Properties

Label 1250.4.a.c.1.3
Level $1250$
Weight $4$
Character 1250.1
Self dual yes
Analytic conductor $73.752$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1250,4,Mod(1,1250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1250, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1250.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1250 = 2 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1250.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.7523875072\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 145x^{4} + 120x^{3} + 5125x^{2} - 2431x - 1069 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.278104\) of defining polynomial
Character \(\chi\) \(=\) 1250.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +0.660070 q^{3} +4.00000 q^{4} -1.32014 q^{6} -15.8349 q^{7} -8.00000 q^{8} -26.5643 q^{9} -5.50104 q^{11} +2.64028 q^{12} +63.8038 q^{13} +31.6697 q^{14} +16.0000 q^{16} -81.0213 q^{17} +53.1286 q^{18} +20.0588 q^{19} -10.4521 q^{21} +11.0021 q^{22} -84.1633 q^{23} -5.28056 q^{24} -127.608 q^{26} -35.3562 q^{27} -63.3395 q^{28} -98.1075 q^{29} +197.566 q^{31} -32.0000 q^{32} -3.63107 q^{33} +162.043 q^{34} -106.257 q^{36} -96.5325 q^{37} -40.1175 q^{38} +42.1149 q^{39} -29.9555 q^{41} +20.9042 q^{42} -247.303 q^{43} -22.0041 q^{44} +168.327 q^{46} -339.902 q^{47} +10.5611 q^{48} -92.2570 q^{49} -53.4797 q^{51} +255.215 q^{52} -106.039 q^{53} +70.7124 q^{54} +126.679 q^{56} +13.2402 q^{57} +196.215 q^{58} +417.834 q^{59} +780.727 q^{61} -395.131 q^{62} +420.642 q^{63} +64.0000 q^{64} +7.26213 q^{66} -645.674 q^{67} -324.085 q^{68} -55.5537 q^{69} -34.6744 q^{71} +212.514 q^{72} +1142.77 q^{73} +193.065 q^{74} +80.2350 q^{76} +87.1082 q^{77} -84.2299 q^{78} +1038.37 q^{79} +693.899 q^{81} +59.9110 q^{82} +457.171 q^{83} -41.8085 q^{84} +494.606 q^{86} -64.7578 q^{87} +44.0083 q^{88} +331.800 q^{89} -1010.32 q^{91} -336.653 q^{92} +130.407 q^{93} +679.803 q^{94} -21.1222 q^{96} +630.243 q^{97} +184.514 q^{98} +146.131 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 8 q^{3} + 24 q^{4} - 16 q^{6} - 6 q^{7} - 48 q^{8} + 142 q^{9} + 107 q^{11} + 32 q^{12} - 42 q^{13} + 12 q^{14} + 96 q^{16} - 156 q^{17} - 284 q^{18} + 50 q^{19} + 122 q^{21} - 214 q^{22}+ \cdots + 2389 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0.660070 0.127030 0.0635152 0.997981i \(-0.479769\pi\)
0.0635152 + 0.997981i \(0.479769\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −1.32014 −0.0898241
\(7\) −15.8349 −0.855002 −0.427501 0.904015i \(-0.640606\pi\)
−0.427501 + 0.904015i \(0.640606\pi\)
\(8\) −8.00000 −0.353553
\(9\) −26.5643 −0.983863
\(10\) 0 0
\(11\) −5.50104 −0.150784 −0.0753920 0.997154i \(-0.524021\pi\)
−0.0753920 + 0.997154i \(0.524021\pi\)
\(12\) 2.64028 0.0635152
\(13\) 63.8038 1.36123 0.680615 0.732641i \(-0.261713\pi\)
0.680615 + 0.732641i \(0.261713\pi\)
\(14\) 31.6697 0.604578
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −81.0213 −1.15591 −0.577957 0.816067i \(-0.696150\pi\)
−0.577957 + 0.816067i \(0.696150\pi\)
\(18\) 53.1286 0.695696
\(19\) 20.0588 0.242200 0.121100 0.992640i \(-0.461358\pi\)
0.121100 + 0.992640i \(0.461358\pi\)
\(20\) 0 0
\(21\) −10.4521 −0.108611
\(22\) 11.0021 0.106620
\(23\) −84.1633 −0.763012 −0.381506 0.924366i \(-0.624594\pi\)
−0.381506 + 0.924366i \(0.624594\pi\)
\(24\) −5.28056 −0.0449121
\(25\) 0 0
\(26\) −127.608 −0.962535
\(27\) −35.3562 −0.252011
\(28\) −63.3395 −0.427501
\(29\) −98.1075 −0.628211 −0.314105 0.949388i \(-0.601704\pi\)
−0.314105 + 0.949388i \(0.601704\pi\)
\(30\) 0 0
\(31\) 197.566 1.14464 0.572320 0.820031i \(-0.306044\pi\)
0.572320 + 0.820031i \(0.306044\pi\)
\(32\) −32.0000 −0.176777
\(33\) −3.63107 −0.0191542
\(34\) 162.043 0.817355
\(35\) 0 0
\(36\) −106.257 −0.491932
\(37\) −96.5325 −0.428915 −0.214457 0.976733i \(-0.568798\pi\)
−0.214457 + 0.976733i \(0.568798\pi\)
\(38\) −40.1175 −0.171261
\(39\) 42.1149 0.172918
\(40\) 0 0
\(41\) −29.9555 −0.114104 −0.0570520 0.998371i \(-0.518170\pi\)
−0.0570520 + 0.998371i \(0.518170\pi\)
\(42\) 20.9042 0.0767998
\(43\) −247.303 −0.877055 −0.438527 0.898718i \(-0.644500\pi\)
−0.438527 + 0.898718i \(0.644500\pi\)
\(44\) −22.0041 −0.0753920
\(45\) 0 0
\(46\) 168.327 0.539531
\(47\) −339.902 −1.05489 −0.527444 0.849590i \(-0.676850\pi\)
−0.527444 + 0.849590i \(0.676850\pi\)
\(48\) 10.5611 0.0317576
\(49\) −92.2570 −0.268971
\(50\) 0 0
\(51\) −53.4797 −0.146836
\(52\) 255.215 0.680615
\(53\) −106.039 −0.274821 −0.137411 0.990514i \(-0.543878\pi\)
−0.137411 + 0.990514i \(0.543878\pi\)
\(54\) 70.7124 0.178199
\(55\) 0 0
\(56\) 126.679 0.302289
\(57\) 13.2402 0.0307667
\(58\) 196.215 0.444212
\(59\) 417.834 0.921989 0.460994 0.887403i \(-0.347493\pi\)
0.460994 + 0.887403i \(0.347493\pi\)
\(60\) 0 0
\(61\) 780.727 1.63872 0.819359 0.573280i \(-0.194329\pi\)
