Properties

Label 882.4.a.k.1.1
Level $882$
Weight $4$
Character 882.1
Self dual yes
Analytic conductor $52.040$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,4,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.0396846251\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} -7.00000 q^{5} +8.00000 q^{8} -14.0000 q^{10} -35.0000 q^{11} +66.0000 q^{13} +16.0000 q^{16} -59.0000 q^{17} +137.000 q^{19} -28.0000 q^{20} -70.0000 q^{22} +7.00000 q^{23} -76.0000 q^{25} +132.000 q^{26} -106.000 q^{29} +75.0000 q^{31} +32.0000 q^{32} -118.000 q^{34} +11.0000 q^{37} +274.000 q^{38} -56.0000 q^{40} +498.000 q^{41} +260.000 q^{43} -140.000 q^{44} +14.0000 q^{46} +171.000 q^{47} -152.000 q^{50} +264.000 q^{52} +417.000 q^{53} +245.000 q^{55} -212.000 q^{58} +17.0000 q^{59} +51.0000 q^{61} +150.000 q^{62} +64.0000 q^{64} -462.000 q^{65} +439.000 q^{67} -236.000 q^{68} +784.000 q^{71} +295.000 q^{73} +22.0000 q^{74} +548.000 q^{76} -495.000 q^{79} -112.000 q^{80} +996.000 q^{82} -932.000 q^{83} +413.000 q^{85} +520.000 q^{86} -280.000 q^{88} +873.000 q^{89} +28.0000 q^{92} +342.000 q^{94} -959.000 q^{95} -290.000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −7.00000 −0.626099 −0.313050 0.949737i \(-0.601351\pi\)
−0.313050 + 0.949737i \(0.601351\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −14.0000 −0.442719
\(11\) −35.0000 −0.959354 −0.479677 0.877445i \(-0.659246\pi\)
−0.479677 + 0.877445i \(0.659246\pi\)
\(12\) 0 0
\(13\) 66.0000 1.40809 0.704043 0.710158i \(-0.251376\pi\)
0.704043 + 0.710158i \(0.251376\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −59.0000 −0.841741 −0.420871 0.907121i \(-0.638275\pi\)
−0.420871 + 0.907121i \(0.638275\pi\)
\(18\) 0 0
\(19\) 137.000 1.65421 0.827104 0.562049i \(-0.189987\pi\)
0.827104 + 0.562049i \(0.189987\pi\)
\(20\) −28.0000 −0.313050
\(21\) 0 0
\(22\) −70.0000 −0.678366
\(23\) 7.00000 0.0634609 0.0317305 0.999496i \(-0.489898\pi\)
0.0317305 + 0.999496i \(0.489898\pi\)
\(24\) 0 0
\(25\) −76.0000 −0.608000
\(26\) 132.000 0.995667
\(27\) 0 0
\(28\) 0 0
\(29\) −106.000 −0.678748 −0.339374 0.940651i \(-0.610215\pi\)
−0.339374 + 0.940651i \(0.610215\pi\)
\(30\) 0 0
\(31\) 75.0000 0.434529 0.217264 0.976113i \(-0.430287\pi\)
0.217264 + 0.976113i \(0.430287\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) −118.000 −0.595201
\(35\) 0 0
\(36\) 0 0
\(37\) 11.0000 0.0488754 0.0244377 0.999701i \(-0.492220\pi\)
0.0244377 + 0.999701i \(0.492220\pi\)
\(38\) 274.000 1.16970
\(39\) 0 0
\(40\) −56.0000 −0.221359
\(41\) 498.000 1.89694 0.948470 0.316867i \(-0.102631\pi\)
0.948470 + 0.316867i \(0.102631\pi\)
\(42\) 0 0
\(43\) 260.000 0.922084 0.461042 0.887378i \(-0.347476\pi\)
0.461042 + 0.887378i \(0.347476\pi\)
\(44\) −140.000 −0.479677
\(45\) 0 0
\(46\) 14.0000 0.0448736
\(47\) 171.000 0.530700 0.265350 0.964152i \(-0.414512\pi\)
0.265350 + 0.964152i \(0.414512\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −152.000 −0.429921
\(51\) 0 0
\(52\) 264.000 0.704043
\(53\) 417.000 1.08074 0.540371 0.841427i \(-0.318284\pi\)
0.540371 + 0.841427i \(0.318284\pi\)
\(54\) 0 0
\(55\) 245.000 0.600651
\(56\) 0 0
\(57\) 0 0
\(58\) −212.000 −0.479948
\(59\) 17.0000 0.0375121 0.0187560 0.999824i \(-0.494029\pi\)
0.0187560 + 0.999824i \(0.494029\pi\)
\(60\) 0 0
\(61\) 51.0000 0.107047 0.0535236 0.998567i \(-0.482955\pi\)
0.0535236 + 0.998567i \(0.482955\pi\)
\(62\) 150.000 0.307258
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −462.000 −0.881601
\(66\) 0 0
\(67\) 439.000 0.800483 0.400242 0.916410i \(-0.368926\pi\)
0.400242 + 0.916410i \(0.368926\pi\)
\(68\) −236.000 −0.420871
\(69\) 0 0
\(70\) 0 0
\(71\) 784.000 1.31047 0.655237 0.755423i \(-0.272569\pi\)
0.655237 + 0.755423i \(0.272569\pi\)
\(72\) 0 0
\(73\) 295.000 0.472974 0.236487 0.971635i \(-0.424004\pi\)
0.236487 + 0.971635i \(0.424004\pi\)
\(74\) 22.0000 0.0345601
\(75\) 0 0
\(76\) 548.000 0.827104
\(77\) 0 0
\(78\) 0 0
\(79\) −495.000 −0.704960 −0.352480 0.935819i \(-0.614662\pi\)
−0.352480 + 0.935819i \(0.614662\pi\)
\(80\) −112.000 −0.156525
\(81\) 0 0
\(82\) 996.000 1.34134
\(83\) −932.000 −1.23253 −0.616267 0.787537i \(-0.711356\pi\)
−0.616267 + 0.787537i \(0.711356\pi\)
\(84\) 0 0
\(85\) 413.000 0.527013
\(86\) 520.000 0.652012
\(87\) 0 0
\(88\) −280.000 −0.339183
\(89\) 873.000 1.03975 0.519875 0.854242i \(-0.325978\pi\)
0.519875 + 0.854242i \(0.325978\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 28.0000 0.0317305
\(93\) 0 0
