Properties

Label 126.4.g.c.37.1
Level $126$
Weight $4$
Character 126.37
Analytic conductor $7.434$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,4,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43424066072\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 126.37
Dual form 126.4.g.c.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(3.50000 - 6.06218i) q^{5} +(-10.0000 + 15.5885i) q^{7} +8.00000 q^{8} +(7.00000 + 12.1244i) q^{10} +(17.5000 + 30.3109i) q^{11} +66.0000 q^{13} +(-17.0000 - 32.9090i) q^{14} +(-8.00000 + 13.8564i) q^{16} +(29.5000 + 51.0955i) q^{17} +(-68.5000 + 118.645i) q^{19} -28.0000 q^{20} -70.0000 q^{22} +(-3.50000 + 6.06218i) q^{23} +(38.0000 + 65.8179i) q^{25} +(-66.0000 + 114.315i) q^{26} +(74.0000 + 3.46410i) q^{28} -106.000 q^{29} +(-37.5000 - 64.9519i) q^{31} +(-16.0000 - 27.7128i) q^{32} -118.000 q^{34} +(59.5000 + 115.181i) q^{35} +(-5.50000 + 9.52628i) q^{37} +(-137.000 - 237.291i) q^{38} +(28.0000 - 48.4974i) q^{40} +498.000 q^{41} +260.000 q^{43} +(70.0000 - 121.244i) q^{44} +(-7.00000 - 12.1244i) q^{46} +(-85.5000 + 148.090i) q^{47} +(-143.000 - 311.769i) q^{49} -152.000 q^{50} +(-132.000 - 228.631i) q^{52} +(-208.500 - 361.133i) q^{53} +245.000 q^{55} +(-80.0000 + 124.708i) q^{56} +(106.000 - 183.597i) q^{58} +(-8.50000 - 14.7224i) q^{59} +(-25.5000 + 44.1673i) q^{61} +150.000 q^{62} +64.0000 q^{64} +(231.000 - 400.104i) q^{65} +(-219.500 - 380.185i) q^{67} +(118.000 - 204.382i) q^{68} +(-259.000 - 12.1244i) q^{70} +784.000 q^{71} +(-147.500 - 255.477i) q^{73} +(-11.0000 - 19.0526i) q^{74} +548.000 q^{76} +(-647.500 - 30.3109i) q^{77} +(247.500 - 428.683i) q^{79} +(56.0000 + 96.9948i) q^{80} +(-498.000 + 862.561i) q^{82} -932.000 q^{83} +413.000 q^{85} +(-260.000 + 450.333i) q^{86} +(140.000 + 242.487i) q^{88} +(-436.500 + 756.040i) q^{89} +(-660.000 + 1028.84i) q^{91} +28.0000 q^{92} +(-171.000 - 296.181i) q^{94} +(479.500 + 830.518i) q^{95} -290.000 q^{97} +(683.000 + 64.0859i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} + 7 q^{5} - 20 q^{7} + 16 q^{8} + 14 q^{10} + 35 q^{11} + 132 q^{13} - 34 q^{14} - 16 q^{16} + 59 q^{17} - 137 q^{19} - 56 q^{20} - 140 q^{22} - 7 q^{23} + 76 q^{25} - 132 q^{26}+ \cdots + 1366 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 3.50000 6.06218i 0.313050 0.542218i −0.665971 0.745977i \(-0.731983\pi\)
0.979021 + 0.203760i \(0.0653161\pi\)
\(6\) 0 0
\(7\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) 7.00000 + 12.1244i 0.221359 + 0.383406i
\(11\) 17.5000 + 30.3109i 0.479677 + 0.830825i 0.999728 0.0233099i \(-0.00742046\pi\)
−0.520051 + 0.854135i \(0.674087\pi\)
\(12\) 0 0
\(13\) 66.0000 1.40809 0.704043 0.710158i \(-0.251376\pi\)
0.704043 + 0.710158i \(0.251376\pi\)
\(14\) −17.0000 32.9090i −0.324532 0.628235i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) 29.5000 + 51.0955i 0.420871 + 0.728969i 0.996025 0.0890757i \(-0.0283913\pi\)
−0.575154 + 0.818045i \(0.695058\pi\)
\(18\) 0 0
\(19\) −68.5000 + 118.645i −0.827104 + 1.43259i 0.0731965 + 0.997318i \(0.476680\pi\)
−0.900301 + 0.435269i \(0.856653\pi\)
\(20\) −28.0000 −0.313050
\(21\) 0 0
\(22\) −70.0000 −0.678366
\(23\) −3.50000 + 6.06218i −0.0317305 + 0.0549588i −0.881455 0.472269i \(-0.843435\pi\)
0.849724 + 0.527228i \(0.176768\pi\)
\(24\) 0 0
\(25\) 38.0000 + 65.8179i 0.304000 + 0.526543i
\(26\) −66.0000 + 114.315i −0.497833 + 0.862273i
\(27\) 0 0
\(28\) 74.0000 + 3.46410i 0.499453 + 0.0233805i
\(29\) −106.000 −0.678748 −0.339374 0.940651i \(-0.610215\pi\)
−0.339374 + 0.940651i \(0.610215\pi\)
\(30\) 0 0
\(31\) −37.5000 64.9519i −0.217264 0.376313i 0.736706 0.676213i \(-0.236380\pi\)
−0.953971 + 0.299900i \(0.903047\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −118.000 −0.595201
\(35\) 59.5000 + 115.181i 0.287352 + 0.556263i
\(36\) 0 0
\(37\) −5.50000 + 9.52628i −0.0244377 + 0.0423273i −0.877986 0.478687i \(-0.841113\pi\)
0.853548 + 0.521014i \(0.174446\pi\)
\(38\) −137.000 237.291i −0.584851 1.01299i
\(39\) 0 0
\(40\) 28.0000 48.4974i 0.110680 0.191703i
\(41\) 498.000 1.89694 0.948470 0.316867i \(-0.102631\pi\)
0.948470 + 0.316867i \(0.102631\pi\)
\(42\) 0 0
\(43\) 260.000 0.922084 0.461042 0.887378i \(-0.347476\pi\)
0.461042 + 0.887378i \(0.347476\pi\)
\(44\) 70.0000 121.244i 0.239839 0.415413i
\(45\) 0 0
\(46\) −7.00000 12.1244i −0.0224368 0.0388617i
\(47\) −85.5000 + 148.090i −0.265350 + 0.459600i −0.967655 0.252276i \(-0.918821\pi\)
0.702305 + 0.711876i \(0.252154\pi\)
\(48\) 0 0
\(49\) −143.000 311.769i −0.416910 0.908948i
\(50\) −152.000 −0.429921
\(51\) 0 0
\(52\) −132.000 228.631i −0.352021 0.609719i
\(53\) −208.500 361.133i −0.540371 0.935951i −0.998883 0.0472619i \(-0.984950\pi\)
0.458511 0.888689i \(-0.348383\pi\)
\(54\) 0 0
\(55\) 245.000 0.600651
\(56\) −80.0000 + 124.708i −0.190901 + 0.297585i
\(57\) 0 0
\(58\) 106.000 183.597i 0.239974 0.415647i
\(59\) −8.50000 14.7224i −0.0187560 0.0324864i 0.856495 0.516155i \(-0.172637\pi\)
−0.875251 + 0.483669i \(0.839304\pi\)
\(60\) 0 0
\(61\) −25.5000 + 44.1673i −0.0535236 + 0.0927056i −0.891546 0.452930i \(-0.850379\pi\)
0.838022 + 0.545636i \(0.183712\pi\)
\(62\) 150.000 0.307258
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 231.000 400.104i 0.440800 0.763489i
\(66\) 0 0
\(67\) −219.500 380.185i −0.400242 0.693239i 0.593513 0.804824i \(-0.297740\pi\)
−0.993755 + 0.111585i \(0.964407\pi\)
\(68\) 118.000 204.382i 0.210435 0.364485i
\(69\) 0 0
\(70\) −259.000 12.1244i −0.442235 0.0207020i
\(71\) 784.000 1.31047 0.655237 0.755423i \(-0.272569\pi\)
0.655237 + 0.755423i \(0.272569\pi\)
\(72\) 0 0
\(73\) −147.500 255.477i −0.236487 0.409608i 0.723217 0.690621i \(-0.242663\pi\)
−0.959704 + 0.281013i \(0.909329\pi\)
\(74\) −11.0000 19.0526i −0.0172801 0.0299299i
\(75\) 0 0
\(76\) 548.000 0.827104
\(77\) −647.500 30.3109i −0.958305 0.0448603i
\(78\) 0 0
\(79\) 247.500 428.683i 0.352480 0.610513i −0.634203 0.773166i \(-0.718672\pi\)
0.986683 + 0.162653i \(0.0520051\pi\)
\(80\) 56.0000 + 96.9948i 0.0782624 + 0.135554i
