Properties

Label 1248.4.m.a.337.9
Level $1248$
Weight $4$
Character 1248.337
Analytic conductor $73.634$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1248,4,Mod(337,1248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1248.337");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1248.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.6343836872\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.9
Character \(\chi\) \(=\) 1248.337
Dual form 1248.4.m.a.337.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} -4.56929 q^{5} +23.0002i q^{7} -9.00000 q^{9} -9.02801 q^{11} +(-3.63901 + 46.7307i) q^{13} +13.7079i q^{15} -59.4245 q^{17} -27.0061 q^{19} +69.0006 q^{21} -35.7672 q^{23} -104.122 q^{25} +27.0000i q^{27} +142.184i q^{29} -303.839i q^{31} +27.0840i q^{33} -105.095i q^{35} +241.300 q^{37} +(140.192 + 10.9170i) q^{39} +280.464i q^{41} -198.269i q^{43} +41.1236 q^{45} -319.409i q^{47} -186.009 q^{49} +178.273i q^{51} +531.123i q^{53} +41.2516 q^{55} +81.0182i q^{57} +378.115 q^{59} -878.946i q^{61} -207.002i q^{63} +(16.6277 - 213.526i) q^{65} +247.600 q^{67} +107.302i q^{69} -182.156i q^{71} -815.886i q^{73} +312.365i q^{75} -207.646i q^{77} +817.462 q^{79} +81.0000 q^{81} -246.607 q^{83} +271.528 q^{85} +426.551 q^{87} -355.903i q^{89} +(-1074.81 - 83.6980i) q^{91} -911.517 q^{93} +123.399 q^{95} -506.709i q^{97} +81.2521 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 104 q^{17} + 2188 q^{25} - 3396 q^{49} + 1616 q^{55} + 696 q^{65} - 3160 q^{79} + 6804 q^{81} + 2088 q^{87} - 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) −4.56929 −0.408690 −0.204345 0.978899i \(-0.565506\pi\)
−0.204345 + 0.978899i \(0.565506\pi\)
\(6\) 0 0
\(7\) 23.0002i 1.24189i 0.783853 + 0.620947i \(0.213252\pi\)
−0.783853 + 0.620947i \(0.786748\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −9.02801 −0.247459 −0.123729 0.992316i \(-0.539485\pi\)
−0.123729 + 0.992316i \(0.539485\pi\)
\(12\) 0 0
\(13\) −3.63901 + 46.7307i −0.0776370 + 0.996982i
\(14\) 0 0
\(15\) 13.7079i 0.235957i
\(16\) 0 0
\(17\) −59.4245 −0.847797 −0.423899 0.905710i \(-0.639339\pi\)
−0.423899 + 0.905710i \(0.639339\pi\)
\(18\) 0 0
\(19\) −27.0061 −0.326085 −0.163043 0.986619i \(-0.552131\pi\)
−0.163043 + 0.986619i \(0.552131\pi\)
\(20\) 0 0
\(21\) 69.0006 0.717008
\(22\) 0 0
\(23\) −35.7672 −0.324260 −0.162130 0.986769i \(-0.551836\pi\)
−0.162130 + 0.986769i \(0.551836\pi\)
\(24\) 0 0
\(25\) −104.122 −0.832972
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 142.184i 0.910442i 0.890378 + 0.455221i \(0.150440\pi\)
−0.890378 + 0.455221i \(0.849560\pi\)
\(30\) 0 0
\(31\) 303.839i 1.76036i −0.474643 0.880179i \(-0.657423\pi\)
0.474643 0.880179i \(-0.342577\pi\)
\(32\) 0 0
\(33\) 27.0840i 0.142870i
\(34\) 0 0
\(35\) 105.095i 0.507550i
\(36\) 0 0
\(37\) 241.300 1.07215 0.536074 0.844171i \(-0.319907\pi\)
0.536074 + 0.844171i \(0.319907\pi\)
\(38\) 0 0
\(39\) 140.192 + 10.9170i 0.575608 + 0.0448237i
\(40\) 0 0
\(41\) 280.464i 1.06832i 0.845383 + 0.534160i \(0.179372\pi\)
−0.845383 + 0.534160i \(0.820628\pi\)
\(42\) 0 0
\(43\) 198.269i 0.703156i −0.936159 0.351578i \(-0.885645\pi\)
0.936159 0.351578i \(-0.114355\pi\)
\(44\) 0 0
\(45\) 41.1236 0.136230
\(46\) 0 0
\(47\) 319.409i 0.991288i −0.868526 0.495644i \(-0.834932\pi\)
0.868526 0.495644i \(-0.165068\pi\)
\(48\) 0 0
\(49\) −186.009 −0.542300
\(50\) 0 0
\(51\) 178.273i 0.489476i
\(52\) 0 0
\(53\) 531.123i 1.37652i 0.725466 + 0.688258i \(0.241624\pi\)
−0.725466 + 0.688258i \(0.758376\pi\)
\(54\) 0 0
\(55\) 41.2516 0.101134
\(56\) 0 0
\(57\) 81.0182i 0.188265i
\(58\) 0 0
\(59\) 378.115 0.834345 0.417172 0.908827i \(-0.363021\pi\)
0.417172 + 0.908827i \(0.363021\pi\)
\(60\) 0 0
\(61\) 878.946i 1.84488i −0.386145 0.922438i \(-0.626193\pi\)
0.386145 0.922438i \(-0.373807\pi\)
\(62\) 0 0
\(63\) 207.002i 0.413965i
\(64\) 0 0
\(65\) 16.6277 213.526i 0.0317295 0.407457i
\(66\) 0 0
\(67\) 247.600 0.451480 0.225740 0.974188i \(-0.427520\pi\)
0.225740 + 0.974188i \(0.427520\pi\)
\(68\) 0 0
\(69\) 107.302i 0.187211i
\(70\) 0 0
\(71\) 182.156i 0.304478i −0.988344 0.152239i \(-0.951352\pi\)
0.988344 0.152239i \(-0.0486483\pi\)
\(72\) 0 0
\(73\) 815.886i 1.30811i −0.756446 0.654057i \(-0.773066\pi\)
0.756446 0.654057i \(-0.226934\pi\)
\(74\) 0 0
\(75\) 312.365i 0.480917i
\(76\) 0 0
