Properties

Label 882.2.f.h.589.1
Level $882$
Weight $2$
Character 882.589
Analytic conductor $7.043$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(295,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.295");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 589.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 882.589
Dual form 882.2.f.h.295.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +1.73205i q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.50000 + 2.59808i) q^{5} +(-1.50000 + 0.866025i) q^{6} -1.00000 q^{8} -3.00000 q^{9} -3.00000 q^{10} +(3.00000 + 5.19615i) q^{11} +(-1.50000 - 0.866025i) q^{12} +(1.00000 - 1.73205i) q^{13} +(-4.50000 - 2.59808i) q^{15} +(-0.500000 - 0.866025i) q^{16} -6.00000 q^{17} +(-1.50000 - 2.59808i) q^{18} +7.00000 q^{19} +(-1.50000 - 2.59808i) q^{20} +(-3.00000 + 5.19615i) q^{22} +(-1.50000 + 2.59808i) q^{23} -1.73205i q^{24} +(-2.00000 - 3.46410i) q^{25} +2.00000 q^{26} -5.19615i q^{27} +(-3.00000 - 5.19615i) q^{29} -5.19615i q^{30} +(1.00000 - 1.73205i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-9.00000 + 5.19615i) q^{33} +(-3.00000 - 5.19615i) q^{34} +(1.50000 - 2.59808i) q^{36} +2.00000 q^{37} +(3.50000 + 6.06218i) q^{38} +(3.00000 + 1.73205i) q^{39} +(1.50000 - 2.59808i) q^{40} +(-1.00000 - 1.73205i) q^{43} -6.00000 q^{44} +(4.50000 - 7.79423i) q^{45} -3.00000 q^{46} +(1.50000 - 0.866025i) q^{48} +(2.00000 - 3.46410i) q^{50} -10.3923i q^{51} +(1.00000 + 1.73205i) q^{52} +6.00000 q^{53} +(4.50000 - 2.59808i) q^{54} -18.0000 q^{55} +12.1244i q^{57} +(3.00000 - 5.19615i) q^{58} +(4.50000 - 2.59808i) q^{60} +(2.50000 + 4.33013i) q^{61} +2.00000 q^{62} +1.00000 q^{64} +(3.00000 + 5.19615i) q^{65} +(-9.00000 - 5.19615i) q^{66} +(-4.00000 + 6.92820i) q^{67} +(3.00000 - 5.19615i) q^{68} +(-4.50000 - 2.59808i) q^{69} +3.00000 q^{71} +3.00000 q^{72} -2.00000 q^{73} +(1.00000 + 1.73205i) q^{74} +(6.00000 - 3.46410i) q^{75} +(-3.50000 + 6.06218i) q^{76} +3.46410i q^{78} +(-2.50000 - 4.33013i) q^{79} +3.00000 q^{80} +9.00000 q^{81} +(6.00000 + 10.3923i) q^{83} +(9.00000 - 15.5885i) q^{85} +(1.00000 - 1.73205i) q^{86} +(9.00000 - 5.19615i) q^{87} +(-3.00000 - 5.19615i) q^{88} +9.00000 q^{90} +(-1.50000 - 2.59808i) q^{92} +(3.00000 + 1.73205i) q^{93} +(-10.5000 + 18.1865i) q^{95} +(1.50000 + 0.866025i) q^{96} +(1.00000 + 1.73205i) q^{97} +(-9.00000 - 15.5885i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 3 q^{5} - 3 q^{6} - 2 q^{8} - 6 q^{9} - 6 q^{10} + 6 q^{11} - 3 q^{12} + 2 q^{13} - 9 q^{15} - q^{16} - 12 q^{17} - 3 q^{18} + 14 q^{19} - 3 q^{20} - 6 q^{22} - 3 q^{23} - 4 q^{25}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 1.73205i 1.00000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.50000 + 2.59808i −0.670820 + 1.16190i 0.306851 + 0.951757i \(0.400725\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) −1.50000 + 0.866025i −0.612372 + 0.353553i
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −3.00000 −1.00000
\(10\) −3.00000 −0.948683
\(11\) 3.00000 + 5.19615i 0.904534 + 1.56670i 0.821541 + 0.570149i \(0.193114\pi\)
0.0829925 + 0.996550i \(0.473552\pi\)
\(12\) −1.50000 0.866025i −0.433013 0.250000i
\(13\) 1.00000 1.73205i 0.277350 0.480384i −0.693375 0.720577i \(-0.743877\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) 0 0
\(15\) −4.50000 2.59808i −1.16190 0.670820i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) −1.50000 2.59808i −0.353553 0.612372i
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) −1.50000 2.59808i −0.335410 0.580948i
\(21\) 0 0
\(22\) −3.00000 + 5.19615i −0.639602 + 1.10782i
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) 1.73205i 0.353553i
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 2.00000 0.392232
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) −3.00000 5.19615i −0.557086 0.964901i −0.997738 0.0672232i \(-0.978586\pi\)
0.440652 0.897678i \(-0.354747\pi\)
\(30\) 5.19615i 0.948683i
\(31\) 1.00000 1.73205i 0.179605 0.311086i −0.762140 0.647412i \(-0.775851\pi\)
0.941745 + 0.336327i \(0.109185\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −9.00000 + 5.19615i −1.56670 + 0.904534i
\(34\) −3.00000 5.19615i −0.514496 0.891133i
\(35\) 0 0
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 3.50000 + 6.06218i 0.567775 + 0.983415i
\(39\) 3.00000 + 1.73205i 0.480384 + 0.277350i
\(40\) 1.50000 2.59808i 0.237171 0.410792i
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 0 0
\(43\) −1.00000 1.73205i −0.152499 0.264135i 0.779647 0.626219i \(-0.215399\pi\)
−0.932145 + 0.362084i \(0.882065\pi\)
\(44\) −6.00000 −0.904534
\(45\) 4.50000 7.79423i 0.670820 1.16190i
\(46\) −3.00000 −0.442326
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 1.50000 0.866025i 0.216506 0.125000i
\(49\) 0 0
\(50\) 2.00000 3.46410i 0.282843 0.489898i
\(51\) 10.3923i 1.45521i
\(52\) 1.00000 + 1.73205i 0.138675 + 0.240192i
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 4.50000 2.59808i 0.612372 0.353553i
\(55\) −18.0000 −2.42712
\(56\) 0 0
\(57\) 12.1244i 1.60591i
\(58\) 3.00000 5.19615i 0.393919 0.682288i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 4.50000 2.59808i 0.580948 0.335410i
\(61\) 2.50000 + 4.33013i 0.320092 + 0.554416i 0.980507 0.196485i \(-0.0629528\pi\)
−0.660415 + 0.750901i \(0.729619\pi\)
\(62\) 2.00000 0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.00000 + 5.19615i 0.372104 + 0.644503i
\(66\) −9.00000 5.19615i −1.10782 0.639602i
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) 3.00000 5.19615i 0.363803 0.630126i
\(69\) −4.50000 2.59808i −0.541736 0.312772i
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 3.00000 0.353553
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 1.00000 + 1.73205i 0.116248 + 0.201347i
\(75\) 6.00000 3.46410i 0.692820 0.400000i
\(76\) −3.50000 + 6.06218i −0.401478 + 0.695379i
\(77\) 0 0
\(78\) 3.46410i 0.392232i
\(79\) −2.50000 4.33013i −0.281272 0.487177i 0.690426 0.723403i \(-0.257423\pi\)
−0.971698 + 0.236225i \(0.924090\pi\)
\(80\) 3.00000 0.335410
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 6.00000 + 10.3923i 0.658586 + 1.14070i 0.980982 + 0.194099i \(0.0621783\pi\)