\(81\) 0 0
\(82\) −498.000 + 862.561i −0.670670 + 1.16163i
\(83\) −932.000 −1.23253 −0.616267 0.787537i \(-0.711356\pi\)
−0.616267 + 0.787537i \(0.711356\pi\)
\(84\) 0 0
\(85\) 413.000 0.527013
\(86\) −260.000 + 450.333i −0.326006 + 0.564659i
\(87\) 0 0
\(88\) 140.000 + 242.487i 0.169591 + 0.293741i
\(89\) −436.500 + 756.040i −0.519875 + 0.900451i 0.479858 + 0.877346i \(0.340688\pi\)
−0.999733 + 0.0231042i \(0.992645\pi\)
\(90\) 0 0
\(91\) −660.000 + 1028.84i −0.760294 + 1.18518i
\(92\) 28.0000 0.0317305
\(93\) 0 0
\(94\) −171.000 296.181i −0.187631 0.324986i
\(95\) 479.500 + 830.518i 0.517849 + 0.896941i
\(96\) 0 0
\(97\) −290.000 −0.303557 −0.151779 0.988415i \(-0.548500\pi\)
−0.151779 + 0.988415i \(0.548500\pi\)
\(98\) 683.000 + 64.0859i 0.704014 + 0.0660577i
\(99\) 0 0
\(100\) 152.000 263.272i 0.152000 0.263272i
\(101\) −542.500 939.638i −0.534463 0.925717i −0.999189 0.0402627i \(-0.987181\pi\)
0.464726 0.885454i \(-0.346153\pi\)
\(102\) 0 0
\(103\) −776.500 + 1344.94i −0.742823 + 1.28661i 0.208381 + 0.978048i \(0.433181\pi\)
−0.951205 + 0.308560i \(0.900153\pi\)
\(104\) 528.000 0.497833
\(105\) 0 0
\(106\) 834.000 0.764200
\(107\) 64.5000 111.717i 0.0582752 0.100936i −0.835416 0.549618i \(-0.814773\pi\)
0.893691 + 0.448682i \(0.148107\pi\)
\(108\) 0 0
\(109\) 482.500 + 835.715i 0.423992 + 0.734376i 0.996326 0.0856452i \(-0.0272952\pi\)
−0.572334 + 0.820021i \(0.693962\pi\)
\(110\) −245.000 + 424.352i −0.212362 + 0.367822i
\(111\) 0 0
\(112\) −136.000 263.272i −0.114739 0.222115i
\(113\) 50.0000 0.0416248 0.0208124 0.999783i \(-0.493375\pi\)
0.0208124 + 0.999783i \(0.493375\pi\)
\(114\) 0 0
\(115\) 24.5000 + 42.4352i 0.0198664 + 0.0344096i
\(116\) 212.000 + 367.195i 0.169687 + 0.293907i
\(117\) 0 0
\(118\) 34.0000 0.0265250
\(119\) −1091.50 51.0955i −0.840821 0.0393606i
\(120\) 0 0
\(121\) 53.0000 91.7987i 0.0398197 0.0689697i
\(122\) −51.0000 88.3346i −0.0378469 0.0655528i
\(123\) 0 0
\(124\) −150.000 + 259.808i −0.108632 + 0.188157i
\(125\) 1407.00 1.00677
\(126\) 0 0
\(127\) 936.000 0.653989 0.326994 0.945026i \(-0.393964\pi\)
0.326994 + 0.945026i \(0.393964\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 462.000 + 800.207i 0.311693 + 0.539868i
\(131\) −377.500 + 653.849i −0.251773 + 0.436084i −0.964014 0.265851i \(-0.914347\pi\)
0.712241 + 0.701935i \(0.247680\pi\)
\(132\) 0 0
\(133\) −1164.50 2254.26i −0.759210 1.46970i
\(134\) 878.000 0.566027
\(135\) 0 0
\(136\) 236.000 + 408.764i 0.148800 + 0.257730i
\(137\) −1178.50 2041.22i −0.734935 1.27294i −0.954752 0.297403i \(-0.903879\pi\)
0.219817 0.975541i \(-0.429454\pi\)
\(138\) 0 0
\(139\) 28.0000 0.0170858 0.00854291 0.999964i \(-0.497281\pi\)
0.00854291 + 0.999964i \(0.497281\pi\)
\(140\) 280.000 436.477i 0.169031 0.263493i
\(141\) 0 0
\(142\) −784.000 + 1357.93i −0.463323 + 0.802498i
\(143\) 1155.00 + 2000.52i 0.675426 + 1.16987i
\(144\) 0 0
\(145\) −371.000 + 642.591i −0.212482 + 0.368029i
\(146\) 590.000 0.334443
\(147\) 0 0
\(148\) 44.0000 0.0244377
\(149\) 1147.50 1987.53i 0.630919 1.09278i −0.356446 0.934316i \(-0.616012\pi\)
0.987364 0.158467i \(-0.0506551\pi\)
\(150\) 0 0
\(151\) 554.500 + 960.422i 0.298838 + 0.517603i 0.975870 0.218350i \(-0.0700676\pi\)
−0.677032 + 0.735953i \(0.736734\pi\)
\(152\) −548.000 + 949.164i −0.292425 + 0.506496i
\(153\) 0 0
\(154\) 700.000 1091.19i 0.366283 0.570979i
\(155\) −525.000 −0.272058
\(156\) 0 0
\(157\) −779.500 1350.13i −0.396248 0.686321i 0.597012 0.802232i \(-0.296354\pi\)
−0.993260 + 0.115911i \(0.963021\pi\)
\(158\) 495.000 + 857.365i 0.249241 + 0.431698i
\(159\) 0 0
\(160\) −224.000 −0.110680
\(161\) −59.5000 115.181i −0.0291258 0.0563824i
\(162\) 0 0
\(163\) 1125.50 1949.42i 0.540834 0.936752i −0.458022 0.888941i \(-0.651442\pi\)
0.998856 0.0478115i \(-0.0152247\pi\)
\(164\) −996.000 1725.12i −0.474235 0.821399i
\(165\) 0 0
\(166\) 932.000 1614.27i 0.435766 0.754770i
\(167\) −2788.00 −1.29187 −0.645934 0.763393i \(-0.723532\pi\)
−0.645934 + 0.763393i \(0.723532\pi\)
\(168\) 0 0
\(169\) 2159.00 0.982704
\(170\) −413.000 + 715.337i −0.186327 + 0.322728i
\(171\) 0 0
\(172\) −520.000 900.666i −0.230521 0.399274i
\(173\) 789.500 1367.45i 0.346963 0.600957i −0.638746 0.769418i \(-0.720546\pi\)
0.985708 + 0.168461i \(0.0538797\pi\)
\(174\) 0 0
\(175\) −1406.00 65.8179i −0.607335 0.0284307i
\(176\) −560.000 −0.239839
\(177\) 0 0
\(178\) −873.000 1512.08i −0.367607 0.636715i
\(179\) 1225.50 + 2122.63i 0.511722 + 0.886328i 0.999908 + 0.0135883i \(0.00432541\pi\)
−0.488186 + 0.872740i \(0.662341\pi\)
\(180\) 0 0
\(181\) −1170.00 −0.480472 −0.240236 0.970715i \(-0.577225\pi\)
−0.240236 + 0.970715i \(0.577225\pi\)
\(182\) −1122.00 2171.99i −0.456968 0.884608i
\(183\) 0 0
\(184\) −28.0000 + 48.4974i −0.0112184 + 0.0194309i
\(185\) 38.5000 + 66.6840i 0.0153004 + 0.0265011i
\(186\) 0 0
\(187\) −1032.50 + 1788.34i −0.403764 + 0.699340i
\(188\) 684.000 0.265350
\(189\) 0 0
\(190\) −1918.00 −0.732349
\(191\) −637.500 + 1104.18i −0.241507 + 0.418303i −0.961144 0.276048i \(-0.910975\pi\)
0.719637 + 0.694351i \(0.244308\pi\)
\(192\) 0 0
\(193\) −17.5000 30.3109i −0.00652683 0.0113048i 0.862744 0.505642i \(-0.168744\pi\)
−0.869270 + 0.494337i \(0.835411\pi\)
\(194\) 290.000 502.295i 0.107324 0.185890i
\(195\) 0 0
\(196\) −794.000 + 1118.90i −0.289359 + 0.407764i
\(197\) 2734.00 0.988779 0.494389 0.869241i \(-0.335392\pi\)
0.494389 + 0.869241i \(0.335392\pi\)
\(198\) 0 0
\(199\) −1121.50 1942.49i −0.399503 0.691959i 0.594162 0.804345i \(-0.297484\pi\)
−0.993665 + 0.112387i \(0.964151\pi\)
\(200\) 304.000 + 526.543i 0.107480 + 0.186161i
\(201\) 0 0
\(202\) 2170.00 0.755845
\(203\) 1060.00 1652.38i 0.366490 0.571301i
\(204\) 0 0
\(205\) 1743.00 3018.96i 0.593836 1.02855i
\(206\) −1553.00 2689.87i −0.525256 0.909769i
\(207\) 0 0
\(208\) −528.000 + 914.523i −0.176011 + 0.304859i
\(209\) −4795.00 −1.58697
\(210\) 0 0
\(211\) 1172.00 0.382388 0.191194 0.981552i \(-0.438764\pi\)
0.191194 + 0.981552i \(0.438764\pi\)
