Properties

Label 126.4.g.d.37.1
Level $126$
Weight $4$
Character 126.37
Analytic conductor $7.434$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,4,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43424066072\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 126.37
Dual form 126.4.g.d.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(-4.50000 + 7.79423i) q^{5} +(-14.0000 - 12.1244i) q^{7} -8.00000 q^{8} +(9.00000 + 15.5885i) q^{10} +(-28.5000 - 49.3634i) q^{11} -70.0000 q^{13} +(-35.0000 + 12.1244i) q^{14} +(-8.00000 + 13.8564i) q^{16} +(25.5000 + 44.1673i) q^{17} +(-2.50000 + 4.33013i) q^{19} +36.0000 q^{20} -114.000 q^{22} +(34.5000 - 59.7558i) q^{23} +(22.0000 + 38.1051i) q^{25} +(-70.0000 + 121.244i) q^{26} +(-14.0000 + 72.7461i) q^{28} -114.000 q^{29} +(-11.5000 - 19.9186i) q^{31} +(16.0000 + 27.7128i) q^{32} +102.000 q^{34} +(157.500 - 54.5596i) q^{35} +(126.500 - 219.104i) q^{37} +(5.00000 + 8.66025i) q^{38} +(36.0000 - 62.3538i) q^{40} +42.0000 q^{41} -124.000 q^{43} +(-114.000 + 197.454i) q^{44} +(-69.0000 - 119.512i) q^{46} +(100.500 - 174.071i) q^{47} +(49.0000 + 339.482i) q^{49} +88.0000 q^{50} +(140.000 + 242.487i) q^{52} +(-196.500 - 340.348i) q^{53} +513.000 q^{55} +(112.000 + 96.9948i) q^{56} +(-114.000 + 197.454i) q^{58} +(109.500 + 189.660i) q^{59} +(354.500 - 614.012i) q^{61} -46.0000 q^{62} +64.0000 q^{64} +(315.000 - 545.596i) q^{65} +(-209.500 - 362.865i) q^{67} +(102.000 - 176.669i) q^{68} +(63.0000 - 327.358i) q^{70} +96.0000 q^{71} +(156.500 + 271.066i) q^{73} +(-253.000 - 438.209i) q^{74} +20.0000 q^{76} +(-199.500 + 1036.63i) q^{77} +(-230.500 + 399.238i) q^{79} +(-72.0000 - 124.708i) q^{80} +(42.0000 - 72.7461i) q^{82} +588.000 q^{83} -459.000 q^{85} +(-124.000 + 214.774i) q^{86} +(228.000 + 394.908i) q^{88} +(-508.500 + 880.748i) q^{89} +(980.000 + 848.705i) q^{91} -276.000 q^{92} +(-201.000 - 348.142i) q^{94} +(-22.5000 - 38.9711i) q^{95} -1834.00 q^{97} +(637.000 + 254.611i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{4} - 9 q^{5} - 28 q^{7} - 16 q^{8} + 18 q^{10} - 57 q^{11} - 140 q^{13} - 70 q^{14} - 16 q^{16} + 51 q^{17} - 5 q^{19} + 72 q^{20} - 228 q^{22} + 69 q^{23} + 44 q^{25} - 140 q^{26}+ \cdots + 1274 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) −4.50000 + 7.79423i −0.402492 + 0.697137i −0.994026 0.109143i \(-0.965189\pi\)
0.591534 + 0.806280i \(0.298523\pi\)
\(6\) 0 0
\(7\) −14.0000 12.1244i −0.755929 0.654654i
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 9.00000 + 15.5885i 0.284605 + 0.492950i