−0.322396 + 0.946605i \(0.604488\pi\)
\(84\) 0 0
\(85\) 9.00000 15.5885i 0.976187 1.69081i
\(86\) 1.00000 1.73205i 0.107833 0.186772i
\(87\) 9.00000 5.19615i 0.964901 0.557086i
\(88\) −3.00000 5.19615i −0.319801 0.553912i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 9.00000 0.948683
\(91\) 0 0
\(92\) −1.50000 2.59808i −0.156386 0.270868i
\(93\) 3.00000 + 1.73205i 0.311086 + 0.179605i
\(94\) 0 0
\(95\) −10.5000 + 18.1865i −1.07728 + 1.86590i
\(96\) 1.50000 + 0.866025i 0.153093 + 0.0883883i
\(97\) 1.00000 + 1.73205i 0.101535 + 0.175863i 0.912317 0.409484i \(-0.134291\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(98\) 0 0
\(99\) −9.00000 15.5885i −0.904534 1.56670i
\(100\) 4.00000 0.400000
\(101\) 4.50000 + 7.79423i 0.447767 + 0.775555i 0.998240 0.0592978i \(-0.0188862\pi\)
−0.550474 + 0.834853i \(0.685553\pi\)
\(102\) 9.00000 5.19615i 0.891133 0.514496i
\(103\) −5.00000 + 8.66025i −0.492665 + 0.853320i −0.999964 0.00844953i \(-0.997310\pi\)
0.507300 + 0.861770i \(0.330644\pi\)
\(104\) −1.00000 + 1.73205i −0.0980581 + 0.169842i
\(105\) 0 0
\(106\) 3.00000 + 5.19615i 0.291386 + 0.504695i
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 4.50000 + 2.59808i 0.433013 + 0.250000i
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) −9.00000 15.5885i −0.858116 1.48630i
\(111\) 3.46410i 0.328798i
\(112\) 0 0
\(113\) −7.50000 + 12.9904i −0.705541 + 1.22203i 0.260955 + 0.965351i \(0.415962\pi\)
−0.966496 + 0.256681i \(0.917371\pi\)
\(114\) −10.5000 + 6.06218i −0.983415 + 0.567775i
\(115\) −4.50000 7.79423i −0.419627 0.726816i
\(116\) 6.00000 0.557086
\(117\) −3.00000 + 5.19615i −0.277350 + 0.480384i
\(118\) 0 0
\(119\) 0 0
\(120\) 4.50000 + 2.59808i 0.410792 + 0.237171i
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) −2.50000 + 4.33013i −0.226339 + 0.392031i
\(123\) 0 0
\(124\) 1.00000 + 1.73205i 0.0898027 + 0.155543i
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 17.0000 1.50851 0.754253 0.656584i \(-0.227999\pi\)
0.754253 + 0.656584i \(0.227999\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 3.00000 1.73205i 0.264135 0.152499i
\(130\) −3.00000 + 5.19615i −0.263117 + 0.455733i
\(131\) −4.50000 + 7.79423i −0.393167 + 0.680985i −0.992865 0.119241i \(-0.961954\pi\)
0.599699 + 0.800226i \(0.295287\pi\)
\(132\) 10.3923i 0.904534i
\(133\) 0 0
\(134\) −8.00000 −0.691095
\(135\) 13.5000 + 7.79423i 1.16190 + 0.670820i
\(136\) 6.00000 0.514496
\(137\) −3.00000 5.19615i −0.256307 0.443937i 0.708942 0.705266i \(-0.249173\pi\)
−0.965250 + 0.261329i \(0.915839\pi\)
\(138\) 5.19615i 0.442326i
\(139\) 2.50000 4.33013i 0.212047 0.367277i −0.740308 0.672268i \(-0.765320\pi\)
0.952355 + 0.304991i \(0.0986536\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.50000 + 2.59808i 0.125877 + 0.218026i
\(143\) 12.0000 1.00349
\(144\) 1.50000 + 2.59808i 0.125000 + 0.216506i
\(145\) 18.0000 1.49482
\(146\) −1.00000 1.73205i −0.0827606 0.143346i
\(147\) 0 0
\(148\) −1.00000 + 1.73205i −0.0821995 + 0.142374i
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) 6.00000 + 3.46410i 0.489898 + 0.282843i
\(151\) −11.5000 19.9186i −0.935857 1.62095i −0.773099 0.634285i \(-0.781294\pi\)
−0.162758 0.986666i \(-0.552039\pi\)
\(152\) −7.00000 −0.567775
\(153\) 18.0000 1.45521
\(154\) 0 0
\(155\) 3.00000 + 5.19615i 0.240966 + 0.417365i
\(156\) −3.00000 + 1.73205i −0.240192 + 0.138675i
\(157\) −6.50000 + 11.2583i −0.518756 + 0.898513i 0.481006 + 0.876717i \(0.340272\pi\)
−0.999762 + 0.0217953i \(0.993062\pi\)
\(158\) 2.50000 4.33013i 0.198889 0.344486i
\(159\) 10.3923i 0.824163i
\(160\) 1.50000 + 2.59808i 0.118585 + 0.205396i
\(161\) 0 0
\(162\) 4.50000 + 7.79423i 0.353553 + 0.612372i
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 0 0
\(165\) 31.1769i 2.42712i
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 18.0000 1.38054
\(171\) −21.0000 −1.60591
\(172\) 2.00000 0.152499
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 9.00000 + 5.19615i 0.682288 + 0.393919i
\(175\) 0 0
\(176\) 3.00000 5.19615i 0.226134 0.391675i
\(177\) 0 0
\(178\) 0 0
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 4.50000 + 7.79423i 0.335410 + 0.580948i
\(181\) 25.0000 1.85824 0.929118 0.369784i \(-0.120568\pi\)
0.929118 + 0.369784i \(0.120568\pi\)
\(182\) 0 0
\(183\) −7.50000 + 4.33013i −0.554416 + 0.320092i
\(184\) 1.50000 2.59808i 0.110581 0.191533i
\(185\) −3.00000 + 5.19615i −0.220564 + 0.382029i
\(186\) 3.46410i 0.254000i
\(187\) −18.0000 31.1769i −1.31629 2.27988i
\(188\) 0 0
\(189\) 0 0
\(190\) −21.0000 −1.52350
\(191\) 4.50000 + 7.79423i 0.325609 + 0.563971i 0.981635 0.190767i \(-0.0610975\pi\)
−0.656027 + 0.754738i \(0.727764\pi\)
\(192\) 1.73205i 0.125000i
\(193\) −8.50000 + 14.7224i −0.611843 + 1.05974i 0.379086 + 0.925361i \(0.376238\pi\)
−0.990930 + 0.134382i \(0.957095\pi\)
\(194\) −1.00000 + 1.73205i −0.0717958 + 0.124354i
\(195\) −9.00000 + 5.19615i −0.644503 + 0.372104i
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 9.00000 15.5885i 0.639602 1.10782i
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 2.00000 + 3.46410i 0.141421 + 0.244949i
\(201\) −12.0000 6.92820i −0.846415 0.488678i
\(202\) −4.50000 + 7.79423i −0.316619 + 0.548400i
\(203\) 0 0
\(204\) 9.00000 + 5.19615i 0.630126 + 0.363803i
\(205\) 0 0
\(206\) −10.0000 −0.696733
\(207\) 4.50000 7.79423i 0.312772 0.541736i
\(208\) −2.00000 −0.138675
\(209\) 21.0000 + 36.3731i 1.45260 + 2.51598i
\(210\) 0 0
\(211\) −4.00000 + 6.92820i −0.275371 + 0.476957i −0.970229 0.242190i \(-0.922134\pi\)
0.694857 + 0.719148i \(0.255467\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) 5.19615i 0.356034i
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) 6.00000 0.409197
\(216\) 5.19615i 0.353553i
\(217\) 0 0
\(218\) −5.00000 8.66025i −0.338643 0.586546i
\(219\) 3.46410i 0.234082i
\(220\) 9.00000 15.5885i 0.606780 1.05097i
\(221\) −6.00000 + 10.3923i −0.403604 + 0.699062i
\(222\) −3.00000 + 1.73205i −0.201347 + 0.116248i
\(223\) −14.0000 24.2487i −0.937509 1.62381i −0.770097 0.637927i \(-0.779792\pi\)
−0.167412 0.985887i \(-0.553541\pi\)
\(224\) 0 0
