Properties

Label 126.2.f.a.85.1
Level $126$
Weight $2$
Character 126.85
Analytic conductor $1.006$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(43,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 85.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 126.85
Dual form 126.2.f.a.43.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} -1.73205i q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.50000 - 2.59808i) q^{5} +(1.50000 - 0.866025i) q^{6} +(-0.500000 - 0.866025i) q^{7} -1.00000 q^{8} -3.00000 q^{9} +3.00000 q^{10} +(3.00000 + 5.19615i) q^{11} +(1.50000 + 0.866025i) q^{12} +(-1.00000 + 1.73205i) q^{13} +(0.500000 - 0.866025i) q^{14} +(-4.50000 - 2.59808i) q^{15} +(-0.500000 - 0.866025i) q^{16} +6.00000 q^{17} +(-1.50000 - 2.59808i) q^{18} -7.00000 q^{19} +(1.50000 + 2.59808i) q^{20} +(-1.50000 + 0.866025i) q^{21} +(-3.00000 + 5.19615i) q^{22} +(-1.50000 + 2.59808i) q^{23} +1.73205i q^{24} +(-2.00000 - 3.46410i) q^{25} -2.00000 q^{26} +5.19615i q^{27} +1.00000 q^{28} +(-3.00000 - 5.19615i) q^{29} -5.19615i q^{30} +(-1.00000 + 1.73205i) q^{31} +(0.500000 - 0.866025i) q^{32} +(9.00000 - 5.19615i) q^{33} +(3.00000 + 5.19615i) q^{34} -3.00000 q^{35} +(1.50000 - 2.59808i) q^{36} +2.00000 q^{37} +(-3.50000 - 6.06218i) q^{38} +(3.00000 + 1.73205i) q^{39} +(-1.50000 + 2.59808i) q^{40} +(-1.50000 - 0.866025i) q^{42} +(-1.00000 - 1.73205i) q^{43} -6.00000 q^{44} +(-4.50000 + 7.79423i) q^{45} -3.00000 q^{46} +(-1.50000 + 0.866025i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(2.00000 - 3.46410i) q^{50} -10.3923i q^{51} +(-1.00000 - 1.73205i) q^{52} +6.00000 q^{53} +(-4.50000 + 2.59808i) q^{54} +18.0000 q^{55} +(0.500000 + 0.866025i) q^{56} +12.1244i q^{57} +(3.00000 - 5.19615i) q^{58} +(4.50000 - 2.59808i) q^{60} +(-2.50000 - 4.33013i) q^{61} -2.00000 q^{62} +(1.50000 + 2.59808i) q^{63} +1.00000 q^{64} +(3.00000 + 5.19615i) q^{65} +(9.00000 + 5.19615i) q^{66} +(-4.00000 + 6.92820i) q^{67} +(-3.00000 + 5.19615i) q^{68} +(4.50000 + 2.59808i) q^{69} +(-1.50000 - 2.59808i) q^{70} +3.00000 q^{71} +3.00000 q^{72} +2.00000 q^{73} +(1.00000 + 1.73205i) q^{74} +(-6.00000 + 3.46410i) q^{75} +(3.50000 - 6.06218i) q^{76} +(3.00000 - 5.19615i) q^{77} +3.46410i q^{78} +(-2.50000 - 4.33013i) q^{79} -3.00000 q^{80} +9.00000 q^{81} +(-6.00000 - 10.3923i) q^{83} -1.73205i q^{84} +(9.00000 - 15.5885i) q^{85} +(1.00000 - 1.73205i) q^{86} +(-9.00000 + 5.19615i) q^{87} +(-3.00000 - 5.19615i) q^{88} -9.00000 q^{90} +2.00000 q^{91} +(-1.50000 - 2.59808i) q^{92} +(3.00000 + 1.73205i) q^{93} +(-10.5000 + 18.1865i) q^{95} +(-1.50000 - 0.866025i) q^{96} +(-1.00000 - 1.73205i) q^{97} -1.00000 q^{98} +(-9.00000 - 15.5885i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} + 3 q^{5} + 3 q^{6} - q^{7} - 2 q^{8} - 6 q^{9} + 6 q^{10} + 6 q^{11} + 3 q^{12} - 2 q^{13} + q^{14} - 9 q^{15} - q^{16} + 12 q^{17} - 3 q^{18} - 14 q^{19} + 3 q^{20} - 3 q^{21}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 1.73205i 1.00000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.50000 2.59808i 0.670820 1.16190i −0.306851 0.951757i \(-0.599275\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) 1.50000 0.866025i 0.612372 0.353553i
\(7\) −0.500000 0.866025i −0.188982 0.327327i
\(8\) −1.00000 −0.353553
\(9\) −3.00000 −1.00000
\(10\) 3.00000 0.948683
\(11\) 3.00000 + 5.19615i 0.904534 + 1.56670i 0.821541 + 0.570149i \(0.193114\pi\)
0.0829925 + 0.996550i \(0.473552\pi\)
\(12\) 1.50000 + 0.866025i 0.433013 + 0.250000i
\(13\) −1.00000 + 1.73205i −0.277350 + 0.480384i −0.970725 0.240192i \(-0.922790\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0.500000 0.866025i 0.133631 0.231455i
\(15\) −4.50000 2.59808i −1.16190 0.670820i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) −1.50000 2.59808i −0.353553 0.612372i
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 1.50000 + 2.59808i 0.335410 + 0.580948i
\(21\) −1.50000 + 0.866025i −0.327327 + 0.188982i
\(22\) −3.00000 + 5.19615i −0.639602 + 1.10782i
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) 1.73205i 0.353553i
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) −2.00000 −0.392232
\(27\) 5.19615i 1.00000i
\(28\) 1.00000 0.188982
\(29\) −3.00000 5.19615i −0.557086 0.964901i −0.997738 0.0672232i \(-0.978586\pi\)
0.440652 0.897678i \(-0.354747\pi\)
\(30\) 5.19615i 0.948683i
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 9.00000 5.19615i 1.56670 0.904534i
\(34\) 3.00000 + 5.19615i 0.514496 + 0.891133i
\(35\) −3.00000 −0.507093
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −3.50000 6.06218i −0.567775 0.983415i
\(39\) 3.00000 + 1.73205i 0.480384 + 0.277350i
\(40\) −1.50000 + 2.59808i −0.237171 + 0.410792i
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) −1.50000 0.866025i −0.231455 0.133631i
\(43\) −1.00000 1.73205i −0.152499 0.264135i 0.779647 0.626219i \(-0.215399\pi\)
−0.932145 + 0.362084i \(0.882065\pi\)
\(44\) −6.00000 −0.904534
\(45\) −4.50000 + 7.79423i −0.670820 + 1.16190i
\(46\) −3.00000 −0.442326
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) −1.50000 + 0.866025i −0.216506 + 0.125000i
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 2.00000 3.46410i 0.282843 0.489898i
\(51\) 10.3923i 1.45521i
\(52\) −1.00000 1.73205i −0.138675 0.240192i
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) −4.50000 + 2.59808i −0.612372 + 0.353553i
\(55\) 18.0000 2.42712
\(56\) 0.500000 + 0.866025i 0.0668153 + 0.115728i
\(57\) 12.1244i 1.60591i
\(58\) 3.00000 5.19615i 0.393919 0.682288i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 4.50000 2.59808i 0.580948 0.335410i
\(61\) −2.50000 4.33013i −0.320092 0.554416i 0.660415 0.750901i \(-0.270381\pi\)
−0.980507 + 0.196485i \(0.937047\pi\)
\(62\) −2.00000 −0.254000
\(63\) 1.50000 + 2.59808i 0.188982 + 0.327327i
\(64\) 1.00000 0.125000
\(65\) 3.00000 + 5.19615i 0.372104 + 0.644503i
\(66\) 9.00000 + 5.19615i 1.10782 + 0.639602i
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) −3.00000 + 5.19615i −0.363803 + 0.630126i
\(69\) 4.50000 + 2.59808i 0.541736 + 0.312772i
\(70\) −1.50000 2.59808i −0.179284 0.310530i
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 3.00000 0.353553
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 1.00000 + 1.73205i 0.116248 + 0.201347i
\(75\) −6.00000 + 3.46410i −0.692820 + 0.400000i
\(76\) 3.50000 6.06218i 0.401478 0.695379i
\(77\) 3.00000 5.19615i 0.341882 0.592157i
\(78\) 3.46410i 0.392232i
\(79\) −2.50000 4.33013i −0.281272 0.487177i 0.690426 0.723403i \(-0.257423\pi\)
−0.971698 + 0.236225i \(0.924090\pi\)
\(80\) −3.00000 −0.335410
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) −6.00000 10.3923i −0.658586 1.14070i −0.980982 0.194099i \(-0.937822\pi\)
