.6267 1.13944i −1.29245 0.0835476i
187187 0 0
188188 9.99478i 0.728944i
189189 2.99062 15.2492i 0.217535 1.10922i
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 −0.893848 + 13.8275i −0.0645079 + 0.997917i
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 −25.2353 1.63128i −1.80714 0.116818i
196196 −3.88757 −0.277683
197197 5.94546i 0.423596i 0.977313 + 0.211798i 0.0679319π0.0679319\pi
−0.977313 + 0.211798i 0.932068π0.932068\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 32.2356i 2.27940i
201201 0 0
202202 0 0
203203 0 0
204204 −21.2297 1.37235i −1.48638 0.0960834i
205205 0 0
206206 0 0
207207 0 0
208208 −14.4222 −1.00000
209209 0 0
210210 1.91351 29.6014i 0.132045 2.04269i
211211 13.4644 0.926925 0.463463 0.886117i 0.346607π-0.346607\pi
0.463463 + 0.886117i 0.346607π0.346607\pi
212212 0 0
213213 5.36034 + 0.346506i 0.367284 + 0.0237422i
214214 14.4222 0.985882
215215 49.0923i 3.34807i
216216 14.4222 + 2.82843i 0.981307 + 0.192450i
217217 21.5656 1.46397
218218 0.405529i 0.0274659i
219219 0 0
220220 0 0
221221 22.1427i 1.48948i
222222 28.5400 + 1.84490i 1.91548 + 0.123821i
223223 8.39834 0.562395 0.281197 0.959650i 0.409268π-0.409268\pi
0.281197 + 0.959650i 0.409268π0.409268\pi
224224 16.9175i 1.13035i
225225 33.9064 + 4.40199i 2.26043 + 0.293466i
226226 −28.8444 −1.91870
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 −6.26798 −0.414200 −0.207100 0.978320i 0.566403π-0.566403\pi
−0.207100 + 0.978320i 0.566403π0.566403\pi
230230 0 0
231231 0 0
232232 0 0
233233 9.96513i 0.652837i −0.945225 0.326419i 0.894158π-0.894158\pi
0.945225 0.326419i 0.105842π-0.105842\pi
234234 −1.96945 + 15.1697i −0.128747 + 0.991677i
235235 −20.2360 −1.32005
236236 0 0
237237 0 0
238238 25.9738 1.68363
239239 19.2985i 1.24832i −0.781297 0.624159i 0.785442π-0.785442\pi
0.781297 0.624159i 0.214558π-0.214558\pi
240240 27.9961 + 1.80974i 1.80714 + 0.116818i
241241 0 0 1.00000 00
−1.00000 π\pi
242242 15.5563i 1.00000i
243243 4.94449 14.7835i 0.317189 0.948362i
244244 0 0
245245 7.87100i 0.502860i
246246 0 0
247247 0 0
248248 20.3961i 1.29515i
249249 0 0
250250 36.6330 2.31688
251251 10.1980i 0.643695i −0.946792 0.321847i 0.895696π-0.895696\pi
0.946792 0.321847i 0.104304π-0.104304\pi
252252 −17.7944 2.31020i −1.12094 0.145529i
253253 0 0
254254 0 0
255255 −2.77853 + 42.9830i −0.173998 + 2.69170i
256256 16.0000 1.00000
257257 10.7762i 0.672200i 0.941826 + 0.336100i 0.109108π0.109108\pi
−0.941826 + 0.336100i 0.890892π0.890892\pi
258258 29.6348 + 1.91567i 1.84498 + 0.119264i
259259 −34.9176 −2.16967
260260 29.2001i 1.81091i
261261 0 0
262262 −26.6288 −1.64513
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 5.72660 29.2001i 0.348510 1.77706i
271271 −32.3233 −1.96350 −0.981749 0.190179i 0.939093π-0.939093\pi
−0.981749 + 0.190179i 0.939093π0.939093\pi
272272 24.5652i 1.48948i
273273 1.20478 18.6375i 0.0729163 1.12799i
274274 0 0
275275 0 0
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 33.3426i 1.99976i
279279 21.4533 + 2.78523i 1.28437 + 0.166747i
280280 −34.2521 −2.04696
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 −0.789645 + 12.2156i −0.0470227 + 0.727426i
283283 14.0000 0.832214 0.416107 0.909316i 0.363394π-0.363394\pi
