Properties

Label 1250.4.a.c.1.2
Level $1250$
Weight $4$
Character 1250.1
Self dual yes
Analytic conductor $73.752$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1250,4,Mod(1,1250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1250, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1250.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1250 = 2 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1250.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.7523875072\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 145x^{4} + 120x^{3} + 5125x^{2} - 2431x - 1069 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(8.28587\) of defining polynomial
Character \(\chi\) \(=\) 1250.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -5.66784 q^{3} +4.00000 q^{4} +11.3357 q^{6} -16.6100 q^{7} -8.00000 q^{8} +5.12438 q^{9} +3.04838 q^{11} -22.6714 q^{12} -15.4682 q^{13} +33.2200 q^{14} +16.0000 q^{16} -43.5583 q^{17} -10.2488 q^{18} -24.2031 q^{19} +94.1429 q^{21} -6.09676 q^{22} -195.996 q^{23} +45.3427 q^{24} +30.9364 q^{26} +123.987 q^{27} -66.4401 q^{28} +10.3063 q^{29} -105.236 q^{31} -32.0000 q^{32} -17.2777 q^{33} +87.1165 q^{34} +20.4975 q^{36} -266.960 q^{37} +48.4063 q^{38} +87.6713 q^{39} +33.7935 q^{41} -188.286 q^{42} +430.248 q^{43} +12.1935 q^{44} +391.992 q^{46} -556.466 q^{47} -90.6854 q^{48} -67.1073 q^{49} +246.881 q^{51} -61.8728 q^{52} -659.826 q^{53} -247.975 q^{54} +132.880 q^{56} +137.179 q^{57} -20.6126 q^{58} -162.048 q^{59} -197.885 q^{61} +210.471 q^{62} -85.1161 q^{63} +64.0000 q^{64} +34.5555 q^{66} -155.284 q^{67} -174.233 q^{68} +1110.87 q^{69} +860.300 q^{71} -40.9951 q^{72} -359.057 q^{73} +533.919 q^{74} -96.8125 q^{76} -50.6337 q^{77} -175.343 q^{78} -1110.76 q^{79} -841.099 q^{81} -67.5871 q^{82} +476.911 q^{83} +376.572 q^{84} -860.496 q^{86} -58.4143 q^{87} -24.3871 q^{88} -1444.77 q^{89} +256.927 q^{91} -783.984 q^{92} +596.459 q^{93} +1112.93 q^{94} +181.371 q^{96} -645.160 q^{97} +134.215 q^{98} +15.6211 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 8 q^{3} + 24 q^{4} - 16 q^{6} - 6 q^{7} - 48 q^{8} + 142 q^{9} + 107 q^{11} + 32 q^{12} - 42 q^{13} + 12 q^{14} + 96 q^{16} - 156 q^{17} - 284 q^{18} + 50 q^{19} + 122 q^{21} - 214 q^{22}+ \cdots + 2389 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −5.66784 −1.09078 −0.545388 0.838184i \(-0.683618\pi\)
−0.545388 + 0.838184i \(0.683618\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 11.3357 0.771295
\(7\) −16.6100 −0.896857 −0.448428 0.893819i \(-0.648016\pi\)
−0.448428 + 0.893819i \(0.648016\pi\)
\(8\) −8.00000 −0.353553
\(9\) 5.12438 0.189792
\(10\) 0 0
\(11\) 3.04838 0.0835565 0.0417783 0.999127i \(-0.486698\pi\)
0.0417783 + 0.999127i \(0.486698\pi\)
\(12\) −22.6714 −0.545388
\(13\) −15.4682 −0.330008 −0.165004 0.986293i \(-0.552764\pi\)
−0.165004 + 0.986293i \(0.552764\pi\)
\(14\) 33.2200 0.634173
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −43.5583 −0.621437 −0.310719 0.950502i \(-0.600570\pi\)
−0.310719 + 0.950502i \(0.600570\pi\)
\(18\) −10.2488 −0.134203
\(19\) −24.2031 −0.292241 −0.146121 0.989267i \(-0.546679\pi\)
−0.146121 + 0.989267i \(0.546679\pi\)
\(20\) 0 0
\(21\) 94.1429 0.978270
\(22\) −6.09676 −0.0590834
\(23\) −195.996 −1.77687 −0.888434 0.459003i \(-0.848207\pi\)
−0.888434 + 0.459003i \(0.848207\pi\)
\(24\) 45.3427 0.385647
\(25\) 0 0
\(26\) 30.9364 0.233351
\(27\) 123.987 0.883755
\(28\) −66.4401 −0.448428
\(29\) 10.3063 0.0659941 0.0329970 0.999455i \(-0.489495\pi\)
0.0329970 + 0.999455i \(0.489495\pi\)
\(30\) 0 0
\(31\) −105.236 −0.609706 −0.304853 0.952399i \(-0.598607\pi\)
−0.304853 + 0.952399i \(0.598607\pi\)
\(32\) −32.0000 −0.176777
\(33\) −17.2777 −0.0911414
\(34\) 87.1165 0.439422
\(35\) 0 0
\(36\) 20.4975 0.0948960
\(37\) −266.960 −1.18616 −0.593080 0.805144i \(-0.702088\pi\)
−0.593080 + 0.805144i \(0.702088\pi\)
\(38\) 48.4063 0.206646
\(39\) 87.6713 0.359965
\(40\) 0 0
\(41\) 33.7935 0.128724 0.0643618 0.997927i \(-0.479499\pi\)
0.0643618 + 0.997927i \(0.479499\pi\)
\(42\) −188.286 −0.691741
\(43\) 430.248 1.52587 0.762933 0.646478i \(-0.223759\pi\)
0.762933 + 0.646478i \(0.223759\pi\)
\(44\) 12.1935 0.0417783
\(45\) 0 0
\(46\) 391.992 1.25644
\(47\) −556.466 −1.72700 −0.863498 0.504352i \(-0.831731\pi\)
−0.863498 + 0.504352i \(0.831731\pi\)
\(48\) −90.6854 −0.272694
\(49\) −67.1073 −0.195648
\(50\) 0 0
\(51\) 246.881 0.677849
\(52\) −61.8728 −0.165004
\(53\) −659.826 −1.71008 −0.855038 0.518565i \(-0.826466\pi\)
−0.855038 + 0.518565i \(0.826466\pi\)
\(54\) −247.975 −0.624909
\(55\) 0 0
\(56\) 132.880 0.317087
\(57\) 137.179 0.318769
\(58\) −20.6126 −0.0466649
\(59\) −162.048 −0.357575 −0.178787 0.983888i \(-0.557217\pi\)
−0.178787 + 0.983888i \(0.557217\pi\)
\(60\) 0 0