\(11\) −28.5000 49.3634i −0.781188 1.35306i −0.931250 0.364381i \(-0.881280\pi\)
0.150061 0.988677i \(-0.452053\pi\)
\(12\) 0 0
\(13\) −70.0000 −1.49342 −0.746712 0.665148i \(-0.768369\pi\)
−0.746712 + 0.665148i \(0.768369\pi\)
\(14\) −35.0000 + 12.1244i −0.668153 + 0.231455i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) 25.5000 + 44.1673i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) −2.50000 + 4.33013i −0.0301863 + 0.0522842i −0.880724 0.473630i \(-0.842943\pi\)
0.850538 + 0.525914i \(0.176277\pi\)
\(20\) 36.0000 0.402492
\(21\) 0 0
\(22\) −114.000 −1.10477
\(23\) 34.5000 59.7558i 0.312772 0.541736i −0.666190 0.745782i \(-0.732076\pi\)
0.978961 + 0.204046i \(0.0654092\pi\)
\(24\) 0 0
\(25\) 22.0000 + 38.1051i 0.176000 + 0.304841i
\(26\) −70.0000 + 121.244i −0.528005 + 0.914531i
\(27\) 0 0
\(28\) −14.0000 + 72.7461i −0.0944911 + 0.490990i
\(29\) −114.000 −0.729975 −0.364987 0.931012i \(-0.618927\pi\)
−0.364987 + 0.931012i \(0.618927\pi\)
\(30\) 0 0
\(31\) −11.5000 19.9186i −0.0666278 0.115403i 0.830787 0.556590i \(-0.187891\pi\)
−0.897415 + 0.441188i \(0.854557\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 102.000 0.514496
\(35\) 157.500 54.5596i 0.760639 0.263493i
\(36\) 0 0
\(37\) 126.500 219.104i 0.562067 0.973528i −0.435249 0.900310i \(-0.643340\pi\)
0.997316 0.0732182i \(-0.0233270\pi\)
\(38\) 5.00000 + 8.66025i 0.0213449 + 0.0369705i
\(39\) 0 0
\(40\) 36.0000 62.3538i 0.142302 0.246475i
\(41\) 42.0000 0.159983 0.0799914 0.996796i \(-0.474511\pi\)
0.0799914 + 0.996796i \(0.474511\pi\)
\(42\) 0 0
\(43\) −124.000 −0.439763 −0.219882 0.975527i \(-0.570567\pi\)
−0.219882 + 0.975527i \(0.570567\pi\)
\(44\) −114.000 + 197.454i −0.390594 + 0.676529i
\(45\) 0 0
\(46\) −69.0000 119.512i −0.221163 0.383065i
\(47\) 100.500 174.071i 0.311903 0.540231i −0.666871 0.745173i \(-0.732367\pi\)
0.978774 + 0.204941i \(0.0657003\pi\)
\(48\) 0 0
\(49\) 49.0000 + 339.482i 0.142857 + 0.989743i
\(50\) 88.0000 0.248902
\(51\) 0 0
\(52\) 140.000 + 242.487i 0.373356 + 0.646671i
\(53\) −196.500 340.348i −0.509271 0.882083i −0.999942 0.0107383i \(-0.996582\pi\)
0.490672 0.871345i \(-0.336751\pi\)
\(54\) 0 0
\(55\) 513.000 1.25769
\(56\) 112.000 + 96.9948i 0.267261 + 0.231455i
\(57\) 0 0
\(58\) −114.000 + 197.454i −0.258085 + 0.447016i
\(59\) 109.500 + 189.660i 0.241622 + 0.418501i 0.961176 0.275935i \(-0.0889873\pi\)
−0.719555 + 0.694436i \(0.755654\pi\)
\(60\) 0 0
\(61\) 354.500 614.012i 0.744083 1.28879i −0.206539 0.978438i \(-0.566220\pi\)
0.950622 0.310351i \(-0.100447\pi\)
\(62\) −46.0000 −0.0942259