0.322396 0.946605i \(-0.395512\pi\)
\(84\) 1.73205i 0.188982i
\(85\) 9.00000 15.5885i 0.976187 1.69081i
\(86\) 1.00000 1.73205i 0.107833 0.186772i
\(87\) −9.00000 + 5.19615i −0.964901 + 0.557086i
\(88\) −3.00000 5.19615i −0.319801 0.553912i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −9.00000 −0.948683
\(91\) 2.00000 0.209657
\(92\) −1.50000 2.59808i −0.156386 0.270868i
\(93\) 3.00000 + 1.73205i 0.311086 + 0.179605i
\(94\) 0 0
\(95\) −10.5000 + 18.1865i −1.07728 + 1.86590i
\(96\) −1.50000 0.866025i −0.153093 0.0883883i
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) −1.00000 −0.101015
\(99\) −9.00000 15.5885i −0.904534 1.56670i
\(100\) 4.00000 0.400000
\(101\) −4.50000 7.79423i −0.447767 0.775555i 0.550474 0.834853i \(-0.314447\pi\)
−0.998240 + 0.0592978i \(0.981114\pi\)
\(102\) 9.00000 5.19615i 0.891133 0.514496i
\(103\) 5.00000 8.66025i 0.492665 0.853320i −0.507300 0.861770i \(-0.669356\pi\)
0.999964 + 0.00844953i \(0.00268960\pi\)
\(104\) 1.00000 1.73205i 0.0980581 0.169842i
\(105\) 5.19615i 0.507093i
\(106\) 3.00000 + 5.19615i 0.291386 + 0.504695i
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −4.50000 2.59808i −0.433013 0.250000i
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 9.00000 + 15.5885i 0.858116 + 1.48630i
\(111\) 3.46410i 0.328798i
\(112\) −0.500000 + 0.866025i −0.0472456 + 0.0818317i
\(113\) −7.50000 + 12.9904i −0.705541 + 1.22203i 0.260955 + 0.965351i \(0.415962\pi\)
−0.966496 + 0.256681i \(0.917371\pi\)
\(114\) −10.5000 + 6.06218i −0.983415 + 0.567775i
\(115\) 4.50000 + 7.79423i 0.419627 + 0.726816i
\(116\) 6.00000 0.557086
\(117\) 3.00000 5.19615i 0.277350 0.480384i
\(118\) 0 0
\(119\) −3.00000 5.19615i −0.275010 0.476331i
\(120\) 4.50000 + 2.59808i 0.410792 + 0.237171i
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) 2.50000 4.33013i 0.226339 0.392031i
\(123\) 0 0
\(124\) −1.00000 1.73205i −0.0898027 0.155543i
\(125\) 3.00000 0.268328
\(126\) −1.50000 + 2.59808i −0.133631 + 0.231455i
\(127\) 17.0000 1.50851 0.754253 0.656584i \(-0.227999\pi\)
0.754253 + 0.656584i \(0.227999\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −3.00000 + 1.73205i −0.264135 + 0.152499i
\(130\) −3.00000 + 5.19615i −0.263117 + 0.455733i
\(131\) 4.50000 7.79423i 0.393167 0.680985i −0.599699 0.800226i \(-0.704713\pi\)
0.992865 + 0.119241i \(0.0380462\pi\)
\(132\) 10.3923i 0.904534i
\(133\) 3.50000 + 6.06218i 0.303488 + 0.525657i
\(134\) −8.00000 −0.691095
\(135\) 13.5000 + 7.79423i 1.16190 + 0.670820i
\(136\) −6.00000 −0.514496
\(137\) −3.00000 5.19615i −0.256307 0.443937i 0.708942 0.705266i \(-0.249173\pi\)
−0.965250 + 0.261329i \(0.915839\pi\)
\(138\) 5.19615i 0.442326i
\(139\) −2.50000 + 4.33013i −0.212047 + 0.367277i −0.952355 0.304991i \(-0.901346\pi\)
0.740308 + 0.672268i \(0.234680\pi\)
\(140\) 1.50000 2.59808i 0.126773 0.219578i
\(141\) 0 0
\(142\) 1.50000 + 2.59808i 0.125877 + 0.218026i
\(143\) −12.0000 −1.00349
\(144\) 1.50000 + 2.59808i 0.125000 + 0.216506i
\(145\) −18.0000 −1.49482
\(146\) 1.00000 + 1.73205i 0.0827606 + 0.143346i
\(147\) 1.50000 + 0.866025i 0.123718 + 0.0714286i
\(148\) −1.00000 + 1.73205i −0.0821995 + 0.142374i
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) −6.00000 3.46410i −0.489898 0.282843i
\(151\) −11.5000 19.9186i −0.935857 1.62095i −0.773099 0.634285i \(-0.781294\pi\)
−0.162758 0.986666i \(-0.552039\pi\)
\(152\) 7.00000 0.567775
\(153\) −18.0000 −1.45521
\(154\) 6.00000 0.483494
\(155\) 3.00000 + 5.19615i 0.240966 + 0.417365i
\(156\) −3.00000 + 1.73205i −0.240192 + 0.138675i
\(157\) 6.50000 11.2583i 0.518756 0.898513i −0.481006 0.876717i \(-0.659728\pi\)
0.999762 0.0217953i \(-0.00693820\pi\)
\(158\) 2.50000 4.33013i 0.198889 0.344486i
\(159\) 10.3923i 0.824163i
\(160\) −1.50000 2.59808i −0.118585 0.205396i
\(161\) 3.00000 0.236433
\(162\) 4.50000 + 7.79423i 0.353553 + 0.612372i
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 0 0
\(165\) 31.1769i 2.42712i
\(166\) 6.00000 10.3923i 0.465690 0.806599i
\(167\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 1.50000 0.866025i 0.115728 0.0668153i
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 18.0000 1.38054
\(171\) 21.0000 1.60591
\(172\) 2.00000 0.152499
\(173\) 3.00000 + 5.19615i 0.228086 + 0.395056i 0.957241 0.289292i \(-0.0934200\pi\)
−0.729155 + 0.684349i \(0.760087\pi\)
\(174\) −9.00000 5.19615i −0.682288 0.393919i
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) 3.00000 5.19615i 0.226134 0.391675i
\(177\) 0 0
\(178\) 0 0
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) −4.50000 7.79423i −0.335410 0.580948i
\(181\) −25.0000 −1.85824 −0.929118 0.369784i \(-0.879432\pi\)
−0.929118 + 0.369784i \(0.879432\pi\)
\(182\) 1.00000 + 1.73205i 0.0741249 + 0.128388i
\(183\) −7.50000 + 4.33013i −0.554416 + 0.320092i
\(184\) 1.50000 2.59808i 0.110581 0.191533i
\(185\) 3.00000 5.19615i 0.220564 0.382029i
\(186\) 3.46410i 0.254000i
\(187\) 18.0000 + 31.1769i 1.31629 + 2.27988i
\(188\) 0 0
\(189\) 4.50000 2.59808i 0.327327 0.188982i
\(190\) −21.0000 −1.52350
\(191\) 4.50000 + 7.79423i 0.325609 + 0.563971i 0.981635 0.190767i \(-0.0610975\pi\)
−0.656027 + 0.754738i \(0.727764\pi\)
\(192\) 1.73205i 0.125000i
\(193\) −8.50000 + 14.7224i −0.611843 + 1.05974i 0.379086 + 0.925361i \(0.376238\pi\)
−0.990930 + 0.134382i \(0.957095\pi\)
\(194\) 1.00000 1.73205i 0.0717958 0.124354i
\(195\) 9.00000 5.19615i 0.644503 0.372104i
\(196\) −0.500000 0.866025i −0.0357143 0.0618590i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 9.00000 15.5885i 0.639602 1.10782i
\(199\) 14.0000 0.992434 0.496217 0.868199i \(-0.334722\pi\)
0.496217 + 0.868199i \(0.334722\pi\)
\(200\) 2.00000 + 3.46410i 0.141421 + 0.244949i
\(201\) 12.0000 + 6.92820i 0.846415 + 0.488678i
\(202\) 4.50000 7.79423i 0.316619 0.548400i
\(203\) −3.00000 + 5.19615i −0.210559 + 0.364698i
\(204\) 9.00000 + 5.19615i 0.630126 + 0.363803i
\(205\) 0 0
\(206\) 10.0000 0.696733
\(207\) 4.50000 7.79423i 0.312772 0.541736i
\(208\) 2.00000 0.138675
\(209\) −21.0000 36.3731i −1.45260 2.51598i
\(210\) −4.50000 + 2.59808i −0.310530 + 0.179284i
\(211\) −4.00000 + 6.92820i −0.275371 + 0.476957i −0.970229 0.242190i \(-0.922134\pi\)
0.694857 + 0.719148i \(0.255467\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) 5.19615i 0.356034i
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) −6.00000 −0.409197
\(216\) 5.19615i 0.353553i
\(217\) 2.00000 0.135769
\(218\) −5.00000 8.66025i −0.338643 0.586546i
\(219\) 3.46410i 0.234082i
\(220\) −9.00000 + 15.5885i −0.606780 + 1.05097i
\(221\) −6.00000 + 10.3923i −0.403604 + 0.699062i