\(61\) −197.885 −0.415353 −0.207677 0.978198i \(-0.566590\pi\)
−0.207677 + 0.978198i \(0.566590\pi\)
\(62\) 210.471 0.431127
\(63\) −85.1161 −0.170216
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 34.5555 0.0644467
\(67\) −155.284 −0.283149 −0.141575 0.989928i \(-0.545217\pi\)
−0.141575 + 0.989928i \(0.545217\pi\)
\(68\) −174.233 −0.310719
\(69\) 1110.87 1.93817
\(70\) 0 0
\(71\) 860.300 1.43801 0.719006 0.695004i \(-0.244597\pi\)
0.719006 + 0.695004i \(0.244597\pi\)
\(72\) −40.9951 −0.0671016
\(73\) −359.057 −0.575678 −0.287839 0.957679i \(-0.592937\pi\)
−0.287839 + 0.957679i \(0.592937\pi\)
\(74\) 533.919 0.838741
\(75\) 0 0
\(76\) −96.8125 −0.146121
\(77\) −50.6337 −0.0749382
\(78\) −175.343 −0.254534
\(79\) −1110.76 −1.58190 −0.790951 0.611879i \(-0.790414\pi\)
−0.790951 + 0.611879i \(0.790414\pi\)
\(80\) 0 0
\(81\) −841.099 −1.15377
\(82\) −67.5871 −0.0910213
\(83\) 476.911 0.630696 0.315348 0.948976i \(-0.397879\pi\)
0.315348 + 0.948976i \(0.397879\pi\)
\(84\) 376.572 0.489135
\(85\) 0 0
\(86\) −860.496 −1.07895
\(87\) −58.4143 −0.0719847
\(88\) −24.3871 −0.0295417
\(89\) −1444.77 −1.72074 −0.860368 0.509673i \(-0.829766\pi\)
−0.860368 + 0.509673i \(0.829766\pi\)
\(90\) 0 0
\(91\) 256.927 0.295970
\(92\) −783.984 −0.888434
\(93\) 596.459 0.665053
\(94\) 1112.93 1.22117
\(95\) 0 0
\(96\) 181.371 0.192824
\(97\) −645.160 −0.675321 −0.337660 0.941268i \(-0.609635\pi\)
−0.337660 + 0.941268i \(0.609635\pi\)
\(98\) 134.215 0.138344
\(99\) 15.6211 0.0158584
\(100\) 0 0
\(101\) 991.112 0.976429 0.488214 0.872724i \(-0.337648\pi\)
0.488214 + 0.872724i \(0.337648\pi\)
\(102\) −493.762 −0.479311
\(103\) −1463.05 −1.39960 −0.699798 0.714341i \(-0.746727\pi\)
−0.699798 + 0.714341i \(0.746727\pi\)
\(104\) 123.746 0.116676
\(105\) 0 0
\(106\) 1319.65 1.20921
\(107\) 816.480 0.737684 0.368842 0.929492i \(-0.379754\pi\)
0.368842 + 0.929492i \(0.379754\pi\)
\(108\) 495.950 0.441878
\(109\) 202.993 0.178378 0.0891889 0.996015i \(-0.471573\pi\)
0.0891889 + 0.996015i \(0.471573\pi\)
\(110\) 0 0
\(111\) 1513.08 1.29383
\(112\) −265.760 −0.224214
\(113\) −1305.27 −1.08663 −0.543317 0.839528i \(-0.682832\pi\)
−0.543317 + 0.839528i \(0.682832\pi\)
\(114\) −274.359 −0.225404
\(115\) 0 0
\(116\) 41.2251 0.0329970
\(117\) −79.2650 −0.0626329
\(118\) 324.097 0.252843
\(119\) 723.504 0.557340
\(120\) 0 0
\(121\) −1321.71 −0.993018
\(122\) 395.770 0.293699
\(123\) −191.536 −0.140408
\(124\) −420.943 −0.304853
\(125\) 0 0
\(126\) 170.232 0.120361
\(127\) 1453.61 1.01565 0.507824 0.861461i \(-0.330450\pi\)
0.507824 + 0.861461i \(0.330450\pi\)
\(128\) −128.000 −0.0883883
\(129\) −2438.58 −1.66438
\(130\) 0 0
\(131\) 278.547 0.185777 0.0928884 0.995677i \(-0.470390\pi\)
0.0928884 + 0.995677i \(0.470390\pi\)
\(132\) −69.1109 −0.0455707
\(133\) 402.015 0.262098
\(134\) 310.569 0.200217
\(135\) 0 0
\(136\) 348.466 0.219711
\(137\) −338.479 −0.211082 −0.105541 0.994415i \(-0.533657\pi\)
−0.105541 + 0.994415i \(0.533657\pi\)
\(138\) −2221.75 −1.37049
\(139\) −1295.12 −0.790293 −0.395146 0.918618i \(-0.629306\pi\)
−0.395146 + 0.918618i \(0.629306\pi\)
\(140\) 0 0
\(141\) 3153.96 1.88377
\(142\) −1720.60 −1.01683
\(143\) −47.1530 −0.0275743
\(144\) 81.9901 0.0474480
\(145\) 0 0
\(146\) 718.115 0.407066
\(147\) 380.353 0.213408
\(148\) −1067.84 −0.593080
\(149\) −1132.23 −0.622521 −0.311261 0.950325i \(-0.600751\pi\)
−0.311261 + 0.950325i \(0.600751\pi\)
\(150\) 0 0
\(151\) 719.198 0.387599 0.193800 0.981041i \(-0.437919\pi\)
0.193800 + 0.981041i \(0.437919\pi\)
\(152\) 193.625 0.103323
\(153\) −223.209 −0.117944
\(154\) 101.267 0.0529893
\(155\) 0 0
\(156\) 350.685 0.179983
\(157\) 2182.94 1.10967 0.554833 0.831962i \(-0.312782\pi\)
0.554833 + 0.831962i \(0.312782\pi\)
\(158\) 2221.52 1.11857
\(159\) 3739.78 1.86531
\(160\) 0 0
\(161\) 3255.50 1.59360
\(162\) 1682.20 0.815839
\(163\) −3031.50 −1.45672 −0.728359 0.685196i \(-0.759717\pi\)
−0.728359 + 0.685196i \(0.759717\pi\)
\(164\) 135.174 0.0643618
\(165\) 0 0
\(166\) −953.822 −0.445969
\(167\) 2072.36 0.960265 0.480132 0.877196i \(-0.340589\pi\)
0.480132 + 0.877196i \(0.340589\pi\)
\(168\) −753.143 −0.345871
\(169\) −1957.73 −0.891095
\(170\) 0 0
\(171\) −124.026 −0.0554650
\(172\) 1720.99 0.762933
\(173\) −737.782 −0.324234 −0.162117 0.986772i \(-0.551832\pi\)
−0.162117 + 0.986772i \(0.551832\pi\)
\(174\) 116.829 0.0509009
\(175\) 0 0
\(176\) 48.7741 0.0208891
\(177\) 918.464 0.390034
\(178\) 2889.54 1.21674
\(179\) −2351.63 −0.981952 −0.490976 0.871173i \(-0.663360\pi\)
−0.490976 + 0.871173i \(0.663360\pi\)
\(180\) 0 0
\(181\) 4327.33 1.77706 0.888530 0.458818i \(-0.151727\pi\)
0.888530 + 0.458818i \(0.151727\pi\)
\(182\) −513.854 −0.209282
\(183\) 1121.58 0.453058
\(184\) 1567.97 0.628218
\(185\) 0 0
\(186\) −1192.92 −0.470263
\(187\) −132.782 −0.0519251
