Properties

Label 312.4.m.a.181.39
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.39
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.40

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.457367 - 2.79120i) q^{2} -3.00000i q^{3} +(-7.58163 + 2.55321i) q^{4} +4.56929 q^{5} +(-8.37361 + 1.37210i) q^{6} -23.0002i q^{7} +(10.5941 + 19.9941i) q^{8} -9.00000 q^{9} +(-2.08984 - 12.7538i) q^{10} -9.02801 q^{11} +(7.65962 + 22.7449i) q^{12} +(3.63901 - 46.7307i) q^{13} +(-64.1982 + 10.5195i) q^{14} -13.7079i q^{15} +(50.9623 - 38.7150i) q^{16} -59.4245 q^{17} +(4.11630 + 25.1208i) q^{18} -27.0061 q^{19} +(-34.6427 + 11.6664i) q^{20} -69.0006 q^{21} +(4.12911 + 25.1990i) q^{22} +35.7672 q^{23} +(59.9824 - 31.7823i) q^{24} -104.122 q^{25} +(-132.099 + 11.2158i) q^{26} +27.0000i q^{27} +(58.7243 + 174.379i) q^{28} -142.184i q^{29} +(-38.2615 + 6.26953i) q^{30} +303.839i q^{31} +(-131.370 - 124.539i) q^{32} +27.0840i q^{33} +(27.1788 + 165.866i) q^{34} -105.095i q^{35} +(68.2347 - 22.9789i) q^{36} -241.300 q^{37} +(12.3517 + 75.3795i) q^{38} +(-140.192 - 10.9170i) q^{39} +(48.4076 + 91.3590i) q^{40} +280.464i q^{41} +(31.5586 + 192.595i) q^{42} -198.269i q^{43} +(68.4470 - 23.0504i) q^{44} -41.1236 q^{45} +(-16.3587 - 99.8335i) q^{46} +319.409i q^{47} +(-116.145 - 152.887i) q^{48} -186.009 q^{49} +(47.6217 + 290.624i) q^{50} +178.273i q^{51} +(91.7235 + 363.586i) q^{52} -531.123i q^{53} +(75.3625 - 12.3489i) q^{54} -41.2516 q^{55} +(459.869 - 243.666i) q^{56} +81.0182i q^{57} +(-396.863 + 65.0301i) q^{58} +378.115 q^{59} +(34.9991 + 103.928i) q^{60} +878.946i q^{61} +(848.076 - 138.966i) q^{62} +207.002i q^{63} +(-287.530 + 423.640i) q^{64} +(16.6277 - 213.526i) q^{65} +(75.5970 - 12.3873i) q^{66} +247.600 q^{67} +(450.534 - 151.723i) q^{68} -107.302i q^{69} +(-293.340 + 48.0668i) q^{70} +182.156i q^{71} +(-95.3470 - 179.947i) q^{72} -815.886i q^{73} +(110.363 + 673.517i) q^{74} +312.365i q^{75} +(204.750 - 68.9521i) q^{76} +207.646i q^{77} +(33.6475 + 396.298i) q^{78} -817.462 q^{79} +(232.862 - 176.900i) q^{80} +81.0000 q^{81} +(782.832 - 128.275i) q^{82} -246.607 q^{83} +(523.137 - 176.173i) q^{84} -271.528 q^{85} +(-553.408 + 90.6816i) q^{86} -426.551 q^{87} +(-95.6437 - 180.507i) q^{88} -355.903i q^{89} +(18.8086 + 114.784i) q^{90} +(-1074.81 - 83.6980i) q^{91} +(-271.174 + 91.3211i) q^{92} +911.517 q^{93} +(891.534 - 146.087i) q^{94} -123.399 q^{95} +(-373.617 + 394.109i) q^{96} -506.709i q^{97} +(85.0742 + 519.188i) q^{98} +81.2521 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.457367 2.79120i −0.161704 0.986839i
\(3\) 3.00000i 0.577350i
\(4\) −7.58163 + 2.55321i −0.947704 + 0.319151i
\(5\) 4.56929 0.408690 0.204345 0.978899i \(-0.434494\pi\)
0.204345 + 0.978899i \(0.434494\pi\)
\(6\) −8.37361 + 1.37210i −0.569752 + 0.0933596i
\(7\) 23.0002i 1.24189i −0.783853 0.620947i \(-0.786748\pi\)
0.783853 0.620947i \(-0.213252\pi\)
\(8\) 10.5941 + 19.9941i 0.468198 + 0.883624i
\(9\) −9.00000 −0.333333
\(10\) −2.08984 12.7538i −0.0660866 0.403311i
\(11\) −9.02801 −0.247459 −0.123729 0.992316i \(-0.539485\pi\)
−0.123729 + 0.992316i \(0.539485\pi\)
\(12\) 7.65962 + 22.7449i 0.184262 + 0.547157i
\(13\) 3.63901 46.7307i 0.0776370 0.996982i
\(14\) −64.1982 + 10.5195i −1.22555 + 0.200819i
\(15\) 13.7079i 0.235957i
\(16\) 50.9623 38.7150i 0.796285 0.604921i
\(17\) −59.4245 −0.847797 −0.423899 0.905710i \(-0.639339\pi\)
−0.423899 + 0.905710i \(0.639339\pi\)
\(18\) 4.11630 + 25.1208i 0.0539012 + 0.328946i
\(19\) −27.0061 −0.326085 −0.163043 0.986619i \(-0.552131\pi\)
−0.163043 + 0.986619i \(0.552131\pi\)
\(20\) −34.6427 + 11.6664i −0.387317 + 0.130434i
\(21\) −69.0006 −0.717008
\(22\) 4.12911 + 25.1990i 0.0400150 + 0.244202i
\(23\) 35.7672 0.324260 0.162130 0.986769i \(-0.448164\pi\)
0.162130 + 0.986769i \(0.448164\pi\)
\(24\) 59.9824 31.7823i 0.510160 0.270314i
\(25\) −104.122 −0.832972
\(26\) −132.099 + 11.2158i −0.996415 + 0.0846003i
\(27\) 27.0000i 0.192450i
\(28\) 58.7243 + 174.379i 0.396351 + 1.17695i
\(29\) 142.184i 0.910442i −0.890378 0.455221i \(-0.849560\pi\)
0.890378 0.455221i \(-0.150440\pi\)
\(30\) −38.2615 + 6.26953i −0.232852 + 0.0381551i
\(31\) 303.839i 1.76036i 0.474643 + 0.880179i \(0.342577\pi\)
−0.474643 + 0.880179i \(0.657423\pi\)
\(32\) −131.370 124.539i −0.725722 0.687988i
\(33\) 27.0840i 0.142870i
\(34\) 27.1788 + 165.866i 0.137092 + 0.836640i
\(35\) 105.095i 0.507550i
\(36\) 68.2347 22.9789i 0.315901 0.106384i
\(37\) −241.300 −1.07215 −0.536074 0.844171i \(-0.680093\pi\)
−0.536074 + 0.844171i \(0.680093\pi\)
\(38\) 12.3517 + 75.3795i 0.0527292 + 0.321794i
\(39\) −140.192 10.9170i −0.575608 0.0448237i
\(40\) 48.4076 + 91.3590i 0.191348 + 0.361128i
\(41\) 280.464i 1.06832i 0.845383 + 0.534160i \(0.179372\pi\)
−0.845383 + 0.534160i \(0.820628\pi\)
\(42\) 31.5586 + 192.595i 0.115943 + 0.707571i
\(43\) 198.269i 0.703156i −0.936159 0.351578i \(-0.885645\pi\)
0.936159 0.351578i \(-0.114355\pi\)
\(44\) 68.4470 23.0504i 0.234518 0.0789767i
\(45\) −41.1236 −0.136230
\(46\) −16.3587 99.8335i −0.0524340 0.319992i
\(47\) 319.409i 0.991288i 0.868526 + 0.495644i \(0.165068\pi\)
−0.868526 + 0.495644i \(0.834932\pi\)
\(48\) −116.145 152.887i −0.349251 0.459736i
\(49\) −186.009 −0.542300
\(50\) 47.6217 + 290.624i 0.134695 + 0.822010i
\(51\) 178.273i 0.489476i
\(52\) 91.7235 + 363.586i 0.244611 + 0.969621i
\(53\) 531.123i 1.37652i −0.725466 0.688258i \(-0.758376\pi\)
0.725466 0.688258i \(-0.241624\pi\)
\(54\) 75.3625 12.3489i 0.189917 0.0311199i
\(55\) −41.2516 −0.101134
\(56\) 459.869 243.666i 1.09737 0.581452i
\(57\) 81.0182i 0.188265i
\(58\) −396.863 + 65.0301i −0.898460 + 0.147222i
\(59\) 378.115 0.834345 0.417172 0.908827i \(-0.363021\pi\)
0.417172 + 0.908827i \(0.363021\pi\)
\(60\) 34.9991 + 103.928i 0.0753060 + 0.223618i
\(61\) 878.946i 1.84488i 0.386145 + 0.922438i \(0.373807\pi\)
−0.386145 + 0.922438i \(0.626193\pi\)
\(62\) 848.076 138.966i 1.73719 0.284656i
\(63\) 207.002i 0.413965i
\(64\) −287.530 + 423.640i −0.561582 + 0.827421i
\(65\) 16.6277 213.526i 0.0317295 0.407457i
\(66\) 75.5970 12.3873i 0.140990 0.0231027i
\(67\) 247.600 0.451480 0.225740 0.974188i \(-0.427520\pi\)
0.225740 + 0.974188i \(0.427520\pi\)
\(68\) 450.534 151.723i 0.803461 0.270575i
\(69\) 107.302i 0.187211i
\(70\) −293.340 + 48.0668i −0.500870 + 0.0820726i
\(71\) 182.156i 0.304478i 0.988344 + 0.152239i \(0.0486483\pi\)
−0.988344 + 0.152239i \(0.951352\pi\)
\(72\) −95.3470 179.947i −0.156066 0.294541i
\(73\) 815.886i 1.30811i −0.756446 0.654057i \(-0.773066\pi\)
0.756446 0.654057i \(-0.226934\pi\)
\(74\) 110.363 + 673.517i 0.173370 + 1.05804i
\(75\) 312.365i 0.480917i
\(76\) 204.750 68.9521i 0.309032 0.104070i