\(212\) −834.000 + 1444.53i −0.270186 + 0.467975i
\(213\) 0 0
\(214\) 129.000 + 223.435i 0.0412068 + 0.0713723i
\(215\) 910.000 1576.17i 0.288658 0.499970i
\(216\) 0 0
\(217\) 1387.50 + 64.9519i 0.434054 + 0.0203190i
\(218\) −1930.00 −0.599615
\(219\) 0 0
\(220\) −490.000 848.705i −0.150163 0.260089i
\(221\) 1947.00 + 3372.30i 0.592622 + 1.02645i
\(222\) 0 0
\(223\) 2024.00 0.607790 0.303895 0.952706i \(-0.401713\pi\)
0.303895 + 0.952706i \(0.401713\pi\)
\(224\) 592.000 + 27.7128i 0.176583 + 0.00826625i
\(225\) 0 0
\(226\) −50.0000 + 86.6025i −0.0147166 + 0.0254899i
\(227\) 1285.50 + 2226.55i 0.375866 + 0.651019i 0.990456 0.137827i \(-0.0440119\pi\)
−0.614590 + 0.788847i \(0.710679\pi\)
\(228\) 0 0
\(229\) −447.500 + 775.093i −0.129134 + 0.223666i −0.923341 0.383980i \(-0.874553\pi\)
0.794207 + 0.607647i \(0.207886\pi\)
\(230\) −98.0000 −0.0280953
\(231\) 0 0
\(232\) −848.000 −0.239974
\(233\) 893.500 1547.59i 0.251224 0.435132i −0.712639 0.701531i \(-0.752500\pi\)
0.963863 + 0.266398i \(0.0858337\pi\)
\(234\) 0 0
\(235\) 598.500 + 1036.63i 0.166135 + 0.287755i
\(236\) −34.0000 + 58.8897i −0.00937801 + 0.0162432i
\(237\) 0 0
\(238\) 1180.00 1839.44i 0.321378 0.500979i
\(239\) 5100.00 1.38030 0.690150 0.723667i \(-0.257545\pi\)
0.690150 + 0.723667i \(0.257545\pi\)
\(240\) 0 0
\(241\) 2088.50 + 3617.39i 0.558225 + 0.966873i 0.997645 + 0.0685917i \(0.0218506\pi\)
−0.439420 + 0.898282i \(0.644816\pi\)
\(242\) 106.000 + 183.597i 0.0281568 + 0.0487690i
\(243\) 0 0
\(244\) 204.000 0.0535236
\(245\) −2390.50 224.301i −0.623361 0.0584900i
\(246\) 0 0
\(247\) −4521.00 + 7830.60i −1.16463 + 2.01720i
\(248\) −300.000 519.615i −0.0768146 0.133047i
\(249\) 0 0
\(250\) −1407.00 + 2437.00i −0.355946 + 0.616517i
\(251\) 4680.00 1.17689 0.588444 0.808538i \(-0.299741\pi\)
0.588444 + 0.808538i \(0.299741\pi\)
\(252\) 0 0
\(253\) −245.000 −0.0608815
\(254\) −936.000 + 1621.20i −0.231220 + 0.400485i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −874.500 + 1514.68i −0.212256 + 0.367638i −0.952420 0.304788i \(-0.901414\pi\)
0.740164 + 0.672426i \(0.234748\pi\)
\(258\) 0 0
\(259\) −93.5000 180.999i −0.0224317 0.0434237i
\(260\) −1848.00 −0.440800
\(261\) 0 0
\(262\) −755.000 1307.70i −0.178031 0.308358i
\(263\) −2236.50 3873.73i −0.524367 0.908230i −0.999598 0.0283689i \(-0.990969\pi\)
0.475231 0.879861i \(-0.342365\pi\)
\(264\) 0 0
\(265\) −2919.00 −0.676652
\(266\) 5069.00 + 237.291i 1.16842 + 0.0546964i
\(267\) 0 0
\(268\) −878.000 + 1520.74i −0.200121 + 0.346619i
\(269\) 987.500 + 1710.40i 0.223825 + 0.387676i 0.955966 0.293476i \(-0.0948122\pi\)
−0.732141 + 0.681153i \(0.761479\pi\)
\(270\) 0 0
\(271\) 4219.50 7308.39i 0.945817 1.63820i 0.191710 0.981452i \(-0.438597\pi\)
0.754107 0.656751i \(-0.228070\pi\)
\(272\) −944.000 −0.210435
\(273\) 0 0
\(274\) 4714.00 1.03935
\(275\) −1330.00 + 2303.63i −0.291644 + 0.505142i
\(276\) 0 0
\(277\) −263.500 456.395i −0.0571559 0.0989969i 0.836032 0.548681i \(-0.184870\pi\)
−0.893188 + 0.449684i \(0.851537\pi\)
\(278\) −28.0000 + 48.4974i −0.00604075 + 0.0104629i
\(279\) 0 0
\(280\) 476.000 + 921.451i 0.101594 + 0.196669i
\(281\) 202.000 0.0428837 0.0214418 0.999770i \(-0.493174\pi\)
0.0214418 + 0.999770i \(0.493174\pi\)
\(282\) 0 0
\(283\) 3974.50 + 6884.04i 0.834839 + 1.44598i 0.894161 + 0.447745i \(0.147773\pi\)
−0.0593220 + 0.998239i \(0.518894\pi\)
\(284\) −1568.00 2715.86i −0.327619 0.567452i
\(285\) 0 0
\(286\) −4620.00 −0.955197
\(287\) −4980.00 + 7763.05i −1.02425 + 1.59665i
\(288\) 0 0
\(289\) 716.000 1240.15i 0.145736 0.252422i
\(290\) −742.000 1285.18i −0.150247 0.260236i
\(291\) 0 0
\(292\) −590.000 + 1021.91i −0.118244 + 0.204804i
\(293\) −318.000 −0.0634053 −0.0317027 0.999497i \(-0.510093\pi\)
−0.0317027 + 0.999497i \(0.510093\pi\)
\(294\) 0 0
\(295\) −119.000 −0.0234863
\(296\) −44.0000 + 76.2102i −0.00864003 + 0.0149650i
\(297\) 0 0
\(298\) 2295.00 + 3975.06i 0.446127 + 0.772714i
\(299\) −231.000 + 400.104i −0.0446792 + 0.0773866i
\(300\) 0 0
\(301\) −2600.00 + 4053.00i −0.497879 + 0.776116i
\(302\) −2218.00 −0.422621
\(303\) 0 0
\(304\) −1096.00 1898.33i −0.206776 0.358147i
\(305\) 178.500 + 309.171i 0.0335111 + 0.0580429i
\(306\) 0 0
\(307\) −8132.00 −1.51178 −0.755892 0.654696i \(-0.772797\pi\)
−0.755892 + 0.654696i \(0.772797\pi\)
\(308\) 1190.00 + 2303.63i 0.220151 + 0.426173i
\(309\) 0 0
\(310\) 525.000 909.327i 0.0961871 0.166601i
\(311\) −464.500 804.538i −0.0846925 0.146692i 0.820568 0.571549i \(-0.193657\pi\)
−0.905260 + 0.424858i \(0.860324\pi\)
\(312\) 0 0
\(313\) 104.500 180.999i 0.0188712 0.0326859i −0.856436 0.516254i \(-0.827326\pi\)
0.875307 + 0.483568i \(0.160659\pi\)
\(314\) 3118.00 0.560379
\(315\) 0 0
\(316\) −1980.00 −0.352480
\(317\) 3565.50 6175.63i 0.631730 1.09419i −0.355468 0.934689i \(-0.615678\pi\)
0.987198 0.159500i \(-0.0509882\pi\)
\(318\) 0 0
\(319\) −1855.00 3212.95i −0.325580 0.563921i
\(320\) 224.000 387.979i 0.0391312 0.0677772i
\(321\) 0 0
\(322\) 259.000 + 12.1244i 0.0448246 + 0.00209834i
\(323\) −8083.00 −1.39242
\(324\) 0 0
\(325\) 2508.00 + 4343.98i 0.428058 + 0.741418i
\(326\) 2251.00 + 3898.85i 0.382427 + 0.662384i
\(327\) 0 0
\(328\) 3984.00 0.670670
\(329\) −1453.50 2813.72i −0.243569 0.471505i
\(330\) 0 0
\(331\) 3285.50 5690.65i 0.545581 0.944975i −0.452989 0.891516i \(-0.649642\pi\)
0.998570 0.0534583i \(-0.0170244\pi\)
\(332\) 1864.00 + 3228.54i 0.308133 + 0.533703i
\(333\) 0 0
\(334\) 2788.00 4828.96i 0.456744 0.791104i
\(335\) −3073.00 −0.501182
\(336\) 0 0
\(337\) −11466.0 −1.85339 −0.926696 0.375813i \(-0.877364\pi\)
−0.926696 + 0.375813i \(0.877364\pi\)
\(338\) −2159.00 + 3739.50i −0.347438 + 0.601781i
\(339\) 0 0
\(340\) −826.000 1430.67i −0.131753 0.228203i
\(341\) 1312.50 2273.32i 0.208434 0.361018i
\(342\) 0 0
\(343\) 6290.00 + 888.542i 0.990169 + 0.139874i
\(344\) 2080.00 0.326006
\(345\) 0 0
\(346\) 1579.00 + 2734.91i 0.245340 + 0.424941i
\(347\) −4888.50 8467.13i −0.756278 1.30991i −0.944737 0.327831i \(-0.893682\pi\)