\(188\) −2225.86 −0.863498
\(189\) −2059.43 −0.792602
\(190\) 0 0
\(191\) 1764.16 0.668325 0.334163 0.942515i \(-0.391547\pi\)
0.334163 + 0.942515i \(0.391547\pi\)
\(192\) −362.742 −0.136347
\(193\) 4958.76 1.84943 0.924714 0.380662i \(-0.124304\pi\)
0.924714 + 0.380662i \(0.124304\pi\)
\(194\) 1290.32 0.477524
\(195\) 0 0
\(196\) −268.429 −0.0978240
\(197\) 3133.00 1.13308 0.566540 0.824034i \(-0.308282\pi\)
0.566540 + 0.824034i \(0.308282\pi\)
\(198\) −31.2421 −0.0112135
\(199\) 2883.31 1.02710 0.513549 0.858060i \(-0.328330\pi\)
0.513549 + 0.858060i \(0.328330\pi\)
\(200\) 0 0
\(201\) 880.127 0.308852
\(202\) −1982.22 −0.690439
\(203\) −171.187 −0.0591872
\(204\) 987.525 0.338924
\(205\) 0 0
\(206\) 2926.10 0.989664
\(207\) −1004.36 −0.337235
\(208\) −247.491 −0.0825021
\(209\) −73.7804 −0.0244186
\(210\) 0 0
\(211\) 5976.93 1.95009 0.975044 0.222011i \(-0.0712622\pi\)
0.975044 + 0.222011i \(0.0712622\pi\)
\(212\) −2639.30 −0.855038
\(213\) −4876.04 −1.56855
\(214\) −1632.96 −0.521621
\(215\) 0 0
\(216\) −991.900 −0.312455
\(217\) 1747.97 0.546819
\(218\) −405.986 −0.126132
\(219\) 2035.08 0.627936
\(220\) 0 0
\(221\) 673.768 0.205079
\(222\) −3026.17 −0.914879
\(223\) 3951.70 1.18666 0.593331 0.804959i \(-0.297813\pi\)
0.593331 + 0.804959i \(0.297813\pi\)
\(224\) 531.521 0.158543
\(225\) 0 0
\(226\) 2610.54 0.768366
\(227\) 2141.61 0.626185 0.313092 0.949723i \(-0.398635\pi\)
0.313092 + 0.949723i \(0.398635\pi\)
\(228\) 548.718 0.159385
\(229\) 2122.54 0.612494 0.306247 0.951952i \(-0.400927\pi\)
0.306247 + 0.951952i \(0.400927\pi\)
\(230\) 0 0
\(231\) 286.983 0.0817408
\(232\) −82.4502 −0.0233324
\(233\) 4051.36 1.13911 0.569557 0.821952i \(-0.307115\pi\)
0.569557 + 0.821952i \(0.307115\pi\)
\(234\) 158.530 0.0442882
\(235\) 0 0
\(236\) −648.194 −0.178787
\(237\) 6295.61 1.72550
\(238\) −1447.01 −0.394099
\(239\) −4447.49 −1.20370 −0.601850 0.798609i \(-0.705569\pi\)
−0.601850 + 0.798609i \(0.705569\pi\)
\(240\) 0 0
\(241\) 571.376 0.152720 0.0763601 0.997080i \(-0.475670\pi\)
0.0763601 + 0.997080i \(0.475670\pi\)
\(242\) 2643.41 0.702170
\(243\) 1419.55 0.374750
\(244\) −791.540 −0.207677
\(245\) 0 0
\(246\) 383.073 0.0992838
\(247\) 374.379 0.0964420
\(248\) 841.886 0.215564
\(249\) −2703.05 −0.687948
\(250\) 0 0
\(251\) −3432.31 −0.863129 −0.431565 0.902082i \(-0.642038\pi\)
−0.431565 + 0.902082i \(0.642038\pi\)
\(252\) −340.464 −0.0851081
\(253\) −597.471 −0.148469
\(254\) −2907.22 −0.718171
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 144.659 0.0351112 0.0175556 0.999846i \(-0.494412\pi\)
0.0175556 + 0.999846i \(0.494412\pi\)
\(258\) 4877.15 1.17689
\(259\) 4434.21 1.06382
\(260\) 0 0
\(261\) 52.8133 0.0125251
\(262\) −557.094 −0.131364
\(263\) 5463.46 1.28096 0.640478 0.767977i \(-0.278736\pi\)
0.640478 + 0.767977i \(0.278736\pi\)
\(264\) 138.222 0.0322234
\(265\) 0 0
\(266\) −804.029 −0.185332
\(267\) 8188.73 1.87694
\(268\) −621.137 −0.141575
\(269\) 2797.61 0.634101 0.317051 0.948409i \(-0.397307\pi\)
0.317051 + 0.948409i \(0.397307\pi\)
\(270\) 0 0
\(271\) 4284.97 0.960492 0.480246 0.877134i \(-0.340547\pi\)
0.480246 + 0.877134i \(0.340547\pi\)
\(272\) −696.932 −0.155359
\(273\) −1456.22 −0.322837
\(274\) 676.957 0.149257
\(275\) 0 0
\(276\) 4443.49 0.969083
\(277\) −3735.09 −0.810179 −0.405089 0.914277i \(-0.632760\pi\)
−0.405089 + 0.914277i \(0.632760\pi\)
\(278\) 2590.24 0.558821
\(279\) −539.268 −0.115717
\(280\) 0 0
\(281\) −6712.03 −1.42493 −0.712466 0.701707i \(-0.752422\pi\)
−0.712466 + 0.701707i \(0.752422\pi\)
\(282\) −6307.91 −1.33202
\(283\) 535.045 0.112386 0.0561928 0.998420i \(-0.482104\pi\)
0.0561928 + 0.998420i \(0.482104\pi\)
\(284\) 3441.20 0.719006
\(285\) 0 0
\(286\) 94.3060 0.0194980
\(287\) −561.311 −0.115447
\(288\) −163.980 −0.0335508
\(289\) −3015.68 −0.613816
\(290\) 0 0
\(291\) 3656.66 0.736623
\(292\) −1436.23 −0.287839
\(293\) 9332.20 1.86073 0.930363 0.366639i \(-0.119491\pi\)
0.930363 + 0.366639i \(0.119491\pi\)
\(294\) −760.706 −0.150902
\(295\) 0 0
\(296\) 2135.68 0.419371
\(297\) 377.961 0.0738435
\(298\) 2264.45 0.440189
\(299\) 3031.71 0.586381
\(300\) 0 0
\(301\) −7146.43 −1.36848
\(302\) −1438.40 −0.274074
\(303\) −5617.46 −1.06506
\(304\) −387.250 −0.0730603
\(305\) 0 0
\(306\) 446.418 0.0833988
\(307\) −2429.22 −0.451606 −0.225803 0.974173i \(-0.572501\pi\)
−0.225803 + 0.974173i \(0.572501\pi\)
\(308\) −202.535 −0.0374691
\(309\) 8292.32 1.52665
\(310\) 0 0
\(311\) −2332.86 −0.425351 −0.212676 0.977123i \(-0.568218\pi\)
−0.212676 + 0.977123i \(0.568218\pi\)
\(312\) −701.370 −0.127267
\(313\) 1872.59 0.338163 0.169081 0.985602i \(-0.445920\pi\)
0.169081 + 0.985602i \(0.445920\pi\)
\(314\) −4365.88 −0.784652
\(315\) 0 0
\(316\) −4443.04 −0.790951
\(317\) −4709.54 −0.834429 −0.417215 0.908808i \(-0.636994\pi\)