0.416107 + 0.909316i 0.363394π0.363394\pi
284284 6.20250i 0.368051i
285285 0 0
286286 0 0
287287 0 0
288288 2.18491 16.8293i 0.128747 0.991677i
289289 −20.7154 −1.21856
290290 0 0
291291 0 0
292292 0 0
293293 30.2414i 1.76672i 0.468695 + 0.883360i 0.344724π0.344724\pi
−0.468695 + 0.883360i 0.655276π0.655276\pi
294294 4.75136 + 0.307140i 0.277105 + 0.0179128i
295295 0 0
296296 33.0239i 1.91948i
297297 0 0
298298 −16.0000 −0.926855
299299 0 0
300300 2.54679 39.3981i 0.147039 2.27465i
301301 −36.2570 −2.08982
302302 20.3358i 1.17019i
303303 0 0
304304 0 0
305305 0 0
306306 25.8384 + 3.35454i 1.47709 + 0.191767i
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 41.2951 2.34541
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 17.6267 + 1.13944i 0.997917 + 0.0645079i
313313 30.6442 1.73211 0.866055 0.499948i 0.166648π-0.166648\pi
0.866055 + 0.499948i 0.166648π0.166648\pi
314314 0 0
315315 −4.67737 + 36.0275i −0.263540 + 2.02992i
316316 0 0
317317 28.2843i 1.58860i 0.607524 + 0.794301i 0.292163π0.292163\pi
−0.607524 + 0.794301i 0.707837π0.707837\pi
318318 0 0
319319 0 0
320320 32.3946i 1.81091i
321321 −17.6267 1.13944i −0.983828 0.0635972i
322322 0 0
323323 0 0
324324 −17.4033 4.59632i −0.966848 0.255351i
325325 41.0924 2.27940
326326 0 0
327327 0.0320391 0.495635i 0.00177177 0.0274087i
328328 0 0
329329 14.9453i 0.823959i
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 −34.7356 4.50964i −1.90350 0.247127i
334334 20.0000 1.09435
335335 0 0
336336 −1.33658 + 20.6764i −0.0729163 + 1.12799i
337337 27.9626 1.52322 0.761611 0.648035i 0.224409π-0.224409\pi
0.761611 + 0.648035i 0.224409π0.224409\pi
338338 18.3848i 1.00000i
339339 35.2535 + 2.27887i 1.91471 + 0.123771i
340340 49.7361 2.69732
341341 0 0
342342 0 0
343343 15.1212 0.816468
344344 34.2907i 1.84883i
345345 0 0
346346 0 0
347347 27.2881i 1.46490i −0.680819 0.732452i 0.738376π-0.738376\pi
0.680819 0.732452i 0.261624π-0.261624\pi
348348 0 0
349349 29.6194 1.58549 0.792745 0.609553i 0.208651π-0.208651\pi
0.792745 + 0.609553i 0.208651π0.208651\pi
350350 48.2021i 2.57651i
351351 3.60555 18.3848i 0.192450 0.981307i
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 −12.5580 −0.666507
356356 0 0
357357 −31.7450 2.05208i −1.68012 0.108608i
358358 −20.0741 −1.06095
359359 31.1127i 1.64207i −0.570881 0.821033i 0.693398π-0.693398\pi
0.570881 0.821033i 0.306602π-0.306602\pi
360360 −34.0737 4.42370i −1.79584 0.233150i
361361 19.0000 1.00000
362362 0 0
363363 −1.22904 + 19.0129i −0.0645079 + 0.997917i
364364 −21.5656 −1.13035
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 −66.8622 −3.47600
371371 0 0
372372 1.61141 24.9280i 0.0835476 1.29245i
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 −44.7726 2.89422i −2.31205 0.149457i
376376 14.1348 0.728944
377377 0 0
378378 21.5656 + 4.22937i 1.10922 + 0.217535i
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 27.3972i 1.39993i 0.714177 + 0.699965i 0.246801π0.246801\pi
−0.714177 + 0.699965i 0.753199π0.753199\pi
384384 −19.5551 1.26409i −0.997917 0.0645079i
385385 0 0
386386 0 0
387387 −36.0681 4.68263i −1.83344 0.238032i
388388 0 0