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 315.000 545.596i 0.601091 1.04112i
\(66\) 0 0
\(67\) −209.500 362.865i −0.382007 0.661656i 0.609342 0.792908i \(-0.291434\pi\)
−0.991349 + 0.131251i \(0.958100\pi\)
\(68\) 102.000 176.669i 0.181902 0.315063i
\(69\) 0 0
\(70\) 63.0000 327.358i 0.107571 0.558953i
\(71\) 96.0000 0.160466 0.0802331 0.996776i \(-0.474434\pi\)
0.0802331 + 0.996776i \(0.474434\pi\)
\(72\) 0 0
\(73\) 156.500 + 271.066i 0.250917 + 0.434601i 0.963779 0.266704i \(-0.0859346\pi\)
−0.712862 + 0.701305i \(0.752601\pi\)
\(74\) −253.000 438.209i −0.397441 0.688388i
\(75\) 0 0
\(76\) 20.0000 0.0301863
\(77\) −199.500 + 1036.63i −0.295261 + 1.53422i
\(78\) 0 0
\(79\) −230.500 + 399.238i −0.328269 + 0.568579i −0.982169 0.188003i \(-0.939799\pi\)
0.653899 + 0.756582i \(0.273132\pi\)
\(80\) −72.0000 124.708i −0.100623 0.174284i
\(81\) 0 0
\(82\) 42.0000 72.7461i 0.0565625 0.0979691i
\(83\) 588.000 0.777607 0.388804 0.921321i \(-0.372888\pi\)
0.388804 + 0.921321i \(0.372888\pi\)
\(84\) 0 0
\(85\) −459.000 −0.585712
\(86\) −124.000 + 214.774i −0.155480 + 0.269299i
\(87\) 0 0
\(88\) 228.000 + 394.908i 0.276192 + 0.478378i
\(89\) −508.500 + 880.748i −0.605628 + 1.04898i 0.386324 + 0.922363i \(0.373745\pi\)
−0.991952 + 0.126615i \(0.959589\pi\)
\(90\) 0 0
\(91\) 980.000 + 848.705i 1.12892 + 0.977675i
\(92\) −276.000 −0.312772
\(93\) 0 0
\(94\) −201.000 348.142i −0.220549 0.382001i
\(95\) −22.5000 38.9711i −0.0242995 0.0420879i
\(96\) 0 0
\(97\) −1834.00 −1.91974 −0.959868 0.280451i \(-0.909516\pi\)
−0.959868 + 0.280451i \(0.909516\pi\)
\(98\) 637.000 + 254.611i 0.656599 + 0.262445i
\(99\) 0 0
\(100\) 88.0000 152.420i 0.0880000 0.152420i
\(101\) −142.500 246.817i −0.140389 0.243161i 0.787254 0.616629i \(-0.211502\pi\)
−0.927643 + 0.373468i \(0.878169\pi\)
\(102\) 0 0
\(103\) 249.500 432.147i 0.238679 0.413405i −0.721656 0.692252i \(-0.756619\pi\)
0.960336 + 0.278847i \(0.0899522\pi\)
\(104\) 560.000 0.528005
\(105\) 0 0
\(106\) −786.000 −0.720218
\(107\) −553.500 + 958.690i −0.500083 + 0.866169i 0.499917 + 0.866073i \(0.333364\pi\)
−1.00000 9.56665e-5i \(0.999970\pi\)
\(108\) 0 0
\(109\) −461.500 799.341i −0.405538 0.702413i 0.588846 0.808246i \(-0.299583\pi\)
−0.994384 + 0.105832i \(0.966249\pi\)
\(110\) 513.000 888.542i 0.444660 0.770174i
\(111\) 0 0
\(112\) 280.000 96.9948i 0.236228 0.0818317i
\(113\) −1542.00 −1.28371 −0.641855 0.766826i \(-0.721835\pi\)
−0.641855 + 0.766826i \(0.721835\pi\)
\(114\) 0 0
\(115\) 310.500 + 537.802i 0.251776 + 0.436089i
\(116\) 228.000 + 394.908i 0.182494 + 0.316088i
\(117\) 0 0
\(118\) 438.000 0.341705