0.188459 0.982081i \(-0.439651\pi\)
\(348\) 0 0
\(349\) 11914.0 1.82734 0.913670 0.406456i \(-0.133236\pi\)
0.913670 + 0.406456i \(0.133236\pi\)
\(350\) 1520.00 2369.45i 0.232135 0.361863i
\(351\) 0 0
\(352\) 560.000 969.948i 0.0847957 0.146871i
\(353\) 4561.50 + 7900.75i 0.687774 + 1.19126i 0.972556 + 0.232667i \(0.0747452\pi\)
−0.284783 + 0.958592i \(0.591921\pi\)
\(354\) 0 0
\(355\) 2744.00 4752.75i 0.410243 0.710562i
\(356\) 3492.00 0.519875
\(357\) 0 0
\(358\) −4902.00 −0.723684
\(359\) 4074.50 7057.24i 0.599008 1.03751i −0.393960 0.919128i \(-0.628895\pi\)
0.992968 0.118385i \(-0.0377716\pi\)
\(360\) 0 0
\(361\) −5955.00 10314.4i −0.868202 1.50377i
\(362\) 1170.00 2026.50i 0.169872 0.294228i
\(363\) 0 0
\(364\) 4884.00 + 228.631i 0.703272 + 0.0329217i
\(365\) −2065.00 −0.296129
\(366\) 0 0
\(367\) −4835.50 8375.33i −0.687769 1.19125i −0.972558 0.232660i \(-0.925257\pi\)
0.284790 0.958590i \(-0.408076\pi\)
\(368\) −56.0000 96.9948i −0.00793261 0.0137397i
\(369\) 0 0
\(370\) −154.000 −0.0216381
\(371\) 7714.50 + 361.133i 1.07956 + 0.0505366i
\(372\) 0 0
\(373\) 2054.50 3558.50i 0.285196 0.493973i −0.687461 0.726221i \(-0.741275\pi\)
0.972657 + 0.232248i \(0.0746081\pi\)
\(374\) −2065.00 3576.68i −0.285504 0.494508i
\(375\) 0 0
\(376\) −684.000 + 1184.72i −0.0938154 + 0.162493i
\(377\) −6996.00 −0.955736
\(378\) 0 0
\(379\) −3488.00 −0.472735 −0.236367 0.971664i \(-0.575957\pi\)
−0.236367 + 0.971664i \(0.575957\pi\)
\(380\) 1918.00 3322.07i 0.258925 0.448470i
\(381\) 0 0
\(382\) −1275.00 2208.36i −0.170771 0.295785i
\(383\) 4358.50 7549.14i 0.581485 1.00716i −0.413818 0.910360i \(-0.635805\pi\)
0.995304 0.0968028i \(-0.0308616\pi\)
\(384\) 0 0
\(385\) −2450.00 + 3819.17i −0.324321 + 0.505566i
\(386\) 70.0000 0.00923033
\(387\) 0 0
\(388\) 580.000 + 1004.59i 0.0758893 + 0.131444i
\(389\) 81.5000 + 141.162i 0.0106227 + 0.0183990i 0.871288 0.490772i \(-0.163285\pi\)
−0.860665 + 0.509171i \(0.829952\pi\)
\(390\) 0 0
\(391\) −413.000 −0.0534177
\(392\) −1144.00 2494.15i −0.147400 0.321362i
\(393\) 0 0
\(394\) −2734.00 + 4735.43i −0.349586 + 0.605501i
\(395\) −1732.50 3000.78i −0.220687 0.382242i
\(396\) 0 0
\(397\) −499.500 + 865.159i −0.0631466 + 0.109373i −0.895870 0.444316i \(-0.853447\pi\)
0.832724 + 0.553689i \(0.186780\pi\)
\(398\) 4486.00 0.564982
\(399\) 0 0
\(400\) −1216.00 −0.152000
\(401\) −7378.50 + 12779.9i −0.918865 + 1.59152i −0.117722 + 0.993047i \(0.537559\pi\)
−0.801143 + 0.598474i \(0.795774\pi\)
\(402\) 0 0
\(403\) −2475.00 4286.83i −0.305927 0.529881i
\(404\) −2170.00 + 3758.55i −0.267232 + 0.462859i
\(405\) 0 0
\(406\) 1802.00 + 3488.35i 0.220275 + 0.426414i
\(407\) −385.000 −0.0468888
\(408\) 0 0
\(409\) 66.5000 + 115.181i 0.00803964 + 0.0139251i 0.870017 0.493021i \(-0.164108\pi\)
−0.861978 + 0.506946i \(0.830774\pi\)
\(410\) 3486.00 + 6037.93i 0.419906 + 0.727298i
\(411\) 0 0
\(412\) 6212.00 0.742823
\(413\) 314.500 + 14.7224i 0.0374710 + 0.00175410i
\(414\) 0 0
\(415\) −3262.00 + 5649.95i −0.385844 + 0.668302i
\(416\) −1056.00 1829.05i −0.124458 0.215568i
\(417\) 0 0
\(418\) 4795.00 8305.18i 0.561079 0.971818i
\(419\) 6420.00 0.748538 0.374269 0.927320i \(-0.377894\pi\)
0.374269 + 0.927320i \(0.377894\pi\)
\(420\) 0 0
\(421\) 10266.0 1.18844 0.594221 0.804302i \(-0.297460\pi\)
0.594221 + 0.804302i \(0.297460\pi\)
\(422\) −1172.00 + 2029.96i −0.135194 + 0.234164i
\(423\) 0 0
\(424\) −1668.00 2889.06i −0.191050 0.330908i
\(425\) −2242.00 + 3883.26i −0.255889 + 0.443213i
\(426\) 0 0
\(427\) −433.500 839.179i −0.0491301 0.0951070i
\(428\) −516.000 −0.0582752
\(429\) 0 0
\(430\) 1820.00 + 3152.33i 0.204112 + 0.353532i
\(431\) −7606.50 13174.8i −0.850098 1.47241i −0.881119 0.472894i \(-0.843209\pi\)
0.0310213 0.999519i \(-0.490124\pi\)
\(432\) 0 0
\(433\) −1378.00 −0.152939 −0.0764693 0.997072i \(-0.524365\pi\)
−0.0764693 + 0.997072i \(0.524365\pi\)
\(434\) −1500.00 + 2338.27i −0.165904 + 0.258619i
\(435\) 0 0
\(436\) 1930.00 3342.86i 0.211996 0.367188i
\(437\) −479.500 830.518i −0.0524888 0.0909132i
\(438\) 0 0
\(439\) 1381.50 2392.83i 0.150195 0.260145i −0.781104 0.624401i \(-0.785343\pi\)
0.931299 + 0.364256i \(0.118677\pi\)
\(440\) 1960.00 0.212362
\(441\) 0 0
\(442\) −7788.00 −0.838094
\(443\) 2924.50 5065.38i 0.313651 0.543259i −0.665499 0.746399i \(-0.731781\pi\)
0.979150 + 0.203140i \(0.0651146\pi\)
\(444\) 0 0
\(445\) 3055.50 + 5292.28i 0.325493 + 0.563771i
\(446\) −2024.00 + 3505.67i −0.214886 + 0.372194i
\(447\) 0 0
\(448\) −640.000 + 997.661i −0.0674937 + 0.105212i
\(449\) −4582.00 −0.481599 −0.240799 0.970575i \(-0.577410\pi\)
−0.240799 + 0.970575i \(0.577410\pi\)
\(450\) 0 0
\(451\) 8715.00 + 15094.8i 0.909919 + 1.57603i
\(452\) −100.000 173.205i −0.0104062 0.0180241i
\(453\) 0 0
\(454\) −5142.00 −0.531555
\(455\) 3927.00 + 7601.97i 0.404617 + 0.783266i
\(456\) 0 0
\(457\) −5775.50 + 10003.5i −0.591174 + 1.02394i 0.402901 + 0.915244i \(0.368002\pi\)
−0.994075 + 0.108700i \(0.965331\pi\)
\(458\) −895.000 1550.19i −0.0913114 0.158156i
\(459\) 0 0
\(460\) 98.0000 169.741i 0.00993320 0.0172048i
\(461\) 9494.00 0.959175 0.479587 0.877494i \(-0.340786\pi\)
0.479587 + 0.877494i \(0.340786\pi\)
\(462\) 0 0
\(463\) −10160.0 −1.01982 −0.509908 0.860229i \(-0.670321\pi\)
−0.509908 + 0.860229i \(0.670321\pi\)
\(464\) 848.000 1468.78i 0.0848436 0.146953i
\(465\) 0 0
\(466\) 1787.00 + 3095.17i 0.177642 + 0.307685i
\(467\) −653.500 + 1131.90i −0.0647545 + 0.112158i −0.896585 0.442872i \(-0.853960\pi\)
0.831831 + 0.555030i \(0.187293\pi\)
\(468\) 0 0
\(469\) 8121.50 + 380.185i 0.799608 + 0.0374314i
\(470\) −2394.00 −0.234951
\(471\) 0 0
\(472\) −68.0000 117.779i −0.00663126 0.0114857i
\(473\) 4550.00 + 7880.83i 0.442303 + 0.766091i
\(474\) 0 0
\(475\) −10412.0 −1.00576
\(476\) 2006.00 + 3883.26i 0.193161 + 0.373926i
\(477\) 0 0
\(478\) −5100.00 + 8833.46i −0.488010 + 0.845257i
\(479\) 9143.50 + 15837.0i 0.872186 + 1.51067i 0.859730 + 0.510748i \(0.170632\pi\)
0.0124559 + 0.999922i \(0.496035\pi\)