\(77\) 207.646i 0.307317i
\(78\) 0 0
\(79\) 817.462 1.16420 0.582099 0.813118i \(-0.302231\pi\)
0.582099 + 0.813118i \(0.302231\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −246.607 −0.326128 −0.163064 0.986616i \(-0.552138\pi\)
−0.163064 + 0.986616i \(0.552138\pi\)
\(84\) 0 0
\(85\) 271.528 0.346486
\(86\) 0 0
\(87\) 426.551 0.525644
\(88\) 0 0
\(89\) 355.903i 0.423883i −0.977282 0.211942i \(-0.932021\pi\)
0.977282 0.211942i \(-0.0679787\pi\)
\(90\) 0 0
\(91\) −1074.81 83.6980i −1.23815 0.0964168i
\(92\) 0 0
\(93\) −911.517 −1.01634
\(94\) 0 0
\(95\) 123.399 0.133268
\(96\) 0 0
\(97\) 506.709i 0.530397i −0.964194 0.265199i \(-0.914563\pi\)
0.964194 0.265199i \(-0.0854375\pi\)
\(98\) 0 0
\(99\) 81.2521 0.0824863
\(100\) 0 0
\(101\) 877.066i 0.864073i 0.901856 + 0.432036i \(0.142205\pi\)
−0.901856 + 0.432036i \(0.857795\pi\)
\(102\) 0 0
\(103\) 1177.42 1.12636 0.563179 0.826335i \(-0.309578\pi\)
0.563179 + 0.826335i \(0.309578\pi\)
\(104\) 0 0
\(105\) −315.284 −0.293034
\(106\) 0 0
\(107\) 1125.19i 1.01660i −0.861179 0.508301i \(-0.830274\pi\)
0.861179 0.508301i \(-0.169726\pi\)
\(108\) 0 0
\(109\) 788.108 0.692542 0.346271 0.938135i \(-0.387448\pi\)
0.346271 + 0.938135i \(0.387448\pi\)
\(110\) 0 0
\(111\) 723.900i 0.619005i
\(112\) 0 0
\(113\) −1182.33 −0.984284 −0.492142 0.870515i \(-0.663786\pi\)
−0.492142 + 0.870515i \(0.663786\pi\)
\(114\) 0 0
\(115\) 163.431 0.132522
\(116\) 0 0
\(117\) 32.7511 420.576i 0.0258790 0.332327i
\(118\) 0 0
\(119\) 1366.77i 1.05287i
\(120\) 0 0
\(121\) −1249.50 −0.938764
\(122\) 0 0
\(123\) 841.392 0.616795
\(124\) 0 0
\(125\) 1046.92 0.749118
\(126\) 0 0
\(127\) −1038.87 −0.725864 −0.362932 0.931816i \(-0.618224\pi\)
−0.362932 + 0.931816i \(0.618224\pi\)
\(128\) 0 0
\(129\) −594.806 −0.405967
\(130\) 0 0
\(131\) 142.564i 0.0950833i −0.998869 0.0475417i \(-0.984861\pi\)
0.998869 0.0475417i \(-0.0151387\pi\)
\(132\) 0 0
\(133\) 621.145i 0.404963i
\(134\) 0 0
\(135\) 123.371i 0.0786524i
\(136\) 0 0
\(137\) 2413.02i 1.50481i −0.658703 0.752403i \(-0.728895\pi\)
0.658703 0.752403i \(-0.271105\pi\)
\(138\) 0 0
\(139\) 827.007i 0.504646i −0.967643 0.252323i \(-0.918805\pi\)
0.967643 0.252323i \(-0.0811946\pi\)
\(140\) 0 0
\(141\) −958.226 −0.572320
\(142\) 0 0
\(143\) 32.8530 421.885i 0.0192119 0.246712i
\(144\) 0 0
\(145\) 649.679i 0.372089i
\(146\) 0 0
\(147\) 558.026i 0.313097i
\(148\) 0 0
\(149\) −3151.97 −1.73302 −0.866509 0.499162i \(-0.833641\pi\)
−0.866509 + 0.499162i \(0.833641\pi\)
\(150\) 0 0
\(151\) 934.341i 0.503547i 0.967786 + 0.251774i \(0.0810138\pi\)
−0.967786 + 0.251774i \(0.918986\pi\)
\(152\) 0 0
\(153\) 534.820 0.282599
\(154\) 0 0
\(155\) 1388.33i 0.719441i
\(156\) 0 0
\(157\) 307.214i 0.156168i 0.996947 + 0.0780840i \(0.0248802\pi\)
−0.996947 + 0.0780840i \(0.975120\pi\)
\(158\) 0 0
\(159\) 1593.37 0.794732
\(160\) 0 0
\(161\) 822.652i 0.402696i
\(162\) 0 0
\(163\) −368.699 −0.177170 −0.0885851 0.996069i \(-0.528235\pi\)
−0.0885851 + 0.996069i \(0.528235\pi\)
\(164\) 0 0
\(165\) 123.755i 0.0583897i
\(166\) 0 0
\(167\) 402.412i 0.186464i 0.995644 + 0.0932322i \(0.0297199\pi\)
−0.995644 + 0.0932322i \(0.970280\pi\)
\(168\) 0 0
\(169\) −2170.52 340.107i −0.987945 0.154805i
\(170\) 0 0
\(171\) 243.055 0.108695
\(172\) 0 0
\(173\) 3541.26i 1.55629i 0.628088 + 0.778143i \(0.283838\pi\)
−0.628088 + 0.778143i \(0.716162\pi\)
\(174\) 0 0
\(175\) 2394.82i 1.03446i
\(176\) 0 0
\(177\) 1134.34i 0.481709i
\(178\) 0 0
\(179\) 3755.60i 1.56819i −0.620640 0.784096i \(-0.713127\pi\)
0.620640 0.784096i \(-0.286873\pi\)
\(180\) 0 0
\(181\) 1146.21i 0.470701i 0.971911 + 0.235350i \(0.0756238\pi\)
−0.971911 + 0.235350i \(0.924376\pi\)
\(182\) 0 0
\(183\) −2636.84 −1.06514
\(184\) 0 0
\(185\) −1102.57 −0.438176
\(186\) 0 0
\(187\) 536.485 0.209795
\(188\) 0 0
\(189\) −621.005 −0.239003
\(190\) 0 0
\(191\) −2181.45 −0.826410 −0.413205 0.910638i \(-0.635591\pi\)
−0.413205 + 0.910638i \(0.635591\pi\)
\(192\) 0 0
\(193\) 4438.58i 1.65542i −0.561158 0.827709i \(-0.689644\pi\)
0.561158 0.827709i \(-0.310356\pi\)
\(194\) 0 0
\(195\) −640.579 49.8831i −0.235245 0.0183190i
\(196\) 0 0
\(197\) −3788.49 −1.37014 −0.685072 0.728475i \(-0.740229\pi\)
−0.685072 + 0.728475i \(0.740229\pi\)
\(198\) 0 0
\(199\) −1535.85 −0.547102 −0.273551 0.961858i \(-0.588198\pi\)
−0.273551 + 0.961858i \(0.588198\pi\)