\(77\) 207.646i 0.307317i
\(78\) 33.6475 + 396.298i 0.0488440 + 0.575280i
\(79\) −817.462 −1.16420 −0.582099 0.813118i \(-0.697769\pi\)
−0.582099 + 0.813118i \(0.697769\pi\)
\(80\) 232.862 176.900i 0.325434 0.247225i
\(81\) 81.0000 0.111111
\(82\) 782.832 128.275i 1.05426 0.172751i
\(83\) −246.607 −0.326128 −0.163064 0.986616i \(-0.552138\pi\)
−0.163064 + 0.986616i \(0.552138\pi\)
\(84\) 523.137 176.173i 0.679511 0.228834i
\(85\) −271.528 −0.346486
\(86\) −553.408 + 90.6816i −0.693902 + 0.113703i
\(87\) −426.551 −0.525644
\(88\) −95.6437 180.507i −0.115860 0.218660i
\(89\) 355.903i 0.423883i −0.977282 0.211942i \(-0.932021\pi\)
0.977282 0.211942i \(-0.0679787\pi\)
\(90\) 18.8086 + 114.784i 0.0220289 + 0.134437i
\(91\) −1074.81 83.6980i −1.23815 0.0964168i
\(92\) −271.174 + 91.3211i −0.307302 + 0.103488i
\(93\) 911.517 1.01634
\(94\) 891.534 146.087i 0.978242 0.160295i
\(95\) −123.399 −0.133268
\(96\) −373.617 + 394.109i −0.397210 + 0.418996i
\(97\) 506.709i 0.530397i −0.964194 0.265199i \(-0.914563\pi\)
0.964194 0.265199i \(-0.0854375\pi\)
\(98\) 85.0742 + 519.188i 0.0876918 + 0.535163i
\(99\) 81.2521 0.0824863
\(100\) 789.411 265.844i 0.789411 0.265844i
\(101\) 877.066i 0.864073i −0.901856 0.432036i \(-0.857795\pi\)
0.901856 0.432036i \(-0.142205\pi\)
\(102\) 497.597 81.5363i 0.483034 0.0791500i
\(103\) −1177.42 −1.12636 −0.563179 0.826335i \(-0.690422\pi\)
−0.563179 + 0.826335i \(0.690422\pi\)
\(104\) 972.891 422.311i 0.917306 0.398183i
\(105\) −315.284 −0.293034
\(106\) −1482.47 + 242.918i −1.35840 + 0.222587i
\(107\) 1125.19i 1.01660i −0.861179 0.508301i \(-0.830274\pi\)
0.861179 0.508301i \(-0.169726\pi\)
\(108\) −68.9366 204.704i −0.0614206 0.182386i
\(109\) −788.108 −0.692542 −0.346271 0.938135i \(-0.612552\pi\)
−0.346271 + 0.938135i \(0.612552\pi\)
\(110\) 18.8671 + 115.142i 0.0163537 + 0.0998029i
\(111\) 723.900i 0.619005i
\(112\) −890.451 1172.14i −0.751248 0.988902i
\(113\) −1182.33 −0.984284 −0.492142 0.870515i \(-0.663786\pi\)
−0.492142 + 0.870515i \(0.663786\pi\)
\(114\) 226.138 37.0551i 0.185788 0.0304432i
\(115\) 163.431 0.132522
\(116\) 363.024 + 1077.98i 0.290569 + 0.862830i
\(117\) −32.7511 + 420.576i −0.0258790 + 0.332327i
\(118\) −172.937 1055.39i −0.134917 0.823364i
\(119\) 1366.77i 1.05287i
\(120\) 274.077 145.223i 0.208497 0.110475i
\(121\) −1249.50 −0.938764
\(122\) 2453.32 402.001i 1.82060 0.298323i
\(123\) 841.392 0.616795
\(124\) −775.764 2303.59i −0.561820 1.66830i
\(125\) −1046.92 −0.749118
\(126\) 577.784 94.6757i 0.408516 0.0669395i
\(127\) 1038.87 0.725864 0.362932 0.931816i \(-0.381776\pi\)
0.362932 + 0.931816i \(0.381776\pi\)
\(128\) 1313.97 + 608.795i 0.907342 + 0.420394i
\(129\) −594.806 −0.405967
\(130\) −603.600 + 51.2485i −0.407225 + 0.0345753i
\(131\) 142.564i 0.0950833i −0.998869 0.0475417i \(-0.984861\pi\)
0.998869 0.0475417i \(-0.0151387\pi\)
\(132\) −69.1511 205.341i −0.0455972 0.135399i
\(133\) 621.145i 0.404963i
\(134\) −113.244 691.102i −0.0730059 0.445538i
\(135\) 123.371i 0.0786524i
\(136\) −629.549 1188.14i −0.396937 0.749134i
\(137\) 2413.02i 1.50481i −0.658703 0.752403i \(-0.728895\pi\)
0.658703 0.752403i \(-0.271105\pi\)
\(138\) −299.500 + 49.0762i −0.184748 + 0.0302728i
\(139\) 827.007i 0.504646i −0.967643 0.252323i \(-0.918805\pi\)
0.967643 0.252323i \(-0.0811946\pi\)
\(140\) 268.328 + 796.789i 0.161985 + 0.481007i
\(141\) 958.226 0.572320
\(142\) 508.434 83.3120i 0.300471 0.0492351i
\(143\) −32.8530 + 421.885i −0.0192119 + 0.246712i
\(144\) −458.660 + 348.435i −0.265428 + 0.201640i
\(145\) 649.679i 0.372089i
\(146\) −2277.30 + 373.159i −1.29090 + 0.211527i
\(147\) 558.026i 0.313097i
\(148\) 1829.45 616.089i 1.01608 0.342177i
\(149\) 3151.97 1.73302 0.866509 0.499162i \(-0.166359\pi\)
0.866509 + 0.499162i \(0.166359\pi\)
\(150\) 871.873 142.865i 0.474588 0.0777660i
\(151\) 934.341i 0.503547i −0.967786 0.251774i \(-0.918986\pi\)
0.967786 0.251774i \(-0.0810138\pi\)
\(152\) −286.105 539.963i −0.152672 0.288137i
\(153\) 534.820 0.282599
\(154\) 579.582 94.9703i 0.303273 0.0496943i
\(155\) 1388.33i 0.719441i
\(156\) 1090.76 275.171i 0.559811 0.141226i
\(157\) 307.214i 0.156168i −0.996947 0.0780840i \(-0.975120\pi\)
0.996947 0.0780840i \(-0.0248802\pi\)
\(158\) 373.880 + 2281.70i 0.188255 + 1.14888i
\(159\) −1593.37 −0.794732
\(160\) −600.267 569.056i −0.296595 0.281174i
\(161\) 822.652i 0.402696i
\(162\) −37.0467 226.087i −0.0179671 0.109649i
\(163\) −368.699 −0.177170 −0.0885851 0.996069i \(-0.528235\pi\)
−0.0885851 + 0.996069i \(0.528235\pi\)
\(164\) −716.083 2126.37i −0.340955 1.01245i
\(165\) 123.755i 0.0583897i
\(166\) 112.790 + 688.329i 0.0527360 + 0.321836i
\(167\) 402.412i 0.186464i −0.995644 0.0932322i \(-0.970280\pi\)
0.995644 0.0932322i \(-0.0297199\pi\)
\(168\) −730.999 1379.61i −0.335701 0.633565i
\(169\) −2170.52 340.107i −0.987945 0.154805i
\(170\) 124.188 + 757.890i 0.0560281 + 0.341926i
\(171\) 243.055 0.108695
\(172\) 506.221 + 1503.20i 0.224413 + 0.666384i
\(173\) 3541.26i 1.55629i −0.628088 0.778143i \(-0.716162\pi\)
0.628088 0.778143i \(-0.283838\pi\)
\(174\) 195.090 + 1190.59i 0.0849986 + 0.518726i
\(175\) 2394.82i 1.03446i
\(176\) −460.088 + 349.519i −0.197048 + 0.149693i
\(177\) 1134.34i 0.481709i
\(178\) −993.397 + 162.778i −0.418305 + 0.0685434i
\(179\) 3755.60i 1.56819i −0.620640 0.784096i \(-0.713127\pi\)
0.620640 0.784096i \(-0.286873\pi\)
\(180\) 311.784 104.997i 0.129106 0.0434779i
\(181\) 1146.21i 0.470701i −0.971911 0.235350i \(-0.924376\pi\)
0.971911 0.235350i \(-0.0756238\pi\)
\(182\) 257.967 + 3038.31i 0.105065 + 1.23744i
\(183\) 2636.84 1.06514
\(184\) 378.921 + 715.134i 0.151818 + 0.286524i
\(185\) −1102.57 −0.438176
\(186\) −416.897 2544.23i −0.164346 1.00297i
\(187\) 536.485 0.209795
\(188\) −815.517 2421.64i −0.316371 0.939448i
\(189\) 621.005 0.239003
\(190\) 56.4385 + 344.431i 0.0215499 + 0.131514i
\(191\) 2181.45 0.826410 0.413205 0.910638i \(-0.364409\pi\)
0.413205 + 0.910638i \(0.364409\pi\)
\(192\) 1270.92 + 862.589i 0.477712 + 0.324229i
\(193\) 4438.58i 1.65542i −0.561158 0.827709i \(-0.689644\pi\)
0.561158 0.827709i \(-0.310356\pi\)
\(194\) −1414.33 + 231.752i −0.523417 + 0.0857671i
\(195\) −640.579 49.8831i −0.235245 0.0183190i
\(196\) 1410.25 474.919i 0.513939 0.173075i
\(197\) 3788.49 1.37014 0.685072 0.728475i \(-0.259771\pi\)
0.685072 + 0.728475i \(0.259771\pi\)
\(198\) −37.1620 226.791i −0.0133383 0.0814007i
\(199\) 1535.85 0.547102 0.273551 0.961858i \(-0.411802\pi\)
0.273551 + 0.961858i \(0.411802\pi\)
\(200\) −1103.07 2081.82i −0.389996 0.736034i
\(201\) 742.800i 0.260662i
\(202\) −2448.07 + 401.141i −0.852701 + 0.139724i
\(203\) −3270.25 −1.13067
\(204\) −455.169 1351.60i −0.156217 0.463878i