\(480\) 0 0
\(481\) −363.000 + 628.734i −0.0344103 + 0.0596005i
\(482\) −8354.00 −0.789449
\(483\) 0 0
\(484\) −424.000 −0.0398197
\(485\) −1015.00 + 1758.03i −0.0950284 + 0.164594i
\(486\) 0 0
\(487\) 7476.50 + 12949.7i 0.695673 + 1.20494i 0.969953 + 0.243291i \(0.0782269\pi\)
−0.274281 + 0.961650i \(0.588440\pi\)
\(488\) −204.000 + 353.338i −0.0189235 + 0.0327764i
\(489\) 0 0
\(490\) 2779.00 3916.17i 0.256209 0.361050i
\(491\) −14352.0 −1.31914 −0.659569 0.751644i \(-0.729261\pi\)
−0.659569 + 0.751644i \(0.729261\pi\)
\(492\) 0 0
\(493\) −3127.00 5416.12i −0.285665 0.494787i
\(494\) −9042.00 15661.2i −0.823520 1.42638i
\(495\) 0 0
\(496\) 1200.00 0.108632
\(497\) −7840.00 + 12221.4i −0.707590 + 1.10302i
\(498\) 0 0
\(499\) 2765.50 4789.99i 0.248098 0.429718i −0.714900 0.699226i \(-0.753528\pi\)
0.962998 + 0.269509i \(0.0868612\pi\)
\(500\) −2814.00 4873.99i −0.251692 0.435943i
\(501\) 0 0
\(502\) −4680.00 + 8106.00i −0.416093 + 0.720694i
\(503\) −8400.00 −0.744607 −0.372304 0.928111i \(-0.621432\pi\)
−0.372304 + 0.928111i \(0.621432\pi\)
\(504\) 0 0
\(505\) −7595.00 −0.669254
\(506\) 245.000 424.352i 0.0215249 0.0372821i
\(507\) 0 0
\(508\) −1872.00 3242.40i −0.163497 0.283185i
\(509\) −1192.50 + 2065.47i −0.103844 + 0.179863i −0.913265 0.407365i \(-0.866448\pi\)
0.809421 + 0.587228i \(0.199781\pi\)
\(510\) 0 0
\(511\) 5457.50 + 255.477i 0.472457 + 0.0221167i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −1749.00 3029.36i −0.150088 0.259960i
\(515\) 5435.50 + 9414.56i 0.465081 + 0.805544i
\(516\) 0 0
\(517\) −5985.00 −0.509130
\(518\) 407.000 + 19.0526i 0.0345223 + 0.00161606i
\(519\) 0 0
\(520\) 1848.00 3200.83i 0.155846 0.269934i
\(521\) −4576.50 7926.73i −0.384837 0.666557i 0.606910 0.794771i \(-0.292409\pi\)
−0.991747 + 0.128214i \(0.959076\pi\)
\(522\) 0 0
\(523\) 6903.50 11957.2i 0.577187 0.999718i −0.418613 0.908165i \(-0.637484\pi\)
0.995800 0.0915530i \(-0.0291831\pi\)
\(524\) 3020.00 0.251773
\(525\) 0 0
\(526\) 8946.00 0.741567
\(527\) 2212.50 3832.16i 0.182880 0.316758i
\(528\) 0 0
\(529\) 6059.00 + 10494.5i 0.497986 + 0.862538i
\(530\) 2919.00 5055.86i 0.239233 0.414363i
\(531\) 0 0
\(532\) −5480.00 + 8542.47i −0.446594 + 0.696172i
\(533\) 32868.0 2.67105
\(534\) 0 0
\(535\) −451.500 782.021i −0.0364861 0.0631957i
\(536\) −1756.00 3041.48i −0.141507 0.245097i
\(537\) 0 0
\(538\) −3950.00 −0.316536
\(539\) 6947.50 9790.42i 0.555195 0.782381i
\(540\) 0 0
\(541\) −4087.50 + 7079.76i −0.324834 + 0.562629i −0.981479 0.191571i \(-0.938642\pi\)
0.656645 + 0.754200i \(0.271975\pi\)
\(542\) 8439.00 + 14616.8i 0.668794 + 1.15838i
\(543\) 0 0
\(544\) 944.000 1635.06i 0.0744001 0.128865i
\(545\) 6755.00 0.530922
\(546\) 0 0
\(547\) 4656.00 0.363942 0.181971 0.983304i \(-0.441752\pi\)
0.181971 + 0.983304i \(0.441752\pi\)
\(548\) −4714.00 + 8164.89i −0.367467 + 0.636472i
\(549\) 0 0
\(550\) −2660.00 4607.26i −0.206223 0.357189i
\(551\) 7261.00 12576.4i 0.561396 0.972366i
\(552\) 0 0
\(553\) 4207.50 + 8144.97i 0.323546 + 0.626328i
\(554\) 1054.00 0.0808306
\(555\) 0 0
\(556\) −56.0000 96.9948i −0.00427146 0.00739838i
\(557\) 3501.50 + 6064.78i 0.266361 + 0.461352i 0.967919 0.251261i \(-0.0808452\pi\)
−0.701558 + 0.712612i \(0.747512\pi\)
\(558\) 0 0
\(559\) 17160.0 1.29837
\(560\) −2072.00 96.9948i −0.156354 0.00731925i
\(561\) 0 0
\(562\) −202.000 + 349.874i −0.0151617 + 0.0262608i
\(563\) −9876.50 17106.6i −0.739334 1.28056i −0.952796 0.303612i \(-0.901807\pi\)
0.213462 0.976951i \(-0.431526\pi\)
\(564\) 0 0
\(565\) 175.000 303.109i 0.0130306 0.0225697i
\(566\) −15898.0 −1.18064
\(567\) 0 0
\(568\) 6272.00 0.463323
\(569\) −3448.50 + 5972.98i −0.254075 + 0.440071i −0.964644 0.263557i \(-0.915104\pi\)
0.710569 + 0.703628i \(0.248438\pi\)
\(570\) 0 0
\(571\) −12457.5 21577.0i −0.913013 1.58138i −0.809785 0.586726i \(-0.800416\pi\)
−0.103227 0.994658i \(-0.532917\pi\)
\(572\) 4620.00 8002.07i 0.337713 0.584936i
\(573\) 0 0
\(574\) −8466.00 16388.7i −0.615617 1.19172i
\(575\) −532.000 −0.0385842
\(576\) 0 0
\(577\) −63.5000 109.985i −0.00458152 0.00793543i 0.863726 0.503962i \(-0.168125\pi\)
−0.868307 + 0.496027i \(0.834792\pi\)
\(578\) 1432.00 + 2480.30i 0.103051 + 0.178489i
\(579\) 0 0
\(580\) 2968.00 0.212482
\(581\) 9320.00 14528.4i 0.665506 1.03742i
\(582\) 0 0
\(583\) 7297.50 12639.6i 0.518407 0.897908i
\(584\) −1180.00 2043.82i −0.0836109 0.144818i
\(585\) 0 0
\(586\) 318.000 550.792i 0.0224172 0.0388277i
\(587\) −9044.00 −0.635921 −0.317961 0.948104i \(-0.602998\pi\)
−0.317961 + 0.948104i \(0.602998\pi\)
\(588\) 0 0
\(589\) 10275.0 0.718801
\(590\) 119.000 206.114i 0.00830365 0.0143823i
\(591\) 0 0
\(592\) −88.0000 152.420i −0.00610942 0.0105818i
\(593\) −5350.50 + 9267.34i −0.370521 + 0.641760i −0.989646 0.143532i \(-0.954154\pi\)
0.619125 + 0.785292i \(0.287487\pi\)
\(594\) 0 0
\(595\) −4130.00 + 6438.03i −0.284560 + 0.443586i
\(596\) −9180.00 −0.630919
\(597\) 0 0
\(598\) −462.000 800.207i −0.0315930 0.0547206i
\(599\) 10399.5 + 18012.5i 0.709369 + 1.22866i 0.965091 + 0.261913i \(0.0843533\pi\)
−0.255722 + 0.966750i \(0.582313\pi\)
\(600\) 0 0
\(601\) −1402.00 −0.0951560 −0.0475780 0.998868i \(-0.515150\pi\)
−0.0475780 + 0.998868i \(0.515150\pi\)
\(602\) −4420.00 8556.33i −0.299245 0.579286i
\(603\) 0 0
\(604\) 2218.00 3841.69i 0.149419 0.258801i
\(605\) −371.000 642.591i −0.0249311 0.0431819i
\(606\) 0 0
\(607\) −3262.50 + 5650.82i −0.218156 + 0.377858i −0.954244 0.299028i \(-0.903338\pi\)
0.736088 + 0.676886i \(0.236671\pi\)
\(608\) 4384.00 0.292425
\(609\) 0 0
\(610\) −714.000 −0.0473918
\(611\) −5643.00 + 9773.96i −0.373636 + 0.647156i
\(612\) 0 0
\(613\) −7525.50 13034.5i −0.495844 0.858826i 0.504145 0.863619i \(-0.331808\pi\)
−0.999989 + 0.00479285i \(0.998474\pi\)
\(614\) 8132.00 14085.0i 0.534496 0.925775i
\(615\) 0 0
\(616\) −5180.00 242.487i −0.338812 0.0158605i
\(617\) −11150.0 −0.727524 −0.363762 0.931492i \(-0.618508\pi\)
−0.363762 + 0.931492i \(0.618508\pi\)
\(618\) 0 0