\(119\) 178.500 927.513i 0.137505 0.714496i
\(120\) 0 0
\(121\) −959.000 + 1661.04i −0.720511 + 1.24796i
\(122\) −709.000 1228.02i −0.526146 0.911312i
\(123\) 0 0
\(124\) −46.0000 + 79.6743i −0.0333139 + 0.0577013i
\(125\) −1521.00 −1.08834
\(126\) 0 0
\(127\) −2056.00 −1.43654 −0.718270 0.695765i \(-0.755066\pi\)
−0.718270 + 0.695765i \(0.755066\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −630.000 1091.19i −0.425036 0.736184i
\(131\) 1024.50 1774.49i 0.683290 1.18349i −0.290681 0.956820i \(-0.593882\pi\)
0.973971 0.226673i \(-0.0727848\pi\)
\(132\) 0 0
\(133\) 87.5000 30.3109i 0.0570467 0.0197616i
\(134\) −838.000 −0.540240
\(135\) 0 0
\(136\) −204.000 353.338i −0.128624 0.222783i
\(137\) −70.5000 122.110i −0.0439651 0.0761498i 0.843205 0.537591i \(-0.180666\pi\)
−0.887171 + 0.461442i \(0.847332\pi\)
\(138\) 0 0
\(139\) 1484.00 0.905548 0.452774 0.891625i \(-0.350434\pi\)
0.452774 + 0.891625i \(0.350434\pi\)
\(140\) −504.000 436.477i −0.304256 0.263493i
\(141\) 0 0
\(142\) 96.0000 166.277i 0.0567334 0.0982651i
\(143\) 1995.00 + 3455.44i 1.16665 + 2.02069i
\(144\) 0 0
\(145\) 513.000 888.542i 0.293809 0.508892i
\(146\) 626.000 0.354850
\(147\) 0 0
\(148\) −1012.00 −0.562067
\(149\) −28.5000 + 49.3634i −0.0156699 + 0.0271410i −0.873754 0.486368i \(-0.838321\pi\)
0.858084 + 0.513509i \(0.171655\pi\)
\(150\) 0 0
\(151\) −419.500 726.595i −0.226082 0.391586i 0.730561 0.682847i \(-0.239258\pi\)
−0.956644 + 0.291261i \(0.905925\pi\)
\(152\) 20.0000 34.6410i 0.0106725 0.0184852i
\(153\) 0 0
\(154\) 1596.00 + 1382.18i 0.835126 + 0.723240i
\(155\) 207.000 0.107269
\(156\) 0 0
\(157\) 1416.50 + 2453.45i 0.720057 + 1.24718i 0.960976 + 0.276631i \(0.0892179\pi\)
−0.240919 + 0.970545i \(0.577449\pi\)
\(158\) 461.000 + 798.475i 0.232121 + 0.402046i
\(159\) 0 0
\(160\) −288.000 −0.142302
\(161\) −1207.50 + 418.290i −0.591083 + 0.204757i
\(162\) 0 0
\(163\) 1155.50 2001.38i 0.555250 0.961721i −0.442634 0.896702i \(-0.645956\pi\)
0.997884 0.0650188i \(-0.0207107\pi\)
\(164\) −84.0000 145.492i −0.0399957 0.0692746i
\(165\) 0 0
\(166\) 588.000 1018.45i 0.274926 0.476185i
\(167\) −1260.00 −0.583843 −0.291921 0.956442i \(-0.594295\pi\)
−0.291921 + 0.956442i \(0.594295\pi\)
\(168\) 0 0
\(169\) 2703.00 1.23031
\(170\) −459.000 + 795.011i −0.207081 + 0.358674i
\(171\) 0 0
\(172\) 248.000 + 429.549i 0.109941 + 0.190423i
\(173\) 1633.50 2829.30i 0.717877 1.24340i −0.243962 0.969785i \(-0.578447\pi\)
0.961839 0.273615i \(-0.0882193\pi\)
\(174\) 0 0
\(175\) 154.000 800.207i 0.0665217 0.345657i
\(176\) 912.000 0.390594