\(94\) 342.000 0.375262
\(95\) −959.000 −1.03570
\(96\) 0 0
\(97\) −290.000 −0.303557 −0.151779 0.988415i \(-0.548500\pi\)
−0.151779 + 0.988415i \(0.548500\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −304.000 −0.304000
\(101\) 1085.00 1.06893 0.534463 0.845192i \(-0.320514\pi\)
0.534463 + 0.845192i \(0.320514\pi\)
\(102\) 0 0
\(103\) 1553.00 1.48565 0.742823 0.669487i \(-0.233486\pi\)
0.742823 + 0.669487i \(0.233486\pi\)
\(104\) 528.000 0.497833
\(105\) 0 0
\(106\) 834.000 0.764200
\(107\) −129.000 −0.116550 −0.0582752 0.998301i \(-0.518560\pi\)
−0.0582752 + 0.998301i \(0.518560\pi\)
\(108\) 0 0
\(109\) −965.000 −0.847984 −0.423992 0.905666i \(-0.639372\pi\)
−0.423992 + 0.905666i \(0.639372\pi\)
\(110\) 490.000 0.424724
\(111\) 0 0
\(112\) 0 0
\(113\) 50.0000 0.0416248 0.0208124 0.999783i \(-0.493375\pi\)
0.0208124 + 0.999783i \(0.493375\pi\)
\(114\) 0 0
\(115\) −49.0000 −0.0397328
\(116\) −424.000 −0.339374
\(117\) 0 0
\(118\) 34.0000 0.0265250
\(119\) 0 0
\(120\) 0 0
\(121\) −106.000 −0.0796394
\(122\) 102.000 0.0756938
\(123\) 0 0
\(124\) 300.000 0.217264
\(125\) 1407.00 1.00677
\(126\) 0 0
\(127\) 936.000 0.653989 0.326994 0.945026i \(-0.393964\pi\)
0.326994 + 0.945026i \(0.393964\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) −924.000 −0.623386
\(131\) 755.000 0.503547 0.251773 0.967786i \(-0.418986\pi\)
0.251773 + 0.967786i \(0.418986\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 878.000 0.566027
\(135\) 0 0
\(136\) −472.000 −0.297600
\(137\) 2357.00 1.46987 0.734935 0.678138i \(-0.237213\pi\)
0.734935 + 0.678138i \(0.237213\pi\)
\(138\) 0 0
\(139\) 28.0000 0.0170858 0.00854291 0.999964i \(-0.497281\pi\)
0.00854291 + 0.999964i \(0.497281\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1568.00 0.926645
\(143\) −2310.00 −1.35085
\(144\) 0 0
\(145\) 742.000 0.424964
\(146\) 590.000 0.334443
\(147\) 0 0
\(148\) 44.0000 0.0244377
\(149\) −2295.00 −1.26184 −0.630919 0.775849i \(-0.717322\pi\)
−0.630919 + 0.775849i \(0.717322\pi\)
\(150\) 0 0
\(151\) −1109.00 −0.597676 −0.298838 0.954304i \(-0.596599\pi\)
−0.298838 + 0.954304i \(0.596599\pi\)
\(152\) 1096.00 0.584851
\(153\) 0 0
\(154\) 0 0
\(155\) −525.000 −0.272058
\(156\) 0 0
\(157\) 1559.00 0.792495 0.396248 0.918144i \(-0.370312\pi\)
0.396248 + 0.918144i \(0.370312\pi\)
\(158\) −990.000 −0.498482
\(159\) 0 0
\(160\) −224.000 −0.110680
\(161\) 0 0
\(162\) 0 0
\(163\) −2251.00 −1.08167 −0.540834 0.841129i \(-0.681891\pi\)
−0.540834 + 0.841129i \(0.681891\pi\)
\(164\) 1992.00 0.948470
\(165\) 0 0
\(166\) −1864.00 −0.871533
\(167\) −2788.00 −1.29187 −0.645934 0.763393i \(-0.723532\pi\)
−0.645934 + 0.763393i \(0.723532\pi\)
\(168\) 0 0
\(169\) 2159.00 0.982704
\(170\) 826.000 0.372655
\(171\) 0 0
\(172\) 1040.00 0.461042
\(173\) −1579.00 −0.693926 −0.346963 0.937879i \(-0.612787\pi\)
−0.346963 + 0.937879i \(0.612787\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −560.000 −0.239839
\(177\) 0 0
\(178\) 1746.00 0.735215
\(179\) −2451.00 −1.02344 −0.511722 0.859151i \(-0.670992\pi\)
−0.511722 + 0.859151i \(0.670992\pi\)
\(180\) 0 0
\(181\) −1170.00 −0.480472 −0.240236 0.970715i \(-0.577225\pi\)
−0.240236 + 0.970715i \(0.577225\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 56.0000 0.0224368
\(185\) −77.0000 −0.0306008
\(186\) 0 0
\(187\) 2065.00 0.807528
\(188\) 684.000 0.265350
\(189\) 0 0
\(190\) −1918.00 −0.732349
\(191\) 1275.00 0.483014 0.241507 0.970399i \(-0.422358\pi\)
0.241507 + 0.970399i \(0.422358\pi\)
\(192\) 0 0
\(193\) 35.0000 0.0130537 0.00652683 0.999979i \(-0.497922\pi\)
0.00652683 + 0.999979i \(0.497922\pi\)
\(194\) −580.000 −0.214647
\(195\) 0 0
\(196\) 0 0
\(197\) 2734.00 0.988779 0.494389 0.869241i \(-0.335392\pi\)
0.494389 + 0.869241i \(0.335392\pi\)
\(198\) 0 0
\(199\) 2243.00 0.799005 0.399503 0.916732i \(-0.369183\pi\)
0.399503 + 0.916732i \(0.369183\pi\)
\(200\) −608.000 −0.214960
\(201\) 0 0
\(202\) 2170.00 0.755845
\(203\) 0 0
\(204\) 0 0
\(205\) −3486.00 −1.18767
\(206\) 3106.00 1.05051
\(207\) 0 0
\(208\) 1056.00 0.352021
\(209\) −4795.00 −1.58697
\(210\) 0 0
\(211\) 1172.00 0.382388 0.191194 0.981552i \(-0.438764\pi\)
0.191194 + 0.981552i \(0.438764\pi\)
\(212\) 1668.00 0.540371
\(213\) 0 0
\(214\) −258.000 −0.0824136
\(215\) −1820.00 −0.577316
\(216\) 0 0
\(217\) 0 0
\(218\) −1930.00 −0.599615
\(219\) 0 0
\(220\) 980.000 0.300325
\(221\) −3894.00 −1.18524
\(222\) 0 0
\(223\) 2024.00 0.607790 0.303895 0.952706i \(-0.401713\pi\)