\(225\) 6.00000 + 10.3923i 0.400000 + 0.692820i
\(226\) −15.0000 −0.997785
\(227\) −7.50000 12.9904i −0.497792 0.862202i 0.502204 0.864749i \(-0.332523\pi\)
−0.999997 + 0.00254715i \(0.999189\pi\)
\(228\) −10.5000 6.06218i −0.695379 0.401478i
\(229\) −0.500000 + 0.866025i −0.0330409 + 0.0572286i −0.882073 0.471113i \(-0.843853\pi\)
0.849032 + 0.528341i \(0.177186\pi\)
\(230\) 4.50000 7.79423i 0.296721 0.513936i
\(231\) 0 0
\(232\) 3.00000 + 5.19615i 0.196960 + 0.341144i
\(233\) 9.00000 0.589610 0.294805 0.955557i \(-0.404745\pi\)
0.294805 + 0.955557i \(0.404745\pi\)
\(234\) −6.00000 −0.392232
\(235\) 0 0
\(236\) 0 0
\(237\) 7.50000 4.33013i 0.487177 0.281272i
\(238\) 0 0
\(239\) 7.50000 12.9904i 0.485135 0.840278i −0.514719 0.857359i \(-0.672104\pi\)
0.999854 + 0.0170808i \(0.00543724\pi\)
\(240\) 5.19615i 0.335410i
\(241\) 4.00000 + 6.92820i 0.257663 + 0.446285i 0.965615 0.259975i \(-0.0837143\pi\)
−0.707953 + 0.706260i \(0.750381\pi\)
\(242\) −25.0000 −1.60706
\(243\) 15.5885i 1.00000i
\(244\) −5.00000 −0.320092
\(245\) 0 0
\(246\) 0 0
\(247\) 7.00000 12.1244i 0.445399 0.771454i
\(248\) −1.00000 + 1.73205i −0.0635001 + 0.109985i
\(249\) −18.0000 + 10.3923i −1.14070 + 0.658586i
\(250\) −1.50000 2.59808i −0.0948683 0.164317i
\(251\) −3.00000 −0.189358 −0.0946792 0.995508i \(-0.530183\pi\)
−0.0946792 + 0.995508i \(0.530183\pi\)
\(252\) 0 0
\(253\) −18.0000 −1.13165
\(254\) 8.50000 + 14.7224i 0.533337 + 0.923768i
\(255\) 27.0000 + 15.5885i 1.69081 + 0.976187i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 9.00000 15.5885i 0.561405 0.972381i −0.435970 0.899961i \(-0.643595\pi\)
0.997374 0.0724199i \(-0.0230722\pi\)
\(258\) 3.00000 + 1.73205i 0.186772 + 0.107833i
\(259\) 0 0
\(260\) −6.00000 −0.372104
\(261\) 9.00000 + 15.5885i 0.557086 + 0.964901i
\(262\) −9.00000 −0.556022
\(263\) 10.5000 + 18.1865i 0.647458 + 1.12143i 0.983728 + 0.179664i \(0.0575011\pi\)
−0.336270 + 0.941766i \(0.609166\pi\)
\(264\) 9.00000 5.19615i 0.553912 0.319801i
\(265\) −9.00000 + 15.5885i −0.552866 + 0.957591i
\(266\) 0 0
\(267\) 0 0
\(268\) −4.00000 6.92820i −0.244339 0.423207i
\(269\) 9.00000 0.548740 0.274370 0.961624i \(-0.411531\pi\)
0.274370 + 0.961624i \(0.411531\pi\)
\(270\) 15.5885i 0.948683i
\(271\) 28.0000 1.70088 0.850439 0.526073i \(-0.176336\pi\)
0.850439 + 0.526073i \(0.176336\pi\)
\(272\) 3.00000 + 5.19615i 0.181902 + 0.315063i
\(273\) 0 0
\(274\) 3.00000 5.19615i 0.181237 0.313911i
\(275\) 12.0000 20.7846i 0.723627 1.25336i
\(276\) 4.50000 2.59808i 0.270868 0.156386i
\(277\) 8.00000 + 13.8564i 0.480673 + 0.832551i 0.999754 0.0221745i \(-0.00705893\pi\)
−0.519081 + 0.854725i \(0.673726\pi\)
\(278\) 5.00000 0.299880
\(279\) −3.00000 + 5.19615i −0.179605 + 0.311086i
\(280\) 0 0
\(281\) 13.5000 + 23.3827i 0.805342 + 1.39489i 0.916060 + 0.401042i \(0.131352\pi\)
−0.110717 + 0.993852i \(0.535315\pi\)
\(282\) 0 0
\(283\) −9.50000 + 16.4545i −0.564716 + 0.978117i 0.432360 + 0.901701i \(0.357681\pi\)
−0.997076 + 0.0764162i \(0.975652\pi\)
\(284\) −1.50000 + 2.59808i −0.0890086 + 0.154167i
\(285\) −31.5000 18.1865i −1.86590 1.07728i
\(286\) 6.00000 + 10.3923i 0.354787 + 0.614510i
\(287\) 0 0
\(288\) −1.50000 + 2.59808i −0.0883883 + 0.153093i
\(289\) 19.0000 1.11765
\(290\) 9.00000 + 15.5885i 0.528498 + 0.915386i
\(291\) −3.00000 + 1.73205i −0.175863 + 0.101535i
\(292\) 1.00000 1.73205i 0.0585206 0.101361i
\(293\) −1.50000 + 2.59808i −0.0876309 + 0.151781i −0.906509 0.422186i \(-0.861263\pi\)
0.818878 + 0.573967i \(0.194596\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) 27.0000 15.5885i 1.56670 0.904534i
\(298\) 6.00000 0.347571
\(299\) 3.00000 + 5.19615i 0.173494 + 0.300501i
\(300\) 6.92820i 0.400000i
\(301\) 0 0
\(302\) 11.5000 19.9186i 0.661751 1.14619i
\(303\) −13.5000 + 7.79423i −0.775555 + 0.447767i
\(304\) −3.50000 6.06218i −0.200739 0.347690i
\(305\) −15.0000 −0.858898
\(306\) 9.00000 + 15.5885i 0.514496 + 0.891133i
\(307\) 25.0000 1.42683 0.713413 0.700744i \(-0.247149\pi\)
0.713413 + 0.700744i \(0.247149\pi\)
\(308\) 0 0
\(309\) −15.0000 8.66025i −0.853320 0.492665i
\(310\) −3.00000 + 5.19615i −0.170389 + 0.295122i
\(311\) 6.00000 10.3923i 0.340229 0.589294i −0.644246 0.764818i \(-0.722829\pi\)
0.984475 + 0.175525i \(0.0561621\pi\)
\(312\) −3.00000 1.73205i −0.169842 0.0980581i
\(313\) −5.00000 8.66025i −0.282617 0.489506i 0.689412 0.724370i \(-0.257869\pi\)
−0.972028 + 0.234863i \(0.924536\pi\)
\(314\) −13.0000 −0.733632
\(315\) 0 0
\(316\) 5.00000 0.281272
\(317\) −9.00000 15.5885i −0.505490 0.875535i −0.999980 0.00635137i \(-0.997978\pi\)
0.494489 0.869184i \(-0.335355\pi\)
\(318\) −9.00000 + 5.19615i −0.504695 + 0.291386i
\(319\) 18.0000 31.1769i 1.00781 1.74557i
\(320\) −1.50000 + 2.59808i −0.0838525 + 0.145237i
\(321\) 20.7846i 1.16008i
\(322\) 0 0
\(323\) −42.0000 −2.33694
\(324\) −4.50000 + 7.79423i −0.250000 + 0.433013i
\(325\) −8.00000 −0.443760
\(326\) 1.00000 + 1.73205i 0.0553849 + 0.0959294i
\(327\) 17.3205i 0.957826i
\(328\) 0 0
\(329\) 0 0
\(330\) 27.0000 15.5885i 1.48630 0.858116i
\(331\) −13.0000 22.5167i −0.714545 1.23763i −0.963135 0.269019i \(-0.913301\pi\)
0.248590 0.968609i \(-0.420033\pi\)
\(332\) −12.0000 −0.658586
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) −12.0000 20.7846i −0.655630 1.13558i
\(336\) 0 0
\(337\) 11.0000 19.0526i 0.599208 1.03786i −0.393730 0.919226i \(-0.628816\pi\)
0.992938 0.118633i \(-0.0378512\pi\)
\(338\) −4.50000 + 7.79423i −0.244768 + 0.423950i
\(339\) −22.5000 12.9904i −1.22203 0.705541i
\(340\) 9.00000 + 15.5885i 0.488094 + 0.845403i
\(341\) 12.0000 0.649836
\(342\) −10.5000 18.1865i −0.567775 0.983415i
\(343\) 0 0
\(344\) 1.00000 + 1.73205i 0.0539164 + 0.0933859i
\(345\) 13.5000 7.79423i 0.726816 0.419627i
\(346\) 3.00000 5.19615i 0.161281 0.279347i
\(347\) 12.0000 20.7846i 0.644194 1.11578i −0.340293 0.940319i \(-0.610526\pi\)
0.984487 0.175457i \(-0.0561403\pi\)
\(348\) 10.3923i 0.557086i
\(349\) 13.0000 + 22.5167i 0.695874 + 1.20529i 0.969885 + 0.243563i \(0.0783162\pi\)
−0.274011 + 0.961727i \(0.588351\pi\)
\(350\) 0 0
\(351\) −9.00000 5.19615i −0.480384 0.277350i
\(352\) 6.00000 0.319801