\(222\) 3.00000 1.73205i 0.201347 0.116248i
\(223\) 14.0000 + 24.2487i 0.937509 + 1.62381i 0.770097 + 0.637927i \(0.220208\pi\)
0.167412 + 0.985887i \(0.446459\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 6.00000 + 10.3923i 0.400000 + 0.692820i
\(226\) −15.0000 −0.997785
\(227\) 7.50000 + 12.9904i 0.497792 + 0.862202i 0.999997 0.00254715i \(-0.000810783\pi\)
−0.502204 + 0.864749i \(0.667477\pi\)
\(228\) −10.5000 6.06218i −0.695379 0.401478i
\(229\) 0.500000 0.866025i 0.0330409 0.0572286i −0.849032 0.528341i \(-0.822814\pi\)
0.882073 + 0.471113i \(0.156147\pi\)
\(230\) −4.50000 + 7.79423i −0.296721 + 0.513936i
\(231\) −9.00000 5.19615i −0.592157 0.341882i
\(232\) 3.00000 + 5.19615i 0.196960 + 0.341144i
\(233\) 9.00000 0.589610 0.294805 0.955557i \(-0.404745\pi\)
0.294805 + 0.955557i \(0.404745\pi\)
\(234\) 6.00000 0.392232
\(235\) 0 0
\(236\) 0 0
\(237\) −7.50000 + 4.33013i −0.487177 + 0.281272i
\(238\) 3.00000 5.19615i 0.194461 0.336817i
\(239\) 7.50000 12.9904i 0.485135 0.840278i −0.514719 0.857359i \(-0.672104\pi\)
0.999854 + 0.0170808i \(0.00543724\pi\)
\(240\) 5.19615i 0.335410i
\(241\) −4.00000 6.92820i −0.257663 0.446285i 0.707953 0.706260i \(-0.249619\pi\)
−0.965615 + 0.259975i \(0.916286\pi\)
\(242\) −25.0000 −1.60706
\(243\) 15.5885i 1.00000i
\(244\) 5.00000 0.320092
\(245\) 1.50000 + 2.59808i 0.0958315 + 0.165985i
\(246\) 0 0
\(247\) 7.00000 12.1244i 0.445399 0.771454i
\(248\) 1.00000 1.73205i 0.0635001 0.109985i
\(249\) −18.0000 + 10.3923i −1.14070 + 0.658586i
\(250\) 1.50000 + 2.59808i 0.0948683 + 0.164317i
\(251\) 3.00000 0.189358 0.0946792 0.995508i \(-0.469817\pi\)
0.0946792 + 0.995508i \(0.469817\pi\)
\(252\) −3.00000 −0.188982
\(253\) −18.0000 −1.13165
\(254\) 8.50000 + 14.7224i 0.533337 + 0.923768i
\(255\) −27.0000 15.5885i −1.69081 0.976187i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −9.00000 + 15.5885i −0.561405 + 0.972381i 0.435970 + 0.899961i \(0.356405\pi\)
−0.997374 + 0.0724199i \(0.976928\pi\)
\(258\) −3.00000 1.73205i −0.186772 0.107833i
\(259\) −1.00000 1.73205i −0.0621370 0.107624i
\(260\) −6.00000 −0.372104
\(261\) 9.00000 + 15.5885i 0.557086 + 0.964901i
\(262\) 9.00000 0.556022
\(263\) 10.5000 + 18.1865i 0.647458 + 1.12143i 0.983728 + 0.179664i \(0.0575011\pi\)
−0.336270 + 0.941766i \(0.609166\pi\)
\(264\) −9.00000 + 5.19615i −0.553912 + 0.319801i
\(265\) 9.00000 15.5885i 0.552866 0.957591i
\(266\) −3.50000 + 6.06218i −0.214599 + 0.371696i
\(267\) 0 0
\(268\) −4.00000 6.92820i −0.244339 0.423207i
\(269\) −9.00000 −0.548740 −0.274370 0.961624i \(-0.588469\pi\)
−0.274370 + 0.961624i \(0.588469\pi\)
\(270\) 15.5885i 0.948683i
\(271\) −28.0000 −1.70088 −0.850439 0.526073i \(-0.823664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) −3.00000 5.19615i −0.181902 0.315063i
\(273\) 3.46410i 0.209657i
\(274\) 3.00000 5.19615i 0.181237 0.313911i
\(275\) 12.0000 20.7846i 0.723627 1.25336i
\(276\) −4.50000 + 2.59808i −0.270868 + 0.156386i
\(277\) 8.00000 + 13.8564i 0.480673 + 0.832551i 0.999754 0.0221745i \(-0.00705893\pi\)
−0.519081 + 0.854725i \(0.673726\pi\)
\(278\) −5.00000 −0.299880
\(279\) 3.00000 5.19615i 0.179605 0.311086i
\(280\) 3.00000 0.179284
\(281\) 13.5000 + 23.3827i 0.805342 + 1.39489i 0.916060 + 0.401042i \(0.131352\pi\)
−0.110717 + 0.993852i \(0.535315\pi\)
\(282\) 0 0
\(283\) 9.50000 16.4545i 0.564716 0.978117i −0.432360 0.901701i \(-0.642319\pi\)
0.997076 0.0764162i \(-0.0243478\pi\)
\(284\) −1.50000 + 2.59808i −0.0890086 + 0.154167i
\(285\) 31.5000 + 18.1865i 1.86590 + 1.07728i
\(286\) −6.00000 10.3923i −0.354787 0.614510i
\(287\) 0 0
\(288\) −1.50000 + 2.59808i −0.0883883 + 0.153093i
\(289\) 19.0000 1.11765
\(290\) −9.00000 15.5885i −0.528498 0.915386i
\(291\) −3.00000 + 1.73205i −0.175863 + 0.101535i
\(292\) −1.00000 + 1.73205i −0.0585206 + 0.101361i
\(293\) 1.50000 2.59808i 0.0876309 0.151781i −0.818878 0.573967i \(-0.805404\pi\)
0.906509 + 0.422186i \(0.138737\pi\)
\(294\) 1.73205i 0.101015i
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) −27.0000 + 15.5885i −1.56670 + 0.904534i
\(298\) 6.00000 0.347571
\(299\) −3.00000 5.19615i −0.173494 0.300501i
\(300\) 6.92820i 0.400000i
\(301\) −1.00000 + 1.73205i −0.0576390 + 0.0998337i
\(302\) 11.5000 19.9186i 0.661751 1.14619i
\(303\) −13.5000 + 7.79423i −0.775555 + 0.447767i
\(304\) 3.50000 + 6.06218i 0.200739 + 0.347690i
\(305\) −15.0000 −0.858898
\(306\) −9.00000 15.5885i −0.514496 0.891133i
\(307\) −25.0000 −1.42683 −0.713413 0.700744i \(-0.752851\pi\)
−0.713413 + 0.700744i \(0.752851\pi\)
\(308\) 3.00000 + 5.19615i 0.170941 + 0.296078i
\(309\) −15.0000 8.66025i −0.853320 0.492665i
\(310\) −3.00000 + 5.19615i −0.170389 + 0.295122i
\(311\) −6.00000 + 10.3923i −0.340229 + 0.589294i −0.984475 0.175525i \(-0.943838\pi\)
0.644246 + 0.764818i \(0.277171\pi\)
\(312\) −3.00000 1.73205i −0.169842 0.0980581i
\(313\) 5.00000 + 8.66025i 0.282617 + 0.489506i 0.972028 0.234863i \(-0.0754642\pi\)
−0.689412 + 0.724370i \(0.742131\pi\)
\(314\) 13.0000 0.733632
\(315\) 9.00000 0.507093
\(316\) 5.00000 0.281272
\(317\) −9.00000 15.5885i −0.505490 0.875535i −0.999980 0.00635137i \(-0.997978\pi\)
0.494489 0.869184i \(-0.335355\pi\)
\(318\) 9.00000 5.19615i 0.504695 0.291386i
\(319\) 18.0000 31.1769i 1.00781 1.74557i
\(320\) 1.50000 2.59808i 0.0838525 0.145237i
\(321\) 20.7846i 1.16008i
\(322\) 1.50000 + 2.59808i 0.0835917 + 0.144785i
\(323\) −42.0000 −2.33694
\(324\) −4.50000 + 7.79423i −0.250000 + 0.433013i
\(325\) 8.00000 0.443760
\(326\) 1.00000 + 1.73205i 0.0553849 + 0.0959294i
\(327\) 17.3205i 0.957826i
\(328\) 0 0
\(329\) 0 0
\(330\) 27.0000 15.5885i 1.48630 0.858116i
\(331\) −13.0000 22.5167i −0.714545 1.23763i −0.963135 0.269019i \(-0.913301\pi\)
0.248590 0.968609i \(-0.420033\pi\)
\(332\) 12.0000 0.658586
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) 12.0000 + 20.7846i 0.655630 + 1.13558i
\(336\) 1.50000 + 0.866025i 0.0818317 + 0.0472456i
\(337\) 11.0000 19.0526i 0.599208 1.03786i −0.393730 0.919226i \(-0.628816\pi\)
0.992938 0.118633i \(-0.0378512\pi\)
\(338\) −4.50000 + 7.79423i −0.244768 + 0.423950i
\(339\) 22.5000 + 12.9904i 1.22203 + 0.705541i
\(340\) 9.00000 + 15.5885i 0.488094 + 0.845403i
\(341\) −12.0000 −0.649836
\(342\) 10.5000 + 18.1865i 0.567775 + 0.983415i
\(343\) 1.00000 0.0539949
\(344\) 1.00000 + 1.73205i 0.0539164 + 0.0933859i
\(345\) 13.5000 7.79423i 0.726816 0.419627i
\(346\) −3.00000 + 5.19615i −0.161281 + 0.279347i
\(347\) 12.0000 20.7846i 0.644194 1.11578i −0.340293 0.940319i \(-0.610526\pi\)
0.984487 0.175457i \(-0.0561403\pi\)
\(348\) 10.3923i 0.557086i
\(349\) −13.0000 22.5167i −0.695874 1.20529i −0.969885 0.243563i \(-0.921684\pi\)