0.819359 + 0.573280i \(0.194329\pi\)
\(62\) −395.131 −0.809382
\(63\) 420.642 0.841206
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 7.26213 0.0135440
\(67\) −645.674 −1.17734 −0.588669 0.808374i \(-0.700348\pi\)
−0.588669 + 0.808374i \(0.700348\pi\)
\(68\) −324.085 −0.577957
\(69\) −55.5537 −0.0969257
\(70\) 0 0
\(71\) −34.6744 −0.0579590 −0.0289795 0.999580i \(-0.509226\pi\)
−0.0289795 + 0.999580i \(0.509226\pi\)
\(72\) 212.514 0.347848
\(73\) 1142.77 1.83221 0.916107 0.400934i \(-0.131314\pi\)
0.916107 + 0.400934i \(0.131314\pi\)
\(74\) 193.065 0.303288
\(75\) 0 0
\(76\) 80.2350 0.121100
\(77\) 87.1082 0.128921
\(78\) −84.2299 −0.122271
\(79\) 1038.37 1.47881 0.739403 0.673263i \(-0.235108\pi\)
0.739403 + 0.673263i \(0.235108\pi\)
\(80\) 0 0
\(81\) 693.899 0.951850
\(82\) 59.9110 0.0806837
\(83\) 457.171 0.604591 0.302296 0.953214i \(-0.402247\pi\)
0.302296 + 0.953214i \(0.402247\pi\)
\(84\) −41.8085 −0.0543057
\(85\) 0 0
\(86\) 494.606 0.620171
\(87\) −64.7578 −0.0798019
\(88\) 44.0083 0.0533102
\(89\) 331.800 0.395177 0.197588 0.980285i \(-0.436689\pi\)
0.197588 + 0.980285i \(0.436689\pi\)
\(90\) 0 0
\(91\) −1010.32 −1.16385
\(92\) −336.653 −0.381506
\(93\) 130.407 0.145404
\(94\) 679.803 0.745919
\(95\) 0 0
\(96\) −21.1222 −0.0224560
\(97\) 630.243 0.659706 0.329853 0.944032i \(-0.393001\pi\)
0.329853 + 0.944032i \(0.393001\pi\)
\(98\) 184.514 0.190191
\(99\) 146.131 0.148351
\(100\) 0 0
\(101\) −1840.58 −1.81331 −0.906655 0.421872i \(-0.861373\pi\)
−0.906655 + 0.421872i \(0.861373\pi\)
\(102\) 106.959 0.103829
\(103\) −1279.88 −1.22437 −0.612185 0.790714i \(-0.709709\pi\)
−0.612185 + 0.790714i \(0.709709\pi\)
\(104\) −510.430 −0.481267
\(105\) 0 0
\(106\) 212.077 0.194328
\(107\) 446.971 0.403835 0.201917 0.979403i \(-0.435283\pi\)
0.201917 + 0.979403i \(0.435283\pi\)
\(108\) −141.425 −0.126006
\(109\) −295.021 −0.259247 −0.129623 0.991563i \(-0.541377\pi\)
−0.129623 + 0.991563i \(0.541377\pi\)
\(110\) 0 0
\(111\) −63.7182 −0.0544852
\(112\) −253.358 −0.213751
\(113\) −194.457 −0.161885 −0.0809425 0.996719i \(-0.525793\pi\)
−0.0809425 + 0.996719i \(0.525793\pi\)
\(114\) −26.4804 −0.0217554
\(115\) 0 0
\(116\) −392.430 −0.314105
\(117\) −1694.90 −1.33926
\(118\) −835.668 −0.651944
\(119\) 1282.96 0.988310
\(120\) 0 0
\(121\) −1300.74 −0.977264
\(122\) −1561.45 −1.15875
\(123\) −19.7727 −0.0144947
\(124\) 790.262 0.572320
\(125\) 0 0
\(126\) −841.285 −0.594822
\(127\) 2355.03 1.64547 0.822737 0.568422i \(-0.192446\pi\)
0.822737 + 0.568422i \(0.192446\pi\)
\(128\) −128.000 −0.0883883
\(129\) −163.237 −0.111413
\(130\) 0 0
\(131\) 1828.59 1.21958 0.609790 0.792563i \(-0.291254\pi\)
0.609790 + 0.792563i \(0.291254\pi\)
\(132\) −14.5243 −0.00957709
\(133\) −317.628 −0.207081
\(134\) 1291.35 0.832503
\(135\) 0 0
\(136\) 648.170 0.408678
\(137\) −2666.23 −1.66271 −0.831355 0.555742i \(-0.812434\pi\)
−0.831355 + 0.555742i \(0.812434\pi\)
\(138\) 111.107 0.0685368
\(139\) 1661.15 1.01365 0.506823 0.862050i \(-0.330820\pi\)
0.506823 + 0.862050i \(0.330820\pi\)
\(140\) 0 0
\(141\) −224.359 −0.134003
\(142\) 69.3487 0.0409832
\(143\) −350.987 −0.205252
\(144\) −425.029 −0.245966
\(145\) 0 0
\(146\) −2285.55 −1.29557
\(147\) −60.8960 −0.0341675
\(148\) −386.130 −0.214457
\(149\) 3305.09 1.81721 0.908603 0.417660i \(-0.137150\pi\)
0.908603 + 0.417660i \(0.137150\pi\)
\(150\) 0 0
\(151\) −998.295 −0.538014 −0.269007 0.963138i \(-0.586695\pi\)
−0.269007 + 0.963138i \(0.586695\pi\)
\(152\) −160.470 −0.0856305
\(153\) 2152.27 1.13726
\(154\) −174.216 −0.0911607
\(155\) 0 0
\(156\) 168.460 0.0864588
\(157\) 62.1627 0.0315995 0.0157998 0.999875i \(-0.494971\pi\)
0.0157998 + 0.999875i \(0.494971\pi\)
\(158\) −2076.74 −1.04567
\(159\) −69.9929 −0.0349107
\(160\) 0 0
\(161\) 1332.71 0.652377
\(162\) −1387.80 −0.673060
\(163\) 97.1898 0.0467024 0.0233512 0.999727i \(-0.492566\pi\)
0.0233512 + 0.999727i \(0.492566\pi\)
\(164\) −119.822 −0.0570520
\(165\) 0 0
\(166\) −914.343 −0.427511
\(167\) −4112.06 −1.90539 −0.952696 0.303924i \(-0.901703\pi\)
−0.952696 + 0.303924i \(0.901703\pi\)
\(168\) 83.6169 0.0383999
\(169\) 1873.92 0.852946
\(170\) 0 0
\(171\) −532.847 −0.238291
\(172\) −989.212 −0.438527
\(173\) 794.694 0.349245 0.174623 0.984635i \(-0.444129\pi\)
0.174623 + 0.984635i \(0.444129\pi\)
\(174\) 129.516 0.0564285
\(175\) 0 0
\(176\) −88.0166 −0.0376960
\(177\) 275.799 0.117121
\(178\) −663.600 −0.279432
\(179\) 4716.85 1.96957 0.984787 0.173763i \(-0.0555927\pi\)
0.984787 + 0.173763i \(0.0555927\pi\)
\(180\) 0 0
\(181\) 1678.68 0.689364 0.344682 0.938719i \(-0.387987\pi\)
0.344682 + 0.938719i \(0.387987\pi\)
\(182\) 2020.65 0.822970
\(183\) 515.334 0.208167
\(184\) 673.307 0.269765
\(185\) 0 0
\(186\) −260.814 −0.102816
\(187\) 445.701 0.174293