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 2.30697 35.6881i 0.116818 1.80714i
391391 0 0
392392 5.49785i 0.277683i
393393 32.5455 + 2.10383i 1.64171 + 0.106124i
394394 −8.40815 −0.423596
395395 0 0
396396 0 0
397397 36.0555 1.80957 0.904787 0.425864i 0.140030π-0.140030\pi
0.904787 + 0.425864i 0.140030π0.140030\pi
398398 0 0
399399 0 0
400400 −45.5880 −2.27940
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 26.0000 1.29515
404404 0 0
405405 −9.30599 + 35.2357i −0.462418 + 1.75088i
406406 0 0
407407 0 0
408408 1.94079 30.0234i 0.0960834 1.48638i
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 20.3961i 1.00000i
417417 −2.63426 + 40.7512i −0.129000 + 1.99559i
418418 0 0
419419 34.9358i 1.70673i 0.521317 + 0.853363i 0.325441π0.325441\pi
−0.521317 + 0.853363i 0.674559π0.674559\pi
420420 41.8628 + 2.70612i 2.04269 + 0.132045i
421421 41.0084 1.99863 0.999313 0.0370678i 0.0118017π-0.0118017\pi
0.999313 + 0.0370678i 0.0118017π0.0118017\pi
422422 19.0415i 0.926925i
423423 1.93020 14.8674i 0.0938495 0.722877i
424424 0 0
425425 69.9922i 3.39512i
426426 −0.490033 + 7.58066i −0.0237422 + 0.367284i
427427 0 0
428428 20.3961i 0.985882i
429429 0 0
430430 −69.4270 −3.34807
431431 23.0908i 1.11224i −0.831100 0.556122i 0.812289π-0.812289\pi
0.831100 0.556122i 0.187711π-0.187711\pi
432432 −4.00000 + 20.3961i −0.192450 + 0.981307i
433433 −40.7566 −1.95864 −0.979319 0.202324i 0.935151π-0.935151\pi
−0.979319 + 0.202324i 0.935151π0.935151\pi
434434 30.4984i 1.46397i
435435 0 0
436436 −0.573504 −0.0274659
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 −5.78282 0.750770i −0.275372 0.0357509i
442442 31.3146 1.48948
443443 39.5707i 1.88006i 0.341090 + 0.940031i 0.389204π0.389204\pi
−0.341090 + 0.940031i 0.610796π0.610796\pi
444444 −2.60908 + 40.3616i −0.123821 + 1.91548i
445445 0 0
446446 11.8771i 0.562395i
447447 19.5551 + 1.26409i 0.924925 + 0.0597895i
448448 23.9249 1.13035
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 −6.22535 + 47.9509i −0.293466 + 2.26043i
451451 0 0
452452 40.7922i 1.91870i
453453 −1.60664 + 24.8543i −0.0754868 + 1.16776i
454454 0 0
455455 43.6631i 2.04696i
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 8.86427i 0.414200i
459459 −31.3146 6.14129i −1.46164 0.286651i
460460 0 0
461461 18.3505i 0.854666i −0.904094 0.427333i 0.859453π-0.859453\pi
0.904094 0.427333i 0.140547π-0.140547\pi
462462 0 0
463463 −7.21110 −0.335128 −0.167564 0.985861i 0.553590π-0.553590\pi
−0.167564 + 0.985861i 0.553590π0.553590\pi
464464 0 0
465465 −50.4706 3.26255i −2.34052 0.151297i
466466 14.0928 0.652837
467467 10.1980i 0.471909i −0.971764 0.235954i 0.924178π-0.924178\pi
0.971764 0.235954i 0.0758216π-0.0758216\pi
468468 −21.4533 2.78523i −0.991677 0.128747i
469469 0 0
470470 28.6181i 1.32005i
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 36.7325i 1.68363i
477477 0 0
478478 27.2922 1.24832
479479 31.1894i 1.42508i 0.701630 + 0.712541i 0.252456π0.252456\pi
−0.701630 + 0.712541i 0.747544π0.747544\pi
480480 −2.55936 + 39.5924i −0.116818 + 1.80714i
481481 −42.0974 −1.91948
482482 0 0
483483 0 0
484484 22.0000 1.00000
485485 0 0
486486 20.9070 + 6.99256i 0.948362 + 0.317189i
487487 36.0555 1.63383 0.816916 0.576757i 0.195682π-0.195682\pi