\(200\) 0 0
\(201\) 742.800i 0.260662i
\(202\) 0 0
\(203\) −3270.25 −1.13067
\(204\) 0 0
\(205\) 1281.52i 0.436612i
\(206\) 0 0
\(207\) 321.905 0.108087
\(208\) 0 0
\(209\) 243.811 0.0806927
\(210\) 0 0
\(211\) 5166.95i 1.68582i 0.538055 + 0.842909i \(0.319159\pi\)
−0.538055 + 0.842909i \(0.680841\pi\)
\(212\) 0 0
\(213\) −546.467 −0.175790
\(214\) 0 0
\(215\) 905.948i 0.287373i
\(216\) 0 0
\(217\) 6988.35 2.18618
\(218\) 0 0
\(219\) −2447.66 −0.755240
\(220\) 0 0
\(221\) 216.246 2776.95i 0.0658204 0.845238i
\(222\) 0 0
\(223\) 4812.46i 1.44514i −0.691297 0.722570i \(-0.742961\pi\)
0.691297 0.722570i \(-0.257039\pi\)
\(224\) 0 0
\(225\) 937.094 0.277657
\(226\) 0 0
\(227\) −584.946 −0.171032 −0.0855159 0.996337i \(-0.527254\pi\)
−0.0855159 + 0.996337i \(0.527254\pi\)
\(228\) 0 0
\(229\) 4584.28 1.32287 0.661436 0.750001i \(-0.269947\pi\)
0.661436 + 0.750001i \(0.269947\pi\)
\(230\) 0 0
\(231\) −622.938 −0.177430
\(232\) 0 0
\(233\) 4302.16 1.20963 0.604815 0.796366i \(-0.293247\pi\)
0.604815 + 0.796366i \(0.293247\pi\)
\(234\) 0 0
\(235\) 1459.47i 0.405130i
\(236\) 0 0
\(237\) 2452.39i 0.672150i
\(238\) 0 0
\(239\) 7132.42i 1.93037i −0.261573 0.965184i \(-0.584241\pi\)
0.261573 0.965184i \(-0.415759\pi\)
\(240\) 0 0
\(241\) 813.188i 0.217353i 0.994077 + 0.108676i \(0.0346612\pi\)
−0.994077 + 0.108676i \(0.965339\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) 849.929 0.221632
\(246\) 0 0
\(247\) 98.2755 1262.01i 0.0253163 0.325101i
\(248\) 0 0
\(249\) 739.820i 0.188290i
\(250\) 0 0
\(251\) 98.3380i 0.0247292i −0.999924 0.0123646i \(-0.996064\pi\)
0.999924 0.0123646i \(-0.00393588\pi\)
\(252\) 0 0
\(253\) 322.906 0.0802409
\(254\) 0 0
\(255\) 814.584i 0.200044i
\(256\) 0 0
\(257\) 2348.27 0.569966 0.284983 0.958533i \(-0.408012\pi\)
0.284983 + 0.958533i \(0.408012\pi\)
\(258\) 0 0
\(259\) 5549.94i 1.33149i
\(260\) 0 0
\(261\) 1279.65i 0.303481i
\(262\) 0 0
\(263\) 3653.13 0.856507 0.428254 0.903659i \(-0.359129\pi\)
0.428254 + 0.903659i \(0.359129\pi\)
\(264\) 0 0
\(265\) 2426.86i 0.562568i
\(266\) 0 0
\(267\) −1067.71 −0.244729
\(268\) 0 0
\(269\) 496.183i 0.112464i 0.998418 + 0.0562320i \(0.0179086\pi\)
−0.998418 + 0.0562320i \(0.982091\pi\)
\(270\) 0 0
\(271\) 1164.70i 0.261072i −0.991444 0.130536i \(-0.958330\pi\)
0.991444 0.130536i \(-0.0416698\pi\)
\(272\) 0 0
\(273\) −251.094 + 3224.44i −0.0556663 + 0.714843i
\(274\) 0 0
\(275\) 940.010 0.206126
\(276\) 0 0
\(277\) 3541.96i 0.768289i 0.923273 + 0.384144i \(0.125504\pi\)
−0.923273 + 0.384144i \(0.874496\pi\)
\(278\) 0 0
\(279\) 2734.55i 0.586786i
\(280\) 0 0
\(281\) 1001.92i 0.212703i −0.994329 0.106352i \(-0.966083\pi\)
0.994329 0.106352i \(-0.0339169\pi\)
\(282\) 0 0
\(283\) 4471.46i 0.939226i −0.882872 0.469613i \(-0.844393\pi\)
0.882872 0.469613i \(-0.155607\pi\)
\(284\) 0 0
\(285\) 370.196i 0.0769422i
\(286\) 0 0
\(287\) −6450.73 −1.32674
\(288\) 0 0
\(289\) −1381.73 −0.281240
\(290\) 0 0
\(291\) −1520.13 −0.306225
\(292\) 0 0
\(293\) −3292.99 −0.656582 −0.328291 0.944577i \(-0.606473\pi\)
−0.328291 + 0.944577i \(0.606473\pi\)
\(294\) 0 0
\(295\) −1727.72 −0.340988
\(296\) 0 0
\(297\) 243.756i 0.0476235i
\(298\) 0 0
\(299\) 130.157 1671.43i 0.0251745 0.323281i
\(300\) 0 0
\(301\) 4560.22 0.873245
\(302\) 0 0
\(303\) 2631.20 0.498873
\(304\) 0 0
\(305\) 4016.16i 0.753983i
\(306\) 0 0
\(307\) 3274.18 0.608688 0.304344 0.952562i \(-0.401563\pi\)
0.304344 + 0.952562i \(0.401563\pi\)
\(308\) 0 0
\(309\) 3532.27i 0.650303i
\(310\) 0 0
\(311\) −3191.33 −0.581876 −0.290938 0.956742i \(-0.593967\pi\)
−0.290938 + 0.956742i \(0.593967\pi\)
\(312\) 0 0
\(313\) 5529.90 0.998621 0.499311 0.866423i \(-0.333587\pi\)
0.499311 + 0.866423i \(0.333587\pi\)
\(314\) 0 0
\(315\) 945.852i 0.169183i
\(316\) 0 0
\(317\) 6475.59 1.14734 0.573668 0.819088i \(-0.305520\pi\)
0.573668 + 0.819088i \(0.305520\pi\)
\(318\) 0 0
\(319\) 1283.63i 0.225297i
\(320\) 0 0
\(321\) −3375.58 −0.586936
\(322\) 0 0
\(323\) 1604.82 0.276454
\(324\) 0 0
\(325\) 378.900 4865.67i 0.0646694 0.830458i
\(326\) 0 0
\(327\) 2364.32i 0.399839i
\(328\) 0 0
\(329\) 7346.46 1.23107
\(330\) 0 0
\(331\) 10016.3 1.66327 0.831637 0.555319i \(-0.187404\pi\)
0.831637 + 0.555319i \(0.187404\pi\)
\(332\) 0 0
\(333\) −2171.70 −0.357382
\(334\) 0 0
\(335\) −1131.36 −0.184515
\(336\) 0 0