\(188\) −1359.61 −0.527444
\(189\) 559.860 0.215470
\(190\) 0 0
\(191\) 2621.45 0.993098 0.496549 0.868009i \(-0.334600\pi\)
0.496549 + 0.868009i \(0.334600\pi\)
\(192\) 42.2445 0.0158788
\(193\) 1271.64 0.474274 0.237137 0.971476i \(-0.423791\pi\)
0.237137 + 0.971476i \(0.423791\pi\)
\(194\) −1260.49 −0.466482
\(195\) 0 0
\(196\) −369.028 −0.134485
\(197\) 3664.05 1.32514 0.662570 0.749000i \(-0.269466\pi\)
0.662570 + 0.749000i \(0.269466\pi\)
\(198\) −292.262 −0.104900
\(199\) −2278.43 −0.811626 −0.405813 0.913956i \(-0.633012\pi\)
−0.405813 + 0.913956i \(0.633012\pi\)
\(200\) 0 0
\(201\) −426.190 −0.149558
\(202\) 3681.16 1.28220
\(203\) 1553.52 0.537122
\(204\) −213.919 −0.0734182
\(205\) 0 0
\(206\) 2559.76 0.865761
\(207\) 2235.74 0.750699
\(208\) 1020.86 0.340307
\(209\) −110.344 −0.0365199
\(210\) 0 0
\(211\) 5210.61 1.70006 0.850032 0.526731i \(-0.176583\pi\)
0.850032 + 0.526731i \(0.176583\pi\)
\(212\) −424.154 −0.137411
\(213\) −22.8875 −0.00736256
\(214\) −893.942 −0.285554
\(215\) 0 0
\(216\) 282.849 0.0890994
\(217\) −3128.42 −0.978669
\(218\) 590.042 0.183315
\(219\) 754.311 0.232747
\(220\) 0 0
\(221\) −5169.46 −1.57347
\(222\) 127.436 0.0385269
\(223\) −801.962 −0.240822 −0.120411 0.992724i \(-0.538421\pi\)
−0.120411 + 0.992724i \(0.538421\pi\)
\(224\) 506.716 0.151145
\(225\) 0 0
\(226\) 388.915 0.114470
\(227\) 2943.54 0.860660 0.430330 0.902672i \(-0.358397\pi\)
0.430330 + 0.902672i \(0.358397\pi\)
\(228\) 52.9607 0.0153834
\(229\) 5430.56 1.56708 0.783541 0.621340i \(-0.213412\pi\)
0.783541 + 0.621340i \(0.213412\pi\)
\(230\) 0 0
\(231\) 57.4975 0.0163769
\(232\) 784.860 0.222106
\(233\) 2356.15 0.662474 0.331237 0.943548i \(-0.392534\pi\)
0.331237 + 0.943548i \(0.392534\pi\)
\(234\) 3389.81 0.947003
\(235\) 0 0
\(236\) 1671.34 0.460994
\(237\) 685.396 0.187853
\(238\) −2565.92 −0.698841
\(239\) 5153.04 1.39465 0.697327 0.716753i \(-0.254373\pi\)
0.697327 + 0.716753i \(0.254373\pi\)
\(240\) 0 0
\(241\) −3074.54 −0.821778 −0.410889 0.911685i \(-0.634782\pi\)
−0.410889 + 0.911685i \(0.634782\pi\)
\(242\) 2601.48 0.691030
\(243\) 1412.64 0.372925
\(244\) 3122.91 0.819359
\(245\) 0 0
\(246\) 39.5454 0.0102493
\(247\) 1279.82 0.329689
\(248\) −1580.52 −0.404691
\(249\) 301.765 0.0768015
\(250\) 0 0
\(251\) 3095.48 0.778426 0.389213 0.921148i \(-0.372747\pi\)
0.389213 + 0.921148i \(0.372747\pi\)
\(252\) 1682.57 0.420603
\(253\) 462.985 0.115050
\(254\) −4710.06 −1.16353
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4559.39 1.10664 0.553321 0.832968i \(-0.313360\pi\)
0.553321 + 0.832968i \(0.313360\pi\)
\(258\) 326.475 0.0787807
\(259\) 1528.58 0.366723
\(260\) 0 0
\(261\) 2606.16 0.618073
\(262\) −3657.19 −0.862374
\(263\) 4239.53 0.993994 0.496997 0.867752i \(-0.334436\pi\)
0.496997 + 0.867752i \(0.334436\pi\)
\(264\) 29.0485 0.00677202
\(265\) 0 0
\(266\) 635.255 0.146429
\(267\) 219.011 0.0501995
\(268\) −2582.70 −0.588669
\(269\) −612.740 −0.138883 −0.0694413 0.997586i \(-0.522122\pi\)
−0.0694413 + 0.997586i \(0.522122\pi\)
\(270\) 0 0
\(271\) −7582.91 −1.69974 −0.849869 0.526994i \(-0.823319\pi\)
−0.849869 + 0.526994i \(0.823319\pi\)
\(272\) −1296.34 −0.288979
\(273\) −666.885 −0.147845
\(274\) 5332.46 1.17571
\(275\) 0 0
\(276\) −222.215 −0.0484629
\(277\) 2701.65 0.586015 0.293008 0.956110i \(-0.405344\pi\)
0.293008 + 0.956110i \(0.405344\pi\)
\(278\) −3322.30 −0.716757
\(279\) −5248.19 −1.12617
\(280\) 0 0
\(281\) −5892.76 −1.25101 −0.625503 0.780222i \(-0.715106\pi\)
−0.625503 + 0.780222i \(0.715106\pi\)
\(282\) 448.717 0.0947544
\(283\) −2995.93 −0.629293 −0.314646 0.949209i \(-0.601886\pi\)
−0.314646 + 0.949209i \(0.601886\pi\)
\(284\) −138.697 −0.0289795
\(285\) 0 0
\(286\) 701.974 0.145135
\(287\) 474.341 0.0975591
\(288\) 850.058 0.173924
\(289\) 1651.45 0.336139
\(290\) 0 0
\(291\) 416.004 0.0838027
\(292\) 4571.10 0.916107
\(293\) 4031.15 0.803763 0.401881 0.915692i \(-0.368356\pi\)
0.401881 + 0.915692i \(0.368356\pi\)
\(294\) 121.792 0.0241601
\(295\) 0 0
\(296\) 772.260 0.151644
\(297\) 194.496 0.0379993
\(298\) −6610.19 −1.28496
\(299\) −5369.94 −1.03863
\(300\) 0 0
\(301\) 3916.01 0.749884
\(302\) 1996.59 0.380433
\(303\) −1214.91 −0.230346
\(304\) 320.940 0.0605499
\(305\) 0 0
\(306\) −4304.55 −0.804166
\(307\) −3707.11 −0.689173 −0.344587 0.938755i \(-0.611981\pi\)
−0.344587 + 0.938755i \(0.611981\pi\)
\(308\) 348.433 0.0644604
\(309\) −844.809 −0.155532
\(310\) 0 0
\(311\) −14.0723 −0.00256581 −0.00128291 0.999999i \(-0.500408\pi\)
−0.00128291 + 0.999999i \(0.500408\pi\)
\(312\) −336.920 −0.0611356
\(313\) 865.165 0.156236 0.0781182 0.996944i \(-0.475109\pi\)
0.0781182 + 0.996944i \(0.475109\pi\)
\(314\) −124.325 −0.0223442
\(315\) 0 0
\(316\) 4153.48 0.739403
\(317\) −7354.40 −1.30304 −0.651521 0.758631i \(-0.725869\pi\)