−0.417215 + 0.908808i \(0.636994\pi\)
\(318\) −7479.57 −1.31897
\(319\) 31.4175 0.00551423
\(320\) 0 0
\(321\) −4627.68 −0.804647
\(322\) −6510.99 −1.12684
\(323\) 1054.25 0.181609
\(324\) −3364.40 −0.576885
\(325\) 0 0
\(326\) 6062.99 1.03006
\(327\) −1150.53 −0.194570
\(328\) −270.348 −0.0455106
\(329\) 9242.90 1.54887
\(330\) 0 0
\(331\) 7114.17 1.18136 0.590680 0.806906i \(-0.298859\pi\)
0.590680 + 0.806906i \(0.298859\pi\)
\(332\) 1907.64 0.315348
\(333\) −1368.00 −0.225124
\(334\) −4144.72 −0.679010
\(335\) 0 0
\(336\) 1506.29 0.244567
\(337\) −2327.59 −0.376237 −0.188119 0.982146i \(-0.560239\pi\)
−0.188119 + 0.982146i \(0.560239\pi\)
\(338\) 3915.47 0.630099
\(339\) 7398.07 1.18527
\(340\) 0 0
\(341\) −320.799 −0.0509449
\(342\) 248.052 0.0392197
\(343\) 6811.89 1.07232
\(344\) −3441.99 −0.539475
\(345\) 0 0
\(346\) 1475.56 0.229268
\(347\) 3332.82 0.515605 0.257803 0.966198i \(-0.417002\pi\)
0.257803 + 0.966198i \(0.417002\pi\)
\(348\) −233.657 −0.0359924
\(349\) −2838.44 −0.435353 −0.217677 0.976021i \(-0.569848\pi\)
−0.217677 + 0.976021i \(0.569848\pi\)
\(350\) 0 0
\(351\) −1917.86 −0.291647
\(352\) −97.5482 −0.0147708
\(353\) −10997.7 −1.65821 −0.829107 0.559091i \(-0.811150\pi\)
−0.829107 + 0.559091i \(0.811150\pi\)
\(354\) −1836.93 −0.275796
\(355\) 0 0
\(356\) −5779.09 −0.860368
\(357\) −4100.70 −0.607933
\(358\) 4703.27 0.694345
\(359\) 995.709 0.146383 0.0731915 0.997318i \(-0.476682\pi\)
0.0731915 + 0.997318i \(0.476682\pi\)
\(360\) 0 0
\(361\) −6273.21 −0.914595
\(362\) −8654.66 −1.25657
\(363\) 7491.22 1.08316
\(364\) 1027.71 0.147985
\(365\) 0 0
\(366\) −2243.16 −0.320360
\(367\) −9187.31 −1.30674 −0.653370 0.757038i \(-0.726646\pi\)
−0.653370 + 0.757038i \(0.726646\pi\)
\(368\) −3135.94 −0.444217
\(369\) 173.171 0.0244307
\(370\) 0 0
\(371\) 10959.7 1.53369
\(372\) 2385.84 0.332526
\(373\) −6058.93 −0.841072 −0.420536 0.907276i \(-0.638158\pi\)
−0.420536 + 0.907276i \(0.638158\pi\)
\(374\) 265.564 0.0367166
\(375\) 0 0
\(376\) 4451.72 0.610585
\(377\) −159.420 −0.0217786
\(378\) 4118.87 0.560454
\(379\) 893.684 0.121123 0.0605613 0.998164i \(-0.480711\pi\)
0.0605613 + 0.998164i \(0.480711\pi\)
\(380\) 0 0
\(381\) −8238.83 −1.10784
\(382\) −3528.32 −0.472577
\(383\) −5839.47 −0.779068 −0.389534 0.921012i \(-0.627364\pi\)
−0.389534 + 0.921012i \(0.627364\pi\)
\(384\) 725.483 0.0964119
\(385\) 0 0
\(386\) −9917.53 −1.30774
\(387\) 2204.76 0.289597
\(388\) −2580.64 −0.337660
\(389\) −4912.83 −0.640335 −0.320168 0.947361i \(-0.603739\pi\)
−0.320168 + 0.947361i \(0.603739\pi\)
\(390\) 0 0
\(391\) 8537.24 1.10421
\(392\) 536.858 0.0691720
\(393\) −1578.76 −0.202641
\(394\) −6266.00 −0.801209
\(395\) 0 0
\(396\) 62.4843 0.00792918
\(397\) 8419.00 1.06433 0.532163 0.846642i \(-0.321379\pi\)
0.532163 + 0.846642i \(0.321379\pi\)
\(398\) −5766.62 −0.726268
\(399\) −2278.55 −0.285891
\(400\) 0 0
\(401\) −7353.01 −0.915690 −0.457845 0.889032i \(-0.651379\pi\)
−0.457845 + 0.889032i \(0.651379\pi\)
\(402\) −1760.25 −0.218392
\(403\) 1627.81 0.201208
\(404\) 3964.45 0.488214
\(405\) 0 0
\(406\) 342.375 0.0418517
\(407\) −813.795 −0.0991114
\(408\) −1975.05 −0.239656
\(409\) −13980.4 −1.69019 −0.845096 0.534615i \(-0.820457\pi\)
−0.845096 + 0.534615i \(0.820457\pi\)
\(410\) 0 0
\(411\) 1918.44 0.230243
\(412\) −5852.19 −0.699798
\(413\) 2691.63 0.320693
\(414\) 2008.72 0.238461
\(415\) 0 0
\(416\) 494.982 0.0583378
\(417\) 7340.53 0.862032
\(418\) 147.561 0.0172666
\(419\) −12778.0 −1.48985 −0.744923 0.667150i \(-0.767514\pi\)
−0.744923 + 0.667150i \(0.767514\pi\)
\(420\) 0 0
\(421\) 1708.71 0.197809 0.0989044 0.995097i \(-0.468466\pi\)
0.0989044 + 0.995097i \(0.468466\pi\)
\(422\) −11953.9 −1.37892
\(423\) −2851.54 −0.327770
\(424\) 5278.60 0.604603
\(425\) 0 0
\(426\) 9752.09 1.10913
\(427\) 3286.87 0.372513
\(428\) 3265.92 0.368842
\(429\) 267.255 0.0300774
\(430\) 0 0
\(431\) −5049.46 −0.564325 −0.282162 0.959367i \(-0.591052\pi\)
−0.282162 + 0.959367i \(0.591052\pi\)
\(432\) 1983.80 0.220939
\(433\) −10438.4 −1.15852 −0.579259 0.815143i \(-0.696658\pi\)
−0.579259 + 0.815143i \(0.696658\pi\)
\(434\) −3495.94 −0.386660
\(435\) 0 0
\(436\) 811.971 0.0891889
\(437\) 4743.72 0.519274
\(438\) −4070.16 −0.444018
\(439\) 15290.1 1.66231 0.831156 0.556040i \(-0.187680\pi\)
0.831156 + 0.556040i \(0.187680\pi\)
\(440\) 0 0
\(441\) −343.883 −0.0371324
\(442\) −1347.54 −0.145013
\(443\) −866.921 −0.0929766 −0.0464883 0.998919i \(-0.514803\pi\)
−0.0464883 + 0.998919i \(0.514803\pi\)
\(444\) 6052.34 0.646917
\(445\) 0 0
\(446\) −7903.41 −0.839097
\(447\) 6417.28 0.679031
\(448\) −1063.04 −0.112107
\(449\) 400.462 0.0420913 0.0210456 0.999779i \(-0.493300\pi\)
0.0210456 + 0.999779i \(0.493300\pi\)
\(450\) 0 0
\(451\) 103.016 0.0107557