\(353\) −9.00000 15.5885i −0.479022 0.829690i 0.520689 0.853746i \(-0.325675\pi\)
−0.999711 + 0.0240566i \(0.992342\pi\)
\(354\) 0 0
\(355\) −4.50000 + 7.79423i −0.238835 + 0.413675i
\(356\) 0 0
\(357\) 0 0
\(358\) 9.00000 + 15.5885i 0.475665 + 0.823876i
\(359\) −3.00000 −0.158334 −0.0791670 0.996861i \(-0.525226\pi\)
−0.0791670 + 0.996861i \(0.525226\pi\)
\(360\) −4.50000 + 7.79423i −0.237171 + 0.410792i
\(361\) 30.0000 1.57895
\(362\) 12.5000 + 21.6506i 0.656985 + 1.13793i
\(363\) −37.5000 21.6506i −1.96824 1.13636i
\(364\) 0 0
\(365\) 3.00000 5.19615i 0.157027 0.271979i
\(366\) −7.50000 4.33013i −0.392031 0.226339i
\(367\) 4.00000 + 6.92820i 0.208798 + 0.361649i 0.951336 0.308155i \(-0.0997115\pi\)
−0.742538 + 0.669804i \(0.766378\pi\)
\(368\) 3.00000 0.156386
\(369\) 0 0
\(370\) −6.00000 −0.311925
\(371\) 0 0
\(372\) −3.00000 + 1.73205i −0.155543 + 0.0898027i
\(373\) −7.00000 + 12.1244i −0.362446 + 0.627775i −0.988363 0.152115i \(-0.951392\pi\)
0.625917 + 0.779890i \(0.284725\pi\)
\(374\) 18.0000 31.1769i 0.930758 1.61212i
\(375\) 5.19615i 0.268328i
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 2.00000 0.102733 0.0513665 0.998680i \(-0.483642\pi\)
0.0513665 + 0.998680i \(0.483642\pi\)
\(380\) −10.5000 18.1865i −0.538639 0.932949i
\(381\) 29.4449i 1.50851i
\(382\) −4.50000 + 7.79423i −0.230240 + 0.398787i
\(383\) −9.00000 + 15.5885i −0.459879 + 0.796533i −0.998954 0.0457244i \(-0.985440\pi\)
0.539076 + 0.842257i \(0.318774\pi\)
\(384\) −1.50000 + 0.866025i −0.0765466 + 0.0441942i
\(385\) 0 0
\(386\) −17.0000 −0.865277
\(387\) 3.00000 + 5.19615i 0.152499 + 0.264135i
\(388\) −2.00000 −0.101535
\(389\) −12.0000 20.7846i −0.608424 1.05382i −0.991500 0.130105i \(-0.958469\pi\)
0.383076 0.923717i \(-0.374865\pi\)
\(390\) −9.00000 5.19615i −0.455733 0.263117i
\(391\) 9.00000 15.5885i 0.455150 0.788342i
\(392\) 0 0
\(393\) −13.5000 7.79423i −0.680985 0.393167i
\(394\) 9.00000 + 15.5885i 0.453413 + 0.785335i
\(395\) 15.0000 0.754732
\(396\) 18.0000 0.904534
\(397\) −26.0000 −1.30490 −0.652451 0.757831i \(-0.726259\pi\)
−0.652451 + 0.757831i \(0.726259\pi\)
\(398\) −7.00000 12.1244i −0.350878 0.607739i
\(399\) 0 0
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) −1.50000 + 2.59808i −0.0749064 + 0.129742i −0.901046 0.433724i \(-0.857199\pi\)
0.826139 + 0.563466i \(0.190532\pi\)
\(402\) 13.8564i 0.691095i
\(403\) −2.00000 3.46410i −0.0996271 0.172559i
\(404\) −9.00000 −0.447767
\(405\) −13.5000 + 23.3827i −0.670820 + 1.16190i
\(406\) 0 0
\(407\) 6.00000 + 10.3923i 0.297409 + 0.515127i
\(408\) 10.3923i 0.514496i
\(409\) 16.0000 27.7128i 0.791149 1.37031i −0.134107 0.990967i \(-0.542817\pi\)
0.925256 0.379344i \(-0.123850\pi\)
\(410\) 0 0
\(411\) 9.00000 5.19615i 0.443937 0.256307i
\(412\) −5.00000 8.66025i −0.246332 0.426660i
\(413\) 0 0
\(414\) 9.00000 0.442326
\(415\) −36.0000 −1.76717
\(416\) −1.00000 1.73205i −0.0490290 0.0849208i
\(417\) 7.50000 + 4.33013i 0.367277 + 0.212047i
\(418\) −21.0000 + 36.3731i −1.02714 + 1.77906i
\(419\) 7.50000 12.9904i 0.366399 0.634622i −0.622601 0.782540i \(-0.713924\pi\)
0.989000 + 0.147918i \(0.0472572\pi\)
\(420\) 0 0
\(421\) 5.00000 + 8.66025i 0.243685 + 0.422075i 0.961761 0.273890i \(-0.0883103\pi\)
−0.718076 + 0.695965i \(0.754977\pi\)
\(422\) −8.00000 −0.389434
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) 12.0000 + 20.7846i 0.582086 + 1.00820i
\(426\) −4.50000 + 2.59808i −0.218026 + 0.125877i
\(427\) 0 0
\(428\) 6.00000 10.3923i 0.290021 0.502331i
\(429\) 20.7846i 1.00349i
\(430\) 3.00000 + 5.19615i 0.144673 + 0.250581i
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) −4.50000 + 2.59808i −0.216506 + 0.125000i
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 31.1769i 1.49482i
\(436\) 5.00000 8.66025i 0.239457 0.414751i
\(437\) −10.5000 + 18.1865i −0.502283 + 0.869980i
\(438\) 3.00000 1.73205i 0.143346 0.0827606i
\(439\) 4.00000 + 6.92820i 0.190910 + 0.330665i 0.945552 0.325471i \(-0.105523\pi\)
−0.754642 + 0.656136i \(0.772190\pi\)
\(440\) 18.0000 0.858116
\(441\) 0 0
\(442\) −12.0000 −0.570782
\(443\) −9.00000 15.5885i −0.427603 0.740630i 0.569057 0.822298i \(-0.307309\pi\)
−0.996660 + 0.0816684i \(0.973975\pi\)
\(444\) −3.00000 1.73205i −0.142374 0.0821995i
\(445\) 0 0
\(446\) 14.0000 24.2487i 0.662919 1.14821i
\(447\) 9.00000 + 5.19615i 0.425685 + 0.245770i
\(448\) 0 0
\(449\) 33.0000 1.55737 0.778683 0.627417i \(-0.215888\pi\)
0.778683 + 0.627417i \(0.215888\pi\)
\(450\) −6.00000 + 10.3923i −0.282843 + 0.489898i
\(451\) 0 0
\(452\) −7.50000 12.9904i −0.352770 0.611016i
\(453\) 34.5000 19.9186i 1.62095 0.935857i
\(454\) 7.50000 12.9904i 0.351992 0.609669i
\(455\) 0 0
\(456\) 12.1244i 0.567775i
\(457\) −14.5000 25.1147i −0.678281 1.17482i −0.975498 0.220008i \(-0.929392\pi\)
0.297217 0.954810i \(-0.403942\pi\)
\(458\) −1.00000 −0.0467269
\(459\) 31.1769i 1.45521i
\(460\) 9.00000 0.419627
\(461\) −16.5000 28.5788i −0.768482 1.33105i −0.938386 0.345589i \(-0.887679\pi\)
0.169904 0.985461i \(-0.445654\pi\)
\(462\) 0 0
\(463\) 6.50000 11.2583i 0.302081 0.523219i −0.674526 0.738251i \(-0.735652\pi\)
0.976607 + 0.215032i \(0.0689855\pi\)
\(464\) −3.00000 + 5.19615i −0.139272 + 0.241225i
\(465\) −9.00000 + 5.19615i −0.417365 + 0.240966i
\(466\) 4.50000 + 7.79423i 0.208458 + 0.361061i
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) −3.00000 5.19615i −0.138675 0.240192i
\(469\) 0 0
\(470\) 0 0
\(471\) −19.5000 11.2583i −0.898513 0.518756i
\(472\) 0 0
\(473\) 6.00000 10.3923i 0.275880 0.477839i
\(474\) 7.50000 + 4.33013i 0.344486 + 0.198889i
\(475\) −14.0000 24.2487i −0.642364 1.11261i
\(476\) 0 0
\(477\) −18.0000 −0.824163
\(478\) 15.0000 0.686084
\(479\) −3.00000 5.19615i −0.137073 0.237418i 0.789314 0.613990i \(-0.210436\pi\)
−0.926388 + 0.376571i \(0.877103\pi\)
\(480\) −4.50000 + 2.59808i −0.205396 + 0.118585i
\(481\) 2.00000 3.46410i 0.0911922 0.157949i
\(482\) −4.00000 + 6.92820i −0.182195 + 0.315571i
\(483\) 0 0
\(484\) −12.5000 21.6506i −0.568182 0.984120i
\(485\) −6.00000 −0.272446
\(486\) −13.5000 + 7.79423i −0.612372 + 0.353553i
\(487\) 29.0000 1.31412 0.657058 0.753840i \(-0.271801\pi\)