−0.651521 + 0.758631i \(0.725869\pi\)
\(318\) 139.986 0.0246856
\(319\) 539.693 0.0947241
\(320\) 0 0
\(321\) 295.032 0.0512993
\(322\) −2665.43 −0.461300
\(323\) −1625.19 −0.279962
\(324\) 2775.60 0.475925
\(325\) 0 0
\(326\) −194.380 −0.0330236
\(327\) −194.734 −0.0329322
\(328\) 239.644 0.0403418
\(329\) 5382.30 0.901932
\(330\) 0 0
\(331\) 10052.2 1.66924 0.834620 0.550827i \(-0.185687\pi\)
0.834620 + 0.550827i \(0.185687\pi\)
\(332\) 1828.69 0.302296
\(333\) 2564.32 0.421993
\(334\) 8224.11 1.34732
\(335\) 0 0
\(336\) −167.234 −0.0271528
\(337\) 8909.55 1.44016 0.720080 0.693891i \(-0.244105\pi\)
0.720080 + 0.693891i \(0.244105\pi\)
\(338\) −3747.85 −0.603124
\(339\) −128.355 −0.0205643
\(340\) 0 0
\(341\) −1086.82 −0.172593
\(342\) 1065.69 0.168497
\(343\) 6892.24 1.08497
\(344\) 1978.42 0.310086
\(345\) 0 0
\(346\) −1589.39 −0.246954
\(347\) 10035.8 1.55260 0.776298 0.630366i \(-0.217095\pi\)
0.776298 + 0.630366i \(0.217095\pi\)
\(348\) −259.031 −0.0399009
\(349\) −999.782 −0.153344 −0.0766721 0.997056i \(-0.524429\pi\)
−0.0766721 + 0.997056i \(0.524429\pi\)
\(350\) 0 0
\(351\) −2255.86 −0.343045
\(352\) 176.033 0.0266551
\(353\) 6654.40 1.00334 0.501669 0.865060i \(-0.332720\pi\)
0.501669 + 0.865060i \(0.332720\pi\)
\(354\) −551.599 −0.0828168
\(355\) 0 0
\(356\) 1327.20 0.197588
\(357\) 846.844 0.125545
\(358\) −9433.70 −1.39270
\(359\) −10416.8 −1.53142 −0.765709 0.643187i \(-0.777612\pi\)
−0.765709 + 0.643187i \(0.777612\pi\)
\(360\) 0 0
\(361\) −6456.65 −0.941339
\(362\) −3357.35 −0.487454
\(363\) −858.578 −0.124142
\(364\) −4041.30 −0.581927
\(365\) 0 0
\(366\) −1030.67 −0.147196
\(367\) −1614.50 −0.229636 −0.114818 0.993387i \(-0.536628\pi\)
−0.114818 + 0.993387i \(0.536628\pi\)
\(368\) −1346.61 −0.190753
\(369\) 795.747 0.112263
\(370\) 0 0
\(371\) 1679.11 0.234973
\(372\) 521.628 0.0727020
\(373\) −1308.52 −0.181642 −0.0908209 0.995867i \(-0.528949\pi\)
−0.0908209 + 0.995867i \(0.528949\pi\)
\(374\) −891.402 −0.123244
\(375\) 0 0
\(376\) 2719.21 0.372959
\(377\) −6259.63 −0.855139
\(378\) −1119.72 −0.152360
\(379\) 5971.07 0.809270 0.404635 0.914478i \(-0.367399\pi\)
0.404635 + 0.914478i \(0.367399\pi\)
\(380\) 0 0
\(381\) 1554.48 0.209025
\(382\) −5242.91 −0.702226
\(383\) 8021.89 1.07023 0.535117 0.844778i \(-0.320268\pi\)
0.535117 + 0.844778i \(0.320268\pi\)
\(384\) −84.4889 −0.0112280
\(385\) 0 0
\(386\) −2543.29 −0.335362
\(387\) 6569.43 0.862902
\(388\) 2520.97 0.329853
\(389\) 2599.92 0.338872 0.169436 0.985541i \(-0.445805\pi\)
0.169436 + 0.985541i \(0.445805\pi\)
\(390\) 0 0
\(391\) 6819.02 0.881976
\(392\) 738.056 0.0950955
\(393\) 1207.00 0.154924
\(394\) −7328.09 −0.937015
\(395\) 0 0
\(396\) 584.525 0.0741754
\(397\) −3934.06 −0.497343 −0.248671 0.968588i \(-0.579994\pi\)
−0.248671 + 0.968588i \(0.579994\pi\)
\(398\) 4556.86 0.573906
\(399\) −209.656 −0.0263056
\(400\) 0 0
\(401\) −2617.21 −0.325929 −0.162964 0.986632i \(-0.552106\pi\)
−0.162964 + 0.986632i \(0.552106\pi\)
\(402\) 852.380 0.105753
\(403\) 12605.4 1.55812
\(404\) −7362.31 −0.906655
\(405\) 0 0
\(406\) −3107.04 −0.379802
\(407\) 531.029 0.0646735
\(408\) 427.838 0.0519145
\(409\) −7160.34 −0.865663 −0.432832 0.901475i \(-0.642486\pi\)
−0.432832 + 0.901475i \(0.642486\pi\)
\(410\) 0 0
\(411\) −1759.90 −0.211215
\(412\) −5119.51 −0.612185
\(413\) −6616.34 −0.788303
\(414\) −4471.48 −0.530824
\(415\) 0 0
\(416\) −2041.72 −0.240634
\(417\) 1096.48 0.128764
\(418\) 220.688 0.0258234
\(419\) −8203.43 −0.956476 −0.478238 0.878230i \(-0.658724\pi\)
−0.478238 + 0.878230i \(0.658724\pi\)
\(420\) 0 0
\(421\) 13503.1 1.56318 0.781590 0.623793i \(-0.214409\pi\)
0.781590 + 0.623793i \(0.214409\pi\)
\(422\) −10421.2 −1.20213
\(423\) 9029.25 1.03787
\(424\) 848.309 0.0971640
\(425\) 0 0
\(426\) 45.7750 0.00520612
\(427\) −12362.7 −1.40111
\(428\) 1787.88 0.201917
\(429\) −231.676 −0.0260732
\(430\) 0 0
\(431\) −11298.0 −1.26265 −0.631327 0.775517i \(-0.717489\pi\)
−0.631327 + 0.775517i \(0.717489\pi\)
\(432\) −565.699 −0.0630028
\(433\) 494.980 0.0549359 0.0274679 0.999623i \(-0.491256\pi\)
0.0274679 + 0.999623i \(0.491256\pi\)
\(434\) 6256.85 0.692024
\(435\) 0 0
\(436\) −1180.08 −0.129623
\(437\) −1688.21 −0.184801
\(438\) −1508.62 −0.164577
\(439\) −9269.10 −1.00772 −0.503861 0.863785i \(-0.668088\pi\)
−0.503861 + 0.863785i \(0.668088\pi\)
\(440\) 0 0
\(441\) 2450.74 0.264630
\(442\) 10338.9 1.11261
\(443\) −14313.6 −1.53512 −0.767561 0.640976i \(-0.778530\pi\)
−0.767561 + 0.640976i \(0.778530\pi\)
\(444\) −254.873 −0.0272426
\(445\) 0 0
\(446\) 1603.92 0.170287
\(447\) 2181.59 0.230841
\(448\) −1013.43 −0.106875
\(449\) −8501.11 −0.893524 −0.446762 0.894653i \(-0.647423\pi\)
−0.446762 + 0.894653i \(0.647423\pi\)
\(450\) 0 0
\(451\) 164.786 0.0172051
\(452\) −777.829 −0.0809425