\(619\) −1707.50 2957.48i −0.110873 0.192037i 0.805250 0.592936i \(-0.202031\pi\)
−0.916122 + 0.400899i \(0.868698\pi\)
\(620\) 1050.00 + 1818.65i 0.0680145 + 0.117805i
\(621\) 0 0
\(622\) 1858.00 0.119773
\(623\) −7420.50 14364.8i −0.477201 0.923775i
\(624\) 0 0
\(625\) 174.500 302.243i 0.0111680 0.0193435i
\(626\) 209.000 + 361.999i 0.0133440 + 0.0231124i
\(627\) 0 0
\(628\) −3118.00 + 5400.53i −0.198124 + 0.343160i
\(629\) −649.000 −0.0411404
\(630\) 0 0
\(631\) −21184.0 −1.33648 −0.668242 0.743944i \(-0.732953\pi\)
−0.668242 + 0.743944i \(0.732953\pi\)
\(632\) 1980.00 3429.46i 0.124621 0.215849i
\(633\) 0 0
\(634\) 7131.00 + 12351.3i 0.446701 + 0.773708i
\(635\) 3276.00 5674.20i 0.204731 0.354604i
\(636\) 0 0
\(637\) −9438.00 20576.8i −0.587044 1.27988i
\(638\) 7420.00 0.460440
\(639\) 0 0
\(640\) 448.000 + 775.959i 0.0276699 + 0.0479257i
\(641\) −5352.50 9270.80i −0.329814 0.571255i 0.652660 0.757651i \(-0.273653\pi\)
−0.982475 + 0.186395i \(0.940320\pi\)
\(642\) 0 0
\(643\) 6860.00 0.420734 0.210367 0.977622i \(-0.432534\pi\)
0.210367 + 0.977622i \(0.432534\pi\)
\(644\) −280.000 + 436.477i −0.0171328 + 0.0267074i
\(645\) 0 0
\(646\) 8083.00 14000.2i 0.492293 0.852677i
\(647\) 7231.50 + 12525.3i 0.439412 + 0.761084i 0.997644 0.0686008i \(-0.0218535\pi\)
−0.558232 + 0.829685i \(0.688520\pi\)
\(648\) 0 0
\(649\) 297.500 515.285i 0.0179937 0.0311660i
\(650\) −10032.0 −0.605365
\(651\) 0 0
\(652\) −9004.00 −0.540834
\(653\) 2989.50 5177.97i 0.179155 0.310305i −0.762436 0.647063i \(-0.775997\pi\)
0.941591 + 0.336758i \(0.109330\pi\)
\(654\) 0 0
\(655\) 2642.50 + 4576.94i 0.157635 + 0.273032i
\(656\) −3984.00 + 6900.49i −0.237117 + 0.410700i
\(657\) 0 0
\(658\) 6327.00 + 296.181i 0.374851 + 0.0175476i
\(659\) 6940.00 0.410234 0.205117 0.978737i \(-0.434243\pi\)
0.205117 + 0.978737i \(0.434243\pi\)
\(660\) 0 0
\(661\) −6699.50 11603.9i −0.394221 0.682812i 0.598780 0.800914i \(-0.295652\pi\)
−0.993001 + 0.118102i \(0.962319\pi\)
\(662\) 6571.00 + 11381.3i 0.385784 + 0.668198i
\(663\) 0 0
\(664\) −7456.00 −0.435766
\(665\) −17741.5 830.518i −1.03457 0.0484303i
\(666\) 0 0
\(667\) 371.000 642.591i 0.0215370 0.0373032i
\(668\) 5576.00 + 9657.92i 0.322967 + 0.559395i
\(669\) 0 0
\(670\) 3073.00 5322.59i 0.177195 0.306910i
\(671\) −1785.00 −0.102696
\(672\) 0 0
\(673\) 29510.0 1.69023 0.845117 0.534582i \(-0.179531\pi\)
0.845117 + 0.534582i \(0.179531\pi\)
\(674\) 11466.0 19859.7i 0.655273 1.13497i
\(675\) 0 0
\(676\) −4318.00 7479.00i −0.245676 0.425523i
\(677\) −13000.5 + 22517.5i −0.738035 + 1.27831i 0.215344 + 0.976538i \(0.430913\pi\)
−0.953379 + 0.301776i \(0.902421\pi\)
\(678\) 0 0
\(679\) 2900.00 4520.65i 0.163905 0.255503i
\(680\) 3304.00 0.186327
\(681\) 0 0
\(682\) 2625.00 + 4546.63i 0.147385 + 0.255278i
\(683\) −4402.50 7625.35i −0.246643 0.427198i 0.715949 0.698152i \(-0.245994\pi\)
−0.962592 + 0.270954i \(0.912661\pi\)
\(684\) 0 0
\(685\) −16499.0 −0.920284
\(686\) −7829.00 + 10006.1i −0.435733 + 0.556899i
\(687\) 0 0
\(688\) −2080.00 + 3602.67i −0.115261 + 0.199637i
\(689\) −13761.0 23834.8i −0.760889 1.31790i
\(690\) 0 0
\(691\) −14342.5 + 24841.9i −0.789601 + 1.36763i 0.136610 + 0.990625i \(0.456379\pi\)
−0.926211 + 0.377004i \(0.876954\pi\)
\(692\) −6316.00 −0.346963
\(693\) 0 0
\(694\) 19554.0 1.06954
\(695\) 98.0000 169.741i 0.00534871 0.00926423i
\(696\) 0 0
\(697\) 14691.0 + 25445.6i 0.798366 + 1.38281i
\(698\) −11914.0 + 20635.7i −0.646062 + 1.11901i
\(699\) 0 0
\(700\) 2584.00 + 5002.16i 0.139523 + 0.270091i
\(701\) 3146.00 0.169505 0.0847523 0.996402i \(-0.472990\pi\)
0.0847523 + 0.996402i \(0.472990\pi\)
\(702\) 0 0
\(703\) −753.500 1305.10i −0.0404250 0.0700182i
\(704\) 1120.00 + 1939.90i 0.0599596 + 0.103853i
\(705\) 0 0
\(706\) −18246.0 −0.972659
\(707\) 20072.5 + 939.638i 1.06776 + 0.0499840i
\(708\) 0 0
\(709\) −629.500 + 1090.33i −0.0333447 + 0.0577547i −0.882216 0.470845i \(-0.843949\pi\)
0.848871 + 0.528599i \(0.177283\pi\)
\(710\) 5488.00 + 9505.49i 0.290086 + 0.502443i
\(711\) 0 0
\(712\) −3492.00 + 6048.32i −0.183804 + 0.318357i
\(713\) 525.000 0.0275756
\(714\) 0 0
\(715\) 16170.0 0.845767
\(716\) 4902.00 8490.51i 0.255861 0.443164i
\(717\) 0 0
\(718\) 8149.00 + 14114.5i 0.423563 + 0.733632i
\(719\) 8212.50 14224.5i 0.425973 0.737807i −0.570538 0.821271i \(-0.693265\pi\)
0.996511 + 0.0834645i \(0.0265985\pi\)
\(720\) 0 0
\(721\) −13200.5 25553.8i −0.681848 1.31994i
\(722\) 23820.0 1.22782
\(723\) 0 0
\(724\) 2340.00 + 4053.00i 0.120118 + 0.208050i
\(725\) −4028.00 6976.70i −0.206340 0.357391i
\(726\) 0 0
\(727\) −6032.00 −0.307723 −0.153861 0.988092i \(-0.549171\pi\)
−0.153861 + 0.988092i \(0.549171\pi\)
\(728\) −5280.00 + 8230.71i −0.268805 + 0.419025i
\(729\) 0 0
\(730\) 2065.00 3576.68i 0.104697 0.181341i
\(731\) 7670.00 + 13284.8i 0.388078 + 0.672171i
\(732\) 0 0
\(733\) −7621.50 + 13200.8i −0.384047 + 0.665189i −0.991636 0.129062i \(-0.958803\pi\)
0.607589 + 0.794251i \(0.292137\pi\)
\(734\) 19342.0 0.972652
\(735\) 0 0
\(736\) 224.000 0.0112184
\(737\) 7682.50 13306.5i 0.383974 0.665062i
\(738\) 0 0
\(739\) 5026.50 + 8706.15i 0.250207 + 0.433371i 0.963583 0.267411i \(-0.0861681\pi\)
−0.713376 + 0.700782i \(0.752835\pi\)
\(740\) 154.000 266.736i 0.00765021 0.0132505i
\(741\) 0 0
\(742\) −8340.00 + 13000.8i −0.412629 + 0.643226i
\(743\) −24384.0 −1.20399 −0.601993 0.798501i \(-0.705627\pi\)
−0.601993 + 0.798501i \(0.705627\pi\)
\(744\) 0 0
\(745\) −8032.50 13912.7i −0.395017 0.684190i
\(746\) 4109.00 + 7117.00i 0.201664 + 0.349292i
\(747\) 0 0
\(748\) 8260.00 0.403764
\(749\) 1096.50 + 2122.63i 0.0534916 + 0.103550i
\(750\) 0 0
\(751\) −5794.50 + 10036.4i −0.281550 + 0.487660i −0.971767 0.235943i \(-0.924182\pi\)
0.690216 + 0.723603i \(0.257515\pi\)
\(752\) −1368.00 2369.45i −0.0663375 0.114900i
\(753\) 0 0
\(754\) 6996.00 12117.4i 0.337904 0.585266i
\(755\) 7763.00 0.374205
\(756\) 0 0
\(757\) 14562.0 0.699161 0.349581 0.936906i \(-0.386324\pi\)
0.349581 + 0.936906i \(0.386324\pi\)
\(758\) 3488.00 6041.39i 0.167137 0.289490i