\(337\) −6602.82 −1.06730 −0.533648 0.845707i \(-0.679179\pi\)
−0.533648 + 0.845707i \(0.679179\pi\)
\(338\) 0 0
\(339\) 3546.99i 0.568277i
\(340\) 0 0
\(341\) 2743.06i 0.435616i
\(342\) 0 0
\(343\) 3610.83i 0.568415i
\(344\) 0 0
\(345\) 490.292i 0.0765115i
\(346\) 0 0
\(347\) 8226.15i 1.27263i −0.771429 0.636315i \(-0.780458\pi\)
0.771429 0.636315i \(-0.219542\pi\)
\(348\) 0 0
\(349\) −5987.66 −0.918373 −0.459187 0.888340i \(-0.651859\pi\)
−0.459187 + 0.888340i \(0.651859\pi\)
\(350\) 0 0
\(351\) −1261.73 98.2533i −0.191869 0.0149412i
\(352\) 0 0
\(353\) 8372.28i 1.26236i −0.775638 0.631178i \(-0.782572\pi\)
0.775638 0.631178i \(-0.217428\pi\)
\(354\) 0 0
\(355\) 832.323i 0.124437i
\(356\) 0 0
\(357\) −4100.32 −0.607877
\(358\) 0 0
\(359\) 5365.50i 0.788803i 0.918938 + 0.394401i \(0.129048\pi\)
−0.918938 + 0.394401i \(0.870952\pi\)
\(360\) 0 0
\(361\) −6129.67 −0.893668
\(362\) 0 0
\(363\) 3748.49i 0.541996i
\(364\) 0 0
\(365\) 3728.02i 0.534613i
\(366\) 0 0
\(367\) −2032.50 −0.289089 −0.144545 0.989498i \(-0.546172\pi\)
−0.144545 + 0.989498i \(0.546172\pi\)
\(368\) 0 0
\(369\) 2524.18i 0.356107i
\(370\) 0 0
\(371\) −12215.9 −1.70949
\(372\) 0 0
\(373\) 13867.4i 1.92500i −0.271282 0.962500i \(-0.587448\pi\)
0.271282 0.962500i \(-0.412552\pi\)
\(374\) 0 0
\(375\) 3140.77i 0.432503i
\(376\) 0 0
\(377\) −6644.34 517.408i −0.907694 0.0706840i
\(378\) 0 0
\(379\) −4445.76 −0.602542 −0.301271 0.953539i \(-0.597411\pi\)
−0.301271 + 0.953539i \(0.597411\pi\)
\(380\) 0 0
\(381\) 3116.61i 0.419078i
\(382\) 0 0
\(383\) 1882.41i 0.251141i −0.992085 0.125570i \(-0.959924\pi\)
0.992085 0.125570i \(-0.0400761\pi\)
\(384\) 0 0
\(385\) 948.795i 0.125598i
\(386\) 0 0
\(387\) 1784.42i 0.234385i
\(388\) 0 0
\(389\) 4490.10i 0.585237i 0.956229 + 0.292619i \(0.0945266\pi\)
−0.956229 + 0.292619i \(0.905473\pi\)
\(390\) 0 0
\(391\) 2125.45 0.274907
\(392\) 0 0
\(393\) −427.693 −0.0548964
\(394\) 0 0
\(395\) −3735.23 −0.475796
\(396\) 0 0
\(397\) 9505.67 1.20170 0.600852 0.799361i \(-0.294828\pi\)
0.600852 + 0.799361i \(0.294828\pi\)
\(398\) 0 0
\(399\) −1863.44 −0.233806
\(400\) 0 0
\(401\) 9181.79i 1.14343i 0.820451 + 0.571716i \(0.193722\pi\)
−0.820451 + 0.571716i \(0.806278\pi\)
\(402\) 0 0
\(403\) 14198.6 + 1105.67i 1.75504 + 0.136669i
\(404\) 0 0
\(405\) −370.113 −0.0454100
\(406\) 0 0
\(407\) −2178.46 −0.265312
\(408\) 0 0
\(409\) 3469.65i 0.419470i 0.977758 + 0.209735i \(0.0672601\pi\)
−0.977758 + 0.209735i \(0.932740\pi\)
\(410\) 0 0
\(411\) −7239.07 −0.868800
\(412\) 0 0
\(413\) 8696.71i 1.03617i
\(414\) 0 0
\(415\) 1126.82 0.133285
\(416\) 0 0
\(417\) −2481.02 −0.291358
\(418\) 0 0
\(419\) 12868.1i 1.50035i −0.661241 0.750174i \(-0.729970\pi\)
0.661241 0.750174i \(-0.270030\pi\)
\(420\) 0 0
\(421\) 4414.39 0.511031 0.255516 0.966805i \(-0.417755\pi\)
0.255516 + 0.966805i \(0.417755\pi\)
\(422\) 0 0
\(423\) 2874.68i 0.330429i
\(424\) 0 0
\(425\) 6187.37 0.706192
\(426\) 0 0
\(427\) 20215.9 2.29114
\(428\) 0 0
\(429\) −1265.65 98.5591i −0.142439 0.0110920i
\(430\) 0 0
\(431\) 11981.4i 1.33903i 0.742797 + 0.669517i \(0.233499\pi\)
−0.742797 + 0.669517i \(0.766501\pi\)
\(432\) 0 0
\(433\) 4268.40 0.473733 0.236866 0.971542i \(-0.423880\pi\)
0.236866 + 0.971542i \(0.423880\pi\)
\(434\) 0 0
\(435\) −1949.04 −0.214826
\(436\) 0 0
\(437\) 965.932 0.105736
\(438\) 0 0
\(439\) −7424.25 −0.807152 −0.403576 0.914946i \(-0.632233\pi\)
−0.403576 + 0.914946i \(0.632233\pi\)
\(440\) 0 0
\(441\) 1674.08 0.180767
\(442\) 0 0
\(443\) 3110.29i 0.333576i 0.985993 + 0.166788i \(0.0533395\pi\)
−0.985993 + 0.166788i \(0.946660\pi\)
\(444\) 0 0
\(445\) 1626.22i 0.173237i
\(446\) 0 0
\(447\) 9455.91i 1.00056i
\(448\) 0 0
\(449\) 5412.37i 0.568876i −0.958694 0.284438i \(-0.908193\pi\)
0.958694 0.284438i \(-0.0918071\pi\)
\(450\) 0 0
\(451\) 2532.03i 0.264365i
\(452\) 0 0
\(453\) 2803.02 0.290723
\(454\) 0 0
\(455\) 4911.14 + 382.441i 0.506018 + 0.0394046i
\(456\) 0 0
\(457\) 3771.11i 0.386007i 0.981198 + 0.193003i \(0.0618228\pi\)
−0.981198 + 0.193003i \(0.938177\pi\)
\(458\) 0 0
\(459\) 1604.46i 0.163159i
\(460\) 0 0
\(461\) −1276.30 −0.128944 −0.0644722 0.997920i \(-0.520536\pi\)
−0.0644722 + 0.997920i \(0.520536\pi\)
\(462\) 0 0
\(463\) 10359.5i 1.03984i 0.854216 + 0.519919i \(0.174038\pi\)
−0.854216 + 0.519919i \(0.825962\pi\)
\(464\) 0 0
\(465\) 4164.99 0.415369