\(453\) −658.944 −0.0683442
\(454\) −5887.09 −0.608579
\(455\) 0 0
\(456\) −105.921 −0.0108777
\(457\) −16042.6 −1.64211 −0.821053 0.570852i \(-0.806613\pi\)
−0.821053 + 0.570852i \(0.806613\pi\)
\(458\) −10861.1 −1.10809
\(459\) 2864.60 0.291303
\(460\) 0 0
\(461\) −2936.38 −0.296662 −0.148331 0.988938i \(-0.547390\pi\)
−0.148331 + 0.988938i \(0.547390\pi\)
\(462\) −114.995 −0.0115802
\(463\) 8714.07 0.874681 0.437340 0.899296i \(-0.355921\pi\)
0.437340 + 0.899296i \(0.355921\pi\)
\(464\) −1569.72 −0.157053
\(465\) 0 0
\(466\) −4712.30 −0.468440
\(467\) 10347.5 1.02532 0.512662 0.858591i \(-0.328660\pi\)
0.512662 + 0.858591i \(0.328660\pi\)
\(468\) −6779.61 −0.669632
\(469\) 10224.2 1.00663
\(470\) 0 0
\(471\) 41.0317 0.00401410
\(472\) −3342.67 −0.325972
\(473\) 1360.42 0.132246
\(474\) −1370.79 −0.132832
\(475\) 0 0
\(476\) 5131.85 0.494155
\(477\) 2816.84 0.270386
\(478\) −10306.1 −0.986169
\(479\) −2017.43 −0.192440 −0.0962200 0.995360i \(-0.530675\pi\)
−0.0962200 + 0.995360i \(0.530675\pi\)
\(480\) 0 0
\(481\) −6159.14 −0.583851
\(482\) 6149.08 0.581085
\(483\) 879.685 0.0828717
\(484\) −5202.95 −0.488632
\(485\) 0 0
\(486\) −2825.28 −0.263698
\(487\) 5149.95 0.479192 0.239596 0.970873i \(-0.422985\pi\)
0.239596 + 0.970873i \(0.422985\pi\)
\(488\) −6245.82 −0.579375
\(489\) 64.1520 0.00593263
\(490\) 0 0
\(491\) −9008.67 −0.828015 −0.414008 0.910273i \(-0.635871\pi\)
−0.414008 + 0.910273i \(0.635871\pi\)
\(492\) −79.0908 −0.00724734
\(493\) 7948.80 0.726158
\(494\) −2559.65 −0.233126
\(495\) 0 0
\(496\) 3161.05 0.286160
\(497\) 549.064 0.0495551
\(498\) −603.530 −0.0543069
\(499\) 6847.91 0.614337 0.307169 0.951655i \(-0.400618\pi\)
0.307169 + 0.951655i \(0.400618\pi\)
\(500\) 0 0
\(501\) −2714.24 −0.242043
\(502\) −6190.96 −0.550430
\(503\) −17526.3 −1.55360 −0.776798 0.629750i \(-0.783157\pi\)
−0.776798 + 0.629750i \(0.783157\pi\)
\(504\) −3365.14 −0.297411
\(505\) 0 0
\(506\) −925.971 −0.0813526
\(507\) 1236.92 0.108350
\(508\) 9420.12 0.822737
\(509\) −10921.0 −0.951015 −0.475508 0.879712i \(-0.657736\pi\)
−0.475508 + 0.879712i \(0.657736\pi\)
\(510\) 0 0
\(511\) −18095.7 −1.56655
\(512\) −512.000 −0.0441942
\(513\) −709.201 −0.0610370
\(514\) −9118.78 −0.782514
\(515\) 0 0
\(516\) −652.949 −0.0557064
\(517\) 1869.81 0.159060
\(518\) −3057.16 −0.259312
\(519\) 524.553 0.0443648
\(520\) 0 0
\(521\) 21731.3 1.82738 0.913689 0.406415i \(-0.133221\pi\)
0.913689 + 0.406415i \(0.133221\pi\)
\(522\) −5212.32 −0.437044
\(523\) 21974.2 1.83722 0.918610 0.395166i \(-0.129313\pi\)
0.918610 + 0.395166i \(0.129313\pi\)
\(524\) 7314.38 0.609790
\(525\) 0 0
\(526\) −8479.05 −0.702860
\(527\) −16007.0 −1.32311
\(528\) −58.0971 −0.00478854
\(529\) −5083.54 −0.417813
\(530\) 0 0
\(531\) −11099.5 −0.907111
\(532\) −1270.51 −0.103541
\(533\) −1911.27 −0.155322
\(534\) −438.022 −0.0354964
\(535\) 0 0
\(536\) 5165.39 0.416252
\(537\) 3113.45 0.250196
\(538\) 1225.48 0.0982048
\(539\) 507.509 0.0405565
\(540\) 0 0
\(541\) −5318.63 −0.422672 −0.211336 0.977413i \(-0.567781\pi\)
−0.211336 + 0.977413i \(0.567781\pi\)
\(542\) 15165.8 1.20190
\(543\) 1108.04 0.0875703
\(544\) 2592.68 0.204339
\(545\) 0 0
\(546\) 1333.77 0.104542
\(547\) 13549.1 1.05908 0.529542 0.848284i \(-0.322364\pi\)
0.529542 + 0.848284i \(0.322364\pi\)
\(548\) −10664.9 −0.831355
\(549\) −20739.5 −1.61228
\(550\) 0 0
\(551\) −1967.91 −0.152152
\(552\) 444.429 0.0342684
\(553\) −16442.4 −1.26438
\(554\) −5403.29 −0.414375
\(555\) 0 0
\(556\) 6644.60 0.506823
\(557\) −10078.9 −0.766707 −0.383354 0.923602i \(-0.625231\pi\)
−0.383354 + 0.923602i \(0.625231\pi\)
\(558\) 10496.4 0.796321
\(559\) −15778.9 −1.19387
\(560\) 0 0
\(561\) 294.194 0.0221406
\(562\) 11785.5 0.884594
\(563\) 12267.1 0.918287 0.459143 0.888362i \(-0.348156\pi\)
0.459143 + 0.888362i \(0.348156\pi\)
\(564\) −897.435 −0.0670015
\(565\) 0 0
\(566\) 5991.87 0.444977
\(567\) −10987.8 −0.813834
\(568\) 277.395 0.0204916
\(569\) −20017.6 −1.47484 −0.737419 0.675436i \(-0.763956\pi\)
−0.737419 + 0.675436i \(0.763956\pi\)
\(570\) 0 0
\(571\) 19167.6 1.40479 0.702397 0.711785i \(-0.252113\pi\)
0.702397 + 0.711785i \(0.252113\pi\)
\(572\) −1403.95 −0.102626
\(573\) 1730.34 0.126154
\(574\) −948.682 −0.0689847
\(575\) 0 0
\(576\) −1700.12 −0.122983
\(577\) −22491.1 −1.62273 −0.811365 0.584540i \(-0.801275\pi\)
−0.811365 + 0.584540i \(0.801275\pi\)
\(578\) −3302.90 −0.237686
\(579\) 839.373 0.0602473
\(580\) 0 0
\(581\) −7239.25 −0.516927
\(582\) −832.008 −0.0592575
\(583\) 583.322 0.0414387
\(584\) −9142.19 −0.647785
\(585\) 0 0
\(586\) −8062.31 −0.568346
\(587\) 9659.60 0.679207 0.339604 0.940569i \(-0.389707\pi\)
0.339604 + 0.940569i \(0.389707\pi\)
\(588\) −243.584 −0.0170837
\(589\) 3962.92 0.277231
\(590\) 0 0
\(591\) 2418.53 0.168333