0.303895 + 0.952706i \(0.401713\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 100.000 0.0294332
\(227\) −2571.00 −0.751732 −0.375866 0.926674i \(-0.622655\pi\)
−0.375866 + 0.926674i \(0.622655\pi\)
\(228\) 0 0
\(229\) 895.000 0.258268 0.129134 0.991627i \(-0.458780\pi\)
0.129134 + 0.991627i \(0.458780\pi\)
\(230\) −98.0000 −0.0280953
\(231\) 0 0
\(232\) −848.000 −0.239974
\(233\) −1787.00 −0.502447 −0.251224 0.967929i \(-0.580833\pi\)
−0.251224 + 0.967929i \(0.580833\pi\)
\(234\) 0 0
\(235\) −1197.00 −0.332271
\(236\) 68.0000 0.0187560
\(237\) 0 0
\(238\) 0 0
\(239\) 5100.00 1.38030 0.690150 0.723667i \(-0.257545\pi\)
0.690150 + 0.723667i \(0.257545\pi\)
\(240\) 0 0
\(241\) −4177.00 −1.11645 −0.558225 0.829690i \(-0.688517\pi\)
−0.558225 + 0.829690i \(0.688517\pi\)
\(242\) −212.000 −0.0563135
\(243\) 0 0
\(244\) 204.000 0.0535236
\(245\) 0 0
\(246\) 0 0
\(247\) 9042.00 2.32927
\(248\) 600.000 0.153629
\(249\) 0 0
\(250\) 2814.00 0.711892
\(251\) 4680.00 1.17689 0.588444 0.808538i \(-0.299741\pi\)
0.588444 + 0.808538i \(0.299741\pi\)
\(252\) 0 0
\(253\) −245.000 −0.0608815
\(254\) 1872.00 0.462440
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1749.00 0.424512 0.212256 0.977214i \(-0.431919\pi\)
0.212256 + 0.977214i \(0.431919\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1848.00 −0.440800
\(261\) 0 0
\(262\) 1510.00 0.356061
\(263\) 4473.00 1.04873 0.524367 0.851492i \(-0.324302\pi\)
0.524367 + 0.851492i \(0.324302\pi\)
\(264\) 0 0
\(265\) −2919.00 −0.676652
\(266\) 0 0
\(267\) 0 0
\(268\) 1756.00 0.400242
\(269\) −1975.00 −0.447650 −0.223825 0.974629i \(-0.571854\pi\)
−0.223825 + 0.974629i \(0.571854\pi\)
\(270\) 0 0
\(271\) −8439.00 −1.89163 −0.945817 0.324701i \(-0.894736\pi\)
−0.945817 + 0.324701i \(0.894736\pi\)
\(272\) −944.000 −0.210435
\(273\) 0 0
\(274\) 4714.00 1.03935
\(275\) 2660.00 0.583287
\(276\) 0 0
\(277\) 527.000 0.114312 0.0571559 0.998365i \(-0.481797\pi\)
0.0571559 + 0.998365i \(0.481797\pi\)
\(278\) 56.0000 0.0120815
\(279\) 0 0
\(280\) 0 0
\(281\) 202.000 0.0428837 0.0214418 0.999770i \(-0.493174\pi\)
0.0214418 + 0.999770i \(0.493174\pi\)
\(282\) 0 0
\(283\) −7949.00 −1.66968 −0.834839 0.550494i \(-0.814439\pi\)
−0.834839 + 0.550494i \(0.814439\pi\)
\(284\) 3136.00 0.655237
\(285\) 0 0
\(286\) −4620.00 −0.955197
\(287\) 0 0
\(288\) 0 0
\(289\) −1432.00 −0.291472
\(290\) 1484.00 0.300495
\(291\) 0 0
\(292\) 1180.00 0.236487
\(293\) −318.000 −0.0634053 −0.0317027 0.999497i \(-0.510093\pi\)
−0.0317027 + 0.999497i \(0.510093\pi\)
\(294\) 0 0
\(295\) −119.000 −0.0234863
\(296\) 88.0000 0.0172801
\(297\) 0 0
\(298\) −4590.00 −0.892254
\(299\) 462.000 0.0893584
\(300\) 0 0
\(301\) 0 0
\(302\) −2218.00 −0.422621
\(303\) 0 0
\(304\) 2192.00 0.413552
\(305\) −357.000 −0.0670222
\(306\) 0 0
\(307\) −8132.00 −1.51178 −0.755892 0.654696i \(-0.772797\pi\)
−0.755892 + 0.654696i \(0.772797\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1050.00 −0.192374
\(311\) 929.000 0.169385 0.0846925 0.996407i \(-0.473009\pi\)
0.0846925 + 0.996407i \(0.473009\pi\)
\(312\) 0 0
\(313\) −209.000 −0.0377424 −0.0188712 0.999822i \(-0.506007\pi\)
−0.0188712 + 0.999822i \(0.506007\pi\)
\(314\) 3118.00 0.560379
\(315\) 0 0
\(316\) −1980.00 −0.352480
\(317\) −7131.00 −1.26346 −0.631730 0.775188i \(-0.717655\pi\)
−0.631730 + 0.775188i \(0.717655\pi\)
\(318\) 0 0
\(319\) 3710.00 0.651160
\(320\) −448.000 −0.0782624
\(321\) 0 0
\(322\) 0 0
\(323\) −8083.00 −1.39242
\(324\) 0 0
\(325\) −5016.00 −0.856116
\(326\) −4502.00 −0.764855
\(327\) 0 0
\(328\) 3984.00 0.670670
\(329\) 0 0
\(330\) 0 0
\(331\) −6571.00 −1.09116 −0.545581 0.838058i \(-0.683691\pi\)
−0.545581 + 0.838058i \(0.683691\pi\)
\(332\) −3728.00 −0.616267
\(333\) 0 0
\(334\) −5576.00 −0.913488
\(335\) −3073.00 −0.501182
\(336\) 0 0
\(337\) −11466.0 −1.85339 −0.926696 0.375813i \(-0.877364\pi\)
−0.926696 + 0.375813i \(0.877364\pi\)
\(338\) 4318.00 0.694876
\(339\) 0 0
\(340\) 1652.00 0.263507
\(341\) −2625.00 −0.416867
\(342\) 0 0
\(343\) 0 0
\(344\) 2080.00 0.326006
\(345\) 0 0
\(346\) −3158.00 −0.490680
\(347\) 9777.00 1.51256 0.756278 0.654251i \(-0.227016\pi\)
0.756278 + 0.654251i \(0.227016\pi\)
\(348\) 0 0
\(349\) 11914.0 1.82734 0.913670 0.406456i \(-0.133236\pi\)
0.913670 + 0.406456i \(0.133236\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1120.00 −0.169591
\(353\) −9123.00 −1.37555 −0.687774 0.725925i \(-0.741412\pi\)
−0.687774 + 0.725925i \(0.741412\pi\)