\(452\) −5221.09 −0.543317
\(453\) −4076.30 −0.422784
\(454\) −4283.23 −0.442779
\(455\) 0 0
\(456\) −1097.44 −0.112702
\(457\) 11585.7 1.18590 0.592949 0.805240i \(-0.297964\pi\)
0.592949 + 0.805240i \(0.297964\pi\)
\(458\) −4245.07 −0.433099
\(459\) −5400.68 −0.549198
\(460\) 0 0
\(461\) −5722.52 −0.578144 −0.289072 0.957307i \(-0.593347\pi\)
−0.289072 + 0.957307i \(0.593347\pi\)
\(462\) −573.967 −0.0577995
\(463\) 16136.2 1.61968 0.809841 0.586649i \(-0.199553\pi\)
0.809841 + 0.586649i \(0.199553\pi\)
\(464\) 164.900 0.0164985
\(465\) 0 0
\(466\) −8102.73 −0.805476
\(467\) −10508.2 −1.04125 −0.520623 0.853787i \(-0.674300\pi\)
−0.520623 + 0.853787i \(0.674300\pi\)
\(468\) −317.060 −0.0313165
\(469\) 2579.28 0.253944
\(470\) 0 0
\(471\) −12372.5 −1.21040
\(472\) 1296.39 0.126422
\(473\) 1311.56 0.127496
\(474\) −12591.2 −1.22011
\(475\) 0 0
\(476\) 2894.01 0.278670
\(477\) −3381.20 −0.324559
\(478\) 8894.98 0.851144
\(479\) −12405.2 −1.18331 −0.591656 0.806191i \(-0.701526\pi\)
−0.591656 + 0.806191i \(0.701526\pi\)
\(480\) 0 0
\(481\) 4129.39 0.391442
\(482\) −1142.75 −0.107989
\(483\) −18451.6 −1.73826
\(484\) −5286.83 −0.496509
\(485\) 0 0
\(486\) −2839.10 −0.264988
\(487\) 6720.06 0.625288 0.312644 0.949870i \(-0.398785\pi\)
0.312644 + 0.949870i \(0.398785\pi\)
\(488\) 1583.08 0.146850
\(489\) 17182.0 1.58895
\(490\) 0 0
\(491\) 3549.65 0.326260 0.163130 0.986605i \(-0.447841\pi\)
0.163130 + 0.986605i \(0.447841\pi\)
\(492\) −766.145 −0.0702042
\(493\) −448.924 −0.0410112
\(494\) −748.758 −0.0681948
\(495\) 0 0
\(496\) −1683.77 −0.152427
\(497\) −14289.6 −1.28969
\(498\) 5406.11 0.486453
\(499\) 15925.4 1.42869 0.714346 0.699793i \(-0.246724\pi\)
0.714346 + 0.699793i \(0.246724\pi\)
\(500\) 0 0
\(501\) −11745.8 −1.04743
\(502\) 6864.62 0.610324
\(503\) 799.366 0.0708588 0.0354294 0.999372i \(-0.488720\pi\)
0.0354294 + 0.999372i \(0.488720\pi\)
\(504\) 680.929 0.0601805
\(505\) 0 0
\(506\) 1194.94 0.104983
\(507\) 11096.1 0.971984
\(508\) 5814.45 0.507824
\(509\) −17678.2 −1.53943 −0.769717 0.638386i \(-0.779602\pi\)
−0.769717 + 0.638386i \(0.779602\pi\)
\(510\) 0 0
\(511\) 5963.95 0.516301
\(512\) −512.000 −0.0441942
\(513\) −3000.88 −0.258270
\(514\) −289.318 −0.0248273
\(515\) 0 0
\(516\) −9754.31 −0.832189
\(517\) −1696.32 −0.144302
\(518\) −8868.41 −0.752231
\(519\) 4181.63 0.353667
\(520\) 0 0
\(521\) −5119.04 −0.430459 −0.215230 0.976563i \(-0.569050\pi\)
−0.215230 + 0.976563i \(0.569050\pi\)
\(522\) −105.627 −0.00885661
\(523\) 17639.5 1.47480 0.737402 0.675455i \(-0.236053\pi\)
0.737402 + 0.675455i \(0.236053\pi\)
\(524\) 1114.19 0.0928884
\(525\) 0 0
\(526\) −10926.9 −0.905772
\(527\) 4583.89 0.378894
\(528\) −276.444 −0.0227854
\(529\) 26247.4 2.15726
\(530\) 0 0
\(531\) −830.398 −0.0678648
\(532\) 1608.06 0.131049
\(533\) −522.725 −0.0424798
\(534\) −16377.5 −1.32720
\(535\) 0 0
\(536\) 1242.27 0.100108
\(537\) 13328.7 1.07109
\(538\) −5595.22 −0.448377
\(539\) −204.569 −0.0163477
\(540\) 0 0
\(541\) 2856.92 0.227040 0.113520 0.993536i \(-0.463787\pi\)
0.113520 + 0.993536i \(0.463787\pi\)
\(542\) −8569.93 −0.679170
\(543\) −24526.6 −1.93837
\(544\) 1393.86 0.109856
\(545\) 0 0
\(546\) 2912.44 0.228280
\(547\) 14400.0 1.12559 0.562796 0.826596i \(-0.309726\pi\)
0.562796 + 0.826596i \(0.309726\pi\)
\(548\) −1353.91 −0.105541
\(549\) −1014.04 −0.0788308
\(550\) 0 0
\(551\) −249.444 −0.0192862
\(552\) −8886.99 −0.685245
\(553\) 18449.7 1.41874
\(554\) 7470.17 0.572883
\(555\) 0 0
\(556\) −5180.48 −0.395146
\(557\) 9685.69 0.736797 0.368398 0.929668i \(-0.379906\pi\)
0.368398 + 0.929668i \(0.379906\pi\)
\(558\) 1078.54 0.0818245
\(559\) −6655.17 −0.503548
\(560\) 0 0
\(561\) 752.588 0.0566387
\(562\) 13424.1 1.00758
\(563\) 20951.5 1.56838 0.784192 0.620518i \(-0.213078\pi\)
0.784192 + 0.620518i \(0.213078\pi\)
\(564\) 12615.8 0.941883
\(565\) 0 0
\(566\) −1070.09 −0.0794686
\(567\) 13970.7 1.03477
\(568\) −6882.40 −0.508414
\(569\) 6768.07 0.498651 0.249325 0.968420i \(-0.419791\pi\)
0.249325 + 0.968420i \(0.419791\pi\)
\(570\) 0 0
\(571\) −17740.7 −1.30022 −0.650109 0.759841i \(-0.725277\pi\)
−0.650109 + 0.759841i \(0.725277\pi\)
\(572\) −188.612 −0.0137872
\(573\) −9998.97 −0.728993
\(574\) 1122.62 0.0816330
\(575\) 0 0
\(576\) 327.960 0.0237240
\(577\) 18908.1 1.36422 0.682110 0.731249i \(-0.261062\pi\)
0.682110 + 0.731249i \(0.261062\pi\)
\(578\) 6031.36 0.434033
\(579\) −28105.5 −2.01731
\(580\) 0 0
\(581\) −7921.50 −0.565644
\(582\) −7313.33 −0.520871
\(583\) −2011.40 −0.142888
\(584\) 2872.46 0.203533
\(585\) 0 0
\(586\) −18664.4 −1.31573
\(587\) −15584.1 −1.09579 −0.547893 0.836548i \(-0.684570\pi\)
−0.547893 + 0.836548i \(0.684570\pi\)
\(588\) 1521.41 0.106704
\(589\) 2547.03 0.178181
\(590\) 0 0
\(591\) −17757.3 −1.23594
\(592\) −4271.36 −0.296540