0.657058 + 0.753840i \(0.271801\pi\)
\(488\) −2.50000 4.33013i −0.113170 0.196016i
\(489\) 3.46410i 0.156652i
\(490\) 0 0
\(491\) −9.00000 + 15.5885i −0.406164 + 0.703497i −0.994456 0.105151i \(-0.966467\pi\)
0.588292 + 0.808649i \(0.299801\pi\)
\(492\) 0 0
\(493\) 18.0000 + 31.1769i 0.810679 + 1.40414i
\(494\) 14.0000 0.629890
\(495\) 54.0000 2.42712
\(496\) −2.00000 −0.0898027
\(497\) 0 0
\(498\) −18.0000 10.3923i −0.806599 0.465690i
\(499\) −16.0000 + 27.7128i −0.716258 + 1.24060i 0.246214 + 0.969216i \(0.420813\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) 1.50000 2.59808i 0.0670820 0.116190i
\(501\) 0 0
\(502\) −1.50000 2.59808i −0.0669483 0.115958i
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) −27.0000 −1.20148
\(506\) −9.00000 15.5885i −0.400099 0.692991i
\(507\) −13.5000 + 7.79423i −0.599556 + 0.346154i
\(508\) −8.50000 + 14.7224i −0.377127 + 0.653202i
\(509\) 15.0000 25.9808i 0.664863 1.15158i −0.314459 0.949271i \(-0.601823\pi\)
0.979322 0.202306i \(-0.0648436\pi\)
\(510\) 31.1769i 1.38054i
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 36.3731i 1.60591i
\(514\) 18.0000 0.793946
\(515\) −15.0000 25.9808i −0.660979 1.14485i
\(516\) 3.46410i 0.152499i
\(517\) 0 0
\(518\) 0 0
\(519\) 9.00000 5.19615i 0.395056 0.228086i
\(520\) −3.00000 5.19615i −0.131559 0.227866i
\(521\) −24.0000 −1.05146 −0.525730 0.850652i \(-0.676208\pi\)
−0.525730 + 0.850652i \(0.676208\pi\)
\(522\) −9.00000 + 15.5885i −0.393919 + 0.682288i
\(523\) 13.0000 0.568450 0.284225 0.958758i \(-0.408264\pi\)
0.284225 + 0.958758i \(0.408264\pi\)
\(524\) −4.50000 7.79423i −0.196583 0.340492i
\(525\) 0 0
\(526\) −10.5000 + 18.1865i −0.457822 + 0.792971i
\(527\) −6.00000 + 10.3923i −0.261364 + 0.452696i
\(528\) 9.00000 + 5.19615i 0.391675 + 0.226134i
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) −18.0000 −0.781870
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 18.0000 31.1769i 0.778208 1.34790i
\(536\) 4.00000 6.92820i 0.172774 0.299253i
\(537\) 31.1769i 1.34538i
\(538\) 4.50000 + 7.79423i 0.194009 + 0.336033i
\(539\) 0 0
\(540\) −13.5000 + 7.79423i −0.580948 + 0.335410i
\(541\) 38.0000 1.63375 0.816874 0.576816i \(-0.195705\pi\)
0.816874 + 0.576816i \(0.195705\pi\)
\(542\) 14.0000 + 24.2487i 0.601351 + 1.04157i
\(543\) 43.3013i 1.85824i
\(544\) −3.00000 + 5.19615i −0.128624 + 0.222783i
\(545\) 15.0000 25.9808i 0.642529 1.11289i
\(546\) 0 0
\(547\) −16.0000 27.7128i −0.684111 1.18491i −0.973715 0.227768i \(-0.926857\pi\)
0.289605 0.957146i \(-0.406476\pi\)
\(548\) 6.00000 0.256307
\(549\) −7.50000 12.9904i −0.320092 0.554416i
\(550\) 24.0000 1.02336
\(551\) −21.0000 36.3731i −0.894630 1.54954i
\(552\) 4.50000 + 2.59808i 0.191533 + 0.110581i
\(553\) 0 0
\(554\) −8.00000 + 13.8564i −0.339887 + 0.588702i
\(555\) −9.00000 5.19615i −0.382029 0.220564i
\(556\) 2.50000 + 4.33013i 0.106024 + 0.183638i
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) −6.00000 −0.254000
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 54.0000 31.1769i 2.27988 1.31629i
\(562\) −13.5000 + 23.3827i −0.569463 + 0.986339i
\(563\) −16.5000 + 28.5788i −0.695392 + 1.20445i 0.274656 + 0.961542i \(0.411436\pi\)
−0.970048 + 0.242912i \(0.921897\pi\)
\(564\) 0 0
\(565\) −22.5000 38.9711i −0.946582 1.63953i
\(566\) −19.0000 −0.798630
\(567\) 0 0
\(568\) −3.00000 −0.125877
\(569\) 9.00000 + 15.5885i 0.377300 + 0.653502i 0.990668 0.136295i \(-0.0435194\pi\)
−0.613369 + 0.789797i \(0.710186\pi\)
\(570\) 36.3731i 1.52350i
\(571\) −16.0000 + 27.7128i −0.669579 + 1.15975i 0.308443 + 0.951243i \(0.400192\pi\)
−0.978022 + 0.208502i \(0.933141\pi\)
\(572\) −6.00000 + 10.3923i −0.250873 + 0.434524i
\(573\) −13.5000 + 7.79423i −0.563971 + 0.325609i
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) −3.00000 −0.125000
\(577\) 4.00000 0.166522 0.0832611 0.996528i \(-0.473466\pi\)
0.0832611 + 0.996528i \(0.473466\pi\)
\(578\) 9.50000 + 16.4545i 0.395148 + 0.684416i
\(579\) −25.5000 14.7224i −1.05974 0.611843i
\(580\) −9.00000 + 15.5885i −0.373705 + 0.647275i
\(581\) 0 0
\(582\) −3.00000 1.73205i −0.124354 0.0717958i
\(583\) 18.0000 + 31.1769i 0.745484 + 1.29122i
\(584\) 2.00000 0.0827606
\(585\) −9.00000 15.5885i −0.372104 0.644503i
\(586\) −3.00000 −0.123929
\(587\) −1.50000 2.59808i −0.0619116 0.107234i 0.833408 0.552658i \(-0.186386\pi\)
−0.895320 + 0.445424i \(0.853053\pi\)
\(588\) 0 0
\(589\) 7.00000 12.1244i 0.288430 0.499575i
\(590\) 0 0
\(591\) 31.1769i 1.28245i
\(592\) −1.00000 1.73205i −0.0410997 0.0711868i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 27.0000 + 15.5885i 1.10782 + 0.639602i
\(595\) 0 0
\(596\) 3.00000 + 5.19615i 0.122885 + 0.212843i
\(597\) 24.2487i 0.992434i
\(598\) −3.00000 + 5.19615i −0.122679 + 0.212486i
\(599\) 12.0000 20.7846i 0.490307 0.849236i −0.509631 0.860393i \(-0.670218\pi\)
0.999938 + 0.0111569i \(0.00355143\pi\)
\(600\) −6.00000 + 3.46410i −0.244949 + 0.141421i
\(601\) 7.00000 + 12.1244i 0.285536 + 0.494563i 0.972739 0.231903i \(-0.0744951\pi\)
−0.687203 + 0.726465i \(0.741162\pi\)
\(602\) 0 0
\(603\) 12.0000 20.7846i 0.488678 0.846415i
\(604\) 23.0000 0.935857
\(605\) −37.5000 64.9519i −1.52459 2.64067i
\(606\) −13.5000 7.79423i −0.548400 0.316619i
\(607\) −11.0000 + 19.0526i −0.446476 + 0.773320i −0.998154 0.0607380i \(-0.980655\pi\)
0.551678 + 0.834058i \(0.313988\pi\)
\(608\) 3.50000 6.06218i 0.141944 0.245854i
\(609\) 0 0
\(610\) −7.50000 12.9904i −0.303666 0.525965i
\(611\) 0 0
\(612\) −9.00000 + 15.5885i −0.363803 + 0.630126i
\(613\) 8.00000 0.323117 0.161558 0.986863i \(-0.448348\pi\)
0.161558 + 0.986863i \(0.448348\pi\)
\(614\) 12.5000 + 21.6506i 0.504459 + 0.873749i
\(615\) 0 0
\(616\) 0 0
\(617\) −21.0000 + 36.3731i −0.845428 + 1.46432i 0.0398207 + 0.999207i \(0.487321\pi\)
−0.885249 + 0.465118i \(0.846012\pi\)
\(618\) 17.3205i 0.696733i
\(619\) −3.50000 6.06218i −0.140677 0.243659i 0.787075 0.616858i \(-0.211595\pi\)
−0.927752 + 0.373198i \(0.878261\pi\)
\(620\) −6.00000 −0.240966
\(621\) 13.5000 + 7.79423i 0.541736 + 0.312772i
\(622\) 12.0000 0.481156
\(623\) 0 0
\(624\) 3.46410i 0.138675i
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 5.00000 8.66025i 0.199840 0.346133i