\(354\) 0 0
\(355\) −5488.00 −0.820487
\(356\) 3492.00 0.519875
\(357\) 0 0
\(358\) −4902.00 −0.723684
\(359\) −8149.00 −1.19802 −0.599008 0.800743i \(-0.704438\pi\)
−0.599008 + 0.800743i \(0.704438\pi\)
\(360\) 0 0
\(361\) 11910.0 1.73640
\(362\) −2340.00 −0.339745
\(363\) 0 0
\(364\) 0 0
\(365\) −2065.00 −0.296129
\(366\) 0 0
\(367\) 9671.00 1.37554 0.687769 0.725930i \(-0.258590\pi\)
0.687769 + 0.725930i \(0.258590\pi\)
\(368\) 112.000 0.0158652
\(369\) 0 0
\(370\) −154.000 −0.0216381
\(371\) 0 0
\(372\) 0 0
\(373\) −4109.00 −0.570391 −0.285196 0.958469i \(-0.592059\pi\)
−0.285196 + 0.958469i \(0.592059\pi\)
\(374\) 4130.00 0.571009
\(375\) 0 0
\(376\) 1368.00 0.187631
\(377\) −6996.00 −0.955736
\(378\) 0 0
\(379\) −3488.00 −0.472735 −0.236367 0.971664i \(-0.575957\pi\)
−0.236367 + 0.971664i \(0.575957\pi\)
\(380\) −3836.00 −0.517849
\(381\) 0 0
\(382\) 2550.00 0.341543
\(383\) −8717.00 −1.16297 −0.581485 0.813557i \(-0.697528\pi\)
−0.581485 + 0.813557i \(0.697528\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 70.0000 0.00923033
\(387\) 0 0
\(388\) −1160.00 −0.151779
\(389\) −163.000 −0.0212453 −0.0106227 0.999944i \(-0.503381\pi\)
−0.0106227 + 0.999944i \(0.503381\pi\)
\(390\) 0 0
\(391\) −413.000 −0.0534177
\(392\) 0 0
\(393\) 0 0
\(394\) 5468.00 0.699172
\(395\) 3465.00 0.441375
\(396\) 0 0
\(397\) 999.000 0.126293 0.0631466 0.998004i \(-0.479886\pi\)
0.0631466 + 0.998004i \(0.479886\pi\)
\(398\) 4486.00 0.564982
\(399\) 0 0
\(400\) −1216.00 −0.152000
\(401\) 14757.0 1.83773 0.918865 0.394573i \(-0.129107\pi\)
0.918865 + 0.394573i \(0.129107\pi\)
\(402\) 0 0
\(403\) 4950.00 0.611854
\(404\) 4340.00 0.534463
\(405\) 0 0
\(406\) 0 0
\(407\) −385.000 −0.0468888
\(408\) 0 0
\(409\) −133.000 −0.0160793 −0.00803964 0.999968i \(-0.502559\pi\)
−0.00803964 + 0.999968i \(0.502559\pi\)
\(410\) −6972.00 −0.839811
\(411\) 0 0
\(412\) 6212.00 0.742823
\(413\) 0 0
\(414\) 0 0
\(415\) 6524.00 0.771688
\(416\) 2112.00 0.248917
\(417\) 0 0
\(418\) −9590.00 −1.12216
\(419\) 6420.00 0.748538 0.374269 0.927320i \(-0.377894\pi\)
0.374269 + 0.927320i \(0.377894\pi\)
\(420\) 0 0
\(421\) 10266.0 1.18844 0.594221 0.804302i \(-0.297460\pi\)
0.594221 + 0.804302i \(0.297460\pi\)
\(422\) 2344.00 0.270389
\(423\) 0 0
\(424\) 3336.00 0.382100
\(425\) 4484.00 0.511779
\(426\) 0 0
\(427\) 0 0
\(428\) −516.000 −0.0582752
\(429\) 0 0
\(430\) −3640.00 −0.408224
\(431\) 15213.0 1.70020 0.850098 0.526625i \(-0.176543\pi\)
0.850098 + 0.526625i \(0.176543\pi\)
\(432\) 0 0
\(433\) −1378.00 −0.152939 −0.0764693 0.997072i \(-0.524365\pi\)
−0.0764693 + 0.997072i \(0.524365\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3860.00 −0.423992
\(437\) 959.000 0.104978
\(438\) 0 0
\(439\) −2763.00 −0.300389 −0.150195 0.988656i \(-0.547990\pi\)
−0.150195 + 0.988656i \(0.547990\pi\)
\(440\) 1960.00 0.212362
\(441\) 0 0
\(442\) −7788.00 −0.838094
\(443\) −5849.00 −0.627301 −0.313651 0.949538i \(-0.601552\pi\)
−0.313651 + 0.949538i \(0.601552\pi\)
\(444\) 0 0
\(445\) −6111.00 −0.650987
\(446\) 4048.00 0.429772
\(447\) 0 0
\(448\) 0 0
\(449\) −4582.00 −0.481599 −0.240799 0.970575i \(-0.577410\pi\)
−0.240799 + 0.970575i \(0.577410\pi\)
\(450\) 0 0
\(451\) −17430.0 −1.81984
\(452\) 200.000 0.0208124
\(453\) 0 0
\(454\) −5142.00 −0.531555
\(455\) 0 0
\(456\) 0 0
\(457\) 11551.0 1.18235 0.591174 0.806544i \(-0.298665\pi\)
0.591174 + 0.806544i \(0.298665\pi\)
\(458\) 1790.00 0.182623
\(459\) 0 0
\(460\) −196.000 −0.0198664
\(461\) 9494.00 0.959175 0.479587 0.877494i \(-0.340786\pi\)
0.479587 + 0.877494i \(0.340786\pi\)
\(462\) 0 0
\(463\) −10160.0 −1.01982 −0.509908 0.860229i \(-0.670321\pi\)
−0.509908 + 0.860229i \(0.670321\pi\)
\(464\) −1696.00 −0.169687
\(465\) 0 0
\(466\) −3574.00 −0.355284
\(467\) 1307.00 0.129509 0.0647545 0.997901i \(-0.479374\pi\)
0.0647545 + 0.997901i \(0.479374\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2394.00 −0.234951
\(471\) 0 0
\(472\) 136.000 0.0132625
\(473\) −9100.00 −0.884606
\(474\) 0 0
\(475\) −10412.0 −1.00576
\(476\) 0 0
\(477\) 0 0
\(478\) 10200.0 0.976019
\(479\) −18287.0 −1.74437 −0.872186 0.489174i \(-0.837298\pi\)
−0.872186 + 0.489174i \(0.837298\pi\)
\(480\) 0 0
\(481\) 726.000 0.0688207
\(482\) −8354.00 −0.789449
\(483\) 0 0
\(484\) −424.000 −0.0398197
\(485\) 2030.00 0.190057
\(486\) 0 0
\(487\) −14953.0 −1.39135 −0.695673 0.718359i \(-0.744894\pi\)
−0.695673 + 0.718359i \(0.744894\pi\)
\(488\) 408.000 0.0378469
\(489\) 0 0