\(466\) 0 0
\(467\) 18643.9i 1.84740i 0.383112 + 0.923702i \(0.374852\pi\)
−0.383112 + 0.923702i \(0.625148\pi\)
\(468\) 0 0
\(469\) 5694.85i 0.560690i
\(470\) 0 0
\(471\) 921.643 0.0901636
\(472\) 0 0
\(473\) 1789.97i 0.174002i
\(474\) 0 0
\(475\) 2811.92 0.271620
\(476\) 0 0
\(477\) 4780.10i 0.458838i
\(478\) 0 0
\(479\) 4124.15i 0.393397i 0.980464 + 0.196699i \(0.0630221\pi\)
−0.980464 + 0.196699i \(0.936978\pi\)
\(480\) 0 0
\(481\) −878.093 + 11276.1i −0.0832383 + 1.06891i
\(482\) 0 0
\(483\) −2467.96 −0.232497
\(484\) 0 0
\(485\) 2315.30i 0.216768i
\(486\) 0 0
\(487\) 3948.63i 0.367412i −0.982981 0.183706i \(-0.941191\pi\)
0.982981 0.183706i \(-0.0588095\pi\)
\(488\) 0 0
\(489\) 1106.10i 0.102289i
\(490\) 0 0
\(491\) 9699.68i 0.891528i −0.895150 0.445764i \(-0.852932\pi\)
0.895150 0.445764i \(-0.147068\pi\)
\(492\) 0 0
\(493\) 8449.19i 0.771871i
\(494\) 0 0
\(495\) −371.265 −0.0337113
\(496\) 0 0
\(497\) 4189.62 0.378129
\(498\) 0 0
\(499\) 10351.2 0.928620 0.464310 0.885673i \(-0.346302\pi\)
0.464310 + 0.885673i \(0.346302\pi\)
\(500\) 0 0
\(501\) 1207.23 0.107655
\(502\) 0 0
\(503\) 14291.2 1.26682 0.633412 0.773815i \(-0.281654\pi\)
0.633412 + 0.773815i \(0.281654\pi\)
\(504\) 0 0
\(505\) 4007.57i 0.353138i
\(506\) 0 0
\(507\) −1020.32 + 6511.55i −0.0893769 + 0.570390i
\(508\) 0 0
\(509\) −6030.07 −0.525104 −0.262552 0.964918i \(-0.584564\pi\)
−0.262552 + 0.964918i \(0.584564\pi\)
\(510\) 0 0
\(511\) 18765.5 1.62454
\(512\) 0 0
\(513\) 729.164i 0.0627551i
\(514\) 0 0
\(515\) −5379.99 −0.460331
\(516\) 0 0
\(517\) 2883.62i 0.245303i
\(518\) 0 0
\(519\) 10623.8 0.898522
\(520\) 0 0
\(521\) −2617.24 −0.220083 −0.110042 0.993927i \(-0.535098\pi\)
−0.110042 + 0.993927i \(0.535098\pi\)
\(522\) 0 0
\(523\) 21188.4i 1.77152i −0.464144 0.885760i \(-0.653638\pi\)
0.464144 0.885760i \(-0.346362\pi\)
\(524\) 0 0
\(525\) −7184.45 −0.597248
\(526\) 0 0
\(527\) 18055.5i 1.49243i
\(528\) 0 0
\(529\) −10887.7 −0.894856
\(530\) 0 0
\(531\) −3403.03 −0.278115
\(532\) 0 0
\(533\) −13106.3 1020.61i −1.06510 0.0829411i
\(534\) 0 0
\(535\) 5141.33i 0.415475i
\(536\) 0 0
\(537\) −11266.8 −0.905396
\(538\) 0 0
\(539\) 1679.29 0.134197
\(540\) 0 0
\(541\) 5104.29 0.405639 0.202819 0.979216i \(-0.434990\pi\)
0.202819 + 0.979216i \(0.434990\pi\)
\(542\) 0 0
\(543\) 3438.62 0.271759
\(544\) 0 0
\(545\) −3601.10 −0.283035
\(546\) 0 0
\(547\) 10142.1i 0.792770i −0.918084 0.396385i \(-0.870265\pi\)
0.918084 0.396385i \(-0.129735\pi\)
\(548\) 0 0
\(549\) 7910.51i 0.614959i
\(550\) 0 0
\(551\) 3839.82i 0.296882i
\(552\) 0 0
\(553\) 18801.8i 1.44581i
\(554\) 0 0
\(555\) 3307.71i 0.252981i
\(556\) 0 0
\(557\) −1339.31 −0.101882 −0.0509409 0.998702i \(-0.516222\pi\)
−0.0509409 + 0.998702i \(0.516222\pi\)
\(558\) 0 0
\(559\) 9265.24 + 721.503i 0.701034 + 0.0545909i
\(560\) 0 0
\(561\) 1609.45i 0.121125i
\(562\) 0 0
\(563\) 7894.26i 0.590947i 0.955351 + 0.295474i \(0.0954775\pi\)
−0.955351 + 0.295474i \(0.904523\pi\)
\(564\) 0 0
\(565\) 5402.41 0.402267
\(566\) 0 0
\(567\) 1863.02i 0.137988i
\(568\) 0 0
\(569\) −5150.43 −0.379468 −0.189734 0.981836i \(-0.560763\pi\)
−0.189734 + 0.981836i \(0.560763\pi\)
\(570\) 0 0
\(571\) 9653.04i 0.707473i 0.935345 + 0.353737i \(0.115089\pi\)
−0.935345 + 0.353737i \(0.884911\pi\)
\(572\) 0 0
\(573\) 6544.35i 0.477128i
\(574\) 0 0
\(575\) 3724.14 0.270099
\(576\) 0 0
\(577\) 6097.68i 0.439948i −0.975506 0.219974i \(-0.929403\pi\)
0.975506 0.219974i \(-0.0705972\pi\)
\(578\) 0 0
\(579\) −13315.7 −0.955756
\(580\) 0 0
\(581\) 5672.00i 0.405016i
\(582\) 0 0
\(583\) 4794.98i 0.340631i
\(584\) 0 0
\(585\) −149.649 + 1921.74i −0.0105765 + 0.135819i
\(586\) 0 0
\(587\) −18721.5 −1.31639 −0.658195 0.752847i \(-0.728680\pi\)
−0.658195 + 0.752847i \(0.728680\pi\)
\(588\) 0 0
\(589\) 8205.50i 0.574027i
\(590\) 0 0
\(591\) 11365.5i 0.791053i
\(592\) 0 0
\(593\) 27503.7i 1.90462i 0.305127 + 0.952312i \(0.401301\pi\)
−0.305127 + 0.952312i \(0.598699\pi\)
\(594\) 0 0
\(595\) 6245.19i 0.430299i
\(596\) 0 0
\(597\) 4607.54i 0.315869i
\(598\) 0 0
\(599\) −6924.86 −0.472357 −0.236179 0.971710i \(-0.575895\pi\)
−0.236179 + 0.971710i \(0.575895\pi\)
\(600\) 0 0
\(601\) −438.105 −0.0297349 −0.0148674 0.999889i \(-0.504733\pi\)
−0.0148674 + 0.999889i \(0.504733\pi\)
\(602\) 0 0
\(603\) −2228.40 −0.150493
\(604\) 0 0