0.816916 + 0.576757i 0.195682π0.195682\pi
488488 0 0
489489 0 0
490490 −11.1313 −0.502860
491491 43.3946i 1.95837i −0.202972 0.979185i 0.565060π-0.565060\pi
0.202972 0.979185i 0.434940π-0.434940\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −28.8444 −1.29515
497497 9.27465i 0.416025i
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 51.8069i 2.31688i
501501 −24.4439 1.58012i −1.09207 0.0705944i
502502 14.4222 0.643695
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 3.26712 25.1650i 0.145529 1.12094i
505505 0 0
506506 0 0
507507 1.45250 22.4698i 0.0645079 0.997917i
508508 0 0
509509 39.5980i 1.75515i −0.479440 0.877575i 0.659160π-0.659160\pi
0.479440 0.877575i 0.340840π-0.340840\pi
510510 −60.7872 3.92944i −2.69170 0.173998i
511511 0 0
512512 22.6274i 1.00000i
513513 0 0
514514 −15.2398 −0.672200
515515 0 0
516516 −2.70916 + 41.9099i −0.119264 + 1.84498i
517517 0 0
518518 49.3809i 2.16967i
519519 0 0
520520 −41.2951 −1.81091
521521 22.2477i 0.974690i 0.873210 + 0.487345i 0.162035π0.162035\pi
−0.873210 + 0.487345i 0.837965π0.837965\pi
522522 0 0
523523 −34.0000 −1.48672 −0.743358 0.668894i 0.766768π-0.766768\pi
−0.743358 + 0.668894i 0.766768π0.766768\pi
524524 37.6588i 1.64513i
525525 3.80824 58.9123i 0.166205 2.57114i
526526 0 0
527527 44.2855i 1.92911i
528528 0 0
529529 −23.0000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 41.2951 1.78534
536536 0 0
537537 24.5344 + 1.58597i 1.05874 + 0.0684395i
538538 0 0
539539 0 0
540540 41.2951 + 8.09864i 1.77706 + 0.348510i
541541 −11.1022 −0.477321 −0.238661 0.971103i 0.576708π-0.576708\pi
−0.238661 + 0.971103i 0.576708π0.576708\pi
542542 45.7120i 1.96350i
543543 0 0
544544 −34.7404 −1.48948
545545 1.16115i 0.0497382i
546546 26.3574 + 1.70381i 1.12799 + 0.0729163i
547547 −20.8953 −0.893416 −0.446708 0.894680i 0.647404π-0.647404\pi
−0.446708 + 0.894680i 0.647404π0.647404\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 81.7185 + 5.28250i 3.46876 + 0.224229i
556556 47.1536 1.99976
557557 46.4387i 1.96767i −0.179080 0.983834i 0.557312π-0.557312\pi
0.179080 0.983834i 0.442688π-0.442688\pi
558558 −3.93891 + 30.3395i −0.166747 + 1.28437i
559559 −43.7122 −1.84883
560560 48.4398i 2.04696i
561561 0 0
562562 0 0
563563 2.72298i 0.114760i 0.998352 + 0.0573799i 0.0182746π0.0182746\pi
−0.998352 + 0.0573799i 0.981725π0.981725\pi
564564 −17.2754 1.11673i −0.727426 0.0470227i
565565 −82.5902 −3.47460
566566 19.7990i 0.832214i
567567 −26.0232 6.87292i −1.09287 0.288636i
568568 8.77166 0.368051
569569 47.6239i 1.99650i 0.0591437 + 0.998249i 0.481163π0.481163\pi
−0.0591437 + 0.998249i 0.518837π0.518837\pi
570570 0 0
571571 46.4832 1.94526 0.972631 0.232356i 0.0746434π-0.0746434\pi
0.972631 + 0.232356i 0.0746434π0.0746434\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 23.8003 + 3.08993i 0.991677 + 0.128747i
577577 0 0 1.00000 00
−1.00000 π\pi
578578 29.2961i 1.21856i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 −5.63914 + 43.4356i −0.233150 + 1.79584i
586586 −42.7678 −1.76672
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 −0.434362 + 6.71944i −0.0179128 + 0.277105i
589589 0 0
590590 0 0
591591 10.2764 + 0.664292i 0.422714 + 0.0273253i