\(490\) 0 0
\(491\) −14352.0 −1.31914 −0.659569 0.751644i \(-0.729261\pi\)
−0.659569 + 0.751644i \(0.729261\pi\)
\(492\) 0 0
\(493\) 6254.00 0.571331
\(494\) 18084.0 1.64704
\(495\) 0 0
\(496\) 1200.00 0.108632
\(497\) 0 0
\(498\) 0 0
\(499\) −5531.00 −0.496196 −0.248098 0.968735i \(-0.579805\pi\)
−0.248098 + 0.968735i \(0.579805\pi\)
\(500\) 5628.00 0.503384
\(501\) 0 0
\(502\) 9360.00 0.832186
\(503\) −8400.00 −0.744607 −0.372304 0.928111i \(-0.621432\pi\)
−0.372304 + 0.928111i \(0.621432\pi\)
\(504\) 0 0
\(505\) −7595.00 −0.669254
\(506\) −490.000 −0.0430497
\(507\) 0 0
\(508\) 3744.00 0.326994
\(509\) 2385.00 0.207688 0.103844 0.994594i \(-0.466886\pi\)
0.103844 + 0.994594i \(0.466886\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) 3498.00 0.300175
\(515\) −10871.0 −0.930162
\(516\) 0 0
\(517\) −5985.00 −0.509130
\(518\) 0 0
\(519\) 0 0
\(520\) −3696.00 −0.311693
\(521\) 9153.00 0.769674 0.384837 0.922985i \(-0.374258\pi\)
0.384837 + 0.922985i \(0.374258\pi\)
\(522\) 0 0
\(523\) −13807.0 −1.15437 −0.577187 0.816612i \(-0.695850\pi\)
−0.577187 + 0.816612i \(0.695850\pi\)
\(524\) 3020.00 0.251773
\(525\) 0 0
\(526\) 8946.00 0.741567
\(527\) −4425.00 −0.365761
\(528\) 0 0
\(529\) −12118.0 −0.995973
\(530\) −5838.00 −0.478465
\(531\) 0 0
\(532\) 0 0
\(533\) 32868.0 2.67105
\(534\) 0 0
\(535\) 903.000 0.0729721
\(536\) 3512.00 0.283014
\(537\) 0 0
\(538\) −3950.00 −0.316536
\(539\) 0 0
\(540\) 0 0
\(541\) 8175.00 0.649669 0.324834 0.945771i \(-0.394691\pi\)
0.324834 + 0.945771i \(0.394691\pi\)
\(542\) −16878.0 −1.33759
\(543\) 0 0
\(544\) −1888.00 −0.148800
\(545\) 6755.00 0.530922
\(546\) 0 0
\(547\) 4656.00 0.363942 0.181971 0.983304i \(-0.441752\pi\)
0.181971 + 0.983304i \(0.441752\pi\)
\(548\) 9428.00 0.734935
\(549\) 0 0
\(550\) 5320.00 0.412446
\(551\) −14522.0 −1.12279
\(552\) 0 0
\(553\) 0 0
\(554\) 1054.00 0.0808306
\(555\) 0 0
\(556\) 112.000 0.00854291
\(557\) −7003.00 −0.532723 −0.266361 0.963873i \(-0.585821\pi\)
−0.266361 + 0.963873i \(0.585821\pi\)
\(558\) 0 0
\(559\) 17160.0 1.29837
\(560\) 0 0
\(561\) 0 0
\(562\) 404.000 0.0303233
\(563\) 19753.0 1.47867 0.739334 0.673339i \(-0.235141\pi\)
0.739334 + 0.673339i \(0.235141\pi\)
\(564\) 0 0
\(565\) −350.000 −0.0260613
\(566\) −15898.0 −1.18064
\(567\) 0 0
\(568\) 6272.00 0.463323
\(569\) 6897.00 0.508150 0.254075 0.967185i \(-0.418229\pi\)
0.254075 + 0.967185i \(0.418229\pi\)
\(570\) 0 0
\(571\) 24915.0 1.82603 0.913013 0.407932i \(-0.133750\pi\)
0.913013 + 0.407932i \(0.133750\pi\)
\(572\) −9240.00 −0.675426
\(573\) 0 0
\(574\) 0 0
\(575\) −532.000 −0.0385842
\(576\) 0 0
\(577\) 127.000 0.00916305 0.00458152 0.999990i \(-0.498542\pi\)
0.00458152 + 0.999990i \(0.498542\pi\)
\(578\) −2864.00 −0.206102
\(579\) 0 0
\(580\) 2968.00 0.212482
\(581\) 0 0
\(582\) 0 0
\(583\) −14595.0 −1.03681
\(584\) 2360.00 0.167222
\(585\) 0 0
\(586\) −636.000 −0.0448343
\(587\) −9044.00 −0.635921 −0.317961 0.948104i \(-0.602998\pi\)
−0.317961 + 0.948104i \(0.602998\pi\)
\(588\) 0 0
\(589\) 10275.0 0.718801
\(590\) −238.000 −0.0166073
\(591\) 0 0
\(592\) 176.000 0.0122188
\(593\) 10701.0 0.741041 0.370521 0.928824i \(-0.379179\pi\)
0.370521 + 0.928824i \(0.379179\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −9180.00 −0.630919
\(597\) 0 0
\(598\) 924.000 0.0631859
\(599\) −20799.0 −1.41874 −0.709369 0.704837i \(-0.751020\pi\)
−0.709369 + 0.704837i \(0.751020\pi\)
\(600\) 0 0
\(601\) −1402.00 −0.0951560 −0.0475780 0.998868i \(-0.515150\pi\)
−0.0475780 + 0.998868i \(0.515150\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −4436.00 −0.298838
\(605\) 742.000 0.0498621
\(606\) 0 0
\(607\) 6525.00 0.436312 0.218156 0.975914i \(-0.429996\pi\)
0.218156 + 0.975914i \(0.429996\pi\)
\(608\) 4384.00 0.292425
\(609\) 0 0
\(610\) −714.000 −0.0473918
\(611\) 11286.0 0.747271
\(612\) 0 0
\(613\) 15051.0 0.991687 0.495844 0.868412i \(-0.334859\pi\)
0.495844 + 0.868412i \(0.334859\pi\)
\(614\) −16264.0 −1.06899
\(615\) 0 0
\(616\) 0 0
\(617\) −11150.0 −0.727524 −0.363762 0.931492i \(-0.618508\pi\)
−0.363762 + 0.931492i \(0.618508\pi\)
\(618\) 0 0
\(619\) 3415.00 0.221745 0.110873 0.993835i \(-0.464635\pi\)
0.110873 + 0.993835i \(0.464635\pi\)
\(620\) −2100.00 −0.136029
\(621\) 0 0
\(622\) 1858.00 0.119773
\(623\) 0 0
\(624\) 0 0
\(625\) −349.000 −0.0223360
\(626\) −418.000 −0.0266879
\(627\) 0 0
\(628\) 6236.00 0.396248
\(629\) −649.000 −0.0411404
\(630\) 0 0
\(631\) −21184.0 −1.33648 −0.668242 0.743944i \(-0.732953\pi\)