\(592\) −1544.52 −0.107229
\(593\) −5572.36 −0.385884 −0.192942 0.981210i \(-0.561803\pi\)
−0.192942 + 0.981210i \(0.561803\pi\)
\(594\) −388.991 −0.0268695
\(595\) 0 0
\(596\) 13220.4 0.908603
\(597\) −1503.92 −0.103101
\(598\) 10739.9 0.734425
\(599\) −7911.99 −0.539692 −0.269846 0.962904i \(-0.586973\pi\)
−0.269846 + 0.962904i \(0.586973\pi\)
\(600\) 0 0
\(601\) 19247.9 1.30638 0.653192 0.757192i \(-0.273429\pi\)
0.653192 + 0.757192i \(0.273429\pi\)
\(602\) −7832.02 −0.530248
\(603\) 17151.9 1.15834
\(604\) −3993.18 −0.269007
\(605\) 0 0
\(606\) 2429.82 0.162879
\(607\) −5839.82 −0.390496 −0.195248 0.980754i \(-0.562551\pi\)
−0.195248 + 0.980754i \(0.562551\pi\)
\(608\) −641.880 −0.0428153
\(609\) 1025.43 0.0682308
\(610\) 0 0
\(611\) −21687.0 −1.43595
\(612\) 8609.10 0.568631
\(613\) 12124.1 0.798835 0.399418 0.916769i \(-0.369212\pi\)
0.399418 + 0.916769i \(0.369212\pi\)
\(614\) 7414.23 0.487319
\(615\) 0 0
\(616\) −696.865 −0.0455804
\(617\) 11825.0 0.771565 0.385783 0.922590i \(-0.373932\pi\)
0.385783 + 0.922590i \(0.373932\pi\)
\(618\) 1689.62 0.109978
\(619\) −14009.0 −0.909645 −0.454822 0.890582i \(-0.650297\pi\)
−0.454822 + 0.890582i \(0.650297\pi\)
\(620\) 0 0
\(621\) 2975.69 0.192287
\(622\) 28.1446 0.00181430
\(623\) −5254.01 −0.337877
\(624\) 673.839 0.0432294
\(625\) 0 0
\(626\) −1730.33 −0.110476
\(627\) −72.8347 −0.00463913
\(628\) 248.651 0.0157998
\(629\) 7821.19 0.495789
\(630\) 0 0
\(631\) 2071.70 0.130702 0.0653510 0.997862i \(-0.479183\pi\)
0.0653510 + 0.997862i \(0.479183\pi\)
\(632\) −8306.96 −0.522837
\(633\) 3439.37 0.215960
\(634\) 14708.8 0.921390
\(635\) 0 0
\(636\) −279.971 −0.0174553
\(637\) −5886.34 −0.366131
\(638\) −1079.39 −0.0669801
\(639\) 921.101 0.0570237
\(640\) 0 0
\(641\) −875.590 −0.0539528 −0.0269764 0.999636i \(-0.508588\pi\)
−0.0269764 + 0.999636i \(0.508588\pi\)
\(642\) −590.064 −0.0362741
\(643\) −7757.55 −0.475782 −0.237891 0.971292i \(-0.576456\pi\)
−0.237891 + 0.971292i \(0.576456\pi\)
\(644\) 5330.86 0.326188
\(645\) 0 0
\(646\) 3250.37 0.197963
\(647\) −22628.2 −1.37497 −0.687485 0.726198i \(-0.741285\pi\)
−0.687485 + 0.726198i \(0.741285\pi\)
\(648\) −5551.19 −0.336530
\(649\) −2298.52 −0.139021
\(650\) 0 0
\(651\) −2064.98 −0.124321
\(652\) 388.759 0.0233512
\(653\) 6584.08 0.394571 0.197286 0.980346i \(-0.436787\pi\)
0.197286 + 0.980346i \(0.436787\pi\)
\(654\) 389.469 0.0232866
\(655\) 0 0
\(656\) −479.288 −0.0285260
\(657\) −30357.0 −1.80265
\(658\) −10764.6 −0.637762
\(659\) 215.219 0.0127219 0.00636094 0.999980i \(-0.497975\pi\)
0.00636094 + 0.999980i \(0.497975\pi\)
\(660\) 0 0
\(661\) 26476.8 1.55799 0.778994 0.627032i \(-0.215730\pi\)
0.778994 + 0.627032i \(0.215730\pi\)
\(662\) −20104.4 −1.18033
\(663\) −3412.21 −0.199878
\(664\) −3657.37 −0.213755
\(665\) 0 0
\(666\) −5128.64 −0.298394
\(667\) 8257.05 0.479332
\(668\) −16448.2 −0.952696
\(669\) −529.351 −0.0305918
\(670\) 0 0
\(671\) −4294.81 −0.247093
\(672\) 334.468 0.0192000
\(673\) −13606.4 −0.779327 −0.389663 0.920957i \(-0.627409\pi\)
−0.389663 + 0.920957i \(0.627409\pi\)
\(674\) −17819.1 −1.01835
\(675\) 0 0
\(676\) 7495.69 0.426473
\(677\) −17729.5 −1.00650 −0.503251 0.864140i \(-0.667863\pi\)
−0.503251 + 0.864140i \(0.667863\pi\)
\(678\) 256.711 0.0145412
\(679\) −9979.81 −0.564050
\(680\) 0 0
\(681\) 1942.94 0.109330
\(682\) 2173.63 0.122042
\(683\) −17693.6 −0.991256 −0.495628 0.868535i \(-0.665062\pi\)
−0.495628 + 0.868535i \(0.665062\pi\)
\(684\) −2131.39 −0.119146
\(685\) 0 0
\(686\) −13784.5 −0.767192
\(687\) 3584.55 0.199067
\(688\) −3956.85 −0.219264
\(689\) −6765.66 −0.374095
\(690\) 0 0
\(691\) 21596.3 1.18895 0.594473 0.804116i \(-0.297361\pi\)
0.594473 + 0.804116i \(0.297361\pi\)
\(692\) 3178.78 0.174623
\(693\) −2313.97 −0.126840
\(694\) −20071.6 −1.09785
\(695\) 0 0
\(696\) 518.062 0.0282142
\(697\) 2427.03 0.131894
\(698\) 1999.56 0.108431
\(699\) 1555.22 0.0841544
\(700\) 0 0
\(701\) −13380.6 −0.720939 −0.360469 0.932771i \(-0.617384\pi\)
−0.360469 + 0.932771i \(0.617384\pi\)
\(702\) 4511.72 0.242569
\(703\) −1936.32 −0.103883
\(704\) −352.066 −0.0188480
\(705\) 0 0
\(706\) −13308.8 −0.709467
\(707\) 29145.3 1.55039
\(708\) 1103.20 0.0585603
\(709\) 17755.9 0.940530 0.470265 0.882525i \(-0.344158\pi\)
0.470265 + 0.882525i \(0.344158\pi\)
\(710\) 0 0
\(711\) −27583.6 −1.45494
\(712\) −2654.40 −0.139716
\(713\) −16627.8 −0.873373
\(714\) −1693.69 −0.0887741
\(715\) 0 0
\(716\) 18867.4 0.984787
\(717\) 3401.36 0.177164
\(718\) 20833.7 1.08288
\(719\) 5858.00 0.303848 0.151924 0.988392i \(-0.451453\pi\)
0.151924 + 0.988392i \(0.451453\pi\)
\(720\) 0 0
\(721\) 20266.7 1.04684
\(722\) 12913.3 0.665627
\(723\) −2029.41 −0.104391
\(724\) 6714.70 0.344682
\(725\) 0 0
\(726\) 1717.16 0.0877819
\(727\) 2258.37 0.115211 0.0576056 0.998339i \(-0.481653\pi\)