592592 46.7028 1.91948
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 74.3708 3.04890
596596 22.6274i 0.926855i
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 55.7173 + 3.60171i 2.27465 + 0.147039i
601601 −39.4158 −1.60781 −0.803903 0.594761i 0.797247π-0.797247\pi
−0.803903 + 0.594761i 0.797247π0.797247\pi
602602 51.2751i 2.08982i
603603 0 0
604604 28.7592 1.17019
605605 44.5425i 1.81091i
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 18.0183i 0.728944i
612612 −4.74404 + 36.5411i −0.191767 + 1.47709i
613613 36.0555 1.45627 0.728134 0.685435i 0.240388π-0.240388\pi
0.728134 + 0.685435i 0.240388π0.240388\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 58.4001i 2.34541i
621621 0 0
622622 0 0
623623 0 0
624624 −1.61141 + 24.9280i −0.0645079 + 0.997917i
625625 47.9064 1.91626
626626 43.3374i 1.73211i
627627 0 0
628628 0 0
629629 71.7039i 2.85902i
630630 −50.9506 6.61480i −2.02992 0.263540i
631631 44.2857 1.76299 0.881494 0.472196i 0.156539π-0.156539\pi
0.881494 + 0.472196i 0.156539π0.156539\pi
632632 0 0
633633 1.50439 23.2724i 0.0597940 0.924994i
634634 −40.0000 −1.58860
635635 0 0
636636 0 0
637637 −7.00841 −0.277683
638638 0 0
639639 1.19783 9.22632i 0.0473855 0.364988i
640640 45.8128 1.81091
641641 40.7922i 1.61119i −0.592464 0.805597i 0.701845π-0.701845\pi
0.592464 0.805597i 0.298155π-0.298155\pi
642642 1.61141 24.9280i 0.0635972 0.983828i
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 84.8532 + 5.48513i 3.34109 + 0.215977i
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 6.50018 24.6119i 0.255351 0.966848i
649649 0 0
650650 58.1135i 2.27940i
651651 2.40955 37.2750i 0.0944378 1.46092i
652652 0 0
653653 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
654654 0.700933 + 0.0453101i 0.0274087 + 0.00177177i
655655 −76.2463 −2.97919
656656 0 0
657657 0 0
658658 21.1358 0.823959
659659 50.9902i 1.98630i 0.116863 + 0.993148i 0.462716π0.462716\pi
−0.116863 + 0.993148i 0.537284π0.537284\pi
660660 0 0
661661 −7.21110 −0.280479 −0.140240 0.990118i 0.544787π-0.544787\pi
−0.140240 + 0.990118i 0.544787π0.544787\pi
662662 0 0
663663 −38.2725 2.47403i −1.48638 0.0960834i
664664 0 0
665665 0 0
666666 6.37760 49.1236i 0.247127 1.90350i
667667 0 0
668668 28.2843i 1.09435i
669669 0.938356 14.5161i 0.0362789 0.561223i
670670 0 0
671671 0 0
672672 −29.2409 1.89021i −1.12799 0.0729163i
673673 26.6219 1.02620 0.513099 0.858330i 0.328498π-0.328498\pi
0.513099 + 0.858330i 0.328498π0.328498\pi
674674 39.5451i 1.52322i
675675 11.3970 58.1135i 0.438670 2.23679i
676676 −26.0000 −1.00000
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 −3.22282 + 49.8559i −0.123771 + 1.91471i
679679 0 0
680680 70.3375i 2.69732i
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 21.3846i 0.816468i
687687 −0.700328 + 10.8339i −0.0267192 + 0.413337i
688688 48.4944 1.84883
689689 0 0
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 0 0
693693 0 0
694694 38.5913 1.46490
695695 95.4700i 3.62138i
696696 0 0
697697 0 0
698698 41.8882i 1.58549i
699699 −17.2242 1.11341i −0.651478 0.0421132i
700700 −68.1680 −2.57651
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 26.0000 + 5.09902i 0.981307 + 0.192450i