\(205\) 1281.52i 0.436612i
\(206\) 538.514 + 3286.42i 0.182136 + 1.11153i
\(207\) −321.905 −0.108087
\(208\) −1623.72 2522.39i −0.541274 0.840846i
\(209\) 243.811 0.0806927
\(210\) 144.200 + 880.021i 0.0473846 + 0.289177i
\(211\) 5166.95i 1.68582i 0.538055 + 0.842909i \(0.319159\pi\)
−0.538055 + 0.842909i \(0.680841\pi\)
\(212\) 1356.07 + 4026.78i 0.439316 + 1.30453i
\(213\) 546.467 0.175790
\(214\) −3140.64 + 514.626i −1.00322 + 0.164388i
\(215\) 905.948i 0.287373i
\(216\) −539.841 + 286.041i −0.170053 + 0.0901047i
\(217\) 6988.35 2.18618
\(218\) 360.454 + 2199.77i 0.111986 + 0.683428i
\(219\) −2447.66 −0.755240
\(220\) 312.755 105.324i 0.0958450 0.0322770i
\(221\) −216.246 + 2776.95i −0.0658204 + 0.845238i
\(222\) 2020.55 331.088i 0.610858 0.100095i
\(223\) 4812.46i 1.44514i 0.691297 + 0.722570i \(0.257039\pi\)
−0.691297 + 0.722570i \(0.742961\pi\)
\(224\) −2864.42 + 3021.53i −0.854408 + 0.901270i
\(225\) 937.094 0.277657
\(226\) 540.758 + 3300.12i 0.159162 + 0.971330i
\(227\) −584.946 −0.171032 −0.0855159 0.996337i \(-0.527254\pi\)
−0.0855159 + 0.996337i \(0.527254\pi\)
\(228\) −206.856 614.250i −0.0600851 0.178420i
\(229\) −4584.28 −1.32287 −0.661436 0.750001i \(-0.730053\pi\)
−0.661436 + 0.750001i \(0.730053\pi\)
\(230\) −74.7478 456.169i −0.0214292 0.130778i
\(231\) 622.938 0.177430
\(232\) 2842.84 1506.31i 0.804489 0.426267i
\(233\) 4302.16 1.20963 0.604815 0.796366i \(-0.293247\pi\)
0.604815 + 0.796366i \(0.293247\pi\)
\(234\) 1188.89 100.943i 0.332138 0.0282001i
\(235\) 1459.47i 0.405130i
\(236\) −2866.73 + 965.405i −0.790712 + 0.266282i
\(237\) 2452.39i 0.672150i
\(238\) 3814.94 625.117i 1.03902 0.170253i
\(239\) 7132.42i 1.93037i 0.261573 + 0.965184i \(0.415759\pi\)
−0.261573 + 0.965184i \(0.584241\pi\)
\(240\) −530.700 698.585i −0.142736 0.187889i
\(241\) 813.188i 0.217353i 0.994077 + 0.108676i \(0.0346612\pi\)
−0.994077 + 0.108676i \(0.965339\pi\)
\(242\) 571.478 + 3487.59i 0.151802 + 0.926409i
\(243\) 243.000i 0.0641500i
\(244\) −2244.13 6663.84i −0.588794 1.74840i
\(245\) −849.929 −0.221632
\(246\) −384.825 2348.50i −0.0997379 0.608677i
\(247\) −98.2755 + 1262.01i −0.0253163 + 0.325101i
\(248\) −6074.99 + 3218.90i −1.55549 + 0.824195i
\(249\) 739.820i 0.188290i
\(250\) 478.828 + 2922.18i 0.121135 + 0.739259i
\(251\) 98.3380i 0.0247292i −0.999924 0.0123646i \(-0.996064\pi\)
0.999924 0.0123646i \(-0.00393588\pi\)
\(252\) −528.518 1569.41i −0.132117 0.392316i
\(253\) −322.906 −0.0802409
\(254\) −475.144 2899.69i −0.117375 0.716311i
\(255\) 814.584i 0.200044i
\(256\) 1098.30 3946.00i 0.268141 0.963380i
\(257\) 2348.27 0.569966 0.284983 0.958533i \(-0.408012\pi\)
0.284983 + 0.958533i \(0.408012\pi\)
\(258\) 272.045 + 1660.23i 0.0656464 + 0.400624i
\(259\) 5549.94i 1.33149i
\(260\) 419.112 + 1661.33i 0.0999700 + 0.396275i
\(261\) 1279.65i 0.303481i
\(262\) −397.926 + 65.2043i −0.0938320 + 0.0153753i
\(263\) −3653.13 −0.856507 −0.428254 0.903659i \(-0.640871\pi\)
−0.428254 + 0.903659i \(0.640871\pi\)
\(264\) −541.521 + 286.931i −0.126244 + 0.0668916i
\(265\) 2426.86i 0.562568i
\(266\) 1733.74 284.091i 0.399634 0.0654840i
\(267\) −1067.71 −0.244729
\(268\) −1877.21 + 632.174i −0.427869 + 0.144090i
\(269\) 496.183i 0.112464i −0.998418 0.0562320i \(-0.982091\pi\)
0.998418 0.0562320i \(-0.0179086\pi\)
\(270\) 344.353 56.4258i 0.0776173 0.0127184i
\(271\) 1164.70i 0.261072i 0.991444 + 0.130536i \(0.0416698\pi\)
−0.991444 + 0.130536i \(0.958330\pi\)
\(272\) −3028.41 + 2300.62i −0.675089 + 0.512850i
\(273\) −251.094 + 3224.44i −0.0556663 + 0.714843i
\(274\) −6735.23 + 1103.64i −1.48500 + 0.243332i
\(275\) 940.010 0.206126
\(276\) 273.963 + 813.521i 0.0597487 + 0.177421i
\(277\) 3541.96i 0.768289i −0.923273 0.384144i \(-0.874496\pi\)
0.923273 0.384144i \(-0.125504\pi\)
\(278\) −2308.35 + 378.246i −0.498005 + 0.0816031i
\(279\) 2734.55i 0.586786i
\(280\) 2101.27 1113.38i 0.448483 0.237634i
\(281\) 1001.92i 0.212703i −0.994329 0.106352i \(-0.966083\pi\)
0.994329 0.106352i \(-0.0339169\pi\)
\(282\) −438.261 2674.60i −0.0925463 0.564788i
\(283\) 4471.46i 0.939226i −0.882872 0.469613i \(-0.844393\pi\)
0.882872 0.469613i \(-0.155607\pi\)
\(284\) −465.081 1381.04i −0.0971743 0.288555i
\(285\) 370.196i 0.0769422i
\(286\) 1192.59 101.257i 0.246572 0.0209351i
\(287\) 6450.73 1.32674
\(288\) 1182.33 + 1120.85i 0.241907 + 0.229329i
\(289\) −1381.73 −0.281240
\(290\) −1813.39 + 297.141i −0.367192 + 0.0601681i
\(291\) −1520.13 −0.306225
\(292\) 2083.13 + 6185.75i 0.417486 + 1.23970i
\(293\) 3292.99 0.656582 0.328291 0.944577i \(-0.393527\pi\)
0.328291 + 0.944577i \(0.393527\pi\)
\(294\) 1557.56 255.223i 0.308976 0.0506289i
\(295\) 1727.72 0.340988
\(296\) −2556.36 4824.58i −0.501977 0.947375i
\(297\) 243.756i 0.0476235i
\(298\) −1441.61 8797.79i −0.280235 1.71021i
\(299\) 130.157 1671.43i 0.0251745 0.323281i
\(300\) −797.532 2368.23i −0.153485 0.455767i
\(301\) −4560.22 −0.873245
\(302\) −2607.94 + 427.337i −0.496920 + 0.0814254i
\(303\) −2631.20 −0.498873
\(304\) −1376.29 + 1045.54i −0.259657 + 0.197256i
\(305\) 4016.16i 0.753983i
\(306\) −244.609 1492.79i −0.0456973 0.278880i
\(307\) 3274.18 0.608688 0.304344 0.952562i \(-0.401563\pi\)
0.304344 + 0.952562i \(0.401563\pi\)
\(308\) −530.163 1574.29i −0.0980806 0.291246i
\(309\) 3532.27i 0.650303i
\(310\) 3875.11 634.976i 0.709972 0.116336i
\(311\) 3191.33 0.581876 0.290938 0.956742i \(-0.406033\pi\)
0.290938 + 0.956742i \(0.406033\pi\)
\(312\) −1266.93 2918.67i −0.229891 0.529607i
\(313\) 5529.90 0.998621 0.499311 0.866423i \(-0.333587\pi\)
0.499311 + 0.866423i \(0.333587\pi\)
\(314\) −857.498 + 140.510i −0.154113 + 0.0252529i
\(315\) 945.852i 0.169183i
\(316\) 6197.70 2087.15i 1.10332 0.371555i
\(317\) −6475.59 −1.14734 −0.573668 0.819088i \(-0.694480\pi\)
−0.573668 + 0.819088i \(0.694480\pi\)
\(318\) 728.754 + 4447.41i 0.128511 + 0.784272i
\(319\) 1283.63i 0.225297i
\(320\) −1313.81 + 1935.73i −0.229513 + 0.338159i
\(321\) −3375.58 −0.586936
\(322\) −2296.19 + 376.254i −0.397396 + 0.0651174i
\(323\) 1604.82 0.276454
\(324\) −614.112 + 206.810i −0.105300 + 0.0354612i
\(325\) −378.900 + 4865.67i −0.0646694 + 0.830458i
\(326\) 168.631 + 1029.11i 0.0286491 + 0.174839i
\(327\) 2364.32i 0.399839i
\(328\) −5607.63 + 2971.27i −0.943993 + 0.500185i
\(329\) 7346.46 1.23107
\(330\) 345.425 56.6014i 0.0576213 0.00944182i
\(331\) 10016.3 1.66327 0.831637 0.555319i \(-0.187404\pi\)
0.831637 + 0.555319i \(0.187404\pi\)
\(332\) 1869.68 629.638i 0.309072 0.104084i
\(333\) 2171.70 0.357382
\(334\) −1123.21 + 184.050i −0.184010 + 0.0301519i
\(335\) 1131.36 0.184515
\(336\) −3516.43 + 2671.35i −0.570943 + 0.433733i
\(337\) −6602.82 −1.06730 −0.533648 0.845707i \(-0.679179\pi\)