0.274011 0.961727i \(-0.411649\pi\)
\(350\) −4.00000 −0.213809
\(351\) −9.00000 5.19615i −0.480384 0.277350i
\(352\) 6.00000 0.319801
\(353\) 9.00000 + 15.5885i 0.479022 + 0.829690i 0.999711 0.0240566i \(-0.00765819\pi\)
−0.520689 + 0.853746i \(0.674325\pi\)
\(354\) 0 0
\(355\) 4.50000 7.79423i 0.238835 0.413675i
\(356\) 0 0
\(357\) −9.00000 + 5.19615i −0.476331 + 0.275010i
\(358\) 9.00000 + 15.5885i 0.475665 + 0.823876i
\(359\) −3.00000 −0.158334 −0.0791670 0.996861i \(-0.525226\pi\)
−0.0791670 + 0.996861i \(0.525226\pi\)
\(360\) 4.50000 7.79423i 0.237171 0.410792i
\(361\) 30.0000 1.57895
\(362\) −12.5000 21.6506i −0.656985 1.13793i
\(363\) 37.5000 + 21.6506i 1.96824 + 1.13636i
\(364\) −1.00000 + 1.73205i −0.0524142 + 0.0907841i
\(365\) 3.00000 5.19615i 0.157027 0.271979i
\(366\) −7.50000 4.33013i −0.392031 0.226339i
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) 3.00000 0.156386
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) −3.00000 5.19615i −0.155752 0.269771i
\(372\) −3.00000 + 1.73205i −0.155543 + 0.0898027i
\(373\) −7.00000 + 12.1244i −0.362446 + 0.627775i −0.988363 0.152115i \(-0.951392\pi\)
0.625917 + 0.779890i \(0.284725\pi\)
\(374\) −18.0000 + 31.1769i −0.930758 + 1.61212i
\(375\) 5.19615i 0.268328i
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 4.50000 + 2.59808i 0.231455 + 0.133631i
\(379\) 2.00000 0.102733 0.0513665 0.998680i \(-0.483642\pi\)
0.0513665 + 0.998680i \(0.483642\pi\)
\(380\) −10.5000 18.1865i −0.538639 0.932949i
\(381\) 29.4449i 1.50851i
\(382\) −4.50000 + 7.79423i −0.230240 + 0.398787i
\(383\) 9.00000 15.5885i 0.459879 0.796533i −0.539076 0.842257i \(-0.681226\pi\)
0.998954 + 0.0457244i \(0.0145596\pi\)
\(384\) 1.50000 0.866025i 0.0765466 0.0441942i
\(385\) −9.00000 15.5885i −0.458682 0.794461i
\(386\) −17.0000 −0.865277
\(387\) 3.00000 + 5.19615i 0.152499 + 0.264135i
\(388\) 2.00000 0.101535
\(389\) −12.0000 20.7846i −0.608424 1.05382i −0.991500 0.130105i \(-0.958469\pi\)
0.383076 0.923717i \(-0.374865\pi\)
\(390\) 9.00000 + 5.19615i 0.455733 + 0.263117i
\(391\) −9.00000 + 15.5885i −0.455150 + 0.788342i
\(392\) 0.500000 0.866025i 0.0252538 0.0437409i
\(393\) −13.5000 7.79423i −0.680985 0.393167i
\(394\) 9.00000 + 15.5885i 0.453413 + 0.785335i
\(395\) −15.0000 −0.754732
\(396\) 18.0000 0.904534
\(397\) 26.0000 1.30490 0.652451 0.757831i \(-0.273741\pi\)
0.652451 + 0.757831i \(0.273741\pi\)
\(398\) 7.00000 + 12.1244i 0.350878 + 0.607739i
\(399\) 10.5000 6.06218i 0.525657 0.303488i
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) −1.50000 + 2.59808i −0.0749064 + 0.129742i −0.901046 0.433724i \(-0.857199\pi\)
0.826139 + 0.563466i \(0.190532\pi\)
\(402\) 13.8564i 0.691095i
\(403\) −2.00000 3.46410i −0.0996271 0.172559i
\(404\) 9.00000 0.447767
\(405\) 13.5000 23.3827i 0.670820 1.16190i
\(406\) −6.00000 −0.297775
\(407\) 6.00000 + 10.3923i 0.297409 + 0.515127i
\(408\) 10.3923i 0.514496i
\(409\) −16.0000 + 27.7128i −0.791149 + 1.37031i 0.134107 + 0.990967i \(0.457183\pi\)
−0.925256 + 0.379344i \(0.876150\pi\)
\(410\) 0 0
\(411\) −9.00000 + 5.19615i −0.443937 + 0.256307i
\(412\) 5.00000 + 8.66025i 0.246332 + 0.426660i
\(413\) 0 0
\(414\) 9.00000 0.442326
\(415\) −36.0000 −1.76717
\(416\) 1.00000 + 1.73205i 0.0490290 + 0.0849208i
\(417\) 7.50000 + 4.33013i 0.367277 + 0.212047i
\(418\) 21.0000 36.3731i 1.02714 1.77906i
\(419\) −7.50000 + 12.9904i −0.366399 + 0.634622i −0.989000 0.147918i \(-0.952743\pi\)
0.622601 + 0.782540i \(0.286076\pi\)
\(420\) −4.50000 2.59808i −0.219578 0.126773i
\(421\) 5.00000 + 8.66025i 0.243685 + 0.422075i 0.961761 0.273890i \(-0.0883103\pi\)
−0.718076 + 0.695965i \(0.754977\pi\)
\(422\) −8.00000 −0.389434
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) −12.0000 20.7846i −0.582086 1.00820i
\(426\) 4.50000 2.59808i 0.218026 0.125877i
\(427\) −2.50000 + 4.33013i −0.120983 + 0.209550i
\(428\) 6.00000 10.3923i 0.290021 0.502331i
\(429\) 20.7846i 1.00349i
\(430\) −3.00000 5.19615i −0.144673 0.250581i
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 4.50000 2.59808i 0.216506 0.125000i
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 1.00000 + 1.73205i 0.0480015 + 0.0831411i
\(435\) 31.1769i 1.49482i
\(436\) 5.00000 8.66025i 0.239457 0.414751i
\(437\) 10.5000 18.1865i 0.502283 0.869980i
\(438\) 3.00000 1.73205i 0.143346 0.0827606i
\(439\) −4.00000 6.92820i −0.190910 0.330665i 0.754642 0.656136i \(-0.227810\pi\)
−0.945552 + 0.325471i \(0.894477\pi\)
\(440\) −18.0000 −0.858116
\(441\) 1.50000 2.59808i 0.0714286 0.123718i
\(442\) −12.0000 −0.570782
\(443\) −9.00000 15.5885i −0.427603 0.740630i 0.569057 0.822298i \(-0.307309\pi\)
−0.996660 + 0.0816684i \(0.973975\pi\)
\(444\) 3.00000 + 1.73205i 0.142374 + 0.0821995i
\(445\) 0 0
\(446\) −14.0000 + 24.2487i −0.662919 + 1.14821i
\(447\) −9.00000 5.19615i −0.425685 0.245770i
\(448\) −0.500000 0.866025i −0.0236228 0.0409159i
\(449\) 33.0000 1.55737 0.778683 0.627417i \(-0.215888\pi\)
0.778683 + 0.627417i \(0.215888\pi\)
\(450\) −6.00000 + 10.3923i −0.282843 + 0.489898i
\(451\) 0 0
\(452\) −7.50000 12.9904i −0.352770 0.611016i
\(453\) −34.5000 + 19.9186i −1.62095 + 0.935857i
\(454\) −7.50000 + 12.9904i −0.351992 + 0.609669i
\(455\) 3.00000 5.19615i 0.140642 0.243599i
\(456\) 12.1244i 0.567775i
\(457\) −14.5000 25.1147i −0.678281 1.17482i −0.975498 0.220008i \(-0.929392\pi\)
0.297217 0.954810i \(-0.403942\pi\)
\(458\) 1.00000 0.0467269
\(459\) 31.1769i 1.45521i
\(460\) −9.00000 −0.419627
\(461\) 16.5000 + 28.5788i 0.768482 + 1.33105i 0.938386 + 0.345589i \(0.112321\pi\)
−0.169904 + 0.985461i \(0.554346\pi\)
\(462\) 10.3923i 0.483494i
\(463\) 6.50000 11.2583i 0.302081 0.523219i −0.674526 0.738251i \(-0.735652\pi\)
0.976607 + 0.215032i \(0.0689855\pi\)
\(464\) −3.00000 + 5.19615i −0.139272 + 0.241225i
\(465\) 9.00000 5.19615i 0.417365 0.240966i
\(466\) 4.50000 + 7.79423i 0.208458 + 0.361061i
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 3.00000 + 5.19615i 0.138675 + 0.240192i
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) −19.5000 11.2583i −0.898513 0.518756i
\(472\) 0 0
\(473\) 6.00000 10.3923i 0.275880 0.477839i
\(474\) −7.50000 4.33013i −0.344486 0.198889i
\(475\) 14.0000 + 24.2487i 0.642364 + 1.11261i
\(476\) 6.00000 0.275010
\(477\) −18.0000 −0.824163
\(478\) 15.0000 0.686084
\(479\) 3.00000 + 5.19615i 0.137073 + 0.237418i 0.926388 0.376571i \(-0.122897\pi\)
−0.789314 + 0.613990i \(0.789564\pi\)
\(480\) −4.50000 + 2.59808i −0.205396 + 0.118585i
\(481\) −2.00000 + 3.46410i −0.0911922 + 0.157949i
\(482\) 4.00000 6.92820i 0.182195 0.315571i
\(483\) 5.19615i 0.236433i
\(484\) −12.5000 21.6506i −0.568182 0.984120i
\(485\) −6.00000 −0.272446