−0.668242 + 0.743944i \(0.732953\pi\)
\(632\) −3960.00 −0.249241
\(633\) 0 0
\(634\) −14262.0 −0.893401
\(635\) −6552.00 −0.409462
\(636\) 0 0
\(637\) 0 0
\(638\) 7420.00 0.460440
\(639\) 0 0
\(640\) −896.000 −0.0553399
\(641\) 10705.0 0.659629 0.329814 0.944046i \(-0.393014\pi\)
0.329814 + 0.944046i \(0.393014\pi\)
\(642\) 0 0
\(643\) 6860.00 0.420734 0.210367 0.977622i \(-0.432534\pi\)
0.210367 + 0.977622i \(0.432534\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −16166.0 −0.984586
\(647\) −14463.0 −0.878824 −0.439412 0.898286i \(-0.644813\pi\)
−0.439412 + 0.898286i \(0.644813\pi\)
\(648\) 0 0
\(649\) −595.000 −0.0359874
\(650\) −10032.0 −0.605365
\(651\) 0 0
\(652\) −9004.00 −0.540834
\(653\) −5979.00 −0.358310 −0.179155 0.983821i \(-0.557336\pi\)
−0.179155 + 0.983821i \(0.557336\pi\)
\(654\) 0 0
\(655\) −5285.00 −0.315270
\(656\) 7968.00 0.474235
\(657\) 0 0
\(658\) 0 0
\(659\) 6940.00 0.410234 0.205117 0.978737i \(-0.434243\pi\)
0.205117 + 0.978737i \(0.434243\pi\)
\(660\) 0 0
\(661\) 13399.0 0.788443 0.394221 0.919015i \(-0.371014\pi\)
0.394221 + 0.919015i \(0.371014\pi\)
\(662\) −13142.0 −0.771568
\(663\) 0 0
\(664\) −7456.00 −0.435766
\(665\) 0 0
\(666\) 0 0
\(667\) −742.000 −0.0430740
\(668\) −11152.0 −0.645934
\(669\) 0 0
\(670\) −6146.00 −0.354389
\(671\) −1785.00 −0.102696
\(672\) 0 0
\(673\) 29510.0 1.69023 0.845117 0.534582i \(-0.179531\pi\)
0.845117 + 0.534582i \(0.179531\pi\)
\(674\) −22932.0 −1.31055
\(675\) 0 0
\(676\) 8636.00 0.491352
\(677\) 26001.0 1.47607 0.738035 0.674762i \(-0.235754\pi\)
0.738035 + 0.674762i \(0.235754\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 3304.00 0.186327
\(681\) 0 0
\(682\) −5250.00 −0.294770
\(683\) 8805.00 0.493285 0.246643 0.969106i \(-0.420673\pi\)
0.246643 + 0.969106i \(0.420673\pi\)
\(684\) 0 0
\(685\) −16499.0 −0.920284
\(686\) 0 0
\(687\) 0 0
\(688\) 4160.00 0.230521
\(689\) 27522.0 1.52178
\(690\) 0 0
\(691\) 28685.0 1.57920 0.789601 0.613620i \(-0.210287\pi\)
0.789601 + 0.613620i \(0.210287\pi\)
\(692\) −6316.00 −0.346963
\(693\) 0 0
\(694\) 19554.0 1.06954
\(695\) −196.000 −0.0106974
\(696\) 0 0
\(697\) −29382.0 −1.59673
\(698\) 23828.0 1.29212
\(699\) 0 0
\(700\) 0 0
\(701\) 3146.00 0.169505 0.0847523 0.996402i \(-0.472990\pi\)
0.0847523 + 0.996402i \(0.472990\pi\)
\(702\) 0 0
\(703\) 1507.00 0.0808500
\(704\) −2240.00 −0.119919
\(705\) 0 0
\(706\) −18246.0 −0.972659
\(707\) 0 0
\(708\) 0 0
\(709\) 1259.00 0.0666893 0.0333447 0.999444i \(-0.489384\pi\)
0.0333447 + 0.999444i \(0.489384\pi\)
\(710\) −10976.0 −0.580172
\(711\) 0 0
\(712\) 6984.00 0.367607
\(713\) 525.000 0.0275756
\(714\) 0 0
\(715\) 16170.0 0.845767
\(716\) −9804.00 −0.511722
\(717\) 0 0
\(718\) −16298.0 −0.847125
\(719\) −16425.0 −0.851946 −0.425973 0.904736i \(-0.640068\pi\)
−0.425973 + 0.904736i \(0.640068\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 23820.0 1.22782
\(723\) 0 0
\(724\) −4680.00 −0.240236
\(725\) 8056.00 0.412679
\(726\) 0 0
\(727\) −6032.00 −0.307723 −0.153861 0.988092i \(-0.549171\pi\)
−0.153861 + 0.988092i \(0.549171\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −4130.00 −0.209395
\(731\) −15340.0 −0.776156
\(732\) 0 0
\(733\) 15243.0 0.768094 0.384047 0.923314i \(-0.374530\pi\)
0.384047 + 0.923314i \(0.374530\pi\)
\(734\) 19342.0 0.972652
\(735\) 0 0
\(736\) 224.000 0.0112184
\(737\) −15365.0 −0.767947
\(738\) 0 0
\(739\) −10053.0 −0.500414 −0.250207 0.968192i \(-0.580499\pi\)
−0.250207 + 0.968192i \(0.580499\pi\)
\(740\) −308.000 −0.0153004
\(741\) 0 0
\(742\) 0 0
\(743\) −24384.0 −1.20399 −0.601993 0.798501i \(-0.705627\pi\)
−0.601993 + 0.798501i \(0.705627\pi\)
\(744\) 0 0
\(745\) 16065.0 0.790035
\(746\) −8218.00 −0.403328
\(747\) 0 0
\(748\) 8260.00 0.403764
\(749\) 0 0
\(750\) 0 0
\(751\) 11589.0 0.563101 0.281550 0.959546i \(-0.409151\pi\)
0.281550 + 0.959546i \(0.409151\pi\)
\(752\) 2736.00 0.132675
\(753\) 0 0
\(754\) −13992.0 −0.675807
\(755\) 7763.00 0.374205
\(756\) 0 0
\(757\) 14562.0 0.699161 0.349581 0.936906i \(-0.386324\pi\)
0.349581 + 0.936906i \(0.386324\pi\)
\(758\) −6976.00 −0.334274
\(759\) 0 0
\(760\) −7672.00 −0.366175
\(761\) 22765.0 1.08440 0.542201 0.840249i \(-0.317591\pi\)
0.542201 + 0.840249i \(0.317591\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 5100.00 0.241507
\(765\) 0 0
\(766\) −17434.0 −0.822345
\(767\) 1122.00 0.0528202
\(768\) 0 0
\(769\) 3766.00 0.176600 0.0883000 0.996094i \(-0.471857\pi\)