−0.533648 + 0.845707i \(0.679179\pi\)
\(338\) 43.4135 + 6213.90i 0.00698634 + 0.999976i
\(339\) 3546.99i 0.568277i
\(340\) 2058.62 693.267i 0.328366 0.110581i
\(341\) 2743.06i 0.435616i
\(342\) −111.165 678.415i −0.0175764 0.107265i
\(343\) 3610.83i 0.568415i
\(344\) 3964.21 2100.48i 0.621325 0.329216i
\(345\) 490.292i 0.0765115i
\(346\) −9884.39 + 1619.66i −1.53580 + 0.251657i
\(347\) 8226.15i 1.27263i −0.771429 0.636315i \(-0.780458\pi\)
0.771429 0.636315i \(-0.219542\pi\)
\(348\) 3233.95 1089.07i 0.498155 0.167760i
\(349\) 5987.66 0.918373 0.459187 0.888340i \(-0.348141\pi\)
0.459187 + 0.888340i \(0.348141\pi\)
\(350\) 6684.42 1095.31i 1.02085 0.167276i
\(351\) 1261.73 + 98.2533i 0.191869 + 0.0149412i
\(352\) 1186.01 + 1124.34i 0.179586 + 0.170249i
\(353\) 8372.28i 1.26236i −0.775638 0.631178i \(-0.782572\pi\)
0.775638 0.631178i \(-0.217428\pi\)
\(354\) −3166.18 + 518.811i −0.475369 + 0.0778941i
\(355\) 832.323i 0.124437i
\(356\) 908.693 + 2698.32i 0.135283 + 0.401716i
\(357\) 4100.32 0.607877
\(358\) −10482.6 + 1717.68i −1.54755 + 0.253582i
\(359\) 5365.50i 0.788803i −0.918938 0.394401i \(-0.870952\pi\)
0.918938 0.394401i \(-0.129048\pi\)
\(360\) −435.668 822.231i −0.0637826 0.120376i
\(361\) −6129.67 −0.893668
\(362\) −3199.29 + 524.237i −0.464506 + 0.0761140i
\(363\) 3748.49i 0.541996i
\(364\) 8362.55 2109.66i 1.20417 0.303781i
\(365\) 3728.02i 0.534613i
\(366\) −1206.00 7359.95i −0.172237 1.05112i
\(367\) 2032.50 0.289089 0.144545 0.989498i \(-0.453828\pi\)
0.144545 + 0.989498i \(0.453828\pi\)
\(368\) 1822.78 1384.73i 0.258203 0.196152i
\(369\) 2524.18i 0.356107i
\(370\) 504.279 + 3077.50i 0.0708546 + 0.432409i
\(371\) −12215.9 −1.70949
\(372\) −6910.78 + 2327.29i −0.963192 + 0.324367i
\(373\) 13867.4i 1.92500i 0.271282 + 0.962500i \(0.412552\pi\)
−0.271282 + 0.962500i \(0.587448\pi\)
\(374\) −245.370 1497.44i −0.0339246 0.207034i
\(375\) 3140.77i 0.432503i
\(376\) −6386.30 + 3383.85i −0.875926 + 0.464119i
\(377\) −6644.34 517.408i −0.907694 0.0706840i
\(378\) −284.027 1733.35i −0.0386476 0.235857i
\(379\) −4445.76 −0.602542 −0.301271 0.953539i \(-0.597411\pi\)
−0.301271 + 0.953539i \(0.597411\pi\)
\(380\) 935.564 315.063i 0.126298 0.0425325i
\(381\) 3116.61i 0.419078i
\(382\) −997.724 6088.87i −0.133633 0.815534i
\(383\) 1882.41i 0.251141i 0.992085 + 0.125570i \(0.0400761\pi\)
−0.992085 + 0.125570i \(0.959924\pi\)
\(384\) 1826.39 3941.91i 0.242714 0.523854i
\(385\) 948.795i 0.125598i
\(386\) −12389.0 + 2030.06i −1.63363 + 0.267687i
\(387\) 1784.42i 0.234385i
\(388\) 1293.73 + 3841.68i 0.169277 + 0.502659i
\(389\) 4490.10i 0.585237i −0.956229 0.292619i \(-0.905473\pi\)
0.956229 0.292619i \(-0.0945266\pi\)
\(390\) 153.745 + 1810.80i 0.0199621 + 0.235111i
\(391\) −2125.45 −0.274907
\(392\) −1970.60 3719.08i −0.253903 0.479189i
\(393\) −427.693 −0.0548964
\(394\) −1732.73 10574.4i −0.221557 1.35211i
\(395\) −3735.23 −0.475796
\(396\) −616.023 + 207.453i −0.0781725 + 0.0263256i
\(397\) −9505.67 −1.20170 −0.600852 0.799361i \(-0.705172\pi\)
−0.600852 + 0.799361i \(0.705172\pi\)
\(398\) −702.445 4286.86i −0.0884683 0.539902i
\(399\) 1863.44 0.233806
\(400\) −5306.27 + 4031.06i −0.663284 + 0.503883i
\(401\) 9181.79i 1.14343i 0.820451 + 0.571716i \(0.193722\pi\)
−0.820451 + 0.571716i \(0.806278\pi\)
\(402\) −2073.31 + 339.732i −0.257232 + 0.0421500i
\(403\) 14198.6 + 1105.67i 1.75504 + 0.136669i
\(404\) 2239.33 + 6649.59i 0.275770 + 0.818885i
\(405\) 370.113 0.0454100
\(406\) 1495.70 + 9127.93i 0.182834 + 1.11579i
\(407\) 2178.46 0.265312
\(408\) −3564.42 + 1888.65i −0.432513 + 0.229172i
\(409\) 3469.65i 0.419470i 0.977758 + 0.209735i \(0.0672601\pi\)
−0.977758 + 0.209735i \(0.932740\pi\)
\(410\) 3576.99 586.126i 0.430866 0.0706017i
\(411\) −7239.07 −0.868800
\(412\) 8926.78 3006.20i 1.06745 0.359478i
\(413\) 8696.71i 1.03617i
\(414\) 147.229 + 898.501i 0.0174780 + 0.106664i
\(415\) −1126.82 −0.133285
\(416\) −6297.85 + 5685.80i −0.742254 + 0.670118i
\(417\) −2481.02 −0.291358
\(418\) −111.511 680.526i −0.0130483 0.0796307i
\(419\) 12868.1i 1.50035i −0.661241 0.750174i \(-0.729970\pi\)
0.661241 0.750174i \(-0.270030\pi\)
\(420\) 2390.37 804.985i 0.277709 0.0935220i
\(421\) −4414.39 −0.511031 −0.255516 0.966805i \(-0.582245\pi\)
−0.255516 + 0.966805i \(0.582245\pi\)
\(422\) 14422.0 2363.19i 1.66363 0.272603i
\(423\) 2874.68i 0.330429i
\(424\) 10619.3 5626.77i 1.21632 0.644482i
\(425\) 6187.37 0.706192
\(426\) −249.936 1525.30i −0.0284259 0.173477i
\(427\) 20215.9 2.29114
\(428\) 2872.85 + 8530.79i 0.324450 + 0.963438i
\(429\) 1265.65 + 98.5591i 0.142439 + 0.0110920i
\(430\) −2528.69 + 414.351i −0.283591 + 0.0464692i
\(431\) 11981.4i 1.33903i −0.742797 0.669517i \(-0.766501\pi\)
0.742797 0.669517i \(-0.233499\pi\)
\(432\) 1045.30 + 1375.98i 0.116417 + 0.153245i
\(433\) 4268.40 0.473733 0.236866 0.971542i \(-0.423880\pi\)
0.236866 + 0.971542i \(0.423880\pi\)
\(434\) −3196.24 19505.9i −0.353513 2.15740i
\(435\) −1949.04 −0.214826
\(436\) 5975.14 2012.20i 0.656325 0.221025i
\(437\) −965.932 −0.105736
\(438\) 1119.48 + 6831.91i 0.122125 + 0.745300i
\(439\) 7424.25 0.807152 0.403576 0.914946i \(-0.367767\pi\)
0.403576 + 0.914946i \(0.367767\pi\)
\(440\) −437.024 824.790i −0.0473507 0.0893643i
\(441\) 1674.08 0.180767
\(442\) 7849.93 666.496i 0.844758 0.0717239i
\(443\) 3110.29i 0.333576i 0.985993 + 0.166788i \(0.0533395\pi\)
−0.985993 + 0.166788i \(0.946660\pi\)
\(444\) −1848.27 5488.34i −0.197556 0.586633i
\(445\) 1626.22i 0.173237i
\(446\) 13432.6 2201.06i 1.42612 0.233684i
\(447\) 9455.91i 1.00056i
\(448\) 9743.79 + 6613.24i 1.02757 + 0.697425i
\(449\) 5412.37i 0.568876i −0.958694 0.284438i \(-0.908193\pi\)
0.958694 0.284438i \(-0.0918071\pi\)
\(450\) −428.596 2615.62i −0.0448982 0.274003i
\(451\) 2532.03i 0.264365i
\(452\) 8963.98 3018.73i 0.932810 0.314135i
\(453\) −2803.02 −0.290723
\(454\) 267.535 + 1632.70i 0.0276565 + 0.168781i
\(455\) −4911.14 382.441i −0.506018 0.0394046i
\(456\) −1619.89 + 858.316i −0.166356 + 0.0881455i
\(457\) 3771.11i 0.386007i 0.981198 + 0.193003i \(0.0618228\pi\)
−0.981198 + 0.193003i \(0.938177\pi\)
\(458\) 2096.70 + 12795.7i 0.213913 + 1.30546i
\(459\) 1604.46i 0.163159i
\(460\) −1239.07 + 417.273i −0.125591 + 0.0422944i
\(461\) 1276.30 0.128944 0.0644722 0.997920i \(-0.479464\pi\)
0.0644722 + 0.997920i \(0.479464\pi\)
\(462\) −284.911 1738.75i −0.0286910 0.175095i
\(463\) 10359.5i 1.03984i −0.854216 0.519919i \(-0.825962\pi\)
0.854216 0.519919i \(-0.174038\pi\)
\(464\) −5504.63 7246.00i −0.550746 0.724972i
\(465\) 4164.99 0.415369
\(466\) −1967.66 12008.2i −0.195602 1.19371i
\(467\) 18643.9i 1.84740i 0.383112 + 0.923702i \(0.374852\pi\)
−0.383112 + 0.923702i \(0.625148\pi\)