\(486\) 13.5000 7.79423i 0.612372 0.353553i
\(487\) 29.0000 1.31412 0.657058 0.753840i \(-0.271801\pi\)
0.657058 + 0.753840i \(0.271801\pi\)
\(488\) 2.50000 + 4.33013i 0.113170 + 0.196016i
\(489\) 3.46410i 0.156652i
\(490\) −1.50000 + 2.59808i −0.0677631 + 0.117369i
\(491\) −9.00000 + 15.5885i −0.406164 + 0.703497i −0.994456 0.105151i \(-0.966467\pi\)
0.588292 + 0.808649i \(0.299801\pi\)
\(492\) 0 0
\(493\) −18.0000 31.1769i −0.810679 1.40414i
\(494\) 14.0000 0.629890
\(495\) −54.0000 −2.42712
\(496\) 2.00000 0.0898027
\(497\) −1.50000 2.59808i −0.0672842 0.116540i
\(498\) −18.0000 10.3923i −0.806599 0.465690i
\(499\) −16.0000 + 27.7128i −0.716258 + 1.24060i 0.246214 + 0.969216i \(0.420813\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) −1.50000 + 2.59808i −0.0670820 + 0.116190i
\(501\) 0 0
\(502\) 1.50000 + 2.59808i 0.0669483 + 0.115958i
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) −1.50000 2.59808i −0.0668153 0.115728i
\(505\) −27.0000 −1.20148
\(506\) −9.00000 15.5885i −0.400099 0.692991i
\(507\) 13.5000 7.79423i 0.599556 0.346154i
\(508\) −8.50000 + 14.7224i −0.377127 + 0.653202i
\(509\) −15.0000 + 25.9808i −0.664863 + 1.15158i 0.314459 + 0.949271i \(0.398177\pi\)
−0.979322 + 0.202306i \(0.935156\pi\)
\(510\) 31.1769i 1.38054i
\(511\) −1.00000 1.73205i −0.0442374 0.0766214i
\(512\) −1.00000 −0.0441942
\(513\) 36.3731i 1.60591i
\(514\) −18.0000 −0.793946
\(515\) −15.0000 25.9808i −0.660979 1.14485i
\(516\) 3.46410i 0.152499i
\(517\) 0 0
\(518\) 1.00000 1.73205i 0.0439375 0.0761019i
\(519\) 9.00000 5.19615i 0.395056 0.228086i
\(520\) −3.00000 5.19615i −0.131559 0.227866i
\(521\) 24.0000 1.05146 0.525730 0.850652i \(-0.323792\pi\)
0.525730 + 0.850652i \(0.323792\pi\)
\(522\) −9.00000 + 15.5885i −0.393919 + 0.682288i
\(523\) −13.0000 −0.568450 −0.284225 0.958758i \(-0.591736\pi\)
−0.284225 + 0.958758i \(0.591736\pi\)
\(524\) 4.50000 + 7.79423i 0.196583 + 0.340492i
\(525\) 6.00000 + 3.46410i 0.261861 + 0.151186i
\(526\) −10.5000 + 18.1865i −0.457822 + 0.792971i
\(527\) −6.00000 + 10.3923i −0.261364 + 0.452696i
\(528\) −9.00000 5.19615i −0.391675 0.226134i
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 18.0000 0.781870
\(531\) 0 0
\(532\) −7.00000 −0.303488
\(533\) 0 0
\(534\) 0 0
\(535\) −18.0000 + 31.1769i −0.778208 + 1.34790i
\(536\) 4.00000 6.92820i 0.172774 0.299253i
\(537\) 31.1769i 1.34538i
\(538\) −4.50000 7.79423i −0.194009 0.336033i
\(539\) −6.00000 −0.258438
\(540\) −13.5000 + 7.79423i −0.580948 + 0.335410i
\(541\) 38.0000 1.63375 0.816874 0.576816i \(-0.195705\pi\)
0.816874 + 0.576816i \(0.195705\pi\)
\(542\) −14.0000 24.2487i −0.601351 1.04157i
\(543\) 43.3013i 1.85824i
\(544\) 3.00000 5.19615i 0.128624 0.222783i
\(545\) −15.0000 + 25.9808i −0.642529 + 1.11289i
\(546\) 3.00000 1.73205i 0.128388 0.0741249i
\(547\) −16.0000 27.7128i −0.684111 1.18491i −0.973715 0.227768i \(-0.926857\pi\)
0.289605 0.957146i \(-0.406476\pi\)
\(548\) 6.00000 0.256307
\(549\) 7.50000 + 12.9904i 0.320092 + 0.554416i
\(550\) 24.0000 1.02336
\(551\) 21.0000 + 36.3731i 0.894630 + 1.54954i
\(552\) −4.50000 2.59808i −0.191533 0.110581i
\(553\) −2.50000 + 4.33013i −0.106311 + 0.184136i
\(554\) −8.00000 + 13.8564i −0.339887 + 0.588702i
\(555\) −9.00000 5.19615i −0.382029 0.220564i
\(556\) −2.50000 4.33013i −0.106024 0.183638i
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) 6.00000 0.254000
\(559\) 4.00000 0.169182
\(560\) 1.50000 + 2.59808i 0.0633866 + 0.109789i
\(561\) 54.0000 31.1769i 2.27988 1.31629i
\(562\) −13.5000 + 23.3827i −0.569463 + 0.986339i
\(563\) 16.5000 28.5788i 0.695392 1.20445i −0.274656 0.961542i \(-0.588564\pi\)
0.970048 0.242912i \(-0.0781026\pi\)
\(564\) 0 0
\(565\) 22.5000 + 38.9711i 0.946582 + 1.63953i
\(566\) 19.0000 0.798630
\(567\) −4.50000 7.79423i −0.188982 0.327327i
\(568\) −3.00000 −0.125877
\(569\) 9.00000 + 15.5885i 0.377300 + 0.653502i 0.990668 0.136295i \(-0.0435194\pi\)
−0.613369 + 0.789797i \(0.710186\pi\)
\(570\) 36.3731i 1.52350i
\(571\) −16.0000 + 27.7128i −0.669579 + 1.15975i 0.308443 + 0.951243i \(0.400192\pi\)
−0.978022 + 0.208502i \(0.933141\pi\)
\(572\) 6.00000 10.3923i 0.250873 0.434524i
\(573\) 13.5000 7.79423i 0.563971 0.325609i
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) −3.00000 −0.125000
\(577\) −4.00000 −0.166522 −0.0832611 0.996528i \(-0.526534\pi\)
−0.0832611 + 0.996528i \(0.526534\pi\)
\(578\) 9.50000 + 16.4545i 0.395148 + 0.684416i
\(579\) 25.5000 + 14.7224i 1.05974 + 0.611843i
\(580\) 9.00000 15.5885i 0.373705 0.647275i
\(581\) −6.00000 + 10.3923i −0.248922 + 0.431145i
\(582\) −3.00000 1.73205i −0.124354 0.0717958i
\(583\) 18.0000 + 31.1769i 0.745484 + 1.29122i
\(584\) −2.00000 −0.0827606
\(585\) −9.00000 15.5885i −0.372104 0.644503i
\(586\) 3.00000 0.123929
\(587\) 1.50000 + 2.59808i 0.0619116 + 0.107234i 0.895320 0.445424i \(-0.146947\pi\)
−0.833408 + 0.552658i \(0.813614\pi\)
\(588\) −1.50000 + 0.866025i −0.0618590 + 0.0357143i
\(589\) 7.00000 12.1244i 0.288430 0.499575i
\(590\) 0 0
\(591\) 31.1769i 1.28245i
\(592\) −1.00000 1.73205i −0.0410997 0.0711868i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) −27.0000 15.5885i −1.10782 0.639602i
\(595\) −18.0000 −0.737928
\(596\) 3.00000 + 5.19615i 0.122885 + 0.212843i
\(597\) 24.2487i 0.992434i
\(598\) 3.00000 5.19615i 0.122679 0.212486i
\(599\) 12.0000 20.7846i 0.490307 0.849236i −0.509631 0.860393i \(-0.670218\pi\)
0.999938 + 0.0111569i \(0.00355143\pi\)
\(600\) 6.00000 3.46410i 0.244949 0.141421i
\(601\) −7.00000 12.1244i −0.285536 0.494563i 0.687203 0.726465i \(-0.258838\pi\)
−0.972739 + 0.231903i \(0.925505\pi\)
\(602\) −2.00000 −0.0815139
\(603\) 12.0000 20.7846i 0.488678 0.846415i
\(604\) 23.0000 0.935857
\(605\) 37.5000 + 64.9519i 1.52459 + 2.64067i
\(606\) −13.5000 7.79423i −0.548400 0.316619i
\(607\) 11.0000 19.0526i 0.446476 0.773320i −0.551678 0.834058i \(-0.686012\pi\)
0.998154 + 0.0607380i \(0.0193454\pi\)
\(608\) −3.50000 + 6.06218i −0.141944 + 0.245854i
\(609\) 9.00000 + 5.19615i 0.364698 + 0.210559i
\(610\) −7.50000 12.9904i −0.303666 0.525965i
\(611\) 0 0
\(612\) 9.00000 15.5885i 0.363803 0.630126i
\(613\) 8.00000 0.323117 0.161558 0.986863i \(-0.448348\pi\)
0.161558 + 0.986863i \(0.448348\pi\)
\(614\) −12.5000 21.6506i −0.504459 0.873749i
\(615\) 0 0
\(616\) −3.00000 + 5.19615i −0.120873 + 0.209359i
\(617\) −21.0000 + 36.3731i −0.845428 + 1.46432i 0.0398207 + 0.999207i \(0.487321\pi\)
−0.885249 + 0.465118i \(0.846012\pi\)
\(618\) 17.3205i 0.696733i
\(619\) 3.50000 + 6.06218i 0.140677 + 0.243659i 0.927752 0.373198i \(-0.121739\pi\)
−0.787075 + 0.616858i \(0.788405\pi\)
\(620\) −6.00000 −0.240966