703703 0 0
704704 0 0
705705 −2.26099 + 34.9768i −0.0851539 + 1.31730i
706706 0 0
707707 0 0
708708 0 0
709709 −50.4777 −1.89573 −0.947865 0.318671i 0.896763π-0.896763\pi
−0.947865 + 0.318671i 0.896763π0.896763\pi
710710 17.7596i 0.666507i
711711 0 0
712712 0 0
713713 0 0
714714 2.90208 44.8942i 0.108608 1.68012i
715715 0 0
716716 28.3890i 1.06095i
717717 −33.3564 2.15624i −1.24572 0.0805264i
718718 44.0000 1.64207
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 6.25606 48.1874i 0.233150 1.79584i
721721 0 0
722722 26.8701i 1.00000i
723723 0 0
724724 0 0
725725 0 0
726726 −26.8883 1.73813i −0.997917 0.0645079i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 30.4984i 1.13035i
729729 −25.0000 10.1980i −0.925926 0.377705i
730730 0 0
731731 74.4545i 2.75380i
732732 0 0
733733 5.12098 0.189148 0.0945738 0.995518i 0.469851π-0.469851\pi
0.0945738 + 0.995518i 0.469851π0.469851\pi
734734 0 0
735735 13.6046 + 0.879435i 0.501812 + 0.0324385i
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 94.5574i 3.47600i
741741 0 0
742742 0 0
743743 53.5892i 1.96600i 0.183611 + 0.982999i 0.441221π0.441221\pi
−0.183611 + 0.982999i 0.558779π0.558779\pi
744744 35.2535 + 2.27887i 1.29245 + 0.0835476i
745745 −45.8128 −1.67845
746746 0 0
747747 0 0
748748 0 0
749749 30.4984i 1.11439i
750750 4.09304 63.3181i 0.149457 2.31205i
751751 0 0 1.00000 00
−1.00000 π\pi
752752 19.9896i 0.728944i
753753 −17.6267 1.13944i −0.642354 0.0415234i
754754 0 0
755755 58.2275i 2.11912i
756756 −5.98123 + 30.4984i −0.217535 + 1.10922i
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 −0.857565 −0.0310459
764764 0 0
765765 73.9832 + 9.60507i 2.67487 + 0.347272i
766766 −38.7454 −1.39993
767767 0 0
768768 1.78770 27.6551i 0.0645079 0.997917i
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 18.6260 + 1.20403i 0.670800 + 0.0433622i
772772 0 0
773773 32.1375i 1.15591i 0.816070 + 0.577953i 0.196148π0.196148\pi
−0.816070 + 0.577953i 0.803852π0.803852\pi
774774 6.62225 51.0080i 0.238032 1.83344i
775775 82.1849 2.95217
776776 0 0
777777 −3.90138 + 60.3530i −0.139961 + 2.16515i
778778 0 0
779779 0 0
780780 50.4706 + 3.26255i 1.80714 + 0.116818i
781781 0 0
782782 0 0
783783 0 0
784784 7.77513 0.277683
785785 0 0
786786 −2.97526 + 46.0264i −0.106124 + 1.64171i
787787 0 0 1.00000 00
−1.00000 π\pi
788788 11.8909i 0.423596i
789789 0 0
790790 0 0
791791 60.9968i 2.16880i
792792 0 0
793793 0 0
794794 50.9902i 1.80957i
795795 0 0
796796 0 0
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 −30.6904 −1.08575
800800 64.4711i 2.27940i
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 36.7696i 1.29515i
807807 0 0
808808 0 0
809809 56.0827i 1.97176i −0.167449 0.985881i 0.553553π-0.553553\pi
0.167449 0.985881i 0.446447π-0.446447\pi
810810 −49.8308 13.1607i −1.75088 0.462418i
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 −3.61151 + 55.8689i −0.126661 + 1.95941i
814814 0 0
815815 0 0
816816 42.4595 + 2.74469i 1.48638 + 0.0960834i
817817 0 0
818818 0 0
819819 −32.0792 4.16477i −1.12094 0.145529i
820820 0 0
821821 7.84160i 0.273674i 0.990594 + 0.136837i 0.0436936π0.0436936\pi