\(468\) −825.512 3272.27i −0.0815369 0.323207i
\(469\) 5694.85i 0.560690i
\(470\) 4073.68 667.514i 0.399798 0.0655109i
\(471\) −921.643 −0.0901636
\(472\) 4005.79 + 7560.07i 0.390638 + 0.737247i
\(473\) 1789.97i 0.174002i
\(474\) 6845.11 1121.64i 0.663304 0.108689i
\(475\) 2811.92 0.271620
\(476\) −3489.66 10362.4i −0.336026 0.997813i
\(477\) 4780.10i 0.458838i
\(478\) 19908.0 3262.13i 1.90496 0.312147i
\(479\) 4124.15i 0.393397i −0.980464 0.196699i \(-0.936978\pi\)
0.980464 0.196699i \(-0.0630221\pi\)
\(480\) −1707.17 + 1800.80i −0.162336 + 0.171239i
\(481\) −878.093 + 11276.1i −0.0832383 + 1.06891i
\(482\) 2269.77 371.925i 0.214492 0.0351467i
\(483\) −2467.96 −0.232497
\(484\) 9473.21 3190.22i 0.889670 0.299607i
\(485\) 2315.30i 0.216768i
\(486\) −678.262 + 111.140i −0.0633058 + 0.0103733i
\(487\) 3948.63i 0.367412i 0.982981 + 0.183706i \(0.0588095\pi\)
−0.982981 + 0.183706i \(0.941191\pi\)
\(488\) −17573.7 + 9311.65i −1.63018 + 0.863767i
\(489\) 1106.10i 0.102289i
\(490\) 388.729 + 2372.32i 0.0358388 + 0.218716i
\(491\) 9699.68i 0.891528i −0.895150 0.445764i \(-0.852932\pi\)
0.895150 0.445764i \(-0.147068\pi\)
\(492\) −6379.12 + 2148.25i −0.584539 + 0.196851i
\(493\) 8449.19i 0.771871i
\(494\) 3567.48 302.896i 0.324916 0.0275869i
\(495\) 371.265 0.0337113
\(496\) 11763.1 + 15484.3i 1.06488 + 1.40175i
\(497\) 4189.62 0.378129
\(498\) 2064.99 338.369i 0.185812 0.0304472i
\(499\) 10351.2 0.928620 0.464310 0.885673i \(-0.346302\pi\)
0.464310 + 0.885673i \(0.346302\pi\)
\(500\) 7937.39 2673.01i 0.709942 0.239082i
\(501\) −1207.23 −0.107655
\(502\) −274.481 + 44.9765i −0.0244038 + 0.00399881i
\(503\) −14291.2 −1.26682 −0.633412 0.773815i \(-0.718346\pi\)
−0.633412 + 0.773815i \(0.718346\pi\)
\(504\) −4138.82 + 2193.00i −0.365789 + 0.193817i
\(505\) 4007.57i 0.353138i
\(506\) 147.687 + 901.297i 0.0129752 + 0.0791849i
\(507\) −1020.32 + 6511.55i −0.0893769 + 0.570390i
\(508\) −7876.32 + 2652.45i −0.687904 + 0.231660i
\(509\) 6030.07 0.525104 0.262552 0.964918i \(-0.415436\pi\)
0.262552 + 0.964918i \(0.415436\pi\)
\(510\) 2273.67 372.564i 0.197411 0.0323478i
\(511\) −18765.5 −1.62454
\(512\) −11516.4 1260.82i −0.994060 0.108830i
\(513\) 729.164i 0.0627551i
\(514\) −1074.02 6554.51i −0.0921655 0.562465i
\(515\) −5379.99 −0.460331
\(516\) 4509.60 1518.66i 0.384737 0.129565i
\(517\) 2883.62i 0.245303i
\(518\) 15491.0 2538.36i 1.31397 0.215307i
\(519\) −10623.8 −0.898522
\(520\) 4445.43 1929.66i 0.374894 0.162733i
\(521\) −2617.24 −0.220083 −0.110042 0.993927i \(-0.535098\pi\)
−0.110042 + 0.993927i \(0.535098\pi\)
\(522\) 3571.77 585.271i 0.299487 0.0490739i
\(523\) 21188.4i 1.77152i −0.464144 0.885760i \(-0.653638\pi\)
0.464144 0.885760i \(-0.346362\pi\)
\(524\) 363.997 + 1080.87i 0.0303459 + 0.0901108i
\(525\) 7184.45 0.597248
\(526\) 1670.82 + 10196.6i 0.138500 + 0.845235i
\(527\) 18055.5i 1.49243i
\(528\) 1048.56 + 1380.26i 0.0864253 + 0.113766i
\(529\) −10887.7 −0.894856
\(530\) −6773.85 + 1109.96i −0.555164 + 0.0909693i
\(531\) −3403.03 −0.278115
\(532\) −1585.91 4709.29i −0.129244 0.383785i
\(533\) 13106.3 + 1020.61i 1.06510 + 0.0829411i
\(534\) 488.334 + 2980.19i 0.0395736 + 0.241508i
\(535\) 5141.33i 0.415475i
\(536\) 2623.10 + 4950.54i 0.211382 + 0.398938i
\(537\) −11266.8 −0.905396
\(538\) −1384.95 + 226.938i −0.110984 + 0.0181858i
\(539\) 1679.29 0.134197
\(540\) −314.992 935.353i −0.0251020 0.0745392i
\(541\) −5104.29 −0.405639 −0.202819 0.979216i \(-0.565010\pi\)
−0.202819 + 0.979216i \(0.565010\pi\)
\(542\) 3250.92 532.695i 0.257636 0.0422163i
\(543\) −3438.62 −0.271759
\(544\) 7806.58 + 7400.67i 0.615265 + 0.583274i
\(545\) −3601.10 −0.283035
\(546\) 9114.92 773.900i 0.714437 0.0606591i
\(547\) 10142.1i 0.792770i −0.918084 0.396385i \(-0.870265\pi\)
0.918084 0.396385i \(-0.129735\pi\)
\(548\) 6160.95 + 18294.6i 0.480260 + 1.42611i
\(549\) 7910.51i 0.614959i
\(550\) −429.929 2623.76i −0.0333314 0.203414i
\(551\) 3839.82i 0.296882i
\(552\) 2145.40 1136.76i 0.165424 0.0876520i
\(553\) 18801.8i 1.44581i
\(554\) −9886.34 + 1619.98i −0.758178 + 0.124235i
\(555\) 3307.71i 0.252981i
\(556\) 2111.52 + 6270.07i 0.161058 + 0.478255i
\(557\) 1339.31 0.101882 0.0509409 0.998702i \(-0.483778\pi\)
0.0509409 + 0.998702i \(0.483778\pi\)
\(558\) −7632.68 + 1250.69i −0.579063 + 0.0948854i
\(559\) −9265.24 721.503i −0.701034 0.0545909i
\(560\) −4068.73 5355.86i −0.307027 0.404154i
\(561\) 1609.45i 0.121125i
\(562\) −2796.57 + 458.245i −0.209904 + 0.0343949i
\(563\) 7894.26i 0.590947i 0.955351 + 0.295474i \(0.0954775\pi\)
−0.955351 + 0.295474i \(0.904523\pi\)
\(564\) −7264.92 + 2446.55i −0.542390 + 0.182657i
\(565\) −5402.41 −0.402267
\(566\) −12480.8 + 2045.10i −0.926865 + 0.151876i
\(567\) 1863.02i 0.137988i
\(568\) −3642.04 + 1929.78i −0.269044 + 0.142556i
\(569\) −5150.43 −0.379468 −0.189734 0.981836i \(-0.560763\pi\)
−0.189734 + 0.981836i \(0.560763\pi\)
\(570\) 1033.29 169.315i 0.0759296 0.0124418i
\(571\) 9653.04i 0.707473i 0.935345 + 0.353737i \(0.115089\pi\)
−0.935345 + 0.353737i \(0.884911\pi\)
\(572\) −828.080 3282.46i −0.0605311 0.239941i
\(573\) 6544.35i 0.477128i
\(574\) −2950.35 18005.3i −0.214539 1.30928i
\(575\) −3724.14 −0.270099
\(576\) 2587.77 3812.76i 0.187194 0.275807i
\(577\) 6097.68i 0.439948i −0.975506 0.219974i \(-0.929403\pi\)
0.975506 0.219974i \(-0.0705972\pi\)
\(578\) 631.958 + 3856.69i 0.0454775 + 0.277539i
\(579\) −13315.7 −0.955756
\(580\) 1658.76 + 4925.62i 0.118752 + 0.352630i
\(581\) 5672.00i 0.405016i
\(582\) 695.256 + 4242.98i 0.0495177 + 0.302195i
\(583\) 4794.98i 0.340631i
\(584\) 16312.9 8643.59i 1.15588 0.612456i
\(585\) −149.649 + 1921.74i −0.0105765 + 0.135819i
\(586\) −1506.10 9191.41i −0.106172 0.647941i
\(587\) −18721.5 −1.31639 −0.658195 0.752847i \(-0.728680\pi\)
−0.658195 + 0.752847i \(0.728680\pi\)
\(588\) −1424.76 4230.75i −0.0999251 0.296723i
\(589\) 8205.50i 0.574027i
\(590\) −790.200 4822.41i −0.0551390 0.336501i
\(591\) 11365.5i 0.791053i
\(592\) −12297.2 + 9341.91i −0.853735 + 0.648565i
\(593\) 27503.7i 1.90462i 0.305127 + 0.952312i \(0.401301\pi\)
−0.305127 + 0.952312i \(0.598699\pi\)
\(594\) −680.373 + 111.486i −0.0469967 + 0.00770088i
\(595\) 6245.19i 0.430299i
\(596\) −23897.1 + 8047.64i −1.64239 + 0.553094i
\(597\) 4607.54i 0.315869i
\(598\) −4724.82 + 401.159i −0.323097 + 0.0274325i
\(599\) 6924.86 0.472357 0.236179 0.971710i \(-0.424105\pi\)
0.236179 + 0.971710i \(0.424105\pi\)
\(600\) −6245.46 + 3309.22i −0.424950 + 0.225164i
\(601\) −438.105 −0.0297349 −0.0148674 0.999889i \(-0.504733\pi\)
−0.0148674 + 0.999889i \(0.504733\pi\)
\(602\) 2085.69 + 12728.5i 0.141207 + 0.861752i
\(603\) −2228.40 −0.150493
\(604\) 2385.57 + 7083.83i 0.160708 + 0.477214i