\(621\) −13.5000 7.79423i −0.541736 0.312772i
\(622\) −12.0000 −0.481156
\(623\) 0 0
\(624\) 3.46410i 0.138675i
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) −5.00000 + 8.66025i −0.199840 + 0.346133i
\(627\) −63.0000 + 36.3731i −2.51598 + 1.45260i
\(628\) 6.50000 + 11.2583i 0.259378 + 0.449256i
\(629\) 12.0000 0.478471
\(630\) 4.50000 + 7.79423i 0.179284 + 0.310530i
\(631\) −7.00000 −0.278666 −0.139333 0.990246i \(-0.544496\pi\)
−0.139333 + 0.990246i \(0.544496\pi\)
\(632\) 2.50000 + 4.33013i 0.0994447 + 0.172243i
\(633\) 12.0000 + 6.92820i 0.476957 + 0.275371i
\(634\) 9.00000 15.5885i 0.357436 0.619097i
\(635\) 25.5000 44.1673i 1.01194 1.75273i
\(636\) 9.00000 + 5.19615i 0.356873 + 0.206041i
\(637\) −1.00000 1.73205i −0.0396214 0.0686264i
\(638\) 36.0000 1.42525
\(639\) −9.00000 −0.356034
\(640\) 3.00000 0.118585
\(641\) −13.5000 23.3827i −0.533218 0.923561i −0.999247 0.0387913i \(-0.987649\pi\)
0.466029 0.884769i \(-0.345684\pi\)
\(642\) −18.0000 + 10.3923i −0.710403 + 0.410152i
\(643\) 2.00000 3.46410i 0.0788723 0.136611i −0.823891 0.566748i \(-0.808201\pi\)
0.902764 + 0.430137i \(0.141535\pi\)
\(644\) −1.50000 + 2.59808i −0.0591083 + 0.102379i
\(645\) 10.3923i 0.409197i
\(646\) −21.0000 36.3731i −0.826234 1.43108i
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −9.00000 −0.353553
\(649\) 0 0
\(650\) 4.00000 + 6.92820i 0.156893 + 0.271746i
\(651\) 3.46410i 0.135769i
\(652\) −1.00000 + 1.73205i −0.0391630 + 0.0678323i
\(653\) 18.0000 31.1769i 0.704394 1.22005i −0.262515 0.964928i \(-0.584552\pi\)
0.966910 0.255119i \(-0.0821147\pi\)
\(654\) −15.0000 + 8.66025i −0.586546 + 0.338643i
\(655\) −13.5000 23.3827i −0.527489 0.913637i
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) −21.0000 36.3731i −0.818044 1.41689i −0.907122 0.420869i \(-0.861725\pi\)
0.0890776 0.996025i \(-0.471608\pi\)
\(660\) 27.0000 + 15.5885i 1.05097 + 0.606780i
\(661\) −2.50000 + 4.33013i −0.0972387 + 0.168422i −0.910541 0.413419i \(-0.864334\pi\)
0.813302 + 0.581842i \(0.197668\pi\)
\(662\) 13.0000 22.5167i 0.505259 0.875135i
\(663\) 18.0000 + 10.3923i 0.699062 + 0.403604i
\(664\) 6.00000 + 10.3923i 0.232845 + 0.403300i
\(665\) 21.0000 0.814345
\(666\) −3.00000 5.19615i −0.116248 0.201347i
\(667\) 18.0000 0.696963
\(668\) 0 0
\(669\) 42.0000 24.2487i 1.62381 0.937509i
\(670\) −12.0000 + 20.7846i −0.463600 + 0.802980i
\(671\) 15.0000 25.9808i 0.579069 1.00298i
\(672\) 1.73205i 0.0668153i
\(673\) 18.5000 + 32.0429i 0.713123 + 1.23516i 0.963679 + 0.267063i \(0.0860531\pi\)
−0.250557 + 0.968102i \(0.580614\pi\)
\(674\) 22.0000 0.847408
\(675\) 18.0000 10.3923i 0.692820 0.400000i
\(676\) −9.00000 −0.346154
\(677\) −21.0000 36.3731i −0.807096 1.39793i −0.914867 0.403755i \(-0.867705\pi\)
0.107772 0.994176i \(-0.465628\pi\)
\(678\) 25.9808i 0.997785i
\(679\) −1.00000 + 1.73205i −0.0383765 + 0.0664700i
\(680\) −9.00000 + 15.5885i −0.345134 + 0.597790i
\(681\) 22.5000 12.9904i 0.862202 0.497792i
\(682\) −6.00000 10.3923i −0.229752 0.397942i
\(683\) −6.00000 −0.229584 −0.114792 0.993390i \(-0.536620\pi\)
−0.114792 + 0.993390i \(0.536620\pi\)
\(684\) −10.5000 + 18.1865i −0.401478 + 0.695379i
\(685\) −18.0000 −0.687745
\(686\) 0.500000 + 0.866025i 0.0190901 + 0.0330650i
\(687\) −1.50000 0.866025i −0.0572286 0.0330409i
\(688\) −1.00000 + 1.73205i −0.0381246 + 0.0660338i
\(689\) −6.00000 + 10.3923i −0.228582 + 0.395915i
\(690\) 13.5000 + 7.79423i 0.513936 + 0.296721i
\(691\) −23.5000 40.7032i −0.893982 1.54842i −0.835059 0.550160i \(-0.814567\pi\)
−0.0589228 0.998263i \(-0.518767\pi\)
\(692\) −6.00000 −0.228086
\(693\) −9.00000 + 15.5885i −0.341882 + 0.592157i
\(694\) 24.0000 0.911028
\(695\) 7.50000 + 12.9904i 0.284491 + 0.492753i
\(696\) 9.00000 5.19615i 0.341144 0.196960i
\(697\) 0 0
\(698\) 13.0000 22.5167i 0.492057 0.852268i
\(699\) 15.5885i 0.589610i
\(700\) −2.00000 3.46410i −0.0755929 0.130931i
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 10.3923i 0.392232i
\(703\) −14.0000 −0.528020
\(704\) 3.00000 + 5.19615i 0.113067 + 0.195837i
\(705\) 0 0
\(706\) −9.00000 + 15.5885i −0.338719 + 0.586679i
\(707\) −4.50000 + 7.79423i −0.169240 + 0.293132i
\(708\) 0 0
\(709\) 26.0000 + 45.0333i 0.976450 + 1.69126i 0.675063 + 0.737760i \(0.264116\pi\)
0.301388 + 0.953502i \(0.402550\pi\)
\(710\) 9.00000 0.337764
\(711\) 7.50000 + 12.9904i 0.281272 + 0.487177i
\(712\) 0 0
\(713\) −3.00000 5.19615i −0.112351 0.194597i
\(714\) −9.00000 5.19615i −0.336817 0.194461i
\(715\) −18.0000 + 31.1769i −0.673162 + 1.16595i
\(716\) −9.00000 + 15.5885i −0.336346 + 0.582568i
\(717\) −22.5000 12.9904i −0.840278 0.485135i
\(718\) −1.50000 2.59808i −0.0559795 0.0969593i
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 9.00000 0.335410
\(721\) −10.0000 −0.372419
\(722\) 15.0000 + 25.9808i 0.558242 + 0.966904i
\(723\) −12.0000 + 6.92820i −0.446285 + 0.257663i
\(724\) 12.5000 21.6506i 0.464559 0.804640i
\(725\) −12.0000 + 20.7846i −0.445669 + 0.771921i
\(726\) 43.3013i 1.60706i
\(727\) −4.00000 6.92820i −0.148352 0.256953i 0.782267 0.622944i \(-0.214063\pi\)
−0.930618 + 0.365991i \(0.880730\pi\)
\(728\) −2.00000 −0.0741249
\(729\) −27.0000 −1.00000
\(730\) 6.00000 0.222070
\(731\) −6.00000 10.3923i −0.221918 0.384373i
\(732\) 8.66025i 0.320092i
\(733\) −14.5000 + 25.1147i −0.535570 + 0.927634i 0.463566 + 0.886062i \(0.346570\pi\)
−0.999136 + 0.0415715i \(0.986764\pi\)
\(734\) 4.00000 6.92820i 0.147643 0.255725i
\(735\) 4.50000 2.59808i 0.165985 0.0958315i
\(736\) 1.50000 + 2.59808i 0.0552907 + 0.0957664i
\(737\) −48.0000 −1.76810
\(738\) 0 0
\(739\) 26.0000 0.956425 0.478213 0.878244i \(-0.341285\pi\)
0.478213 + 0.878244i \(0.341285\pi\)
\(740\) 3.00000 + 5.19615i 0.110282 + 0.191014i
\(741\) −21.0000 12.1244i −0.771454 0.445399i
\(742\) 3.00000 5.19615i 0.110133 0.190757i
\(743\) −18.0000 + 31.1769i −0.660356 + 1.14377i 0.320166 + 0.947361i \(0.396261\pi\)
−0.980522 + 0.196409i \(0.937072\pi\)
\(744\) −3.00000 1.73205i −0.109985 0.0635001i
\(745\) −9.00000 15.5885i −0.329734 0.571117i
\(746\) −14.0000 −0.512576
\(747\) 18.0000 + 31.1769i 0.658586 + 1.14070i
\(748\) −36.0000 −1.31629
\(749\) 6.00000 + 10.3923i 0.219235 + 0.379727i
\(750\) 4.50000 2.59808i 0.164317 0.0948683i
\(751\) 15.5000 26.8468i 0.565603 0.979653i −0.431390 0.902165i \(-0.641977\pi\)
0.996993 0.0774878i \(-0.0246899\pi\)
\(752\) 0 0
\(753\) 5.19615i 0.189358i
\(754\) 6.00000 + 10.3923i 0.218507 + 0.378465i
\(755\) −69.0000 −2.51117
\(756\) 5.19615i 0.188982i
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 1.00000 + 1.73205i 0.0363216 + 0.0629109i
\(759\) 31.1769i 1.13165i
\(760\) 10.5000 18.1865i 0.380875 0.659695i