\(605\) 5709.31 0.383664
\(606\) 0 0
\(607\) 130.867 0.00875076 0.00437538 0.999990i \(-0.498607\pi\)
0.00437538 + 0.999990i \(0.498607\pi\)
\(608\) 0 0
\(609\) 9810.75i 0.652794i
\(610\) 0 0
\(611\) 14926.2 + 1162.33i 0.988296 + 0.0769606i
\(612\) 0 0
\(613\) 14591.0 0.961382 0.480691 0.876890i \(-0.340386\pi\)
0.480691 + 0.876890i \(0.340386\pi\)
\(614\) 0 0
\(615\) −3844.57 −0.252078
\(616\) 0 0
\(617\) 26154.6i 1.70656i 0.521457 + 0.853278i \(0.325389\pi\)
−0.521457 + 0.853278i \(0.674611\pi\)
\(618\) 0 0
\(619\) −5541.38 −0.359817 −0.179909 0.983683i \(-0.557580\pi\)
−0.179909 + 0.983683i \(0.557580\pi\)
\(620\) 0 0
\(621\) 965.714i 0.0624038i
\(622\) 0 0
\(623\) 8185.83 0.526418
\(624\) 0 0
\(625\) 8231.49 0.526815
\(626\) 0 0
\(627\) 731.433i 0.0465879i
\(628\) 0 0
\(629\) −14339.1 −0.908963
\(630\) 0 0
\(631\) 3022.53i 0.190689i −0.995444 0.0953447i \(-0.969605\pi\)
0.995444 0.0953447i \(-0.0303953\pi\)
\(632\) 0 0
\(633\) 15500.9 0.973308
\(634\) 0 0
\(635\) 4746.90 0.296653
\(636\) 0 0
\(637\) 676.888 8692.32i 0.0421025 0.540663i
\(638\) 0 0
\(639\) 1639.40i 0.101493i
\(640\) 0 0
\(641\) −24068.8 −1.48309 −0.741545 0.670904i \(-0.765906\pi\)
−0.741545 + 0.670904i \(0.765906\pi\)
\(642\) 0 0
\(643\) −10923.5 −0.669952 −0.334976 0.942227i \(-0.608728\pi\)
−0.334976 + 0.942227i \(0.608728\pi\)
\(644\) 0 0
\(645\) 2717.84 0.165915
\(646\) 0 0
\(647\) 6403.53 0.389102 0.194551 0.980892i \(-0.437675\pi\)
0.194551 + 0.980892i \(0.437675\pi\)
\(648\) 0 0
\(649\) −3413.62 −0.206466
\(650\) 0 0
\(651\) 20965.1i 1.26219i
\(652\) 0 0
\(653\) 3560.37i 0.213366i −0.994293 0.106683i \(-0.965977\pi\)
0.994293 0.106683i \(-0.0340230\pi\)
\(654\) 0 0
\(655\) 651.419i 0.0388596i
\(656\) 0 0
\(657\) 7342.98i 0.436038i
\(658\) 0 0
\(659\) 18983.0i 1.12212i 0.827776 + 0.561058i \(0.189606\pi\)
−0.827776 + 0.561058i \(0.810394\pi\)
\(660\) 0 0
\(661\) 6588.80 0.387707 0.193854 0.981030i \(-0.437901\pi\)
0.193854 + 0.981030i \(0.437901\pi\)
\(662\) 0 0
\(663\) −8330.84 648.739i −0.487999 0.0380014i
\(664\) 0 0
\(665\) 2838.19i 0.165504i
\(666\) 0 0
\(667\) 5085.51i 0.295220i
\(668\) 0 0
\(669\) −14437.4 −0.834352
\(670\) 0 0
\(671\) 7935.13i 0.456531i
\(672\) 0 0
\(673\) −11113.6 −0.636547 −0.318273 0.947999i \(-0.603103\pi\)
−0.318273 + 0.947999i \(0.603103\pi\)
\(674\) 0 0
\(675\) 2811.28i 0.160306i
\(676\) 0 0
\(677\) 7932.48i 0.450325i 0.974321 + 0.225162i \(0.0722913\pi\)
−0.974321 + 0.225162i \(0.927709\pi\)
\(678\) 0 0
\(679\) 11654.4 0.658697
\(680\) 0 0
\(681\) 1754.84i 0.0987453i
\(682\) 0 0
\(683\) 3650.03 0.204487 0.102244 0.994759i \(-0.467398\pi\)
0.102244 + 0.994759i \(0.467398\pi\)
\(684\) 0 0
\(685\) 11025.8i 0.614999i
\(686\) 0 0
\(687\) 13752.8i 0.763761i
\(688\) 0 0
\(689\) −24819.7 1932.76i −1.37236 0.106868i
\(690\) 0 0
\(691\) 7823.65 0.430717 0.215359 0.976535i \(-0.430908\pi\)
0.215359 + 0.976535i \(0.430908\pi\)
\(692\) 0 0
\(693\) 1868.81i 0.102439i
\(694\) 0 0
\(695\) 3778.84i 0.206244i
\(696\) 0 0
\(697\) 16666.4i 0.905719i
\(698\) 0 0
\(699\) 12906.5i 0.698380i
\(700\) 0 0
\(701\) 30382.7i 1.63700i −0.574507 0.818500i \(-0.694806\pi\)
0.574507 0.818500i \(-0.305194\pi\)
\(702\) 0 0
\(703\) −6516.56 −0.349611
\(704\) 0 0
\(705\) 4378.42 0.233902
\(706\) 0 0
\(707\) −20172.7 −1.07309
\(708\) 0 0
\(709\) 19960.9 1.05733 0.528665 0.848830i \(-0.322693\pi\)
0.528665 + 0.848830i \(0.322693\pi\)
\(710\) 0 0
\(711\) −7357.16 −0.388066
\(712\) 0 0
\(713\) 10867.5i 0.570813i
\(714\) 0 0
\(715\) −150.115 + 1927.72i −0.00785173 + 0.100829i
\(716\) 0 0
\(717\) −21397.3 −1.11450
\(718\) 0 0
\(719\) −10658.4 −0.552838 −0.276419 0.961037i \(-0.589148\pi\)
−0.276419 + 0.961037i \(0.589148\pi\)
\(720\) 0 0
\(721\) 27080.9i 1.39882i
\(722\) 0 0
\(723\) 2439.56 0.125489
\(724\) 0 0
\(725\) 14804.4i 0.758373i
\(726\) 0 0
\(727\) −20458.2 −1.04368 −0.521838 0.853045i \(-0.674753\pi\)
−0.521838 + 0.853045i \(0.674753\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 11782.0i 0.596134i
\(732\) 0 0
\(733\) 31681.2 1.59642 0.798208 0.602382i \(-0.205782\pi\)
0.798208 + 0.602382i \(0.205782\pi\)
\(734\) 0 0
\(735\) 2549.79i 0.127960i
\(736\) 0 0
\(737\) −2235.33 −0.111723
\(738\) 0 0
\(739\) 33577.7 1.67142 0.835709 0.549173i \(-0.185057\pi\)
0.835709 + 0.549173i \(0.185057\pi\)
\(740\) 0 0
\(741\) −3786.04 294.826i −0.187697 0.0146164i