\(605\) −5709.31 −0.383664
\(606\) 1203.42 + 7344.21i 0.0806695 + 0.492307i
\(607\) −130.867 −0.00875076 −0.00437538 0.999990i \(-0.501393\pi\)
−0.00437538 + 0.999990i \(0.501393\pi\)
\(608\) 3547.78 + 3363.31i 0.236647 + 0.224343i
\(609\) 9810.75i 0.652794i
\(610\) 11209.9 1836.86i 0.744060 0.121922i
\(611\) 14926.2 + 1162.33i 0.988296 + 0.0769606i
\(612\) −4054.81 + 1365.51i −0.267820 + 0.0901918i
\(613\) −14591.0 −0.961382 −0.480691 0.876890i \(-0.659614\pi\)
−0.480691 + 0.876890i \(0.659614\pi\)
\(614\) −1497.50 9138.89i −0.0984270 0.600677i
\(615\) 3844.57 0.252078
\(616\) −4151.70 + 2199.82i −0.271553 + 0.143885i
\(617\) 26154.6i 1.70656i 0.521457 + 0.853278i \(0.325389\pi\)
−0.521457 + 0.853278i \(0.674611\pi\)
\(618\) 9859.27 1615.54i 0.641745 0.105156i
\(619\) −5541.38 −0.359817 −0.179909 0.983683i \(-0.557580\pi\)
−0.179909 + 0.983683i \(0.557580\pi\)
\(620\) −3544.69 10525.8i −0.229610 0.681817i
\(621\) 965.714i 0.0624038i
\(622\) −1459.61 8907.64i −0.0940915 0.574218i
\(623\) −8185.83 −0.526418
\(624\) −7567.16 + 4871.17i −0.485463 + 0.312505i
\(625\) 8231.49 0.526815
\(626\) −2529.19 15435.1i −0.161481 0.985479i
\(627\) 731.433i 0.0465879i
\(628\) 784.382 + 2329.19i 0.0498412 + 0.148001i
\(629\) 14339.1 0.908963
\(630\) 2640.06 432.601i 0.166957 0.0273575i
\(631\) 3022.53i 0.190689i 0.995444 + 0.0953447i \(0.0303953\pi\)
−0.995444 + 0.0953447i \(0.969605\pi\)
\(632\) −8660.28 16344.4i −0.545075 1.02871i
\(633\) 15500.9 0.973308
\(634\) 2961.72 + 18074.7i 0.185528 + 1.13224i
\(635\) 4746.90 0.296653
\(636\) 12080.3 4068.20i 0.753170 0.253639i
\(637\) −676.888 + 8692.32i −0.0421025 + 0.540663i
\(638\) 3582.88 587.092i 0.222332 0.0364313i
\(639\) 1639.40i 0.101493i
\(640\) 6003.92 + 2781.76i 0.370822 + 0.171811i
\(641\) −24068.8 −1.48309 −0.741545 0.670904i \(-0.765906\pi\)
−0.741545 + 0.670904i \(0.765906\pi\)
\(642\) 1543.88 + 9421.92i 0.0949096 + 0.579211i
\(643\) −10923.5 −0.669952 −0.334976 0.942227i \(-0.608728\pi\)
−0.334976 + 0.942227i \(0.608728\pi\)
\(644\) 2100.40 + 6237.05i 0.128521 + 0.381637i
\(645\) −2717.84 −0.165915
\(646\) −733.992 4479.39i −0.0447036 0.272816i
\(647\) −6403.53 −0.389102 −0.194551 0.980892i \(-0.562325\pi\)
−0.194551 + 0.980892i \(0.562325\pi\)
\(648\) 858.123 + 1619.52i 0.0520220 + 0.0981804i
\(649\) −3413.62 −0.206466
\(650\) 13754.4 1167.81i 0.829986 0.0704697i
\(651\) 20965.1i 1.26219i
\(652\) 2795.34 941.365i 0.167905 0.0565440i
\(653\) 3560.37i 0.213366i 0.994293 + 0.106683i \(0.0340230\pi\)
−0.994293 + 0.106683i \(0.965977\pi\)
\(654\) 6599.31 1081.36i 0.394577 0.0646554i
\(655\) 651.419i 0.0388596i
\(656\) 10858.2 + 14293.1i 0.646249 + 0.850688i
\(657\) 7342.98i 0.436038i
\(658\) −3360.03 20505.5i −0.199069 1.21487i
\(659\) 18983.0i 1.12212i 0.827776 + 0.561058i \(0.189606\pi\)
−0.827776 + 0.561058i \(0.810394\pi\)
\(660\) −315.972 938.264i −0.0186351 0.0553362i
\(661\) −6588.80 −0.387707 −0.193854 0.981030i \(-0.562099\pi\)
−0.193854 + 0.981030i \(0.562099\pi\)
\(662\) −4581.11 27957.4i −0.268957 1.64138i
\(663\) 8330.84 + 648.739i 0.487999 + 0.0380014i
\(664\) −2612.58 4930.68i −0.152692 0.288174i
\(665\) 2838.19i 0.165504i
\(666\) −993.263 6061.65i −0.0577900 0.352679i
\(667\) 5085.51i 0.295220i
\(668\) 1027.44 + 3050.94i 0.0595103 + 0.176713i
\(669\) 14437.4 0.834352
\(670\) −517.445 3157.85i −0.0298368 0.182087i
\(671\) 7935.13i 0.456531i
\(672\) 9064.59 + 8593.27i 0.520348 + 0.493292i
\(673\) −11113.6 −0.636547 −0.318273 0.947999i \(-0.603103\pi\)
−0.318273 + 0.947999i \(0.603103\pi\)
\(674\) 3019.91 + 18429.8i 0.172586 + 1.05325i
\(675\) 2811.28i 0.160306i
\(676\) 17324.4 2963.21i 0.985686 0.168594i
\(677\) 7932.48i 0.450325i −0.974321 0.225162i \(-0.927709\pi\)
0.974321 0.225162i \(-0.0722913\pi\)
\(678\) 9900.36 1622.27i 0.560798 0.0918924i
\(679\) −11654.4 −0.658697
\(680\) −2876.60 5428.96i −0.162224 0.306163i
\(681\) 1754.84i 0.0987453i
\(682\) −7656.44 + 1254.58i −0.429883 + 0.0704406i
\(683\) 3650.03 0.204487 0.102244 0.994759i \(-0.467398\pi\)
0.102244 + 0.994759i \(0.467398\pi\)
\(684\) −1842.75 + 620.569i −0.103011 + 0.0346901i
\(685\) 11025.8i 0.614999i
\(686\) −10078.6 + 1651.47i −0.560934 + 0.0919148i
\(687\) 13752.8i 0.763761i
\(688\) −7675.97 10104.2i −0.425354 0.559913i
\(689\) −24819.7 1932.76i −1.37236 0.106868i
\(690\) −1368.51 + 224.243i −0.0755045 + 0.0123722i
\(691\) 7823.65 0.430717 0.215359 0.976535i \(-0.430908\pi\)
0.215359 + 0.976535i \(0.430908\pi\)
\(692\) 9041.58 + 26848.6i 0.496690 + 1.47490i
\(693\) 1868.81i 0.102439i
\(694\) −22960.9 + 3762.37i −1.25588 + 0.205789i
\(695\) 3778.84i 0.206244i
\(696\) −4518.93 8528.51i −0.246105 0.464472i
\(697\) 16666.4i 0.905719i
\(698\) −2738.56 16712.8i −0.148504 0.906287i
\(699\) 12906.5i 0.698380i
\(700\) −6114.46 18156.6i −0.330150 0.980365i
\(701\) 30382.7i 1.63700i 0.574507 + 0.818500i \(0.305194\pi\)
−0.574507 + 0.818500i \(0.694806\pi\)
\(702\) −302.828 3566.68i −0.0162813 0.191760i
\(703\) 6516.56 0.349611
\(704\) 2595.82 3824.62i 0.138968 0.204753i
\(705\) 4378.42 0.233902
\(706\) −23368.7 + 3829.20i −1.24574 + 0.204127i
\(707\) −20172.7 −1.07309
\(708\) 2896.21 + 8600.18i 0.153738 + 0.456518i
\(709\) −19960.9 −1.05733 −0.528665 0.848830i \(-0.677307\pi\)
−0.528665 + 0.848830i \(0.677307\pi\)
\(710\) 2323.18 380.677i 0.122799 0.0201219i
\(711\) 7357.16 0.388066
\(712\) 7115.96 3770.47i 0.374553 0.198461i
\(713\) 10867.5i 0.570813i
\(714\) −1875.35 11444.8i −0.0982959 0.599877i
\(715\) −150.115 + 1927.72i −0.00785173 + 0.100829i
\(716\) 9588.81 + 28473.5i 0.500490 + 1.48618i
\(717\) 21397.3 1.11450
\(718\) −14976.2 + 2454.00i −0.778422 + 0.127552i
\(719\) 10658.4 0.552838 0.276419 0.961037i \(-0.410852\pi\)
0.276419 + 0.961037i \(0.410852\pi\)
\(720\) −2095.75 + 1592.10i −0.108478 + 0.0824084i
\(721\) 27080.9i 1.39882i
\(722\) 2803.51 + 17109.2i 0.144509 + 0.881907i
\(723\) 2439.56 0.125489
\(724\) 2926.50 + 8690.11i 0.150225 + 0.446085i
\(725\) 14804.4i 0.758373i
\(726\) 10462.8 1714.43i 0.534863 0.0876427i
\(727\) 20458.2 1.04368 0.521838 0.853045i \(-0.325247\pi\)
0.521838 + 0.853045i \(0.325247\pi\)
\(728\) −9713.24 22376.7i −0.494501 1.13920i
\(729\) −729.000 −0.0370370
\(730\) −10405.7 + 1705.07i −0.527577 + 0.0864488i
\(731\) 11782.0i 0.596134i
\(732\) −19991.5 + 6732.39i −1.00944 + 0.339940i
\(733\) −31681.2 −1.59642 −0.798208 0.602382i \(-0.794218\pi\)
−0.798208 + 0.602382i \(0.794218\pi\)
\(734\) −929.598 5673.12i −0.0467467 0.285284i
\(735\) 2549.79i 0.127960i
\(736\) −4698.73 4454.41i −0.235323 0.223087i
\(737\) −2235.33 −0.111723
\(738\) −7045.49 + 1154.47i −0.351420 + 0.0575837i
\(739\) 33577.7 1.67142 0.835709 0.549173i \(-0.185057\pi\)