\(593\) −5757.33 −0.398694 −0.199347 0.979929i \(-0.563882\pi\)
−0.199347 + 0.979929i \(0.563882\pi\)
\(594\) −755.922 −0.0522152
\(595\) 0 0
\(596\) −4528.91 −0.311261
\(597\) −16342.1 −1.12033
\(598\) −6063.41 −0.414634
\(599\) −6004.95 −0.409608 −0.204804 0.978803i \(-0.565656\pi\)
−0.204804 + 0.978803i \(0.565656\pi\)
\(600\) 0 0
\(601\) −26366.0 −1.78951 −0.894753 0.446562i \(-0.852648\pi\)
−0.894753 + 0.446562i \(0.852648\pi\)
\(602\) 14292.9 0.967664
\(603\) −795.737 −0.0537395
\(604\) 2876.79 0.193800
\(605\) 0 0
\(606\) 11234.9 0.753114
\(607\) 3986.79 0.266588 0.133294 0.991077i \(-0.457445\pi\)
0.133294 + 0.991077i \(0.457445\pi\)
\(608\) 774.500 0.0516614
\(609\) 970.263 0.0645600
\(610\) 0 0
\(611\) 8607.52 0.569923
\(612\) −892.837 −0.0589719
\(613\) −16845.0 −1.10989 −0.554947 0.831886i \(-0.687261\pi\)
−0.554947 + 0.831886i \(0.687261\pi\)
\(614\) 4858.45 0.319334
\(615\) 0 0
\(616\) 405.069 0.0264947
\(617\) −1679.95 −0.109615 −0.0548074 0.998497i \(-0.517454\pi\)
−0.0548074 + 0.998497i \(0.517454\pi\)
\(618\) −16584.6 −1.07950
\(619\) 3608.29 0.234296 0.117148 0.993114i \(-0.462625\pi\)
0.117148 + 0.993114i \(0.462625\pi\)
\(620\) 0 0
\(621\) −24301.0 −1.57032
\(622\) 4665.72 0.300769
\(623\) 23997.7 1.54325
\(624\) 1402.74 0.0899913
\(625\) 0 0
\(626\) −3745.18 −0.239117
\(627\) 418.175 0.0266353
\(628\) 8731.76 0.554833
\(629\) 11628.3 0.737124
\(630\) 0 0
\(631\) −2066.53 −0.130376 −0.0651881 0.997873i \(-0.520765\pi\)
−0.0651881 + 0.997873i \(0.520765\pi\)
\(632\) 8886.08 0.559287
\(633\) −33876.2 −2.12711
\(634\) 9419.08 0.590031
\(635\) 0 0
\(636\) 14959.1 0.932655
\(637\) 1038.03 0.0645655
\(638\) −62.8349 −0.00389915
\(639\) 4408.51 0.272923
\(640\) 0 0
\(641\) −27937.8 −1.72149 −0.860745 0.509037i \(-0.830002\pi\)
−0.860745 + 0.509037i \(0.830002\pi\)
\(642\) 9255.36 0.568972
\(643\) −27067.1 −1.66007 −0.830034 0.557713i \(-0.811679\pi\)
−0.830034 + 0.557713i \(0.811679\pi\)
\(644\) 13022.0 0.796798
\(645\) 0 0
\(646\) −2108.49 −0.128417
\(647\) 2460.23 0.149493 0.0747463 0.997203i \(-0.476185\pi\)
0.0747463 + 0.997203i \(0.476185\pi\)
\(648\) 6728.79 0.407920
\(649\) −493.985 −0.0298777
\(650\) 0 0
\(651\) −9907.20 −0.596457
\(652\) −12126.0 −0.728359
\(653\) −7190.60 −0.430919 −0.215459 0.976513i \(-0.569125\pi\)
−0.215459 + 0.976513i \(0.569125\pi\)
\(654\) 2301.06 0.137582
\(655\) 0 0
\(656\) 540.697 0.0321809
\(657\) −1839.95 −0.109259
\(658\) −18485.8 −1.09522
\(659\) −26124.2 −1.54424 −0.772121 0.635475i \(-0.780804\pi\)
−0.772121 + 0.635475i \(0.780804\pi\)
\(660\) 0 0
\(661\) 13907.5 0.818362 0.409181 0.912453i \(-0.365814\pi\)
0.409181 + 0.912453i \(0.365814\pi\)
\(662\) −14228.3 −0.835348
\(663\) −3818.81 −0.223696
\(664\) −3815.29 −0.222985
\(665\) 0 0
\(666\) 2736.01 0.159186
\(667\) −2019.99 −0.117263
\(668\) 8289.45 0.480132
\(669\) −22397.6 −1.29438
\(670\) 0 0
\(671\) −603.229 −0.0347055
\(672\) −3012.57 −0.172935
\(673\) −16079.5 −0.920982 −0.460491 0.887664i \(-0.652327\pi\)
−0.460491 + 0.887664i \(0.652327\pi\)
\(674\) 4655.18 0.266040
\(675\) 0 0
\(676\) −7830.94 −0.445547
\(677\) 15882.2 0.901626 0.450813 0.892618i \(-0.351134\pi\)
0.450813 + 0.892618i \(0.351134\pi\)
\(678\) −14796.1 −0.838115
\(679\) 10716.1 0.605666
\(680\) 0 0
\(681\) −12138.3 −0.683027
\(682\) 641.597 0.0360235
\(683\) 308.314 0.0172728 0.00863640 0.999963i \(-0.497251\pi\)
0.00863640 + 0.999963i \(0.497251\pi\)
\(684\) −496.105 −0.0277325
\(685\) 0 0
\(686\) −13623.8 −0.758248
\(687\) −12030.2 −0.668093
\(688\) 6883.97 0.381466
\(689\) 10206.3 0.564339
\(690\) 0 0
\(691\) 11388.7 0.626988 0.313494 0.949590i \(-0.398501\pi\)
0.313494 + 0.949590i \(0.398501\pi\)
\(692\) −2951.13 −0.162117
\(693\) −259.466 −0.0142227
\(694\) −6665.63 −0.364588
\(695\) 0 0
\(696\) 467.315 0.0254504
\(697\) −1471.99 −0.0799936
\(698\) 5676.89 0.307841
\(699\) −22962.5 −1.24252
\(700\) 0 0
\(701\) 30888.8 1.66427 0.832135 0.554573i \(-0.187118\pi\)
0.832135 + 0.554573i \(0.187118\pi\)
\(702\) 3835.73 0.206225
\(703\) 6461.26 0.346645
\(704\) 195.096 0.0104446
\(705\) 0 0
\(706\) 21995.4 1.17253
\(707\) −16462.4 −0.875717
\(708\) 3673.86 0.195017
\(709\) 1748.32 0.0926089 0.0463044 0.998927i \(-0.485256\pi\)
0.0463044 + 0.998927i \(0.485256\pi\)
\(710\) 0 0
\(711\) −5691.96 −0.300232
\(712\) 11558.2 0.608372
\(713\) 20625.8 1.08337
\(714\) 8201.40 0.429874
\(715\) 0 0
\(716\) −9406.53 −0.490976
\(717\) 25207.6 1.31297
\(718\) −1991.42 −0.103508
\(719\) −9493.76 −0.492431 −0.246215 0.969215i \(-0.579187\pi\)
−0.246215 + 0.969215i \(0.579187\pi\)
\(720\) 0 0
\(721\) 24301.3 1.25524
\(722\) 12546.4 0.646716
\(723\) −3238.47 −0.166584
\(724\) 17309.3 0.888530
\(725\) 0 0
\(726\) −14982.4 −0.765910
\(727\) 19255.5 0.982321 0.491161 0.871069i \(-0.336573\pi\)