\(742\) 0 0
\(743\) 19963.9i 0.985740i −0.870103 0.492870i \(-0.835948\pi\)
0.870103 0.492870i \(-0.164052\pi\)
\(744\) 0 0
\(745\) 14402.3 0.708267
\(746\) 0 0
\(747\) 2219.46 0.108709
\(748\) 0 0
\(749\) 25879.6 1.26251
\(750\) 0 0
\(751\) −34167.4 −1.66017 −0.830083 0.557640i \(-0.811707\pi\)
−0.830083 + 0.557640i \(0.811707\pi\)
\(752\) 0 0
\(753\) −295.014 −0.0142774
\(754\) 0 0
\(755\) 4269.28i 0.205795i
\(756\) 0 0
\(757\) 35511.1i 1.70498i 0.522741 + 0.852492i \(0.324910\pi\)
−0.522741 + 0.852492i \(0.675090\pi\)
\(758\) 0 0
\(759\) 968.719i 0.0463271i
\(760\) 0 0
\(761\) 29278.7i 1.39468i −0.716741 0.697340i \(-0.754367\pi\)
0.716741 0.697340i \(-0.245633\pi\)
\(762\) 0 0
\(763\) 18126.6i 0.860063i
\(764\) 0 0
\(765\) −2443.75 −0.115495
\(766\) 0 0
\(767\) −1375.96 + 17669.6i −0.0647760 + 0.831826i
\(768\) 0 0
\(769\) 26102.0i 1.22401i −0.790855 0.612003i \(-0.790364\pi\)
0.790855 0.612003i \(-0.209636\pi\)
\(770\) 0 0
\(771\) 7044.82i 0.329070i
\(772\) 0 0
\(773\) −29899.4 −1.39121 −0.695605 0.718424i \(-0.744864\pi\)
−0.695605 + 0.718424i \(0.744864\pi\)
\(774\) 0 0
\(775\) 31636.2i 1.46633i
\(776\) 0 0
\(777\) 16649.8 0.768738
\(778\) 0 0
\(779\) 7574.23i 0.348363i
\(780\) 0 0
\(781\) 1644.50i 0.0753457i
\(782\) 0 0
\(783\) −3838.96 −0.175215
\(784\) 0 0
\(785\) 1403.75i 0.0638243i
\(786\) 0 0
\(787\) −12011.5 −0.544047 −0.272024 0.962291i \(-0.587693\pi\)
−0.272024 + 0.962291i \(0.587693\pi\)
\(788\) 0 0
\(789\) 10959.4i 0.494505i
\(790\) 0 0
\(791\) 27193.8i 1.22238i
\(792\) 0 0
\(793\) 41073.7 + 3198.49i 1.83931 + 0.143231i
\(794\) 0 0
\(795\) −7280.57 −0.324799
\(796\) 0 0
\(797\) 41415.5i 1.84067i −0.391132 0.920335i \(-0.627916\pi\)
0.391132 0.920335i \(-0.372084\pi\)
\(798\) 0 0
\(799\) 18980.7i 0.840411i
\(800\) 0 0
\(801\) 3203.12i 0.141294i
\(802\) 0 0
\(803\) 7365.83i 0.323704i
\(804\) 0 0
\(805\) 3758.94i 0.164578i
\(806\) 0 0
\(807\) 1488.55 0.0649311
\(808\) 0 0
\(809\) 31305.7 1.36051 0.680254 0.732977i \(-0.261869\pi\)
0.680254 + 0.732977i \(0.261869\pi\)
\(810\) 0 0
\(811\) 13622.4 0.589822 0.294911 0.955525i \(-0.404710\pi\)
0.294911 + 0.955525i \(0.404710\pi\)
\(812\) 0 0
\(813\) −3494.10 −0.150730
\(814\) 0 0
\(815\) 1684.69 0.0724077
\(816\) 0 0
\(817\) 5354.46i 0.229289i
\(818\) 0 0
\(819\) 9673.33 + 753.282i 0.412715 + 0.0321389i
\(820\) 0 0
\(821\) −21506.4 −0.914226 −0.457113 0.889409i \(-0.651117\pi\)
−0.457113 + 0.889409i \(0.651117\pi\)
\(822\) 0 0
\(823\) 23500.9 0.995369 0.497684 0.867358i \(-0.334184\pi\)
0.497684 + 0.867358i \(0.334184\pi\)
\(824\) 0 0
\(825\) 2820.03i 0.119007i
\(826\) 0 0
\(827\) −11952.1 −0.502559 −0.251279 0.967915i \(-0.580851\pi\)
−0.251279 + 0.967915i \(0.580851\pi\)
\(828\) 0 0
\(829\) 11126.3i 0.466144i 0.972459 + 0.233072i \(0.0748778\pi\)
−0.972459 + 0.233072i \(0.925122\pi\)
\(830\) 0 0
\(831\) 10625.9 0.443572
\(832\) 0 0
\(833\) 11053.5 0.459760
\(834\) 0 0
\(835\) 1838.74i 0.0762061i
\(836\) 0 0
\(837\) 8203.65 0.338781
\(838\) 0 0
\(839\) 13125.0i 0.540077i 0.962850 + 0.270039i \(0.0870364\pi\)
−0.962850 + 0.270039i \(0.912964\pi\)
\(840\) 0 0
\(841\) 4172.82 0.171094
\(842\) 0 0
\(843\) −3005.76 −0.122804
\(844\) 0 0
\(845\) 9917.72 + 1554.05i 0.403763 + 0.0632674i
\(846\) 0 0
\(847\) 28738.6i 1.16585i
\(848\) 0 0
\(849\) −13414.4 −0.542262
\(850\) 0 0
\(851\) −8630.62 −0.347654
\(852\) 0 0
\(853\) 40716.0 1.63434 0.817169 0.576398i \(-0.195542\pi\)
0.817169 + 0.576398i \(0.195542\pi\)
\(854\) 0 0
\(855\) −1110.59 −0.0444226
\(856\) 0 0
\(857\) 34628.7 1.38027 0.690136 0.723680i \(-0.257551\pi\)
0.690136 + 0.723680i \(0.257551\pi\)
\(858\) 0 0
\(859\) 22608.8i 0.898024i −0.893526 0.449012i \(-0.851776\pi\)
0.893526 0.449012i \(-0.148224\pi\)
\(860\) 0 0
\(861\) 19352.2i 0.765994i
\(862\) 0 0
\(863\) 4002.67i 0.157882i −0.996879 0.0789412i \(-0.974846\pi\)
0.996879 0.0789412i \(-0.0251539\pi\)
\(864\) 0 0
\(865\) 16181.1i 0.636038i
\(866\) 0 0
\(867\) 4145.19i 0.162374i
\(868\) 0 0
\(869\) −7380.05 −0.288091
\(870\) 0 0
\(871\) −901.020 + 11570.5i −0.0350515 + 0.450117i
\(872\) 0 0
\(873\) 4560.38i 0.176799i
\(874\) 0 0
\(875\) 24079.4i 0.930324i
\(876\) 0 0
\(877\) −39433.0 −1.51831 −0.759154 0.650911i \(-0.774387\pi\)
−0.759154 + 0.650911i \(0.774387\pi\)
\(878\) 0 0
\(879\) 9878.97i 0.379078i
\(880\) 0 0