0.0883000 + 0.996094i \(0.471857\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 140.000 0.00652683
\(773\) 26861.0 1.24984 0.624918 0.780691i \(-0.285132\pi\)
0.624918 + 0.780691i \(0.285132\pi\)
\(774\) 0 0
\(775\) −5700.00 −0.264194
\(776\) −2320.00 −0.107324
\(777\) 0 0
\(778\) −326.000 −0.0150227
\(779\) 68226.0 3.13793
\(780\) 0 0
\(781\) −27440.0 −1.25721
\(782\) −826.000 −0.0377720
\(783\) 0 0
\(784\) 0 0
\(785\) −10913.0 −0.496180
\(786\) 0 0
\(787\) −2097.00 −0.0949809 −0.0474905 0.998872i \(-0.515122\pi\)
−0.0474905 + 0.998872i \(0.515122\pi\)
\(788\) 10936.0 0.494389
\(789\) 0 0
\(790\) 6930.00 0.312099
\(791\) 0 0
\(792\) 0 0
\(793\) 3366.00 0.150732
\(794\) 1998.00 0.0893027
\(795\) 0 0
\(796\) 8972.00 0.399503
\(797\) 35334.0 1.57038 0.785191 0.619254i \(-0.212565\pi\)
0.785191 + 0.619254i \(0.212565\pi\)
\(798\) 0 0
\(799\) −10089.0 −0.446712
\(800\) −2432.00 −0.107480
\(801\) 0 0
\(802\) 29514.0 1.29947
\(803\) −10325.0 −0.453750
\(804\) 0 0
\(805\) 0 0
\(806\) 9900.00 0.432646
\(807\) 0 0
\(808\) 8680.00 0.377922
\(809\) −42535.0 −1.84852 −0.924259 0.381766i \(-0.875316\pi\)
−0.924259 + 0.381766i \(0.875316\pi\)
\(810\) 0 0
\(811\) 30676.0 1.32821 0.664106 0.747638i \(-0.268812\pi\)
0.664106 + 0.747638i \(0.268812\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −770.000 −0.0331554
\(815\) 15757.0 0.677231
\(816\) 0 0
\(817\) 35620.0 1.52532
\(818\) −266.000 −0.0113698
\(819\) 0 0
\(820\) −13944.0 −0.593836
\(821\) −37343.0 −1.58743 −0.793715 0.608290i \(-0.791856\pi\)
−0.793715 + 0.608290i \(0.791856\pi\)
\(822\) 0 0
\(823\) 2815.00 0.119228 0.0596141 0.998222i \(-0.481013\pi\)
0.0596141 + 0.998222i \(0.481013\pi\)
\(824\) 12424.0 0.525256
\(825\) 0 0
\(826\) 0 0
\(827\) 9276.00 0.390034 0.195017 0.980800i \(-0.437524\pi\)
0.195017 + 0.980800i \(0.437524\pi\)
\(828\) 0 0
\(829\) 18571.0 0.778043 0.389021 0.921229i \(-0.372813\pi\)
0.389021 + 0.921229i \(0.372813\pi\)
\(830\) 13048.0 0.545666
\(831\) 0 0
\(832\) 4224.00 0.176011
\(833\) 0 0
\(834\) 0 0
\(835\) 19516.0 0.808837
\(836\) −19180.0 −0.793486
\(837\) 0 0
\(838\) 12840.0 0.529296
\(839\) −29048.0 −1.19529 −0.597645 0.801761i \(-0.703897\pi\)
−0.597645 + 0.801761i \(0.703897\pi\)
\(840\) 0 0
\(841\) −13153.0 −0.539301
\(842\) 20532.0 0.840356
\(843\) 0 0
\(844\) 4688.00 0.191194
\(845\) −15113.0 −0.615270
\(846\) 0 0
\(847\) 0 0
\(848\) 6672.00 0.270186
\(849\) 0 0
\(850\) 8968.00 0.361882
\(851\) 77.0000 0.00310168
\(852\) 0 0
\(853\) 32090.0 1.28809 0.644045 0.764988i \(-0.277255\pi\)
0.644045 + 0.764988i \(0.277255\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1032.00 −0.0412068
\(857\) 24537.0 0.978026 0.489013 0.872277i \(-0.337357\pi\)
0.489013 + 0.872277i \(0.337357\pi\)
\(858\) 0 0
\(859\) 20825.0 0.827171 0.413585 0.910465i \(-0.364276\pi\)
0.413585 + 0.910465i \(0.364276\pi\)
\(860\) −7280.00 −0.288658
\(861\) 0 0
\(862\) 30426.0 1.20222
\(863\) 22847.0 0.901183 0.450591 0.892730i \(-0.351213\pi\)
0.450591 + 0.892730i \(0.351213\pi\)
\(864\) 0 0
\(865\) 11053.0 0.434466
\(866\) −2756.00 −0.108144
\(867\) 0 0
\(868\) 0 0
\(869\) 17325.0 0.676307
\(870\) 0 0
\(871\) 28974.0 1.12715
\(872\) −7720.00 −0.299808
\(873\) 0 0
\(874\) 1918.00 0.0742303
\(875\) 0 0
\(876\) 0 0
\(877\) −42737.0 −1.64553 −0.822763 0.568385i \(-0.807568\pi\)
−0.822763 + 0.568385i \(0.807568\pi\)
\(878\) −5526.00 −0.212407
\(879\) 0 0
\(880\) 3920.00 0.150163
\(881\) −6162.00 −0.235645 −0.117822 0.993035i \(-0.537591\pi\)
−0.117822 + 0.993035i \(0.537591\pi\)
\(882\) 0 0
\(883\) 7748.00 0.295290 0.147645 0.989040i \(-0.452831\pi\)
0.147645 + 0.989040i \(0.452831\pi\)
\(884\) −15576.0 −0.592622
\(885\) 0 0
\(886\) −11698.0 −0.443569
\(887\) 25923.0 0.981296 0.490648 0.871358i \(-0.336760\pi\)
0.490648 + 0.871358i \(0.336760\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −12222.0 −0.460317
\(891\) 0 0
\(892\) 8096.00 0.303895
\(893\) 23427.0 0.877889
\(894\) 0 0
\(895\) 17157.0 0.640777
\(896\) 0 0
\(897\) 0 0
\(898\) −9164.00 −0.340542
\(899\) −7950.00 −0.294936
\(900\) 0 0
\(901\) −24603.0 −0.909706
\(902\) −34860.0 −1.28682
\(903\) 0 0
\(904\) 400.000 0.0147166
\(905\) 8190.00 0.300823
\(906\) 0 0
\(907\) 31935.0 1.16911 0.584556 0.811353i \(-0.301269\pi\)
0.584556 + 0.811353i \(0.301269\pi\)
\(908\) −10284.0 −0.375866
\(909\) 0 0
\(910\) 0 0
\(911\) −3408.00 −0.123943 −0.0619715 0.998078i \(-0.519739\pi\)
−0.0619715 + 0.998078i \(0.519739\pi\)
\(912\) 0 0