\(627\) −63.0000 + 36.3731i −2.51598 + 1.45260i
\(628\) −6.50000 11.2583i −0.259378 0.449256i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −7.00000 −0.278666 −0.139333 0.990246i \(-0.544496\pi\)
−0.139333 + 0.990246i \(0.544496\pi\)
\(632\) 2.50000 + 4.33013i 0.0994447 + 0.172243i
\(633\) −12.0000 6.92820i −0.476957 0.275371i
\(634\) 9.00000 15.5885i 0.357436 0.619097i
\(635\) −25.5000 + 44.1673i −1.01194 + 1.75273i
\(636\) −9.00000 5.19615i −0.356873 0.206041i
\(637\) 0 0
\(638\) 36.0000 1.42525
\(639\) −9.00000 −0.356034
\(640\) −3.00000 −0.118585
\(641\) −13.5000 23.3827i −0.533218 0.923561i −0.999247 0.0387913i \(-0.987649\pi\)
0.466029 0.884769i \(-0.345684\pi\)
\(642\) 18.0000 10.3923i 0.710403 0.410152i
\(643\) −2.00000 + 3.46410i −0.0788723 + 0.136611i −0.902764 0.430137i \(-0.858465\pi\)
0.823891 + 0.566748i \(0.191799\pi\)
\(644\) 0 0
\(645\) 10.3923i 0.409197i
\(646\) −21.0000 36.3731i −0.826234 1.43108i
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −9.00000 −0.353553
\(649\) 0 0
\(650\) −4.00000 6.92820i −0.156893 0.271746i
\(651\) 0 0
\(652\) −1.00000 + 1.73205i −0.0391630 + 0.0678323i
\(653\) 18.0000 31.1769i 0.704394 1.22005i −0.262515 0.964928i \(-0.584552\pi\)
0.966910 0.255119i \(-0.0821147\pi\)
\(654\) 15.0000 8.66025i 0.586546 0.338643i
\(655\) −13.5000 23.3827i −0.527489 0.913637i
\(656\) 0 0
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) −21.0000 36.3731i −0.818044 1.41689i −0.907122 0.420869i \(-0.861725\pi\)
0.0890776 0.996025i \(-0.471608\pi\)
\(660\) 27.0000 + 15.5885i 1.05097 + 0.606780i
\(661\) 2.50000 4.33013i 0.0972387 0.168422i −0.813302 0.581842i \(-0.802332\pi\)
0.910541 + 0.413419i \(0.135666\pi\)
\(662\) 13.0000 22.5167i 0.505259 0.875135i
\(663\) −18.0000 10.3923i −0.699062 0.403604i
\(664\) −6.00000 10.3923i −0.232845 0.403300i
\(665\) 0 0
\(666\) −3.00000 5.19615i −0.116248 0.201347i
\(667\) 18.0000 0.696963
\(668\) 0 0
\(669\) 42.0000 24.2487i 1.62381 0.937509i
\(670\) 12.0000 20.7846i 0.463600 0.802980i
\(671\) −15.0000 + 25.9808i −0.579069 + 1.00298i
\(672\) 0 0
\(673\) 18.5000 + 32.0429i 0.713123 + 1.23516i 0.963679 + 0.267063i \(0.0860531\pi\)
−0.250557 + 0.968102i \(0.580614\pi\)
\(674\) 22.0000 0.847408
\(675\) −18.0000 + 10.3923i −0.692820 + 0.400000i
\(676\) −9.00000 −0.346154
\(677\) 21.0000 + 36.3731i 0.807096 + 1.39793i 0.914867 + 0.403755i \(0.132295\pi\)
−0.107772 + 0.994176i \(0.534372\pi\)
\(678\) 25.9808i 0.997785i
\(679\) 0 0
\(680\) −9.00000 + 15.5885i −0.345134 + 0.597790i
\(681\) 22.5000 12.9904i 0.862202 0.497792i
\(682\) 6.00000 + 10.3923i 0.229752 + 0.397942i
\(683\) −6.00000 −0.229584 −0.114792 0.993390i \(-0.536620\pi\)
−0.114792 + 0.993390i \(0.536620\pi\)
\(684\) 10.5000 18.1865i 0.401478 0.695379i
\(685\) 18.0000 0.687745
\(686\) 0 0
\(687\) −1.50000 0.866025i −0.0572286 0.0330409i
\(688\) −1.00000 + 1.73205i −0.0381246 + 0.0660338i
\(689\) 6.00000 10.3923i 0.228582 0.395915i
\(690\) 13.5000 + 7.79423i 0.513936 + 0.296721i
\(691\) 23.5000 + 40.7032i 0.893982 + 1.54842i 0.835059 + 0.550160i \(0.185433\pi\)
0.0589228 + 0.998263i \(0.481233\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) 7.50000 + 12.9904i 0.284491 + 0.492753i
\(696\) −9.00000 + 5.19615i −0.341144 + 0.196960i
\(697\) 0 0
\(698\) −13.0000 + 22.5167i −0.492057 + 0.852268i
\(699\) 15.5885i 0.589610i
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 10.3923i 0.392232i
\(703\) 14.0000 0.528020
\(704\) 3.00000 + 5.19615i 0.113067 + 0.195837i
\(705\) 0 0
\(706\) 9.00000 15.5885i 0.338719 0.586679i
\(707\) 0 0
\(708\) 0 0
\(709\) 26.0000 + 45.0333i 0.976450 + 1.69126i 0.675063 + 0.737760i \(0.264116\pi\)
0.301388 + 0.953502i \(0.402550\pi\)
\(710\) −9.00000 −0.337764
\(711\) 7.50000 + 12.9904i 0.281272 + 0.487177i
\(712\) 0 0
\(713\) 3.00000 + 5.19615i 0.112351 + 0.194597i
\(714\) 0 0
\(715\) −18.0000 + 31.1769i −0.673162 + 1.16595i
\(716\) −9.00000 + 15.5885i −0.336346 + 0.582568i
\(717\) 22.5000 + 12.9904i 0.840278 + 0.485135i
\(718\) −1.50000 2.59808i −0.0559795 0.0969593i
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) −9.00000 −0.335410
\(721\) 0 0
\(722\) 15.0000 + 25.9808i 0.558242 + 0.966904i
\(723\) −12.0000 + 6.92820i −0.446285 + 0.257663i
\(724\) −12.5000 + 21.6506i −0.464559 + 0.804640i
\(725\) −12.0000 + 20.7846i −0.445669 + 0.771921i
\(726\) 43.3013i 1.60706i
\(727\) 4.00000 + 6.92820i 0.148352 + 0.256953i 0.930618 0.365991i \(-0.119270\pi\)
−0.782267 + 0.622944i \(0.785937\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 6.00000 0.222070
\(731\) 6.00000 + 10.3923i 0.221918 + 0.384373i
\(732\) 8.66025i 0.320092i
\(733\) 14.5000 25.1147i 0.535570 0.927634i −0.463566 0.886062i \(-0.653430\pi\)
0.999136 0.0415715i \(-0.0132364\pi\)
\(734\) −4.00000 + 6.92820i −0.147643 + 0.255725i
\(735\) 0 0
\(736\) 1.50000 + 2.59808i 0.0552907 + 0.0957664i
\(737\) −48.0000 −1.76810
\(738\) 0 0
\(739\) 26.0000 0.956425 0.478213 0.878244i \(-0.341285\pi\)
0.478213 + 0.878244i \(0.341285\pi\)
\(740\) −3.00000 5.19615i −0.110282 0.191014i
\(741\) 21.0000 + 12.1244i 0.771454 + 0.445399i
\(742\) 0 0
\(743\) −18.0000 + 31.1769i −0.660356 + 1.14377i 0.320166 + 0.947361i \(0.396261\pi\)
−0.980522 + 0.196409i \(0.937072\pi\)
\(744\) −3.00000 1.73205i −0.109985 0.0635001i
\(745\) 9.00000 + 15.5885i 0.329734 + 0.571117i
\(746\) −14.0000 −0.512576
\(747\) −18.0000 31.1769i −0.658586 1.14070i
\(748\) 36.0000 1.31629
\(749\) 0 0
\(750\) 4.50000 2.59808i 0.164317 0.0948683i
\(751\) 15.5000 26.8468i 0.565603 0.979653i −0.431390 0.902165i \(-0.641977\pi\)
0.996993 0.0774878i \(-0.0246899\pi\)
\(752\) 0 0
\(753\) 5.19615i 0.189358i
\(754\) −6.00000 10.3923i −0.218507 0.378465i
\(755\) 69.0000 2.51117
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 1.00000 + 1.73205i 0.0363216 + 0.0629109i
\(759\) 31.1769i 1.13165i
\(760\) 10.5000 18.1865i 0.380875 0.659695i
\(761\) −21.0000 + 36.3731i −0.761249 + 1.31852i 0.180957 + 0.983491i \(0.442080\pi\)
−0.942207 + 0.335032i \(0.891253\pi\)
\(762\) −25.5000 + 14.7224i −0.923768 + 0.533337i
\(763\) 0 0
\(764\) −9.00000 −0.325609