0.835709 + 0.549173i \(0.185057\pi\)
\(740\) 8359.28 2815.09i 0.415261 0.139844i
\(741\) 3786.04 + 294.826i 0.187697 + 0.0146164i
\(742\) 5587.16 + 34097.1i 0.276430 + 1.68699i
\(743\) 19963.9i 0.985740i 0.870103 + 0.492870i \(0.164052\pi\)
−0.870103 + 0.492870i \(0.835948\pi\)
\(744\) 9656.70 + 18225.0i 0.475849 + 0.898064i
\(745\) 14402.3 0.708267
\(746\) 38706.6 6342.47i 1.89967 0.311279i
\(747\) 2219.46 0.108709
\(748\) −4067.43 + 1369.76i −0.198823 + 0.0669562i
\(749\) −25879.6 −1.26251
\(750\) 8766.53 1436.48i 0.426811 0.0699373i
\(751\) 34167.4 1.66017 0.830083 0.557640i \(-0.188293\pi\)
0.830083 + 0.557640i \(0.188293\pi\)
\(752\) 12365.9 + 16277.8i 0.599651 + 0.789348i
\(753\) −295.014 −0.0142774
\(754\) 1594.71 + 18782.3i 0.0770237 + 0.907179i
\(755\) 4269.28i 0.205795i
\(756\) −4708.23 + 1585.55i −0.226504 + 0.0762779i
\(757\) 35511.1i 1.70498i −0.522741 0.852492i \(-0.675090\pi\)
0.522741 0.852492i \(-0.324910\pi\)
\(758\) 2033.34 + 12409.0i 0.0974332 + 0.594612i
\(759\) 968.719i 0.0463271i
\(760\) −1307.30 2467.25i −0.0623957 0.117759i
\(761\) 29278.7i 1.39468i −0.716741 0.697340i \(-0.754367\pi\)
0.716741 0.697340i \(-0.245633\pi\)
\(762\) −8699.08 + 1425.43i −0.413562 + 0.0677663i
\(763\) 18126.6i 0.860063i
\(764\) −16539.0 + 5569.70i −0.783192 + 0.263749i
\(765\) 2443.75 0.115495
\(766\) 5254.20 860.954i 0.247835 0.0406103i
\(767\) 1375.96 17669.6i 0.0647760 0.831826i
\(768\) −11838.0 3294.91i −0.556208 0.154811i
\(769\) 26102.0i 1.22401i −0.790855 0.612003i \(-0.790364\pi\)
0.790855 0.612003i \(-0.209636\pi\)
\(770\) 2648.28 433.947i 0.123945 0.0203096i
\(771\) 7044.82i 0.329070i
\(772\) 11332.6 + 33651.6i 0.528328 + 1.56885i
\(773\) 29899.4 1.39121 0.695605 0.718424i \(-0.255136\pi\)
0.695605 + 0.718424i \(0.255136\pi\)
\(774\) 4980.68 816.134i 0.231301 0.0379009i
\(775\) 31636.2i 1.46633i
\(776\) 10131.2 5368.13i 0.468671 0.248331i
\(777\) 16649.8 0.768738
\(778\) −12532.8 + 2053.62i −0.577535 + 0.0946350i
\(779\) 7574.23i 0.348363i
\(780\) 4983.99 1257.33i 0.228789 0.0577177i
\(781\) 1644.50i 0.0753457i
\(782\) 972.109 + 5932.55i 0.0444534 + 0.271289i
\(783\) 3838.96 0.175215
\(784\) −9479.43 + 7201.32i −0.431825 + 0.328049i
\(785\) 1403.75i 0.0638243i
\(786\) 195.613 + 1193.78i 0.00887694 + 0.0541739i
\(787\) −12011.5 −0.544047 −0.272024 0.962291i \(-0.587693\pi\)
−0.272024 + 0.962291i \(0.587693\pi\)
\(788\) −28722.9 + 9672.79i −1.29849 + 0.437283i
\(789\) 10959.4i 0.494505i
\(790\) 1708.37 + 10425.8i 0.0769380 + 0.469535i
\(791\) 27193.8i 1.22238i
\(792\) 860.793 + 1624.56i 0.0386199 + 0.0728868i
\(793\) 41073.7 + 3198.49i 1.83931 + 0.143231i
\(794\) 4347.58 + 26532.3i 0.194320 + 1.18589i
\(795\) −7280.57 −0.324799
\(796\) −11644.2 + 3921.34i −0.518491 + 0.174608i
\(797\) 41415.5i 1.84067i 0.391132 + 0.920335i \(0.372084\pi\)
−0.391132 + 0.920335i \(0.627916\pi\)
\(798\) −852.273 5201.23i −0.0378072 0.230729i
\(799\) 18980.7i 0.840411i
\(800\) 13678.4 + 12967.2i 0.604507 + 0.573075i
\(801\) 3203.12i 0.141294i
\(802\) 25628.2 4199.44i 1.12838 0.184897i
\(803\) 7365.83i 0.323704i
\(804\) 1896.52 + 5631.64i 0.0831905 + 0.247030i
\(805\) 3758.94i 0.164578i
\(806\) −3407.81 40136.9i −0.148927 1.75405i
\(807\) −1488.55 −0.0649311
\(808\) 17536.2 9291.74i 0.763515 0.404557i
\(809\) 31305.7 1.36051 0.680254 0.732977i \(-0.261869\pi\)
0.680254 + 0.732977i \(0.261869\pi\)
\(810\) −169.277 1033.06i −0.00734296 0.0448124i
\(811\) 13622.4 0.589822 0.294911 0.955525i \(-0.404710\pi\)
0.294911 + 0.955525i \(0.404710\pi\)
\(812\) 24793.8 8349.63i 1.07154 0.360855i
\(813\) 3494.10 0.150730
\(814\) −996.354 6080.51i −0.0429019 0.261821i
\(815\) −1684.69 −0.0724077
\(816\) 6901.85 + 9085.22i 0.296094 + 0.389763i
\(817\) 5354.46i 0.229289i
\(818\) 9684.49 1586.90i 0.413949 0.0678297i
\(819\) 9673.33 + 753.282i 0.412715 + 0.0321389i
\(820\) −3271.99 9716.03i −0.139345 0.413779i
\(821\) 21506.4 0.914226 0.457113 0.889409i \(-0.348883\pi\)
0.457113 + 0.889409i \(0.348883\pi\)
\(822\) 3310.91 + 20205.7i 0.140488 + 0.857366i
\(823\) −23500.9 −0.995369 −0.497684 0.867358i \(-0.665816\pi\)
−0.497684 + 0.867358i \(0.665816\pi\)
\(824\) −12473.7 23541.5i −0.527358 0.995277i
\(825\) 2820.03i 0.119007i
\(826\) −24274.3 + 3977.59i −1.02253 + 0.167552i
\(827\) −11952.1 −0.502559 −0.251279 0.967915i \(-0.580851\pi\)
−0.251279 + 0.967915i \(0.580851\pi\)
\(828\) 2440.56 821.889i 0.102434 0.0344959i
\(829\) 11126.3i 0.466144i −0.972459 0.233072i \(-0.925122\pi\)
0.972459 0.233072i \(-0.0748778\pi\)
\(830\) 515.369 + 3145.18i 0.0215527 + 0.131531i
\(831\) −10625.9 −0.443572
\(832\) 18750.7 + 14978.1i 0.781324 + 0.624125i
\(833\) 11053.5 0.459760
\(834\) 1134.74 + 6925.04i 0.0471136 + 0.287523i
\(835\) 1838.74i 0.0762061i
\(836\) −1848.49 + 622.500i −0.0764727 + 0.0257531i
\(837\) −8203.65 −0.338781
\(838\) −35917.3 + 5885.42i −1.48060 + 0.242612i
\(839\) 13125.0i 0.540077i −0.962850 0.270039i \(-0.912964\pi\)
0.962850 0.270039i \(-0.0870364\pi\)
\(840\) −3340.15 6303.82i −0.137198 0.258932i
\(841\) 4172.82 0.171094
\(842\) 2018.99 + 12321.5i 0.0826356 + 0.504306i
\(843\) −3005.76 −0.122804
\(844\) −13192.3 39173.9i −0.538031 1.59766i
\(845\) −9917.72 1554.05i −0.403763 0.0632674i
\(846\) −8023.81 + 1314.78i −0.326081 + 0.0534316i
\(847\) 28738.6i 1.16585i
\(848\) −20562.4 27067.2i −0.832683 1.09610i
\(849\) −13414.4 −0.542262
\(850\) −2829.90 17270.2i −0.114194 0.696898i
\(851\) −8630.62 −0.347654
\(852\) −4143.11 + 1395.24i −0.166597 + 0.0561036i
\(853\) −40716.0 −1.63434 −0.817169 0.576398i \(-0.804458\pi\)
−0.817169 + 0.576398i \(0.804458\pi\)
\(854\) −9246.09 56426.7i −0.370486 2.26099i
\(855\) 1110.59 0.0444226
\(856\) 22497.2 11920.4i 0.898294 0.475971i
\(857\) 34628.7 1.38027 0.690136 0.723680i \(-0.257551\pi\)
0.690136 + 0.723680i \(0.257551\pi\)
\(858\) −303.770 3577.78i −0.0120869 0.142358i
\(859\) 22608.8i 0.898024i −0.893526 0.449012i \(-0.851776\pi\)
0.893526 0.449012i \(-0.148224\pi\)
\(860\) 2313.07 + 6868.57i 0.0917153 + 0.272344i
\(861\) 19352.2i 0.765994i
\(862\) −33442.5 + 5479.89i −1.32141 + 0.216526i
\(863\) 4002.67i 0.157882i 0.996879 + 0.0789412i \(0.0251539\pi\)
−0.996879 + 0.0789412i \(0.974846\pi\)
\(864\) 3362.56 3546.98i 0.132403 0.139665i
\(865\) 16181.1i 0.636038i
\(866\) −1952.23 11914.0i −0.0766043 0.467498i
\(867\) 4145.19i 0.162374i
\(868\) −52983.1 + 17842.7i −2.07185 + 0.697720i
\(869\) 7380.05 0.288091
\(870\) 891.424 + 5440.16i 0.0347381 + 0.211998i
\(871\) 901.020 11570.5i 0.0350515 0.450117i
\(872\) −8349.30 15757.5i −0.324247 0.611946i
\(873\) 4560.38i 0.176799i
\(874\) 441.785 + 2696.11i 0.0170979 + 0.104345i
\(875\) 24079.4i 0.930324i
\(876\) 18557.2 6249.38i 0.715743 0.241035i