0.491161 + 0.871069i \(0.336573\pi\)
\(728\) −2055.42 −0.104641
\(729\) 14663.9 0.745003
\(730\) 0 0
\(731\) −18740.9 −0.948230
\(732\) 4486.32 0.226529
\(733\) 23675.5 1.19301 0.596503 0.802611i \(-0.296556\pi\)
0.596503 + 0.802611i \(0.296556\pi\)
\(734\) 18374.6 0.924005
\(735\) 0 0
\(736\) 6271.87 0.314109
\(737\) −473.366 −0.0236590
\(738\) −346.342 −0.0172751
\(739\) 14116.4 0.702680 0.351340 0.936248i \(-0.385726\pi\)
0.351340 + 0.936248i \(0.385726\pi\)
\(740\) 0 0
\(741\) −2121.92 −0.105197
\(742\) −21919.4 −1.08448
\(743\) 22922.9 1.13184 0.565921 0.824459i \(-0.308521\pi\)
0.565921 + 0.824459i \(0.308521\pi\)
\(744\) −4771.67 −0.235132
\(745\) 0 0
\(746\) 12117.9 0.594727
\(747\) 2443.87 0.119701
\(748\) −531.129 −0.0259626
\(749\) −13561.8 −0.661596
\(750\) 0 0
\(751\) 3611.62 0.175486 0.0877429 0.996143i \(-0.472035\pi\)
0.0877429 + 0.996143i \(0.472035\pi\)
\(752\) −8903.45 −0.431749
\(753\) 19453.8 0.941480
\(754\) 318.839 0.0153998
\(755\) 0 0
\(756\) −8237.74 −0.396301
\(757\) 22716.3 1.09067 0.545334 0.838219i \(-0.316403\pi\)
0.545334 + 0.838219i \(0.316403\pi\)
\(758\) −1787.37 −0.0856466
\(759\) 3386.37 0.161946
\(760\) 0 0
\(761\) −7913.07 −0.376936 −0.188468 0.982079i \(-0.560352\pi\)
−0.188468 + 0.982079i \(0.560352\pi\)
\(762\) 16477.7 0.783363
\(763\) −3371.71 −0.159979
\(764\) 7056.64 0.334163
\(765\) 0 0
\(766\) 11678.9 0.550884
\(767\) 2506.60 0.118003
\(768\) −1450.97 −0.0681735
\(769\) −6790.99 −0.318452 −0.159226 0.987242i \(-0.550900\pi\)
−0.159226 + 0.987242i \(0.550900\pi\)
\(770\) 0 0
\(771\) −819.903 −0.0382984
\(772\) 19835.1 0.924714
\(773\) −6088.83 −0.283312 −0.141656 0.989916i \(-0.545243\pi\)
−0.141656 + 0.989916i \(0.545243\pi\)
\(774\) −4409.51 −0.204776
\(775\) 0 0
\(776\) 5161.28 0.238762
\(777\) −25132.4 −1.16038
\(778\) 9825.66 0.452785
\(779\) −817.910 −0.0376183
\(780\) 0 0
\(781\) 2622.52 0.120155
\(782\) −17074.5 −0.780796
\(783\) 1277.85 0.0583226
\(784\) −1073.72 −0.0489120
\(785\) 0 0
\(786\) 3157.52 0.143289
\(787\) −3296.47 −0.149309 −0.0746547 0.997209i \(-0.523785\pi\)
−0.0746547 + 0.997209i \(0.523785\pi\)
\(788\) 12532.0 0.566540
\(789\) −30966.0 −1.39724
\(790\) 0 0
\(791\) 21680.6 0.974555
\(792\) −124.969 −0.00560677
\(793\) 3060.92 0.137070
\(794\) −16838.0 −0.752593
\(795\) 0 0
\(796\) 11533.2 0.513549
\(797\) −40635.4 −1.80600 −0.902998 0.429645i \(-0.858639\pi\)
−0.902998 + 0.429645i \(0.858639\pi\)
\(798\) 4557.11 0.202155
\(799\) 24238.7 1.07322
\(800\) 0 0
\(801\) −7403.57 −0.326582
\(802\) 14706.0 0.647491
\(803\) −1094.54 −0.0481016
\(804\) 3520.51 0.154426
\(805\) 0 0
\(806\) −3255.62 −0.142276
\(807\) −15856.4 −0.691663
\(808\) −7928.89 −0.345220
\(809\) −3564.32 −0.154901 −0.0774505 0.996996i \(-0.524678\pi\)
−0.0774505 + 0.996996i \(0.524678\pi\)
\(810\) 0 0
\(811\) −41160.2 −1.78216 −0.891079 0.453847i \(-0.850051\pi\)
−0.891079 + 0.453847i \(0.850051\pi\)
\(812\) −684.750 −0.0295936
\(813\) −24286.5 −1.04768
\(814\) 1627.59 0.0700823
\(815\) 0 0
\(816\) 3950.10 0.169462
\(817\) −10413.4 −0.445921
\(818\) 27960.9 1.19515
\(819\) 1316.59 0.0561728
\(820\) 0 0
\(821\) −1498.30 −0.0636919 −0.0318460 0.999493i \(-0.510139\pi\)
−0.0318460 + 0.999493i \(0.510139\pi\)
\(822\) −3836.88 −0.162806
\(823\) −4166.11 −0.176454 −0.0882268 0.996100i \(-0.528120\pi\)
−0.0882268 + 0.996100i \(0.528120\pi\)
\(824\) 11704.4 0.494832
\(825\) 0 0
\(826\) −5383.25 −0.226764
\(827\) −28706.4 −1.20704 −0.603519 0.797349i \(-0.706235\pi\)
−0.603519 + 0.797349i \(0.706235\pi\)
\(828\) −4017.43 −0.168618
\(829\) 12315.4 0.515961 0.257980 0.966150i \(-0.416943\pi\)
0.257980 + 0.966150i \(0.416943\pi\)
\(830\) 0 0
\(831\) 21169.9 0.883723
\(832\) −989.965 −0.0412510
\(833\) 2923.08 0.121583
\(834\) −14681.1 −0.609549
\(835\) 0 0
\(836\) −295.122 −0.0122093
\(837\) −13047.9 −0.538831
\(838\) 25556.0 1.05348
\(839\) 7143.26 0.293937 0.146968 0.989141i \(-0.453048\pi\)
0.146968 + 0.989141i \(0.453048\pi\)
\(840\) 0 0
\(841\) −24282.8 −0.995645
\(842\) −3417.42 −0.139872
\(843\) 38042.7 1.55428
\(844\) 23907.7 0.975044
\(845\) 0 0
\(846\) 5703.08 0.231768
\(847\) 21953.6 0.890595
\(848\) −10557.2 −0.427519
\(849\) −3032.55 −0.122587
\(850\) 0 0
\(851\) 52323.0 2.10765
\(852\) −19504.2 −0.784275
\(853\) −25259.1 −1.01390 −0.506949 0.861976i \(-0.669227\pi\)
−0.506949 + 0.861976i \(0.669227\pi\)
\(854\) −6573.74 −0.263406
\(855\) 0 0
\(856\) −6531.84 −0.260811
\(857\) −32491.3 −1.29508 −0.647539 0.762032i \(-0.724202\pi\)
−0.647539 + 0.762032i \(0.724202\pi\)
\(858\) −534.511 −0.0212680
\(859\) 19552.4 0.776624 0.388312 0.921528i \(-0.373058\pi\)
0.388312 + 0.921528i \(0.373058\pi\)
\(860\) 0 0
\(861\) 3181.42 0.125926
\(862\) 10098.9 0.399038
\(863\) 27438.7 1.08230 0.541150 0.840926i \(-0.317989\pi\)