\(913\) 32620.0 1.18244
\(914\) 23102.0 0.836046
\(915\) 0 0
\(916\) 3580.00 0.129134
\(917\) 0 0
\(918\) 0 0
\(919\) 13909.0 0.499255 0.249628 0.968342i \(-0.419692\pi\)
0.249628 + 0.968342i \(0.419692\pi\)
\(920\) −392.000 −0.0140477
\(921\) 0 0
\(922\) 18988.0 0.678239
\(923\) 51744.0 1.84526
\(924\) 0 0
\(925\) −836.000 −0.0297162
\(926\) −20320.0 −0.721119
\(927\) 0 0
\(928\) −3392.00 −0.119987
\(929\) 24537.0 0.866559 0.433279 0.901260i \(-0.357356\pi\)
0.433279 + 0.901260i \(0.357356\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −7148.00 −0.251224
\(933\) 0 0
\(934\) 2614.00 0.0915768
\(935\) −14455.0 −0.505593
\(936\) 0 0
\(937\) −32758.0 −1.14211 −0.571055 0.820912i \(-0.693466\pi\)
−0.571055 + 0.820912i \(0.693466\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4788.00 −0.166135
\(941\) 38561.0 1.33587 0.667934 0.744220i \(-0.267179\pi\)
0.667934 + 0.744220i \(0.267179\pi\)
\(942\) 0 0
\(943\) 3486.00 0.120382
\(944\) 272.000 0.00937801
\(945\) 0 0
\(946\) −18200.0 −0.625511
\(947\) −39661.0 −1.36094 −0.680470 0.732776i \(-0.738224\pi\)
−0.680470 + 0.732776i \(0.738224\pi\)
\(948\) 0 0
\(949\) 19470.0 0.665988
\(950\) −20824.0 −0.711179
\(951\) 0 0
\(952\) 0 0
\(953\) 46618.0 1.58458 0.792290 0.610144i \(-0.208889\pi\)
0.792290 + 0.610144i \(0.208889\pi\)
\(954\) 0 0
\(955\) −8925.00 −0.302415
\(956\) 20400.0 0.690150
\(957\) 0 0
\(958\) −36574.0 −1.23346
\(959\) 0 0
\(960\) 0 0
\(961\) −24166.0 −0.811185
\(962\) 1452.00 0.0486636
\(963\) 0 0
\(964\) −16708.0 −0.558225
\(965\) −245.000 −0.00817288
\(966\) 0 0
\(967\) 14816.0 0.492710 0.246355 0.969180i \(-0.420767\pi\)
0.246355 + 0.969180i \(0.420767\pi\)
\(968\) −848.000 −0.0281568
\(969\) 0 0
\(970\) 4060.00 0.134390
\(971\) 16875.0 0.557718 0.278859 0.960332i \(-0.410044\pi\)
0.278859 + 0.960332i \(0.410044\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −29906.0 −0.983830
\(975\) 0 0
\(976\) 816.000 0.0267618
\(977\) 15837.0 0.518598 0.259299 0.965797i \(-0.416508\pi\)
0.259299 + 0.965797i \(0.416508\pi\)
\(978\) 0 0
\(979\) −30555.0 −0.997489
\(980\) 0 0
\(981\) 0 0
\(982\) −28704.0 −0.932771
\(983\) −9915.00 −0.321708 −0.160854 0.986978i \(-0.551425\pi\)
−0.160854 + 0.986978i \(0.551425\pi\)
\(984\) 0 0
\(985\) −19138.0 −0.619073
\(986\) 12508.0 0.403992
\(987\) 0 0
\(988\) 36168.0 1.16463
\(989\) 1820.00 0.0585163
\(990\) 0 0
\(991\) −43681.0 −1.40017 −0.700087 0.714057i \(-0.746856\pi\)
−0.700087 + 0.714057i \(0.746856\pi\)
\(992\) 2400.00 0.0768146
\(993\) 0 0
\(994\) 0 0
\(995\) −15701.0 −0.500256
\(996\) 0 0
\(997\) −47113.0 −1.49657 −0.748287 0.663375i \(-0.769123\pi\)
−0.748287 + 0.663375i \(0.769123\pi\)
\(998\) −11062.0 −0.350863
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.4.a.k.1.1 1
3.2 odd 2 98.4.a.b.1.1 1
7.2 even 3 126.4.g.c.109.1 2
7.3 odd 6 882.4.g.d.667.1 2
7.4 even 3 126.4.g.c.37.1 2
7.5 odd 6 882.4.g.d.361.1 2
7.6 odd 2 882.4.a.p.1.1 1
12.11 even 2 784.4.a.l.1.1 1
15.14 odd 2 2450.4.a.bh.1.1 1
21.2 odd 6 14.4.c.b.11.1 yes 2
21.5 even 6 98.4.c.e.67.1 2
21.11 odd 6 14.4.c.b.9.1 2
21.17 even 6 98.4.c.e.79.1 2
21.20 even 2 98.4.a.c.1.1 1
84.11 even 6 112.4.i.b.65.1 2
84.23 even 6 112.4.i.b.81.1 2
84.83 odd 2 784.4.a.j.1.1 1
105.2 even 12 350.4.j.d.249.1 4
105.23 even 12 350.4.j.d.249.2 4
105.32 even 12 350.4.j.d.149.2 4
105.44 odd 6 350.4.e.b.151.1 2
105.53 even 12 350.4.j.d.149.1 4
105.74 odd 6 350.4.e.b.51.1 2
105.104 even 2 2450.4.a.bf.1.1 1
168.11 even 6 448.4.i.d.65.1 2
168.53 odd 6 448.4.i.c.65.1 2
168.107 even 6 448.4.i.d.193.1 2
168.149 odd 6 448.4.i.c.193.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.4.c.b.9.1 2 21.11 odd 6
14.4.c.b.11.1 yes 2 21.2 odd 6
98.4.a.b.1.1 1 3.2 odd 2
98.4.a.c.1.1 1 21.20 even 2
98.4.c.e.67.1 2 21.5 even 6
98.4.c.e.79.1 2 21.17 even 6
112.4.i.b.65.1 2 84.11 even 6
112.4.i.b.81.1 2 84.23 even 6
126.4.g.c.37.1 2 7.4 even 3
126.4.g.c.109.1 2 7.2 even 3
350.4.e.b.51.1 2 105.74 odd 6
350.4.e.b.151.1 2 105.44 odd 6
350.4.j.d.149.1 4 105.53 even 12
350.4.j.d.149.2 4 105.32 even 12
350.4.j.d.249.1 4 105.2 even 12
350.4.j.d.249.2 4 105.23 even 12
448.4.i.c.65.1 2 168.53 odd 6
448.4.i.c.193.1 2 168.149 odd 6
448.4.i.d.65.1 2 168.11 even 6
448.4.i.d.193.1 2 168.107 even 6
784.4.a.j.1.1 1 84.83 odd 2
784.4.a.l.1.1 1 12.11 even 2
882.4.a.k.1.1 1 1.1 even 1 trivial
882.4.a.p.1.1 1 7.6 odd 2
882.4.g.d.361.1 2 7.5 odd 6
882.4.g.d.667.1 2 7.3 odd 6
2450.4.a.bf.1.1 1 105.104 even 2
2450.4.a.bh.1.1 1 15.14 odd 2