\(877\) 39433.0 1.51831 0.759154 0.650911i \(-0.225613\pi\)
0.759154 + 0.650911i \(0.225613\pi\)
\(878\) −3395.60 20722.6i −0.130519 0.796530i
\(879\) 9878.97i 0.379078i
\(880\) −2102.28 + 1597.05i −0.0805315 + 0.0611781i
\(881\) −31588.5 −1.20799 −0.603997 0.796987i \(-0.706426\pi\)
−0.603997 + 0.796987i \(0.706426\pi\)
\(882\) −765.668 4672.69i −0.0292306 0.178388i
\(883\) 21145.2i 0.805879i −0.915227 0.402939i \(-0.867989\pi\)
0.915227 0.402939i \(-0.132011\pi\)
\(884\) −5450.62 21605.9i −0.207380 0.822042i
\(885\) 5183.15i 0.196870i
\(886\) 8681.44 1422.54i 0.329186 0.0539404i
\(887\) 47339.2 1.79199 0.895996 0.444063i \(-0.146463\pi\)
0.895996 + 0.444063i \(0.146463\pi\)
\(888\) −14473.7 + 7669.07i −0.546967 + 0.289817i
\(889\) 23894.2i 0.901445i
\(890\) −4539.12 + 743.781i −0.170957 + 0.0280130i
\(891\) −731.269 −0.0274954
\(892\) −12287.2 36486.3i −0.461218 1.36957i
\(893\) 8625.98i 0.323244i
\(894\) −26393.4 + 4324.82i −0.987390 + 0.161794i
\(895\) 17160.4i 0.640904i
\(896\) 14002.4 30221.6i 0.522084 1.12682i
\(897\) −5014.28 390.472i −0.186646 0.0145345i
\(898\) −15107.0 + 2475.44i −0.561390 + 0.0919893i
\(899\) 43200.9 1.60270
\(900\) −7104.70 + 2392.60i −0.263137 + 0.0886146i
\(901\) 31561.7i 1.16701i
\(902\) −7067.41 + 1158.07i −0.260886 + 0.0427488i
\(903\) 13680.7i 0.504168i
\(904\) −12525.7 23639.6i −0.460840 0.869737i
\(905\) 5237.35i 0.192371i
\(906\) 1282.01 + 7823.81i 0.0470110 + 0.286897i
\(907\) 13454.8i 0.492568i 0.969198 + 0.246284i \(0.0792097\pi\)
−0.969198 + 0.246284i \(0.920790\pi\)
\(908\) 4434.84 1493.49i 0.162088 0.0545850i
\(909\) 7893.60i 0.288024i
\(910\) 1178.73 + 13882.9i 0.0429389 + 0.505730i
\(911\) −2696.73 −0.0980753 −0.0490376 0.998797i \(-0.515615\pi\)
−0.0490376 + 0.998797i \(0.515615\pi\)
\(912\) 3136.62 + 4128.87i 0.113886 + 0.149913i
\(913\) 2226.37 0.0807031
\(914\) 10525.9 1724.78i 0.380927 0.0624187i
\(915\) 12048.5 0.435312
\(916\) 34756.3 11704.6i 1.25369 0.422196i
\(917\) −3279.01 −0.118083
\(918\) −4478.38 + 733.827i −0.161011 + 0.0263833i
\(919\) −20653.8 −0.741355 −0.370678 0.928762i \(-0.620875\pi\)
−0.370678 + 0.928762i \(0.620875\pi\)
\(920\) 1731.40 + 3267.66i 0.0620464 + 0.117099i
\(921\) 9822.53i 0.351426i
\(922\) −583.739 3562.42i −0.0208508 0.127247i
\(923\) 8512.26 + 662.867i 0.303559 + 0.0236387i
\(924\) −4722.88 + 1590.49i −0.168151 + 0.0566269i
\(925\) 25124.5 0.893069
\(926\) −28915.4 + 4738.07i −1.02615 + 0.168145i
\(927\) 10596.8 0.375453
\(928\) −17707.4 + 18678.6i −0.626373 + 0.660728i
\(929\) 29376.6i 1.03748i −0.854933 0.518738i \(-0.826402\pi\)
0.854933 0.518738i \(-0.173598\pi\)
\(930\) −1904.93 11625.3i −0.0671667 0.409903i
\(931\) 5023.37 0.176836
\(932\) −32617.4 + 10984.3i −1.14637 + 0.386055i
\(933\) 9573.98i 0.335946i
\(934\) 52039.0 8527.11i 1.82309 0.298732i
\(935\) 2451.36 0.0857411
\(936\) −8756.02 + 3800.80i −0.305769 + 0.132728i
\(937\) 26554.0 0.925808 0.462904 0.886408i \(-0.346807\pi\)
0.462904 + 0.886408i \(0.346807\pi\)
\(938\) −15895.5 + 2604.63i −0.553311 + 0.0906656i
\(939\) 16589.7i 0.576554i
\(940\) −3726.33 11065.2i −0.129297 0.383943i
\(941\) 2991.18 0.103623 0.0518117 0.998657i \(-0.483500\pi\)
0.0518117 + 0.998657i \(0.483500\pi\)
\(942\) 421.529 + 2572.49i 0.0145798 + 0.0889770i
\(943\) 10031.4i 0.346413i
\(944\) 19269.6 14638.7i 0.664376 0.504713i
\(945\) 2837.56 0.0976780
\(946\) 4996.18 818.674i 0.171712 0.0281368i
\(947\) −26370.3 −0.904878 −0.452439 0.891795i \(-0.649446\pi\)
−0.452439 + 0.891795i \(0.649446\pi\)
\(948\) −6261.45 18593.1i −0.214517 0.637000i
\(949\) −38126.9 2969.02i −1.30417 0.101558i
\(950\) −1286.08 7848.63i −0.0439219 0.268045i
\(951\) 19426.8i 0.662415i
\(952\) −27327.5 + 14479.8i −0.930344 + 0.492953i
\(953\) 37295.1 1.26769 0.633845 0.773460i \(-0.281476\pi\)
0.633845 + 0.773460i \(0.281476\pi\)
\(954\) 13342.2 2186.26i 0.452800 0.0741958i
\(955\) 9967.69 0.337746
\(956\) −18210.5 54075.4i −0.616079 1.82942i
\(957\) 3850.90 0.130075
\(958\) −11511.4 + 1886.25i −0.388220 + 0.0636138i
\(959\) −55500.0 −1.86881
\(960\) 5807.20 + 3941.42i 0.195236 + 0.132509i
\(961\) −62527.1 −2.09886
\(962\) 31875.5 2706.38i 1.06830 0.0907040i
\(963\) 10126.7i 0.338867i
\(964\) −2076.24 6165.29i −0.0693683 0.205986i
\(965\) 20281.2i 0.676553i
\(966\) 1128.76 + 6888.57i 0.0375956 + 0.229437i
\(967\) 55463.6i 1.84446i 0.386647 + 0.922228i \(0.373633\pi\)
−0.386647 + 0.922228i \(0.626367\pi\)
\(968\) −13237.3 24982.6i −0.439527 0.829514i
\(969\) 4814.47i 0.159611i
\(970\) −6462.48 + 1058.94i −0.213915 + 0.0350522i
\(971\) 41859.8i 1.38347i 0.722153 + 0.691733i \(0.243153\pi\)
−0.722153 + 0.691733i \(0.756847\pi\)
\(972\) 620.429 + 1842.34i 0.0204735 + 0.0607952i
\(973\) −19021.3 −0.626717
\(974\) 11021.4 1805.97i 0.362577 0.0594119i
\(975\) 14597.0 + 1136.70i 0.479465 + 0.0373369i
\(976\) 34028.3 + 44793.1i 1.11600 + 1.46905i
\(977\) 5960.78i 0.195192i −0.995226 0.0975958i \(-0.968885\pi\)
0.995226 0.0975958i \(-0.0311152\pi\)
\(978\) 3087.34 505.892i 0.100943 0.0165405i
\(979\) 3213.09i 0.104894i
\(980\) 6443.85 2170.04i 0.210042 0.0707342i
\(981\) 7092.97 0.230847
\(982\) −27073.8 + 4436.31i −0.879795 + 0.144163i
\(983\) 6517.91i 0.211484i −0.994394 0.105742i \(-0.966278\pi\)
0.994394 0.105742i \(-0.0337218\pi\)
\(984\) 8913.80 + 16822.9i 0.288782 + 0.545015i
\(985\) 17310.7 0.559964
\(986\) 23583.4 3864.38i 0.761712 0.124814i
\(987\) 22039.4i 0.710761i
\(988\) −2477.09 9819.03i −0.0797640 0.316179i
\(989\) 7091.52i 0.228005i
\(990\) −169.804 1036.27i −0.00545124 0.0332676i
\(991\) 34170.6 1.09532 0.547661 0.836701i \(-0.315518\pi\)
0.547661 + 0.836701i \(0.315518\pi\)
\(992\) 37839.8 39915.2i 1.21110 1.27753i
\(993\) 30048.8i 0.960292i
\(994\) −1916.19 11694.1i −0.0611448 0.373152i
\(995\) 7017.73 0.223595
\(996\) −1888.91 5609.04i −0.0600929 0.178443i
\(997\) 29232.1i 0.928577i 0.885684 + 0.464289i \(0.153690\pi\)
−0.885684 + 0.464289i \(0.846310\pi\)
\(998\) −4734.27 28892.2i −0.150161 0.916398i
\(999\) 6515.10i 0.206335i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.m.a.181.39 84
4.3 odd 2 1248.4.m.a.337.12 84
8.3 odd 2 1248.4.m.a.337.9 84
8.5 even 2 inner 312.4.m.a.181.45 yes 84
13.12 even 2 inner 312.4.m.a.181.46 yes 84
52.51 odd 2 1248.4.m.a.337.11 84
104.51 odd 2 1248.4.m.a.337.10 84
104.77 even 2 inner 312.4.m.a.181.40 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.m.a.181.39 84 1.1 even 1 trivial
312.4.m.a.181.40 yes 84 104.77 even 2 inner
312.4.m.a.181.45 yes 84 8.5 even 2 inner
312.4.m.a.181.46 yes 84 13.12 even 2 inner
1248.4.m.a.337.9 84 8.3 odd 2
1248.4.m.a.337.10 84 104.51 odd 2
1248.4.m.a.337.11 84 52.51 odd 2
1248.4.m.a.337.12 84 4.3 odd 2