0.541150 + 0.840926i \(0.317989\pi\)
\(864\) −3967.60 −0.156227
\(865\) 0 0
\(866\) 20876.8 0.819196
\(867\) 17092.4 0.669536
\(868\) 6991.87 0.273410
\(869\) −3386.02 −0.132178
\(870\) 0 0
\(871\) 2401.97 0.0934416
\(872\) −1623.94 −0.0630661
\(873\) −3306.05 −0.128170
\(874\) −9487.43 −0.367182
\(875\) 0 0
\(876\) 8140.32 0.313968
\(877\) −47003.2 −1.80979 −0.904895 0.425635i \(-0.860051\pi\)
−0.904895 + 0.425635i \(0.860051\pi\)
\(878\) −30580.1 −1.17543
\(879\) −52893.4 −2.02964
\(880\) 0 0
\(881\) −24523.1 −0.937804 −0.468902 0.883250i \(-0.655350\pi\)
−0.468902 + 0.883250i \(0.655350\pi\)
\(882\) 687.767 0.0262566
\(883\) 30961.2 1.17999 0.589993 0.807408i \(-0.299130\pi\)
0.589993 + 0.807408i \(0.299130\pi\)
\(884\) 2695.07 0.102540
\(885\) 0 0
\(886\) 1733.84 0.0657444
\(887\) −21566.0 −0.816363 −0.408182 0.912901i \(-0.633837\pi\)
−0.408182 + 0.912901i \(0.633837\pi\)
\(888\) −12104.7 −0.457439
\(889\) −24144.5 −0.910890
\(890\) 0 0
\(891\) −2563.99 −0.0964051
\(892\) 15806.8 0.593331
\(893\) 13468.2 0.504699
\(894\) −12834.6 −0.480147
\(895\) 0 0
\(896\) 2126.08 0.0792717
\(897\) −17183.2 −0.639611
\(898\) −800.924 −0.0297630
\(899\) −1084.59 −0.0402370
\(900\) 0 0
\(901\) 28740.9 1.06270
\(902\) −206.031 −0.00760542
\(903\) 40504.8 1.49271
\(904\) 10442.2 0.384183
\(905\) 0 0
\(906\) 8152.60 0.298954
\(907\) −40311.8 −1.47578 −0.737889 0.674923i \(-0.764177\pi\)
−0.737889 + 0.674923i \(0.764177\pi\)
\(908\) 8566.46 0.313092
\(909\) 5078.84 0.185318
\(910\) 0 0
\(911\) 21257.1 0.773084 0.386542 0.922272i \(-0.373669\pi\)
0.386542 + 0.922272i \(0.373669\pi\)
\(912\) 2194.87 0.0796924
\(913\) 1453.81 0.0526988
\(914\) −23171.4 −0.838556
\(915\) 0 0
\(916\) 8490.14 0.306247
\(917\) −4626.67 −0.166615
\(918\) 10801.4 0.388342
\(919\) −5398.84 −0.193788 −0.0968940 0.995295i \(-0.530891\pi\)
−0.0968940 + 0.995295i \(0.530891\pi\)
\(920\) 0 0
\(921\) 13768.5 0.492601
\(922\) 11445.0 0.408810
\(923\) −13307.3 −0.474556
\(924\) 1147.93 0.0408704
\(925\) 0 0
\(926\) −32272.4 −1.14529
\(927\) −7497.22 −0.265632
\(928\) −329.801 −0.0116662
\(929\) 28181.3 0.995261 0.497631 0.867389i \(-0.334204\pi\)
0.497631 + 0.867389i \(0.334204\pi\)
\(930\) 0 0
\(931\) 1624.21 0.0571764
\(932\) 16205.5 0.569557
\(933\) 13222.3 0.463963
\(934\) 21016.4 0.736272
\(935\) 0 0
\(936\) 634.120 0.0221441
\(937\) 44657.5 1.55699 0.778494 0.627652i \(-0.215984\pi\)
0.778494 + 0.627652i \(0.215984\pi\)
\(938\) −5158.55 −0.179566
\(939\) −10613.5 −0.368860
\(940\) 0 0
\(941\) 30715.7 1.06408 0.532042 0.846718i \(-0.321425\pi\)
0.532042 + 0.846718i \(0.321425\pi\)
\(942\) 24745.1 0.855880
\(943\) −6623.40 −0.228725
\(944\) −2592.77 −0.0893937
\(945\) 0 0
\(946\) −2623.12 −0.0901533
\(947\) −7384.38 −0.253390 −0.126695 0.991942i \(-0.540437\pi\)
−0.126695 + 0.991942i \(0.540437\pi\)
\(948\) 25182.4 0.862750
\(949\) 5553.97 0.189979
\(950\) 0 0
\(951\) 26692.9 0.910175
\(952\) −5788.03 −0.197049
\(953\) −45543.4 −1.54806 −0.774028 0.633152i \(-0.781761\pi\)
−0.774028 + 0.633152i \(0.781761\pi\)
\(954\) 6762.40 0.229498
\(955\) 0 0
\(956\) −17790.0 −0.601850
\(957\) −178.069 −0.00601479
\(958\) 24810.3 0.836728
\(959\) 5622.13 0.189310
\(960\) 0 0
\(961\) −18716.4 −0.628258
\(962\) −8258.77 −0.276792
\(963\) 4183.96 0.140006
\(964\) 2285.50 0.0763601
\(965\) 0 0
\(966\) 36903.3 1.22913
\(967\) −26437.0 −0.879169 −0.439584 0.898201i \(-0.644874\pi\)
−0.439584 + 0.898201i \(0.644874\pi\)
\(968\) 10573.7 0.351085
\(969\) −5975.30 −0.198095
\(970\) 0 0
\(971\) 47997.0 1.58630 0.793150 0.609026i \(-0.208440\pi\)
0.793150 + 0.609026i \(0.208440\pi\)
\(972\) 5678.21 0.187375
\(973\) 21512.0 0.708779
\(974\) −13440.1 −0.442145
\(975\) 0 0
\(976\) −3166.16 −0.103838
\(977\) −8794.09 −0.287971 −0.143986 0.989580i \(-0.545992\pi\)
−0.143986 + 0.989580i \(0.545992\pi\)
\(978\) −34364.1 −1.12356
\(979\) −4404.22 −0.143779
\(980\) 0 0
\(981\) 1040.21 0.0338547
\(982\) −7099.30 −0.230700
\(983\) 46163.7 1.49786 0.748928 0.662651i \(-0.230569\pi\)
0.748928 + 0.662651i \(0.230569\pi\)
\(984\) 1532.29 0.0496419
\(985\) 0 0
\(986\) 897.847 0.0289993
\(987\) −52387.3 −1.68947
\(988\) 1497.52 0.0482210
\(989\) −84326.9 −2.71126
\(990\) 0 0
\(991\) −1898.54 −0.0608568 −0.0304284 0.999537i \(-0.509687\pi\)
−0.0304284 + 0.999537i \(0.509687\pi\)
\(992\) 3367.54 0.107782
\(993\) −40322.0 −1.28860
\(994\) 28579.2 0.911949
\(995\) 0 0
\(996\) −10812.2 −0.343974
\(997\) 44422.1 1.41109 0.705547 0.708663i \(-0.250701\pi\)
0.705547 + 0.708663i \(0.250701\pi\)
\(998\) −31850.7 −1.01024
\(999\) −33099.7 −1.04827
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1250.4.a.c.1.2 6
5.4 even 2 1250.4.a.f.1.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1250.4.a.c.1.2 6 1.1 even 1 trivial
1250.4.a.f.1.5 yes 6 5.4 even 2