0.0576056 + 0.998339i \(0.481653\pi\)
\(728\) 8082.60 0.411485
\(729\) −17802.8 −0.904477
\(730\) 0 0
\(731\) 20036.8 1.01380
\(732\) 2061.34 0.104084
\(733\) 21005.7 1.05847 0.529237 0.848474i \(-0.322478\pi\)
0.529237 + 0.848474i \(0.322478\pi\)
\(734\) 3229.01 0.162377
\(735\) 0 0
\(736\) 2693.23 0.134883
\(737\) 3551.87 0.177524
\(738\) −1591.49 −0.0793817
\(739\) −30135.7 −1.50008 −0.750040 0.661393i \(-0.769966\pi\)
−0.750040 + 0.661393i \(0.769966\pi\)
\(740\) 0 0
\(741\) 844.773 0.0418806
\(742\) −3358.21 −0.166151
\(743\) −11814.8 −0.583367 −0.291683 0.956515i \(-0.594215\pi\)
−0.291683 + 0.956515i \(0.594215\pi\)
\(744\) −1043.26 −0.0514081
\(745\) 0 0
\(746\) 2617.03 0.128440
\(747\) −12144.4 −0.594835
\(748\) 1782.80 0.0871467
\(749\) −7077.73 −0.345280
\(750\) 0 0
\(751\) 22130.5 1.07530 0.537651 0.843168i \(-0.319312\pi\)
0.537651 + 0.843168i \(0.319312\pi\)
\(752\) −5438.43 −0.263722
\(753\) 2043.23 0.0988839
\(754\) 12519.3 0.604674
\(755\) 0 0
\(756\) 2239.44 0.107735
\(757\) 8303.35 0.398666 0.199333 0.979932i \(-0.436122\pi\)
0.199333 + 0.979932i \(0.436122\pi\)
\(758\) −11942.1 −0.572241
\(759\) 305.603 0.0146149
\(760\) 0 0
\(761\) 8025.03 0.382270 0.191135 0.981564i \(-0.438783\pi\)
0.191135 + 0.981564i \(0.438783\pi\)
\(762\) −3108.97 −0.147803
\(763\) 4671.62 0.221657
\(764\) 10485.8 0.496549
\(765\) 0 0
\(766\) −16043.8 −0.756769
\(767\) 26659.4 1.25504
\(768\) 168.978 0.00793941
\(769\) −5180.39 −0.242925 −0.121463 0.992596i \(-0.538758\pi\)
−0.121463 + 0.992596i \(0.538758\pi\)
\(770\) 0 0
\(771\) 3009.52 0.140577
\(772\) 5086.57 0.237137
\(773\) −26023.3 −1.21086 −0.605430 0.795899i \(-0.706999\pi\)
−0.605430 + 0.795899i \(0.706999\pi\)
\(774\) −13138.9 −0.610164
\(775\) 0 0
\(776\) −5041.94 −0.233241
\(777\) 1008.97 0.0465850
\(778\) −5199.84 −0.239619
\(779\) −600.870 −0.0276359
\(780\) 0 0
\(781\) 190.745 0.00873930
\(782\) −13638.0 −0.623651
\(783\) 3468.71 0.158316
\(784\) −1476.11 −0.0672427
\(785\) 0 0
\(786\) −2414.00 −0.109548
\(787\) 20158.3 0.913044 0.456522 0.889712i \(-0.349095\pi\)
0.456522 + 0.889712i \(0.349095\pi\)
\(788\) 14656.2 0.662570
\(789\) 2798.38 0.126268
\(790\) 0 0
\(791\) 3079.21 0.138412
\(792\) −1169.05 −0.0524500
\(793\) 49813.3 2.23067
\(794\) 7868.13 0.351674
\(795\) 0 0
\(796\) −9113.72 −0.405813
\(797\) 1492.92 0.0663511 0.0331755 0.999450i \(-0.489438\pi\)
0.0331755 + 0.999450i \(0.489438\pi\)
\(798\) 419.313 0.0186009
\(799\) 27539.3 1.21936
\(800\) 0 0
\(801\) −8814.04 −0.388800
\(802\) 5234.43 0.230466
\(803\) −6286.44 −0.276269
\(804\) −1704.76 −0.0747789
\(805\) 0 0
\(806\) −25210.9 −1.10176
\(807\) −404.451 −0.0176423
\(808\) 14724.6 0.641102
\(809\) −32899.3 −1.42976 −0.714881 0.699246i \(-0.753519\pi\)
−0.714881 + 0.699246i \(0.753519\pi\)
\(810\) 0 0
\(811\) 13832.3 0.598914 0.299457 0.954110i \(-0.403194\pi\)
0.299457 + 0.954110i \(0.403194\pi\)
\(812\) 6214.08 0.268561
\(813\) −5005.25 −0.215918
\(814\) −1062.06 −0.0457311
\(815\) 0 0
\(816\) −855.675 −0.0367091
\(817\) −4960.59 −0.212422
\(818\) 14320.7 0.612116
\(819\) 26838.6 1.14507
\(820\) 0 0
\(821\) −34809.0 −1.47971 −0.739855 0.672766i \(-0.765106\pi\)
−0.739855 + 0.672766i \(0.765106\pi\)
\(822\) 3519.79 0.149351
\(823\) 28468.8 1.20579 0.602893 0.797822i \(-0.294015\pi\)
0.602893 + 0.797822i \(0.294015\pi\)
\(824\) 10239.0 0.432880
\(825\) 0 0
\(826\) 13232.7 0.557414
\(827\) 26950.0 1.13319 0.566593 0.823998i \(-0.308261\pi\)
0.566593 + 0.823998i \(0.308261\pi\)
\(828\) 8942.96 0.375349
\(829\) 775.483 0.0324893 0.0162446 0.999868i \(-0.494829\pi\)
0.0162446 + 0.999868i \(0.494829\pi\)
\(830\) 0 0
\(831\) 1783.28 0.0744418
\(832\) 4083.44 0.170154
\(833\) 7474.78 0.310907
\(834\) −2192.95 −0.0910499
\(835\) 0 0
\(836\) −441.376 −0.0182599
\(837\) −6985.16 −0.288462
\(838\) 16406.9 0.676331
\(839\) 37781.8 1.55468 0.777338 0.629084i \(-0.216570\pi\)
0.777338 + 0.629084i \(0.216570\pi\)
\(840\) 0 0
\(841\) −14763.9 −0.605352
\(842\) −27006.1 −1.10533
\(843\) −3889.63 −0.158916
\(844\) 20842.5 0.850032
\(845\) 0 0
\(846\) −18058.5 −0.733882
\(847\) 20597.0 0.835563
\(848\) −1696.62 −0.0687053
\(849\) −1977.53 −0.0799393
\(850\) 0 0
\(851\) 8124.49 0.327267
\(852\) −91.5500 −0.00368128
\(853\) −10089.8 −0.405005 −0.202503 0.979282i \(-0.564907\pi\)
−0.202503 + 0.979282i \(0.564907\pi\)
\(854\) 24725.4 0.990733
\(855\) 0 0
\(856\) −3575.77 −0.142777
\(857\) 29927.3 1.19288 0.596440 0.802658i \(-0.296581\pi\)
0.596440 + 0.802658i \(0.296581\pi\)
\(858\) 463.352 0.0184366
\(859\) −8506.89 −0.337894 −0.168947 0.985625i \(-0.554037\pi\)
−0.168947 + 0.985625i \(0.554037\pi\)
\(860\) 0 0
\(861\) 313.098 0.0123930
\(862\) 22595.9 0.892831
\(863\) −16995.9 −0.670392 −0.335196 0.942148i \(-0.608803\pi\)
−0.335196 + 0.942148i \(0.608803\pi\)