\(759\) 0 0
\(760\) 3836.00 + 6644.15i 0.183087 + 0.317116i
\(761\) −11382.5 + 19715.1i −0.542201 + 0.939120i 0.456576 + 0.889684i \(0.349076\pi\)
−0.998777 + 0.0494360i \(0.984258\pi\)
\(762\) 0 0
\(763\) −17852.5 835.715i −0.847056 0.0396526i
\(764\) 5100.00 0.241507
\(765\) 0 0
\(766\) 8717.00 + 15098.3i 0.411172 + 0.712171i
\(767\) −561.000 971.681i −0.0264101 0.0457436i
\(768\) 0 0
\(769\) 3766.00 0.176600 0.0883000 0.996094i \(-0.471857\pi\)
0.0883000 + 0.996094i \(0.471857\pi\)
\(770\) −4165.00 8062.70i −0.194930 0.377350i
\(771\) 0 0
\(772\) −70.0000 + 121.244i −0.00326341 + 0.00565240i
\(773\) −13430.5 23262.3i −0.624918 1.08239i −0.988557 0.150849i \(-0.951799\pi\)
0.363639 0.931540i \(-0.381534\pi\)
\(774\) 0 0
\(775\) 2850.00 4936.34i 0.132097 0.228798i
\(776\) −2320.00 −0.107324
\(777\) 0 0
\(778\) −326.000 −0.0150227
\(779\) −34113.0 + 59085.4i −1.56897 + 2.71753i
\(780\) 0 0
\(781\) 13720.0 + 23763.7i 0.628605 + 1.08878i
\(782\) 413.000 715.337i 0.0188860 0.0327115i
\(783\) 0 0
\(784\) 5464.00 + 512.687i 0.248907 + 0.0233549i
\(785\) −10913.0 −0.496180
\(786\) 0 0
\(787\) 1048.50 + 1816.06i 0.0474905 + 0.0822559i 0.888793 0.458308i \(-0.151544\pi\)
−0.841303 + 0.540564i \(0.818211\pi\)
\(788\) −5468.00 9470.85i −0.247195 0.428154i
\(789\) 0 0
\(790\) 6930.00 0.312099
\(791\) −500.000 + 779.423i −0.0224753 + 0.0350355i
\(792\) 0 0
\(793\) −1683.00 + 2915.04i −0.0753658 + 0.130537i
\(794\) −999.000 1730.32i −0.0446514 0.0773384i
\(795\) 0 0
\(796\) −4486.00 + 7769.98i −0.199751 + 0.345979i
\(797\) 35334.0 1.57038 0.785191 0.619254i \(-0.212565\pi\)
0.785191 + 0.619254i \(0.212565\pi\)
\(798\) 0 0
\(799\) −10089.0 −0.446712
\(800\) 1216.00 2106.17i 0.0537401 0.0930806i
\(801\) 0 0
\(802\) −14757.0 25559.9i −0.649735 1.12537i
\(803\) 5162.50 8941.71i 0.226875 0.392959i
\(804\) 0 0
\(805\) −906.500 42.4352i −0.0396894 0.00185795i
\(806\) 9900.00 0.432646
\(807\) 0 0
\(808\) −4340.00 7517.10i −0.188961 0.327290i
\(809\) 21267.5 + 36836.4i 0.924259 + 1.60086i 0.792749 + 0.609549i \(0.208649\pi\)
0.131510 + 0.991315i \(0.458017\pi\)
\(810\) 0 0
\(811\) 30676.0 1.32821 0.664106 0.747638i \(-0.268812\pi\)
0.664106 + 0.747638i \(0.268812\pi\)
\(812\) −7844.00 367.195i −0.339003 0.0158695i
\(813\) 0 0
\(814\) 385.000 666.840i 0.0165777 0.0287134i
\(815\) −7878.50 13646.0i −0.338616 0.586500i
\(816\) 0 0
\(817\) −17810.0 + 30847.8i −0.762660 + 1.32097i
\(818\) −266.000 −0.0113698
\(819\) 0 0
\(820\) −13944.0 −0.593836
\(821\) 18671.5 32340.0i 0.793715 1.37475i −0.129937 0.991522i \(-0.541478\pi\)
0.923652 0.383232i \(-0.125189\pi\)
\(822\) 0 0
\(823\) −1407.50 2437.86i −0.0596141 0.103255i 0.834678 0.550738i \(-0.185654\pi\)
−0.894292 + 0.447483i \(0.852320\pi\)
\(824\) −6212.00 + 10759.5i −0.262628 + 0.454885i
\(825\) 0 0
\(826\) −340.000 + 530.008i −0.0143222 + 0.0223261i
\(827\) 9276.00 0.390034 0.195017 0.980800i \(-0.437524\pi\)
0.195017 + 0.980800i \(0.437524\pi\)
\(828\) 0 0
\(829\) −9285.50 16083.0i −0.389021 0.673805i 0.603297 0.797517i \(-0.293853\pi\)
−0.992318 + 0.123712i \(0.960520\pi\)
\(830\) −6524.00 11299.9i −0.272833 0.472561i
\(831\) 0 0
\(832\) 4224.00 0.176011
\(833\) 11711.5 16503.8i 0.487130 0.686464i
\(834\) 0 0
\(835\) −9758.00 + 16901.4i −0.404419 + 0.700474i
\(836\) 9590.00 + 16610.4i 0.396743 + 0.687179i
\(837\) 0 0
\(838\) −6420.00 + 11119.8i −0.264648 + 0.458384i
\(839\) −29048.0 −1.19529 −0.597645 0.801761i \(-0.703897\pi\)
−0.597645 + 0.801761i \(0.703897\pi\)
\(840\) 0 0
\(841\) −13153.0 −0.539301
\(842\) −10266.0 + 17781.2i −0.420178 + 0.727769i
\(843\) 0 0
\(844\) −2344.00 4059.93i −0.0955969 0.165579i
\(845\) 7556.50 13088.2i 0.307635 0.532839i
\(846\) 0 0
\(847\) 901.000 + 1744.18i 0.0365510 + 0.0707563i
\(848\) 6672.00 0.270186
\(849\) 0 0
\(850\) −4484.00 7766.52i −0.180941 0.313399i
\(851\) −38.5000 66.6840i −0.00155084 0.00268613i
\(852\) 0 0
\(853\) 32090.0 1.28809 0.644045 0.764988i \(-0.277255\pi\)
0.644045 + 0.764988i \(0.277255\pi\)
\(854\) 1887.00 + 88.3346i 0.0756110 + 0.00353952i
\(855\) 0 0
\(856\) 516.000 893.738i 0.0206034 0.0356861i
\(857\) −12268.5 21249.7i −0.489013 0.846995i 0.510907 0.859636i \(-0.329310\pi\)
−0.999920 + 0.0126408i \(0.995976\pi\)
\(858\) 0 0
\(859\) −10412.5 + 18035.0i −0.413585 + 0.716351i −0.995279 0.0970571i \(-0.969057\pi\)
0.581693 + 0.813408i \(0.302390\pi\)
\(860\) −7280.00 −0.288658
\(861\) 0 0
\(862\) 30426.0 1.20222
\(863\) −11423.5 + 19786.1i −0.450591 + 0.780447i −0.998423 0.0561414i \(-0.982120\pi\)
0.547831 + 0.836589i \(0.315454\pi\)
\(864\) 0 0
\(865\) −5526.50 9572.18i −0.217233 0.376259i
\(866\) 1378.00 2386.77i 0.0540720 0.0936554i
\(867\) 0 0
\(868\) −2550.00 4936.34i −0.0997150 0.193030i
\(869\) 17325.0 0.676307
\(870\) 0 0
\(871\) −14487.0 25092.2i −0.563574 0.976139i
\(872\) 3860.00 + 6685.72i 0.149904 + 0.259641i
\(873\) 0 0
\(874\) 1918.00 0.0742303
\(875\) −14070.0 + 21933.0i −0.543603 + 0.847394i
\(876\) 0 0
\(877\) 21368.5 37011.3i 0.822763 1.42507i −0.0808543 0.996726i \(-0.525765\pi\)
0.903617 0.428341i \(-0.140902\pi\)
\(878\) 2763.00 + 4785.66i 0.106204 + 0.183950i
\(879\) 0 0
\(880\) −1960.00 + 3394.82i −0.0750813 + 0.130045i
\(881\) −6162.00 −0.235645 −0.117822 0.993035i \(-0.537591\pi\)
−0.117822 + 0.993035i \(0.537591\pi\)
\(882\) 0 0
\(883\) 7748.00 0.295290 0.147645 0.989040i \(-0.452831\pi\)
0.147645 + 0.989040i \(0.452831\pi\)
\(884\) 7788.00 13489.2i 0.296311 0.513225i
\(885\) 0 0
\(886\) 5849.00 + 10130.8i 0.221784 + 0.384142i
\(887\) −12961.5 + 22450.0i −0.490648 + 0.849827i −0.999942 0.0107656i \(-0.996573\pi\)
0.509294 + 0.860592i \(0.329906\pi\)
\(888\) 0 0
\(889\) −9360.00 + 14590.8i −0.353121 + 0.550461i
\(890\) −12222.0 −0.460317
\(891\) 0 0
\(892\) −4048.00 7011.34i −0.151947 0.263181i
\(893\) −11713.5 20288.4i −0.438944 0.760274i
\(894\) 0 0
\(895\) 17157.0 0.640777
\(896\) −1088.00 2106.17i −0.0405664 0.0785294i
\(897\) 0 0
\(898\) 4582.00 7936.26i 0.170271 0.294918i