\(881\) −31588.5 −1.20799 −0.603997 0.796987i \(-0.706426\pi\)
−0.603997 + 0.796987i \(0.706426\pi\)
\(882\) 0 0
\(883\) 21145.2i 0.805879i −0.915227 0.402939i \(-0.867989\pi\)
0.915227 0.402939i \(-0.132011\pi\)
\(884\) 0 0
\(885\) 5183.15i 0.196870i
\(886\) 0 0
\(887\) −47339.2 −1.79199 −0.895996 0.444063i \(-0.853537\pi\)
−0.895996 + 0.444063i \(0.853537\pi\)
\(888\) 0 0
\(889\) 23894.2i 0.901445i
\(890\) 0 0
\(891\) −731.269 −0.0274954
\(892\) 0 0
\(893\) 8625.98i 0.323244i
\(894\) 0 0
\(895\) 17160.4i 0.640904i
\(896\) 0 0
\(897\) −5014.28 390.472i −0.186646 0.0145345i
\(898\) 0 0
\(899\) 43200.9 1.60270
\(900\) 0 0
\(901\) 31561.7i 1.16701i
\(902\) 0 0
\(903\) 13680.7i 0.504168i
\(904\) 0 0
\(905\) 5237.35i 0.192371i
\(906\) 0 0
\(907\) 13454.8i 0.492568i 0.969198 + 0.246284i \(0.0792097\pi\)
−0.969198 + 0.246284i \(0.920790\pi\)
\(908\) 0 0
\(909\) 7893.60i 0.288024i
\(910\) 0 0
\(911\) 2696.73 0.0980753 0.0490376 0.998797i \(-0.484385\pi\)
0.0490376 + 0.998797i \(0.484385\pi\)
\(912\) 0 0
\(913\) 2226.37 0.0807031
\(914\) 0 0
\(915\) 12048.5 0.435312
\(916\) 0 0
\(917\) 3279.01 0.118083
\(918\) 0 0
\(919\) 20653.8 0.741355 0.370678 0.928762i \(-0.379125\pi\)
0.370678 + 0.928762i \(0.379125\pi\)
\(920\) 0 0
\(921\) 9822.53i 0.351426i
\(922\) 0 0
\(923\) 8512.26 + 662.867i 0.303559 + 0.0236387i
\(924\) 0 0
\(925\) −25124.5 −0.893069
\(926\) 0 0
\(927\) −10596.8 −0.375453
\(928\) 0 0
\(929\) 29376.6i 1.03748i −0.854933 0.518738i \(-0.826402\pi\)
0.854933 0.518738i \(-0.173598\pi\)
\(930\) 0 0
\(931\) 5023.37 0.176836
\(932\) 0 0
\(933\) 9573.98i 0.335946i
\(934\) 0 0
\(935\) −2451.36 −0.0857411
\(936\) 0 0
\(937\) 26554.0 0.925808 0.462904 0.886408i \(-0.346807\pi\)
0.462904 + 0.886408i \(0.346807\pi\)
\(938\) 0 0
\(939\) 16589.7i 0.576554i
\(940\) 0 0
\(941\) −2991.18 −0.103623 −0.0518117 0.998657i \(-0.516500\pi\)
−0.0518117 + 0.998657i \(0.516500\pi\)
\(942\) 0 0
\(943\) 10031.4i 0.346413i
\(944\) 0 0
\(945\) 2837.56 0.0976780
\(946\) 0 0
\(947\) −26370.3 −0.904878 −0.452439 0.891795i \(-0.649446\pi\)
−0.452439 + 0.891795i \(0.649446\pi\)
\(948\) 0 0
\(949\) 38126.9 + 2969.02i 1.30417 + 0.101558i
\(950\) 0 0
\(951\) 19426.8i 0.662415i
\(952\) 0 0
\(953\) 37295.1 1.26769 0.633845 0.773460i \(-0.281476\pi\)
0.633845 + 0.773460i \(0.281476\pi\)
\(954\) 0 0
\(955\) 9967.69 0.337746
\(956\) 0 0
\(957\) −3850.90 −0.130075
\(958\) 0 0
\(959\) 55500.0 1.86881
\(960\) 0 0
\(961\) −62527.1 −2.09886
\(962\) 0 0
\(963\) 10126.7i 0.338867i
\(964\) 0 0
\(965\) 20281.2i 0.676553i
\(966\) 0 0
\(967\) 55463.6i 1.84446i −0.386647 0.922228i \(-0.626367\pi\)
0.386647 0.922228i \(-0.373633\pi\)
\(968\) 0 0
\(969\) 4814.47i 0.159611i
\(970\) 0 0
\(971\) 41859.8i 1.38347i 0.722153 + 0.691733i \(0.243153\pi\)
−0.722153 + 0.691733i \(0.756847\pi\)
\(972\) 0 0
\(973\) 19021.3 0.626717
\(974\) 0 0
\(975\) −14597.0 1136.70i −0.479465 0.0373369i
\(976\) 0 0
\(977\) 5960.78i 0.195192i −0.995226 0.0975958i \(-0.968885\pi\)
0.995226 0.0975958i \(-0.0311152\pi\)
\(978\) 0 0
\(979\) 3213.09i 0.104894i
\(980\) 0 0
\(981\) −7092.97 −0.230847
\(982\) 0 0
\(983\) 6517.91i 0.211484i 0.994394 + 0.105742i \(0.0337218\pi\)
−0.994394 + 0.105742i \(0.966278\pi\)
\(984\) 0 0
\(985\) 17310.7 0.559964
\(986\) 0 0
\(987\) 22039.4i 0.710761i
\(988\) 0 0
\(989\) 7091.52i 0.228005i
\(990\) 0 0
\(991\) −34170.6 −1.09532 −0.547661 0.836701i \(-0.684482\pi\)
−0.547661 + 0.836701i \(0.684482\pi\)
\(992\) 0 0
\(993\) 30048.8i 0.960292i
\(994\) 0 0
\(995\) 7017.73 0.223595
\(996\) 0 0
\(997\) 29232.1i 0.928577i −0.885684 0.464289i \(-0.846310\pi\)
0.885684 0.464289i \(-0.153690\pi\)
\(998\) 0 0
\(999\) 6515.10i 0.206335i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.4.m.a.337.9 84
4.3 odd 2 312.4.m.a.181.45 yes 84
8.3 odd 2 312.4.m.a.181.39 84
8.5 even 2 inner 1248.4.m.a.337.12 84
13.12 even 2 inner 1248.4.m.a.337.10 84
52.51 odd 2 312.4.m.a.181.40 yes 84
104.51 odd 2 312.4.m.a.181.46 yes 84
104.77 even 2 inner 1248.4.m.a.337.11 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.m.a.181.39 84 8.3 odd 2
312.4.m.a.181.40 yes 84 52.51 odd 2
312.4.m.a.181.45 yes 84 4.3 odd 2
312.4.m.a.181.46 yes 84 104.51 odd 2
1248.4.m.a.337.9 84 1.1 even 1 trivial
1248.4.m.a.337.10 84 13.12 even 2 inner
1248.4.m.a.337.11 84 104.77 even 2 inner
1248.4.m.a.337.12 84 8.5 even 2 inner