−0.990594 + 0.136837i 0.956306π0.956306\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 28.8444 1.00000
833833 11.9373i 0.413604i
834834 −57.6308 3.72541i −1.99559 0.129000i
835835 57.2660 1.98177
836836 0 0
837837 7.21110 36.7696i 0.249252 1.27094i
838838 −49.4067 −1.70673
839839 53.7401i 1.85531i 0.373432 + 0.927657i 0.378181π0.378181\pi
−0.373432 + 0.927657i 0.621819π0.621819\pi
840840 −3.82703 + 59.2029i −0.132045 + 2.04269i
841841 −29.0000 −1.00000
842842 57.9946i 1.99863i
843843 0 0
844844 −26.9287 −0.926925
845845 52.6412i 1.81091i
846846 21.0257 + 2.72971i 0.722877 + 0.0938495i
847847 32.8968 1.13035
848848 0 0
849849 1.56423 24.1982i 0.0536844 0.830480i
850850 98.9839 3.39512
851851 0 0
852852 −10.7207 0.693012i −0.367284 0.0237422i
853853 52.3973 1.79405 0.897025 0.441980i 0.145724π-0.145724\pi
0.897025 + 0.441980i 0.145724π0.145724\pi
854854 0 0
855855 0 0
856856 −28.8444 −0.985882
857857 40.7922i 1.39343i −0.717346 0.696717i 0.754643π-0.754643\pi
0.717346 0.696717i 0.245357π-0.245357\pi
858858 0 0
859859 50.0000 1.70598 0.852989 0.521929i 0.174787π-0.174787\pi
0.852989 + 0.521929i 0.174787π0.174787\pi
860860 98.1846i 3.34807i
861861 0 0
862862 32.6553 1.11224
863863 55.4854i 1.88874i 0.328880 + 0.944372i 0.393329π0.393329\pi
−0.328880 + 0.944372i 0.606671π0.606671\pi
864864 −28.8444 5.65685i −0.981307 0.192450i
865865 0 0
866866 57.6385i 1.95864i
867867 −2.31456 + 35.8055i −0.0786065 + 1.21602i
868868 −43.1313 −1.46397
869869 0 0
870870 0 0
871871 0 0
872872 0.811057i 0.0274659i
873873 0 0
874874 0 0
875875 77.4673i 2.61887i
876876 0 0
877877 −40.4349 −1.36539 −0.682694 0.730704i 0.739192π-0.739192\pi
−0.682694 + 0.730704i 0.739192π0.739192\pi
878878 0 0
879879 52.2705 + 3.37890i 1.76304 + 0.113967i
880880 0 0
881881 39.9762i 1.34683i −0.739263 0.673417i 0.764826π-0.764826\pi
0.739263 0.673417i 0.235174π-0.235174\pi
882882 1.06175 8.17814i 0.0357509 0.275372i
883883 −59.2772 −1.99484 −0.997418 0.0718139i 0.977121π-0.977121\pi
−0.997418 + 0.0718139i 0.977121π0.977121\pi
884884 44.2855i 1.48948i
885885 0 0
886886 −55.9614 −1.88006
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 −57.0799 3.68979i −1.91548 0.123821i
889889 0 0
890890 0 0
891891 0 0
892892 −16.7967 −0.562395
893893 0 0
894894 −1.78770 + 27.6551i −0.0597895 + 0.924925i
895895 −57.4781 −1.92128
896896 33.8350i 1.13035i
897897 0 0
898898 0 0
899899 0 0
900900 −67.8128 8.80398i −2.26043 0.293466i
901901 0 0
902902 0 0
903903 −4.05103 + 62.6682i −0.134810 + 2.08547i
904904 57.6888 1.91870
905905 0 0
906906 −35.1493 2.27214i −1.16776 0.0754868i
907907 −57.9364 −1.92375 −0.961874 0.273495i 0.911820π-0.911820\pi
−0.961874 + 0.273495i 0.911820π0.911820\pi
908908 0 0
909909 0 0
910910 −61.7489 −2.04696
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 12.5360 0.414200
917917 56.3115i 1.85957i
918918 8.68510 44.2855i 0.286651 1.46164i
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 25.9515 0.854666
923923 11.1817i 0.368051i
924924 0 0
925925 −133.068 −4.37525
926926 10.1980i 0.335128i
927927 0 0
928928 0 0
929929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
930930 4.61395 71.3763i 0.151297 2.34052i
931931 0 0
932932 19.9303i 0.652837i
933933 0 0