\(761\) 21.0000 36.3731i 0.761249 1.31852i −0.180957 0.983491i \(-0.557920\pi\)
0.942207 0.335032i \(-0.108747\pi\)
\(762\) 25.5000 14.7224i 0.923768 0.533337i
\(763\) 5.00000 + 8.66025i 0.181012 + 0.313522i
\(764\) −9.00000 −0.325609
\(765\) −27.0000 + 46.7654i −0.976187 + 1.69081i
\(766\) 18.0000 0.650366
\(767\) 0 0
\(768\) 1.50000 + 0.866025i 0.0541266 + 0.0312500i
\(769\) −7.00000 + 12.1244i −0.252426 + 0.437215i −0.964193 0.265200i \(-0.914562\pi\)
0.711767 + 0.702416i \(0.247895\pi\)
\(770\) 9.00000 15.5885i 0.324337 0.561769i
\(771\) 27.0000 + 15.5885i 0.972381 + 0.561405i
\(772\) −8.50000 14.7224i −0.305922 0.529872i
\(773\) −51.0000 −1.83434 −0.917171 0.398493i \(-0.869533\pi\)
−0.917171 + 0.398493i \(0.869533\pi\)
\(774\) −3.00000 + 5.19615i −0.107833 + 0.186772i
\(775\) 8.00000 0.287368
\(776\) 1.00000 + 1.73205i 0.0358979 + 0.0621770i
\(777\) −3.00000 + 1.73205i −0.107624 + 0.0621370i
\(778\) 12.0000 20.7846i 0.430221 0.745164i
\(779\) 0 0
\(780\) 10.3923i 0.372104i
\(781\) 9.00000 + 15.5885i 0.322045 + 0.557799i
\(782\) −18.0000 −0.643679
\(783\) 27.0000 15.5885i 0.964901 0.557086i
\(784\) 1.00000 0.0357143
\(785\) −19.5000 33.7750i −0.695985 1.20548i
\(786\) 15.5885i 0.556022i
\(787\) −10.0000 + 17.3205i −0.356462 + 0.617409i −0.987367 0.158450i \(-0.949350\pi\)
0.630905 + 0.775860i \(0.282684\pi\)
\(788\) −9.00000 + 15.5885i −0.320612 + 0.555316i
\(789\) 31.5000 18.1865i 1.12143 0.647458i
\(790\) −7.50000 12.9904i −0.266838 0.462177i
\(791\) 15.0000 0.533339
\(792\) 9.00000 + 15.5885i 0.319801 + 0.553912i
\(793\) 10.0000 0.355110
\(794\) 13.0000 + 22.5167i 0.461353 + 0.799086i
\(795\) −27.0000 15.5885i −0.957591 0.552866i
\(796\) −7.00000 + 12.1244i −0.248108 + 0.429736i
\(797\) −1.50000 + 2.59808i −0.0531327 + 0.0920286i −0.891368 0.453279i \(-0.850254\pi\)
0.838236 + 0.545308i \(0.183587\pi\)
\(798\) 10.5000 + 6.06218i 0.371696 + 0.214599i
\(799\) 0 0
\(800\) −4.00000 −0.141421
\(801\) 0 0
\(802\) −3.00000 −0.105934
\(803\) 6.00000 + 10.3923i 0.211735 + 0.366736i
\(804\) −12.0000 + 6.92820i −0.423207 + 0.244339i
\(805\) 4.50000 7.79423i 0.158604 0.274710i
\(806\) 2.00000 3.46410i 0.0704470 0.122018i
\(807\) 15.5885i 0.548740i
\(808\) 4.50000 + 7.79423i 0.158309 + 0.274200i
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 27.0000 0.948683
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) −3.00000 5.19615i −0.105279 0.182349i
\(813\) 48.4974i 1.70088i
\(814\) −6.00000 + 10.3923i −0.210300 + 0.364250i
\(815\) 3.00000 5.19615i 0.105085 0.182013i
\(816\) −9.00000 + 5.19615i −0.315063 + 0.181902i
\(817\) 7.00000 + 12.1244i 0.244899 + 0.424178i
\(818\) −32.0000 −1.11885
\(819\) −6.00000 −0.209657
\(820\) 0 0
\(821\) 12.0000 + 20.7846i 0.418803 + 0.725388i 0.995819 0.0913446i \(-0.0291165\pi\)
−0.577016 + 0.816733i \(0.695783\pi\)
\(822\) −9.00000 5.19615i −0.313911 0.181237i
\(823\) −4.00000 + 6.92820i −0.139431 + 0.241502i −0.927281 0.374365i \(-0.877861\pi\)
0.787850 + 0.615867i \(0.211194\pi\)
\(824\) −5.00000 + 8.66025i −0.174183 + 0.301694i
\(825\) −36.0000 20.7846i −1.25336 0.723627i
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 4.50000 + 7.79423i 0.156386 + 0.270868i
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) −18.0000 31.1769i −0.624789 1.08217i
\(831\) 24.0000 13.8564i 0.832551 0.480673i
\(832\) −1.00000 + 1.73205i −0.0346688 + 0.0600481i
\(833\) −3.00000 + 5.19615i −0.103944 + 0.180036i
\(834\) 8.66025i 0.299880i
\(835\) 0 0
\(836\) 42.0000 1.45260
\(837\) −9.00000 5.19615i −0.311086 0.179605i
\(838\) −15.0000 −0.518166
\(839\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 5.19615i 0.179284i
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) −5.00000 + 8.66025i −0.172311 + 0.298452i
\(843\) 40.5000 23.3827i 1.39489 0.805342i
\(844\) −4.00000 6.92820i −0.137686 0.238479i
\(845\) 27.0000 0.928828
\(846\) 0 0
\(847\) 25.0000 0.859010
\(848\) −3.00000 5.19615i −0.103020 0.178437i
\(849\) −28.5000 16.4545i −0.978117 0.564716i
\(850\) 12.0000 20.7846i 0.411597 0.712906i
\(851\) −3.00000 + 5.19615i −0.102839 + 0.178122i
\(852\) 4.50000 + 2.59808i 0.154167 + 0.0890086i
\(853\) −17.5000 30.3109i −0.599189 1.03783i −0.992941 0.118609i \(-0.962157\pi\)
0.393753 0.919216i \(-0.371177\pi\)
\(854\) −5.00000 −0.171096
\(855\) 31.5000 54.5596i 1.07728 1.86590i
\(856\) 12.0000 0.410152
\(857\) −27.0000 46.7654i −0.922302 1.59747i −0.795843 0.605503i \(-0.792972\pi\)
−0.126459 0.991972i \(-0.540361\pi\)
\(858\) −18.0000 + 10.3923i −0.614510 + 0.354787i
\(859\) 2.00000 3.46410i 0.0682391 0.118194i −0.829887 0.557931i \(-0.811595\pi\)
0.898126 + 0.439738i \(0.144929\pi\)
\(860\) 3.00000 5.19615i 0.102299 0.177187i
\(861\) 0 0
\(862\) 6.00000 + 10.3923i 0.204361 + 0.353963i
\(863\) 9.00000 0.306364 0.153182 0.988198i \(-0.451048\pi\)
0.153182 + 0.988198i \(0.451048\pi\)
\(864\) 4.50000 + 2.59808i 0.153093 + 0.0883883i
\(865\) 18.0000 0.612018
\(866\) 7.00000 + 12.1244i 0.237870 + 0.412002i
\(867\) 32.9090i 1.11765i
\(868\) −1.00000 + 1.73205i −0.0339422 + 0.0587896i
\(869\) 15.0000 25.9808i 0.508840 0.881337i
\(870\) −27.0000 + 15.5885i −0.915386 + 0.528498i
\(871\) −8.00000 13.8564i −0.271070 0.469506i
\(872\) 10.0000 0.338643
\(873\) 3.00000 + 5.19615i 0.101535 + 0.175863i
\(874\) 21.0000 0.710336
\(875\) −1.50000 2.59808i −0.0507093 0.0878310i
\(876\) 3.00000 + 1.73205i 0.101361 + 0.0585206i
\(877\) 11.0000 19.0526i 0.371444 0.643359i −0.618344 0.785907i \(-0.712196\pi\)
0.989788 + 0.142548i \(0.0455296\pi\)
\(878\) 4.00000 6.92820i 0.134993 0.233816i
\(879\) −4.50000 2.59808i −0.151781 0.0876309i
\(880\) −9.00000 15.5885i −0.303390 0.525487i
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 3.00000 0.101015
\(883\) −34.0000 −1.14419 −0.572096 0.820187i \(-0.693869\pi\)
−0.572096 + 0.820187i \(0.693869\pi\)
\(884\) −6.00000 10.3923i −0.201802 0.349531i
\(885\) 0 0
\(886\) 9.00000 15.5885i 0.302361 0.523704i
\(887\) −12.0000 + 20.7846i −0.402921 + 0.697879i −0.994077 0.108678i \(-0.965338\pi\)
0.591156 + 0.806557i \(0.298672\pi\)
\(888\) 3.46410i 0.116248i
\(889\) −8.50000 14.7224i −0.285081 0.493775i
\(890\) 0 0
\(891\) 27.0000 + 46.7654i 0.904534 + 1.56670i
\(892\) −28.0000 −0.937509
\(893\) 0 0
\(894\) 10.3923i 0.347571i
\(895\) 27.0000 46.7654i 0.902510 1.56319i
\(896\) 0.500000 0.866025i 0.0167038 0.0289319i
\(897\) −9.00000 + 5.19615i −0.300501 + 0.173494i
\(898\) 16.5000 + 28.5788i 0.550612 + 0.953688i
\(899\) 12.0000 0.400222
\(900\) −12.0000 −0.400000
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 3.00000 + 1.73205i 0.0998337 + 0.0576390i
\(904\) 7.50000 12.9904i 0.249446 0.432054i
\(905\) −37.5000 + 64.9519i −1.24654 + 2.15907i