\(765\) −27.0000 + 46.7654i −0.976187 + 1.69081i
\(766\) −18.0000 −0.650366
\(767\) 0 0
\(768\) −1.50000 0.866025i −0.0541266 0.0312500i
\(769\) 7.00000 12.1244i 0.252426 0.437215i −0.711767 0.702416i \(-0.752105\pi\)
0.964193 + 0.265200i \(0.0854381\pi\)
\(770\) 0 0
\(771\) 27.0000 + 15.5885i 0.972381 + 0.561405i
\(772\) −8.50000 14.7224i −0.305922 0.529872i
\(773\) 51.0000 1.83434 0.917171 0.398493i \(-0.130467\pi\)
0.917171 + 0.398493i \(0.130467\pi\)
\(774\) −3.00000 + 5.19615i −0.107833 + 0.186772i
\(775\) −8.00000 −0.287368
\(776\) −1.00000 1.73205i −0.0358979 0.0621770i
\(777\) 0 0
\(778\) 12.0000 20.7846i 0.430221 0.745164i
\(779\) 0 0
\(780\) 10.3923i 0.372104i
\(781\) 9.00000 + 15.5885i 0.322045 + 0.557799i
\(782\) 18.0000 0.643679
\(783\) −27.0000 + 15.5885i −0.964901 + 0.557086i
\(784\) 0 0
\(785\) −19.5000 33.7750i −0.695985 1.20548i
\(786\) 15.5885i 0.556022i
\(787\) 10.0000 17.3205i 0.356462 0.617409i −0.630905 0.775860i \(-0.717316\pi\)
0.987367 + 0.158450i \(0.0506498\pi\)
\(788\) −9.00000 + 15.5885i −0.320612 + 0.555316i
\(789\) −31.5000 + 18.1865i −1.12143 + 0.647458i
\(790\) 7.50000 + 12.9904i 0.266838 + 0.462177i
\(791\) 0 0
\(792\) 9.00000 + 15.5885i 0.319801 + 0.553912i
\(793\) 10.0000 0.355110
\(794\) −13.0000 22.5167i −0.461353 0.799086i
\(795\) −27.0000 15.5885i −0.957591 0.552866i
\(796\) 7.00000 12.1244i 0.248108 0.429736i
\(797\) 1.50000 2.59808i 0.0531327 0.0920286i −0.838236 0.545308i \(-0.816413\pi\)
0.891368 + 0.453279i \(0.149746\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −4.00000 −0.141421
\(801\) 0 0
\(802\) −3.00000 −0.105934
\(803\) −6.00000 10.3923i −0.211735 0.366736i
\(804\) 12.0000 6.92820i 0.423207 0.244339i
\(805\) 0 0
\(806\) 2.00000 3.46410i 0.0704470 0.122018i
\(807\) 15.5885i 0.548740i
\(808\) −4.50000 7.79423i −0.158309 0.274200i
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) −27.0000 −0.948683
\(811\) 16.0000 0.561836 0.280918 0.959732i \(-0.409361\pi\)
0.280918 + 0.959732i \(0.409361\pi\)
\(812\) 0 0
\(813\) 48.4974i 1.70088i
\(814\) −6.00000 + 10.3923i −0.210300 + 0.364250i
\(815\) −3.00000 + 5.19615i −0.105085 + 0.182013i
\(816\) −9.00000 + 5.19615i −0.315063 + 0.181902i
\(817\) −7.00000 12.1244i −0.244899 0.424178i
\(818\) 32.0000 1.11885
\(819\) 0 0
\(820\) 0 0
\(821\) 12.0000 + 20.7846i 0.418803 + 0.725388i 0.995819 0.0913446i \(-0.0291165\pi\)
−0.577016 + 0.816733i \(0.695783\pi\)
\(822\) 9.00000 + 5.19615i 0.313911 + 0.181237i
\(823\) −4.00000 + 6.92820i −0.139431 + 0.241502i −0.927281 0.374365i \(-0.877861\pi\)
0.787850 + 0.615867i \(0.211194\pi\)
\(824\) 5.00000 8.66025i 0.174183 0.301694i
\(825\) 36.0000 + 20.7846i 1.25336 + 0.723627i
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 4.50000 + 7.79423i 0.156386 + 0.270868i
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) −18.0000 31.1769i −0.624789 1.08217i
\(831\) −24.0000 + 13.8564i −0.832551 + 0.480673i
\(832\) 1.00000 1.73205i 0.0346688 0.0600481i
\(833\) 0 0
\(834\) 8.66025i 0.299880i
\(835\) 0 0
\(836\) −42.0000 −1.45260
\(837\) −9.00000 5.19615i −0.311086 0.179605i
\(838\) 15.0000 0.518166
\(839\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) −5.00000 + 8.66025i −0.172311 + 0.298452i
\(843\) −40.5000 + 23.3827i −1.39489 + 0.805342i
\(844\) −4.00000 6.92820i −0.137686 0.238479i
\(845\) −27.0000 −0.928828
\(846\) 0 0
\(847\) 0 0
\(848\) −3.00000 5.19615i −0.103020 0.178437i
\(849\) −28.5000 16.4545i −0.978117 0.564716i
\(850\) −12.0000 + 20.7846i −0.411597 + 0.712906i
\(851\) −3.00000 + 5.19615i −0.102839 + 0.178122i
\(852\) −4.50000 2.59808i −0.154167 0.0890086i
\(853\) 17.5000 + 30.3109i 0.599189 + 1.03783i 0.992941 + 0.118609i \(0.0378434\pi\)
−0.393753 + 0.919216i \(0.628823\pi\)
\(854\) 0 0
\(855\) 31.5000 54.5596i 1.07728 1.86590i
\(856\) 12.0000 0.410152
\(857\) 27.0000 + 46.7654i 0.922302 + 1.59747i 0.795843 + 0.605503i \(0.207028\pi\)
0.126459 + 0.991972i \(0.459639\pi\)
\(858\) −18.0000 + 10.3923i −0.614510 + 0.354787i
\(859\) −2.00000 + 3.46410i −0.0682391 + 0.118194i −0.898126 0.439738i \(-0.855071\pi\)
0.829887 + 0.557931i \(0.188405\pi\)
\(860\) −3.00000 + 5.19615i −0.102299 + 0.177187i
\(861\) 0 0
\(862\) 6.00000 + 10.3923i 0.204361 + 0.353963i
\(863\) 9.00000 0.306364 0.153182 0.988198i \(-0.451048\pi\)
0.153182 + 0.988198i \(0.451048\pi\)
\(864\) −4.50000 2.59808i −0.153093 0.0883883i
\(865\) 18.0000 0.612018
\(866\) −7.00000 12.1244i −0.237870 0.412002i
\(867\) 32.9090i 1.11765i
\(868\) 0 0
\(869\) 15.0000 25.9808i 0.508840 0.881337i
\(870\) −27.0000 + 15.5885i −0.915386 + 0.528498i
\(871\) 8.00000 + 13.8564i 0.271070 + 0.469506i
\(872\) 10.0000 0.338643
\(873\) −3.00000 5.19615i −0.101535 0.175863i
\(874\) −21.0000 −0.710336
\(875\) 0 0
\(876\) 3.00000 + 1.73205i 0.101361 + 0.0585206i
\(877\) 11.0000 19.0526i 0.371444 0.643359i −0.618344 0.785907i \(-0.712196\pi\)
0.989788 + 0.142548i \(0.0455296\pi\)
\(878\) −4.00000 + 6.92820i −0.134993 + 0.233816i
\(879\) −4.50000 2.59808i −0.151781 0.0876309i
\(880\) 9.00000 + 15.5885i 0.303390 + 0.525487i
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −34.0000 −1.14419 −0.572096 0.820187i \(-0.693869\pi\)
−0.572096 + 0.820187i \(0.693869\pi\)
\(884\) −6.00000 10.3923i −0.201802 0.349531i
\(885\) 0 0
\(886\) 9.00000 15.5885i 0.302361 0.523704i
\(887\) 12.0000 20.7846i 0.402921 0.697879i −0.591156 0.806557i \(-0.701328\pi\)
0.994077 + 0.108678i \(0.0346618\pi\)
\(888\) 3.46410i 0.116248i
\(889\) 0 0
\(890\) 0 0
\(891\) 27.0000 + 46.7654i 0.904534 + 1.56670i
\(892\) 28.0000 0.937509
\(893\) 0 0
\(894\) 10.3923i 0.347571i
\(895\) −27.0000 + 46.7654i −0.902510 + 1.56319i
\(896\) 0 0
\(897\) −9.00000 + 5.19615i −0.300501 + 0.173494i
\(898\) 16.5000 + 28.5788i 0.550612 + 0.953688i
\(899\) −12.0000 −0.400222
\(900\) −12.0000 −0.400000
\(901\) −36.0000 −1.19933
\(902\) 0 0
\(903\) 0 0
\(904\) 7.50000 12.9904i 0.249446 0.432054i
\(905\) −37.5000 + 64.9519i −1.24654 + 2.15907i
\(906\) 34.5000 + 19.9186i 1.14619 + 0.661751i
\(907\) −16.0000 27.7128i −0.531271 0.920189i −0.999334 0.0364935i \(-0.988381\pi\)
0.468063 0.883695i \(-0.344952\pi\)
\(908\) 15.0000 0.497792