\(899\) 3975.00 + 6884.90i 0.147468 + 0.255422i
\(900\) 0 0
\(901\) 12301.5 21306.8i 0.454853 0.787828i
\(902\) −34860.0 −1.28682
\(903\) 0 0
\(904\) 400.000 0.0147166
\(905\) −4095.00 + 7092.75i −0.150411 + 0.260520i
\(906\) 0 0
\(907\) −15967.5 27656.5i −0.584556 1.01248i −0.994931 0.100563i \(-0.967935\pi\)
0.410375 0.911917i \(-0.365398\pi\)
\(908\) 5142.00 8906.21i 0.187933 0.325510i
\(909\) 0 0
\(910\) −17094.0 800.207i −0.622704 0.0291501i
\(911\) −3408.00 −0.123943 −0.0619715 0.998078i \(-0.519739\pi\)
−0.0619715 + 0.998078i \(0.519739\pi\)
\(912\) 0 0
\(913\) −16310.0 28249.7i −0.591218 1.02402i
\(914\) −11551.0 20006.9i −0.418023 0.724037i
\(915\) 0 0
\(916\) 3580.00 0.129134
\(917\) −6417.50 12423.1i −0.231106 0.447381i
\(918\) 0 0
\(919\) −6954.50 + 12045.5i −0.249628 + 0.432368i −0.963423 0.267987i \(-0.913642\pi\)
0.713795 + 0.700355i \(0.246975\pi\)
\(920\) 196.000 + 339.482i 0.00702384 + 0.0121656i
\(921\) 0 0
\(922\) −9494.00 + 16444.1i −0.339120 + 0.587372i
\(923\) 51744.0 1.84526
\(924\) 0 0
\(925\) −836.000 −0.0297162
\(926\) 10160.0 17597.6i 0.360560 0.624508i
\(927\) 0 0
\(928\) 1696.00 + 2937.56i 0.0599935 + 0.103912i
\(929\) −12268.5 + 21249.7i −0.433279 + 0.750462i −0.997153 0.0753990i \(-0.975977\pi\)
0.563874 + 0.825861i \(0.309310\pi\)
\(930\) 0 0
\(931\) 46785.5 + 4389.88i 1.64697 + 0.154536i
\(932\) −7148.00 −0.251224
\(933\) 0 0
\(934\) −1307.00 2263.79i −0.0457884 0.0793078i
\(935\) 7227.50 + 12518.4i 0.252796 + 0.437856i
\(936\) 0 0
\(937\) −32758.0 −1.14211 −0.571055 0.820912i \(-0.693466\pi\)
−0.571055 + 0.820912i \(0.693466\pi\)
\(938\) −8780.00 + 13686.7i −0.305626 + 0.476424i
\(939\) 0 0
\(940\) 2394.00 4146.53i 0.0830677 0.143878i
\(941\) −19280.5 33394.8i −0.667934 1.15690i −0.978481 0.206338i \(-0.933845\pi\)
0.310546 0.950558i \(-0.399488\pi\)
\(942\) 0 0
\(943\) −1743.00 + 3018.96i −0.0601908 + 0.104253i
\(944\) 272.000 0.00937801
\(945\) 0 0
\(946\) −18200.0 −0.625511
\(947\) 19830.5 34347.4i 0.680470 1.17861i −0.294368 0.955692i \(-0.595109\pi\)
0.974838 0.222916i \(-0.0715575\pi\)
\(948\) 0 0
\(949\) −9735.00 16861.5i −0.332994 0.576763i
\(950\) 10412.0 18034.1i 0.355589 0.615899i
\(951\) 0 0
\(952\) −8732.00 408.764i −0.297275 0.0139161i
\(953\) 46618.0 1.58458 0.792290 0.610144i \(-0.208889\pi\)
0.792290 + 0.610144i \(0.208889\pi\)
\(954\) 0 0
\(955\) 4462.50 + 7729.28i 0.151207 + 0.261899i
\(956\) −10200.0 17666.9i −0.345075 0.597687i
\(957\) 0 0
\(958\) −36574.0 −1.23346
\(959\) 43604.5 + 2041.22i 1.46826 + 0.0687325i
\(960\) 0 0
\(961\) 12083.0 20928.4i 0.405592 0.702506i
\(962\) −726.000 1257.47i −0.0243318 0.0421439i
\(963\) 0 0
\(964\) 8354.00 14469.6i 0.279112 0.483437i
\(965\) −245.000 −0.00817288
\(966\) 0 0
\(967\) 14816.0 0.492710 0.246355 0.969180i \(-0.420767\pi\)
0.246355 + 0.969180i \(0.420767\pi\)
\(968\) 424.000 734.390i 0.0140784 0.0243845i
\(969\) 0 0
\(970\) −2030.00 3516.06i −0.0671952 0.116386i
\(971\) −8437.50 + 14614.2i −0.278859 + 0.482998i −0.971102 0.238667i \(-0.923290\pi\)
0.692242 + 0.721665i \(0.256623\pi\)
\(972\) 0 0
\(973\) −280.000 + 436.477i −0.00922548 + 0.0143811i
\(974\) −29906.0 −0.983830
\(975\) 0 0
\(976\) −408.000 706.677i −0.0133809 0.0231764i
\(977\) −7918.50 13715.2i −0.259299 0.449119i 0.706755 0.707458i \(-0.250158\pi\)
−0.966054 + 0.258339i \(0.916825\pi\)
\(978\) 0 0
\(979\) −30555.0 −0.997489
\(980\) 4004.00 + 8729.54i 0.130513 + 0.284546i
\(981\) 0 0
\(982\) 14352.0 24858.4i 0.466386 0.807804i
\(983\) 4957.50 + 8586.64i 0.160854 + 0.278608i 0.935175 0.354185i \(-0.115242\pi\)
−0.774321 + 0.632793i \(0.781908\pi\)
\(984\) 0 0
\(985\) 9569.00 16574.0i 0.309537 0.536133i
\(986\) 12508.0 0.403992
\(987\) 0 0
\(988\) 36168.0 1.16463
\(989\) −910.000 + 1576.17i −0.0292582 + 0.0506766i
\(990\) 0 0
\(991\) 21840.5 + 37828.9i 0.700087 + 1.21259i 0.968435 + 0.249265i \(0.0801889\pi\)
−0.268348 + 0.963322i \(0.586478\pi\)
\(992\) −1200.00 + 2078.46i −0.0384073 + 0.0665234i
\(993\) 0 0
\(994\) −13328.0 25800.6i −0.425290 0.823286i
\(995\) −15701.0 −0.500256
\(996\) 0 0
\(997\) 23556.5 + 40801.1i 0.748287 + 1.29607i 0.948643 + 0.316348i \(0.102457\pi\)
−0.200357 + 0.979723i \(0.564210\pi\)
\(998\) 5531.00 + 9579.97i 0.175432 + 0.303856i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.4.g.c.37.1 2
3.2 odd 2 14.4.c.b.9.1 2
7.2 even 3 882.4.a.k.1.1 1
7.3 odd 6 882.4.g.d.361.1 2
7.4 even 3 inner 126.4.g.c.109.1 2
7.5 odd 6 882.4.a.p.1.1 1
7.6 odd 2 882.4.g.d.667.1 2
12.11 even 2 112.4.i.b.65.1 2
15.2 even 4 350.4.j.d.149.2 4
15.8 even 4 350.4.j.d.149.1 4
15.14 odd 2 350.4.e.b.51.1 2
21.2 odd 6 98.4.a.b.1.1 1
21.5 even 6 98.4.a.c.1.1 1
21.11 odd 6 14.4.c.b.11.1 yes 2
21.17 even 6 98.4.c.e.67.1 2
21.20 even 2 98.4.c.e.79.1 2
24.5 odd 2 448.4.i.c.65.1 2
24.11 even 2 448.4.i.d.65.1 2
84.11 even 6 112.4.i.b.81.1 2
84.23 even 6 784.4.a.l.1.1 1
84.47 odd 6 784.4.a.j.1.1 1
105.32 even 12 350.4.j.d.249.1 4
105.44 odd 6 2450.4.a.bh.1.1 1
105.53 even 12 350.4.j.d.249.2 4
105.74 odd 6 350.4.e.b.151.1 2
105.89 even 6 2450.4.a.bf.1.1 1
168.11 even 6 448.4.i.d.193.1 2
168.53 odd 6 448.4.i.c.193.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.4.c.b.9.1 2 3.2 odd 2
14.4.c.b.11.1 yes 2 21.11 odd 6
98.4.a.b.1.1 1 21.2 odd 6
98.4.a.c.1.1 1 21.5 even 6
98.4.c.e.67.1 2 21.17 even 6
98.4.c.e.79.1 2 21.20 even 2
112.4.i.b.65.1 2 12.11 even 2
112.4.i.b.81.1 2 84.11 even 6
126.4.g.c.37.1 2 1.1 even 1 trivial
126.4.g.c.109.1 2 7.4 even 3 inner
350.4.e.b.51.1 2 15.14 odd 2
350.4.e.b.151.1 2 105.74 odd 6
350.4.j.d.149.1 4 15.8 even 4
350.4.j.d.149.2 4 15.2 even 4
350.4.j.d.249.1 4 105.32 even 12
350.4.j.d.249.2 4 105.53 even 12
448.4.i.c.65.1 2 24.5 odd 2
448.4.i.c.193.1 2 168.53 odd 6
448.4.i.d.65.1 2 24.11 even 2
448.4.i.d.193.1 2 168.11 even 6
784.4.a.j.1.1 1 84.47 odd 6
784.4.a.l.1.1 1 84.23 even 6
882.4.a.k.1.1 1 7.2 even 3
882.4.a.p.1.1 1 7.5 odd 6
882.4.g.d.361.1 2 7.3 odd 6
882.4.g.d.667.1 2 7.6 odd 2
2450.4.a.bf.1.1 1 105.89 even 6
2450.4.a.bh.1.1 1 105.44 odd 6