934934 14.4222 0.471909
935935 0 0
936936 3.93891 30.3395i 0.128747 0.991677i
937937 2.00000 0.0653372 0.0326686 0.999466i 0.489599π-0.489599\pi
0.0326686 + 0.999466i 0.489599π0.489599\pi
938938 0 0
939939 3.42391 52.9667i 0.111735 1.72850i
940940 40.4720 1.32005
941941 48.3348i 1.57567i −0.615887 0.787835i 0.711202π-0.711202\pi
0.615887 0.787835i 0.288798π-0.288798\pi
942942 0 0
943943 0 0
944944 0 0
945945 61.7489 + 12.1100i 2.00869 + 0.393937i
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0 0
951951 48.8878 + 3.16023i 1.58529 + 0.102478i
952952 −51.9476 −1.68363
953953 52.2588i 1.69283i 0.532524 + 0.846415i 0.321244π0.321244\pi
−0.532524 + 0.846415i 0.678756π0.678756\pi
954954 0 0
955955 0 0
956956 38.5971i 1.24832i
957957 0 0
958958 −44.1085 −1.42508
959959 0 0
960960 −55.9922 3.61948i −1.80714 0.116818i
961961 21.0000 0.677419
962962 59.5347i 1.91948i
963963 −3.93891 + 30.3395i −0.126929 + 0.977677i
964964 0 0
965965 0 0
966966 0 0
967967 −61.6559 −1.98272 −0.991360 0.131166i 0.958128π-0.958128\pi
−0.991360 + 0.131166i 0.958128π0.958128\pi
968968 31.1127i 1.00000i
969969 0 0
970970 0 0
971971 60.3120i 1.93551i 0.251902 + 0.967753i 0.418944π0.418944\pi
−0.251902 + 0.967753i 0.581056π0.581056\pi
972972 −9.88897 + 29.5670i −0.317189 + 0.948362i
973973 70.5091 2.26042
974974 50.9902i 1.63383i
975975 4.59130 71.0259i 0.147039 2.27465i
976976 0 0
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 15.7420i 0.502860i
981981 −0.853097 0.110756i −0.0272373 0.00353615i
982982 61.3692 1.95837
983983 25.5010i 0.813357i 0.913571 + 0.406678i 0.133313π0.133313\pi
−0.913571 + 0.406678i 0.866687π0.866687\pi
984984 0 0
985985 −24.0751 −0.767095
986986 0 0
987987 −25.8321 1.66985i −0.822243 0.0531519i
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 40.7922i 1.29515i
993993 0 0
994994 13.1163 0.416025
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 0 0
999999 −11.6757 + 59.5347i −0.369403 + 1.88359i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.2.h.b.155.9 yes 12
3.2 odd 2 inner 312.2.h.b.155.4 yes 12
4.3 odd 2 1248.2.h.b.623.8 12
8.3 odd 2 inner 312.2.h.b.155.3 12
8.5 even 2 1248.2.h.b.623.7 12
12.11 even 2 1248.2.h.b.623.5 12
13.12 even 2 inner 312.2.h.b.155.3 12
24.5 odd 2 1248.2.h.b.623.6 12
24.11 even 2 inner 312.2.h.b.155.10 yes 12
39.38 odd 2 inner 312.2.h.b.155.10 yes 12
52.51 odd 2 1248.2.h.b.623.7 12
104.51 odd 2 CM 312.2.h.b.155.9 yes 12
104.77 even 2 1248.2.h.b.623.8 12
156.155 even 2 1248.2.h.b.623.6 12
312.77 odd 2 1248.2.h.b.623.5 12
312.155 even 2 inner 312.2.h.b.155.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.h.b.155.3 12 8.3 odd 2 inner
312.2.h.b.155.3 12 13.12 even 2 inner
312.2.h.b.155.4 yes 12 3.2 odd 2 inner
312.2.h.b.155.4 yes 12 312.155 even 2 inner
312.2.h.b.155.9 yes 12 1.1 even 1 trivial
312.2.h.b.155.9 yes 12 104.51 odd 2 CM
312.2.h.b.155.10 yes 12 24.11 even 2 inner
312.2.h.b.155.10 yes 12 39.38 odd 2 inner
1248.2.h.b.623.5 12 12.11 even 2
1248.2.h.b.623.5 12 312.77 odd 2
1248.2.h.b.623.6 12 24.5 odd 2
1248.2.h.b.623.6 12 156.155 even 2
1248.2.h.b.623.7 12 8.5 even 2
1248.2.h.b.623.7 12 52.51 odd 2
1248.2.h.b.623.8 12 4.3 odd 2
1248.2.h.b.623.8 12 104.77 even 2