\(906\) −34.5000 19.9186i −1.14619 0.661751i
\(907\) −16.0000 27.7128i −0.531271 0.920189i −0.999334 0.0364935i \(-0.988381\pi\)
0.468063 0.883695i \(-0.344952\pi\)
\(908\) −15.0000 −0.497792
\(909\) 13.5000 + 23.3827i 0.447767 + 0.775555i
\(910\) 6.00000 0.198898
\(911\) −7.50000 12.9904i −0.248486 0.430391i 0.714620 0.699513i \(-0.246600\pi\)
−0.963106 + 0.269122i \(0.913266\pi\)
\(912\) 10.5000 6.06218i 0.347690 0.200739i
\(913\) 36.0000 62.3538i 1.19143 2.06361i
\(914\) 14.5000 25.1147i 0.479617 0.830722i
\(915\) 25.9808i 0.858898i
\(916\) 0.500000 + 0.866025i 0.0165205 + 0.0286143i
\(917\) −9.00000 −0.297206
\(918\) −27.0000 + 15.5885i −0.891133 + 0.514496i
\(919\) 11.0000 0.362857 0.181428 0.983404i \(-0.441928\pi\)
0.181428 + 0.983404i \(0.441928\pi\)
\(920\) −4.50000 7.79423i −0.148361 0.256968i
\(921\) 43.3013i 1.42683i
\(922\) −16.5000 + 28.5788i −0.543399 + 0.941194i
\(923\) −3.00000 + 5.19615i −0.0987462 + 0.171033i
\(924\) 9.00000 5.19615i 0.296078 0.170941i
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) 13.0000 0.427207
\(927\) −15.0000 + 25.9808i −0.492665 + 0.853320i
\(928\) −6.00000 −0.196960
\(929\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) 9.00000 + 5.19615i 0.295122 + 0.170389i
\(931\) 3.50000 6.06218i 0.114708 0.198680i
\(932\) −4.50000 + 7.79423i −0.147402 + 0.255308i
\(933\) 18.0000 + 10.3923i 0.589294 + 0.340229i
\(934\) 6.00000 + 10.3923i 0.196326 + 0.340047i
\(935\) 108.000 3.53198
\(936\) −3.00000 + 5.19615i −0.0980581 + 0.169842i
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) 4.00000 + 6.92820i 0.130605 + 0.226214i
\(939\) 15.0000 8.66025i 0.489506 0.282617i
\(940\) 0 0
\(941\) −10.5000 + 18.1865i −0.342290 + 0.592864i −0.984858 0.173365i \(-0.944536\pi\)
0.642567 + 0.766229i \(0.277869\pi\)
\(942\) 22.5167i 0.733632i
\(943\) 0 0
\(944\) 0 0
\(945\) 15.5885i 0.507093i
\(946\) 12.0000 0.390154
\(947\) 12.0000 + 20.7846i 0.389948 + 0.675409i 0.992442 0.122714i \(-0.0391598\pi\)
−0.602494 + 0.798123i \(0.705826\pi\)
\(948\) 8.66025i 0.281272i
\(949\) −2.00000 + 3.46410i −0.0649227 + 0.112449i
\(950\) −14.0000 + 24.2487i −0.454220 + 0.786732i
\(951\) −27.0000 + 15.5885i −0.875535 + 0.505490i
\(952\) 3.00000 + 5.19615i 0.0972306 + 0.168408i
\(953\) 42.0000 1.36051 0.680257 0.732974i \(-0.261868\pi\)
0.680257 + 0.732974i \(0.261868\pi\)
\(954\) −9.00000 15.5885i −0.291386 0.504695i
\(955\) 27.0000 0.873699
\(956\) 7.50000 + 12.9904i 0.242567 + 0.420139i
\(957\) −54.0000 31.1769i −1.74557 1.00781i
\(958\) −3.00000 + 5.19615i −0.0969256 + 0.167880i
\(959\) −3.00000 + 5.19615i −0.0968751 + 0.167793i
\(960\) −4.50000 2.59808i −0.145237 0.0838525i
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) −4.00000 −0.128965
\(963\) 36.0000 1.16008
\(964\) 8.00000 0.257663
\(965\) 25.5000 + 44.1673i 0.820874 + 1.42180i
\(966\) 4.50000 2.59808i 0.144785 0.0835917i
\(967\) −8.50000 + 14.7224i −0.273342 + 0.473441i −0.969715 0.244238i \(-0.921462\pi\)
0.696374 + 0.717679i \(0.254796\pi\)
\(968\) 12.5000 21.6506i 0.401765 0.695878i
\(969\) 72.7461i 2.33694i
\(970\) −3.00000 5.19615i −0.0963242 0.166838i
\(971\) −15.0000 −0.481373 −0.240686 0.970603i \(-0.577373\pi\)
−0.240686 + 0.970603i \(0.577373\pi\)
\(972\) 13.5000 + 7.79423i 0.433013 + 0.250000i
\(973\) 5.00000 0.160293
\(974\) 14.5000 + 25.1147i 0.464610 + 0.804728i
\(975\) 13.8564i 0.443760i
\(976\) −2.50000 + 4.33013i −0.0800230 + 0.138604i
\(977\) −3.00000 + 5.19615i −0.0959785 + 0.166240i −0.910017 0.414572i \(-0.863931\pi\)
0.814038 + 0.580812i \(0.197265\pi\)
\(978\) 3.00000 1.73205i 0.0959294 0.0553849i
\(979\) 0 0
\(980\) −3.00000 −0.0958315
\(981\) 30.0000 0.957826
\(982\) −18.0000 −0.574403
\(983\) −9.00000 15.5885i −0.287055 0.497195i 0.686050 0.727554i \(-0.259343\pi\)
−0.973106 + 0.230360i \(0.926010\pi\)
\(984\) 0 0
\(985\) 27.0000 46.7654i 0.860292 1.49007i
\(986\) 18.0000 31.1769i 0.573237 0.992875i
\(987\) 0 0
\(988\) 7.00000 + 12.1244i 0.222700 + 0.385727i
\(989\) 6.00000 0.190789
\(990\) −27.0000 46.7654i −0.858116 1.48630i
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 1.00000 + 1.73205i 0.0317500 + 0.0549927i
\(993\) −39.0000 + 22.5167i −1.23763 + 0.714545i
\(994\) 1.50000 2.59808i 0.0475771 0.0824060i
\(995\) 21.0000 36.3731i 0.665745 1.15310i
\(996\) 20.7846i 0.658586i
\(997\) 27.5000 + 47.6314i 0.870934 + 1.50850i 0.861032 + 0.508551i \(0.169818\pi\)
0.00990158 + 0.999951i \(0.496848\pi\)
\(998\) −32.0000 −1.01294
\(999\) 10.3923i 0.328798i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.2.f.a.85.1 yes 2
3.2 odd 2 378.2.f.a.253.1 2
4.3 odd 2 1008.2.r.d.337.1 2
7.2 even 3 882.2.h.j.67.1 2
7.3 odd 6 882.2.e.d.373.1 2
7.4 even 3 882.2.e.b.373.1 2
7.5 odd 6 882.2.h.f.67.1 2
7.6 odd 2 882.2.f.h.589.1 2
9.2 odd 6 378.2.f.a.127.1 2
9.4 even 3 1134.2.a.a.1.1 1
9.5 odd 6 1134.2.a.h.1.1 1
9.7 even 3 inner 126.2.f.a.43.1 2
12.11 even 2 3024.2.r.a.1009.1 2
21.2 odd 6 2646.2.h.e.361.1 2
21.5 even 6 2646.2.h.a.361.1 2
21.11 odd 6 2646.2.e.f.1549.1 2
21.17 even 6 2646.2.e.j.1549.1 2
21.20 even 2 2646.2.f.c.1765.1 2
36.7 odd 6 1008.2.r.d.673.1 2
36.11 even 6 3024.2.r.a.2017.1 2
36.23 even 6 9072.2.a.w.1.1 1
36.31 odd 6 9072.2.a.c.1.1 1
63.2 odd 6 2646.2.e.f.2125.1 2
63.11 odd 6 2646.2.h.e.667.1 2
63.13 odd 6 7938.2.a.l.1.1 1
63.16 even 3 882.2.e.b.655.1 2
63.20 even 6 2646.2.f.c.883.1 2
63.25 even 3 882.2.h.j.79.1 2
63.34 odd 6 882.2.f.h.295.1 2
63.38 even 6 2646.2.h.a.667.1 2
63.41 even 6 7938.2.a.u.1.1 1
63.47 even 6 2646.2.e.j.2125.1 2
63.52 odd 6 882.2.h.f.79.1 2
63.61 odd 6 882.2.e.d.655.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.a.43.1 2 9.7 even 3 inner
126.2.f.a.85.1 yes 2 1.1 even 1 trivial
378.2.f.a.127.1 2 9.2 odd 6
378.2.f.a.253.1 2 3.2 odd 2
882.2.e.b.373.1 2 7.4 even 3
882.2.e.b.655.1 2 63.16 even 3
882.2.e.d.373.1 2 7.3 odd 6
882.2.e.d.655.1 2 63.61 odd 6
882.2.f.h.295.1 2 63.34 odd 6
882.2.f.h.589.1 2 7.6 odd 2
882.2.h.f.67.1 2 7.5 odd 6
882.2.h.f.79.1 2 63.52 odd 6
882.2.h.j.67.1 2 7.2 even 3
882.2.h.j.79.1 2 63.25 even 3
1008.2.r.d.337.1 2 4.3 odd 2
1008.2.r.d.673.1 2 36.7 odd 6
1134.2.a.a.1.1 1 9.4 even 3
1134.2.a.h.1.1 1 9.5 odd 6
2646.2.e.f.1549.1 2 21.11 odd 6
2646.2.e.f.2125.1 2 63.2 odd 6
2646.2.e.j.1549.1 2 21.17 even 6
2646.2.e.j.2125.1 2 63.47 even 6
2646.2.f.c.883.1 2 63.20 even 6
2646.2.f.c.1765.1 2 21.20 even 2
2646.2.h.a.361.1 2 21.5 even 6
2646.2.h.a.667.1 2 63.38 even 6
2646.2.h.e.361.1 2 21.2 odd 6
2646.2.h.e.667.1 2 63.11 odd 6
3024.2.r.a.1009.1 2 12.11 even 2
3024.2.r.a.2017.1 2 36.11 even 6
7938.2.a.l.1.1 1 63.13 odd 6
7938.2.a.u.1.1 1 63.41 even 6
9072.2.a.c.1.1 1 36.31 odd 6
9072.2.a.w.1.1 1 36.23 even 6