\(909\) −13.5000 23.3827i −0.447767 0.775555i
\(910\) 0 0
\(911\) −7.50000 12.9904i −0.248486 0.430391i 0.714620 0.699513i \(-0.246600\pi\)
−0.963106 + 0.269122i \(0.913266\pi\)
\(912\) 10.5000 6.06218i 0.347690 0.200739i
\(913\) −36.0000 + 62.3538i −1.19143 + 2.06361i
\(914\) 14.5000 25.1147i 0.479617 0.830722i
\(915\) 25.9808i 0.858898i
\(916\) −0.500000 0.866025i −0.0165205 0.0286143i
\(917\) 0 0
\(918\) −27.0000 + 15.5885i −0.891133 + 0.514496i
\(919\) 11.0000 0.362857 0.181428 0.983404i \(-0.441928\pi\)
0.181428 + 0.983404i \(0.441928\pi\)
\(920\) 4.50000 + 7.79423i 0.148361 + 0.256968i
\(921\) 43.3013i 1.42683i
\(922\) 16.5000 28.5788i 0.543399 0.941194i
\(923\) 3.00000 5.19615i 0.0987462 0.171033i
\(924\) 0 0
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) 13.0000 0.427207
\(927\) 15.0000 25.9808i 0.492665 0.853320i
\(928\) −6.00000 −0.196960
\(929\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) −9.00000 5.19615i −0.295122 0.170389i
\(931\) 0 0
\(932\) −4.50000 + 7.79423i −0.147402 + 0.255308i
\(933\) 18.0000 + 10.3923i 0.589294 + 0.340229i
\(934\) −6.00000 10.3923i −0.196326 0.340047i
\(935\) 108.000 3.53198
\(936\) 3.00000 5.19615i 0.0980581 0.169842i
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) 0 0
\(939\) 15.0000 8.66025i 0.489506 0.282617i
\(940\) 0 0
\(941\) 10.5000 18.1865i 0.342290 0.592864i −0.642567 0.766229i \(-0.722131\pi\)
0.984858 + 0.173365i \(0.0554641\pi\)
\(942\) 22.5167i 0.733632i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 12.0000 0.390154
\(947\) 12.0000 + 20.7846i 0.389948 + 0.675409i 0.992442 0.122714i \(-0.0391598\pi\)
−0.602494 + 0.798123i \(0.705826\pi\)
\(948\) 8.66025i 0.281272i
\(949\) −2.00000 + 3.46410i −0.0649227 + 0.112449i
\(950\) 14.0000 24.2487i 0.454220 0.786732i
\(951\) 27.0000 15.5885i 0.875535 0.505490i
\(952\) 0 0
\(953\) 42.0000 1.36051 0.680257 0.732974i \(-0.261868\pi\)
0.680257 + 0.732974i \(0.261868\pi\)
\(954\) −9.00000 15.5885i −0.291386 0.504695i
\(955\) −27.0000 −0.873699
\(956\) 7.50000 + 12.9904i 0.242567 + 0.420139i
\(957\) 54.0000 + 31.1769i 1.74557 + 1.00781i
\(958\) 3.00000 5.19615i 0.0969256 0.167880i
\(959\) 0 0
\(960\) −4.50000 2.59808i −0.145237 0.0838525i
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) 4.00000 0.128965
\(963\) 36.0000 1.16008
\(964\) −8.00000 −0.257663
\(965\) −25.5000 44.1673i −0.820874 1.42180i
\(966\) 0 0
\(967\) −8.50000 + 14.7224i −0.273342 + 0.473441i −0.969715 0.244238i \(-0.921462\pi\)
0.696374 + 0.717679i \(0.254796\pi\)
\(968\) 12.5000 21.6506i 0.401765 0.695878i
\(969\) 72.7461i 2.33694i
\(970\) −3.00000 5.19615i −0.0963242 0.166838i
\(971\) 15.0000 0.481373 0.240686 0.970603i \(-0.422627\pi\)
0.240686 + 0.970603i \(0.422627\pi\)
\(972\) −13.5000 7.79423i −0.433013 0.250000i
\(973\) 0 0
\(974\) 14.5000 + 25.1147i 0.464610 + 0.804728i
\(975\) 13.8564i 0.443760i
\(976\) 2.50000 4.33013i 0.0800230 0.138604i
\(977\) −3.00000 + 5.19615i −0.0959785 + 0.166240i −0.910017 0.414572i \(-0.863931\pi\)
0.814038 + 0.580812i \(0.197265\pi\)
\(978\) −3.00000 + 1.73205i −0.0959294 + 0.0553849i
\(979\) 0 0
\(980\) 0 0
\(981\) 30.0000 0.957826
\(982\) −18.0000 −0.574403
\(983\) 9.00000 + 15.5885i 0.287055 + 0.497195i 0.973106 0.230360i \(-0.0739903\pi\)
−0.686050 + 0.727554i \(0.740657\pi\)
\(984\) 0 0
\(985\) −27.0000 + 46.7654i −0.860292 + 1.49007i
\(986\) −18.0000 + 31.1769i −0.573237 + 0.992875i
\(987\) 0 0
\(988\) 7.00000 + 12.1244i 0.222700 + 0.385727i
\(989\) 6.00000 0.190789
\(990\) 27.0000 + 46.7654i 0.858116 + 1.48630i
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) −1.00000 1.73205i −0.0317500 0.0549927i
\(993\) 39.0000 22.5167i 1.23763 0.714545i
\(994\) 0 0
\(995\) 21.0000 36.3731i 0.665745 1.15310i
\(996\) 20.7846i 0.658586i
\(997\) −27.5000 47.6314i −0.870934 1.50850i −0.861032 0.508551i \(-0.830182\pi\)
−0.00990158 0.999951i \(-0.503152\pi\)
\(998\) −32.0000 −1.01294
\(999\) 10.3923i 0.328798i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.f.h.589.1 2
3.2 odd 2 2646.2.f.c.1765.1 2
7.2 even 3 882.2.h.f.67.1 2
7.3 odd 6 882.2.e.b.373.1 2
7.4 even 3 882.2.e.d.373.1 2
7.5 odd 6 882.2.h.j.67.1 2
7.6 odd 2 126.2.f.a.85.1 yes 2
9.2 odd 6 2646.2.f.c.883.1 2
9.4 even 3 7938.2.a.l.1.1 1
9.5 odd 6 7938.2.a.u.1.1 1
9.7 even 3 inner 882.2.f.h.295.1 2
21.2 odd 6 2646.2.h.a.361.1 2
21.5 even 6 2646.2.h.e.361.1 2
21.11 odd 6 2646.2.e.j.1549.1 2
21.17 even 6 2646.2.e.f.1549.1 2
21.20 even 2 378.2.f.a.253.1 2
28.27 even 2 1008.2.r.d.337.1 2
63.2 odd 6 2646.2.e.j.2125.1 2
63.11 odd 6 2646.2.h.a.667.1 2
63.13 odd 6 1134.2.a.a.1.1 1
63.16 even 3 882.2.e.d.655.1 2
63.20 even 6 378.2.f.a.127.1 2
63.25 even 3 882.2.h.f.79.1 2
63.34 odd 6 126.2.f.a.43.1 2
63.38 even 6 2646.2.h.e.667.1 2
63.41 even 6 1134.2.a.h.1.1 1
63.47 even 6 2646.2.e.f.2125.1 2
63.52 odd 6 882.2.h.j.79.1 2
63.61 odd 6 882.2.e.b.655.1 2
84.83 odd 2 3024.2.r.a.1009.1 2
252.83 odd 6 3024.2.r.a.2017.1 2
252.139 even 6 9072.2.a.c.1.1 1
252.167 odd 6 9072.2.a.w.1.1 1
252.223 even 6 1008.2.r.d.673.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.a.43.1 2 63.34 odd 6
126.2.f.a.85.1 yes 2 7.6 odd 2
378.2.f.a.127.1 2 63.20 even 6
378.2.f.a.253.1 2 21.20 even 2
882.2.e.b.373.1 2 7.3 odd 6
882.2.e.b.655.1 2 63.61 odd 6
882.2.e.d.373.1 2 7.4 even 3
882.2.e.d.655.1 2 63.16 even 3
882.2.f.h.295.1 2 9.7 even 3 inner
882.2.f.h.589.1 2 1.1 even 1 trivial
882.2.h.f.67.1 2 7.2 even 3
882.2.h.f.79.1 2 63.25 even 3
882.2.h.j.67.1 2 7.5 odd 6
882.2.h.j.79.1 2 63.52 odd 6
1008.2.r.d.337.1 2 28.27 even 2
1008.2.r.d.673.1 2 252.223 even 6
1134.2.a.a.1.1 1 63.13 odd 6
1134.2.a.h.1.1 1 63.41 even 6
2646.2.e.f.1549.1 2 21.17 even 6
2646.2.e.f.2125.1 2 63.47 even 6
2646.2.e.j.1549.1 2 21.11 odd 6
2646.2.e.j.2125.1 2 63.2 odd 6
2646.2.f.c.883.1 2 9.2 odd 6
2646.2.f.c.1765.1 2 3.2 odd 2
2646.2.h.a.361.1 2 21.2 odd 6
2646.2.h.a.667.1 2 63.11 odd 6
2646.2.h.e.361.1 2 21.5 even 6
2646.2.h.e.667.1 2 63.38 even 6
3024.2.r.a.1009.1 2 84.83 odd 2
3024.2.r.a.2017.1 2 252.83 odd 6
7938.2.a.l.1.1 1 9.4 even 3
7938.2.a.u.1.1 1 9.5 odd 6
9072.2.a.c.1.1 1 252.139 even 6
9072.2.a.w.1.1 1 252.167 odd 6