\(864\) 1131.40 0.0445497
\(865\) 0 0
\(866\) −989.960 −0.0388455
\(867\) 1090.07 0.0426998
\(868\) −12513.7 −0.489335
\(869\) −5712.11 −0.222980
\(870\) 0 0
\(871\) −41196.4 −1.60263
\(872\) 2360.17 0.0916575
\(873\) −16742.0 −0.649060
\(874\) 3376.42 0.130674
\(875\) 0 0
\(876\) 3017.24 0.116373
\(877\) 30356.9 1.16885 0.584424 0.811448i \(-0.301320\pi\)
0.584424 + 0.811448i \(0.301320\pi\)
\(878\) 18538.2 0.712567
\(879\) 2660.84 0.102102
\(880\) 0 0
\(881\) −42101.5 −1.61003 −0.805015 0.593255i \(-0.797843\pi\)
−0.805015 + 0.593255i \(0.797843\pi\)
\(882\) −4901.49 −0.187122
\(883\) −39597.1 −1.50912 −0.754558 0.656234i \(-0.772148\pi\)
−0.754558 + 0.656234i \(0.772148\pi\)
\(884\) −20677.9 −0.786733
\(885\) 0 0
\(886\) 28627.2 1.08550
\(887\) −4172.22 −0.157936 −0.0789680 0.996877i \(-0.525163\pi\)
−0.0789680 + 0.996877i \(0.525163\pi\)
\(888\) 509.745 0.0192634
\(889\) −37291.6 −1.40688
\(890\) 0 0
\(891\) −3817.16 −0.143524
\(892\) −3207.85 −0.120411
\(893\) −6818.00 −0.255494
\(894\) −4363.18 −0.163229
\(895\) 0 0
\(896\) 2026.86 0.0755723
\(897\) −3544.53 −0.131938
\(898\) 17002.2 0.631817
\(899\) −19382.7 −0.719074
\(900\) 0 0
\(901\) 8591.38 0.317670
\(902\) −329.572 −0.0121658
\(903\) 2584.84 0.0952581
\(904\) 1555.66 0.0572350
\(905\) 0 0
\(906\) 1317.89 0.0483266
\(907\) 6248.25 0.228743 0.114371 0.993438i \(-0.463515\pi\)
0.114371 + 0.993438i \(0.463515\pi\)
\(908\) 11774.2 0.430330
\(909\) 48893.7 1.78405
\(910\) 0 0
\(911\) 5191.71 0.188813 0.0944066 0.995534i \(-0.469905\pi\)
0.0944066 + 0.995534i \(0.469905\pi\)
\(912\) 211.843 0.00769169
\(913\) −2514.92 −0.0911627
\(914\) 32085.2 1.16114
\(915\) 0 0
\(916\) 21722.3 0.783541
\(917\) −28955.6 −1.04274
\(918\) −5729.21 −0.205983
\(919\) 2826.18 0.101444 0.0507221 0.998713i \(-0.483848\pi\)
0.0507221 + 0.998713i \(0.483848\pi\)
\(920\) 0 0
\(921\) −2446.95 −0.0875460
\(922\) 5872.77 0.209771
\(923\) −2212.36 −0.0788955
\(924\) 229.990 0.00818843
\(925\) 0 0
\(926\) −17428.1 −0.618493
\(927\) 33999.1 1.20461
\(928\) 3139.44 0.111053
\(929\) −12961.0 −0.457735 −0.228868 0.973458i \(-0.573502\pi\)
−0.228868 + 0.973458i \(0.573502\pi\)
\(930\) 0 0
\(931\) −1850.56 −0.0651446
\(932\) 9424.60 0.331237
\(933\) −9.28871 −0.000325937 0
\(934\) −20695.0 −0.725013
\(935\) 0 0
\(936\) 13559.2 0.473501
\(937\) −34128.2 −1.18988 −0.594941 0.803769i \(-0.702825\pi\)
−0.594941 + 0.803769i \(0.702825\pi\)
\(938\) −20448.3 −0.711792
\(939\) 571.069 0.0198468
\(940\) 0 0
\(941\) −41298.5 −1.43071 −0.715353 0.698763i \(-0.753734\pi\)
−0.715353 + 0.698763i \(0.753734\pi\)
\(942\) −82.0635 −0.00283840
\(943\) 2521.15 0.0870626
\(944\) 6685.34 0.230497
\(945\) 0 0
\(946\) −2720.85 −0.0935120
\(947\) 21393.9 0.734116 0.367058 0.930198i \(-0.380365\pi\)
0.367058 + 0.930198i \(0.380365\pi\)
\(948\) 2741.59 0.0939267
\(949\) 72913.3 2.49406
\(950\) 0 0
\(951\) −4854.42 −0.165526
\(952\) −10263.7 −0.349420
\(953\) 24381.0 0.828728 0.414364 0.910111i \(-0.364004\pi\)
0.414364 + 0.910111i \(0.364004\pi\)
\(954\) −5633.68 −0.191192
\(955\) 0 0
\(956\) 20612.1 0.697327
\(957\) 356.235 0.0120329
\(958\) 4034.86 0.136076
\(959\) 42219.4 1.42162
\(960\) 0 0
\(961\) 9241.14 0.310199
\(962\) 12318.3 0.412845
\(963\) −11873.5 −0.397318
\(964\) −12298.2 −0.410889
\(965\) 0 0
\(966\) −1759.37 −0.0585992
\(967\) 25361.5 0.843402 0.421701 0.906735i \(-0.361433\pi\)
0.421701 + 0.906735i \(0.361433\pi\)
\(968\) 10405.9 0.345515
\(969\) −1072.74 −0.0355637
\(970\) 0 0
\(971\) −40071.3 −1.32436 −0.662178 0.749347i \(-0.730368\pi\)
−0.662178 + 0.749347i \(0.730368\pi\)
\(972\) 5650.55 0.186463
\(973\) −26304.1 −0.866671
\(974\) −10299.9 −0.338840
\(975\) 0 0
\(976\) 12491.6 0.409680
\(977\) −4847.90 −0.158749 −0.0793746 0.996845i \(-0.525292\pi\)
−0.0793746 + 0.996845i \(0.525292\pi\)
\(978\) −128.304 −0.00419500
\(979\) −1825.24 −0.0595864
\(980\) 0 0
\(981\) 7837.03 0.255063
\(982\) 18017.3 0.585495
\(983\) −575.902 −0.0186861 −0.00934304 0.999956i \(-0.502974\pi\)
−0.00934304 + 0.999956i \(0.502974\pi\)
\(984\) 158.182 0.00512464
\(985\) 0 0
\(986\) −15897.6 −0.513471
\(987\) 3552.69 0.114573
\(988\) 5119.30 0.164845
\(989\) 20813.8 0.669203
\(990\) 0 0
\(991\) 49749.5 1.59470 0.797348 0.603520i \(-0.206235\pi\)
0.797348 + 0.603520i \(0.206235\pi\)
\(992\) −6322.10 −0.202346
\(993\) 6635.15 0.212044
\(994\) −1098.13 −0.0350408
\(995\) 0 0
\(996\) 1207.06 0.0384008
\(997\) −42066.3 −1.33626 −0.668130 0.744044i \(-0.732905\pi\)
−0.668130 + 0.744044i \(0.732905\pi\)
\(998\) −13695.8 −0.434402
\(999\) 3413.02 0.108091
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1250.4.a.c.1.3 6
5.4 even 2 1250.4.a.f.1.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1250.4.a.c.1.3 6 1.1 even 1 trivial
1250.4.a.f.1.4 yes 6 5.4 even 2