\(177\) 0 0
\(178\) 1017.00 + 1761.50i 0.428244 + 0.741740i
\(179\) 643.500 + 1114.57i 0.268701 + 0.465403i 0.968527 0.248910i \(-0.0800724\pi\)
−0.699826 + 0.714314i \(0.746739\pi\)
\(180\) 0 0
\(181\) −2674.00 −1.09810 −0.549052 0.835788i \(-0.685011\pi\)
−0.549052 + 0.835788i \(0.685011\pi\)
\(182\) 2450.00 848.705i 0.997836 0.345660i
\(183\) 0 0
\(184\) −276.000 + 478.046i −0.110581 + 0.191533i
\(185\) 1138.50 + 1971.94i 0.452455 + 0.783675i
\(186\) 0 0
\(187\) 1453.50 2517.54i 0.568398 0.984494i
\(188\) −804.000 −0.311903
\(189\) 0 0
\(190\) −90.0000 −0.0343647
\(191\) 2092.50 3624.32i 0.792712 1.37302i −0.131570 0.991307i \(-0.542002\pi\)
0.924282 0.381711i \(-0.124665\pi\)
\(192\) 0 0
\(193\) 42.5000 + 73.6122i 0.0158509 + 0.0274545i 0.873842 0.486210i \(-0.161621\pi\)
−0.857991 + 0.513664i \(0.828288\pi\)
\(194\) −1834.00 + 3176.58i −0.678730 + 1.17559i
\(195\) 0 0
\(196\) 1078.00 848.705i 0.392857 0.309295i
\(197\) 390.000 0.141047 0.0705237 0.997510i \(-0.477533\pi\)
0.0705237 + 0.997510i \(0.477533\pi\)
\(198\) 0 0
\(199\) 1416.50 + 2453.45i 0.504588 + 0.873972i 0.999986 + 0.00530596i \(0.00168895\pi\)
−0.495398 + 0.868666i \(0.664978\pi\)
\(200\) −176.000 304.841i −0.0622254 0.107778i
\(201\) 0 0
\(202\) −570.000 −0.198540
\(203\) 1596.00 + 1382.18i 0.551809 + 0.477881i
\(204\) 0 0
\(205\) −189.000 + 327.358i −0.0643919 + 0.111530i
\(206\) −499.000 864.293i −0.168772 0.292321i
\(207\) 0 0
\(208\) 560.000 969.948i 0.186678 0.323336i
\(209\) 285.000 0.0943247
\(210\) 0 0
\(211\) −124.000 −0.0404574 −0.0202287 0.999795i \(-0.506439\pi\)
−0.0202287 + 0.999795i \(0.506439\pi\)
\(212\) −786.000 + 1361.39i −0.254635 + 0.441041i
\(213\) 0 0
\(214\) 1107.00 + 1917.38i 0.353612 + 0.612474i
\(215\) 558.000 966.484i 0.177001 0.306575i
\(216\) 0 0
\(217\) −80.5000 + 418.290i −0.0251829 + 0.130854i
\(218\) −1846.00 −0.573518
\(219\) 0 0
\(220\) −1026.00 1777.08i −0.314422 0.544595i
\(221\) −1785.00 3091.71i −0.543313 0.941045i
\(222\) 0 0
\(223\) 56.0000 0.0168163 0.00840816 0.999965i \(-0.497324\pi\)
0.00840816 + 0.999965i \(0.497324\pi\)
\(224\) 112.000 581.969i 0.0334077 0.173591i
\(225\) 0 0
\(226\) −1542.00 + 2670.82i −0.453860 + 0.786108i
\(227\) −1528.50 2647.44i −0.446917 0.774083i 0.551267 0.834329i \(-0.314145\pi\)
−0.998184 + 0.0602465i \(0.980811\pi\)
\(228\) 0 0
\(229\) 480.500 832.250i 0.138656 0.240160i −0.788332 0.615250i \(-0.789055\pi\)
0.926988 + 0.375090i \(0.122388\pi\)
\(230\) 1242.00 0.356065
\(231\) 0 0
\(232\) 912.000 0.258085
\(233\) −1414.50 + 2449.99i −0.397712 + 0.688858i −0.993443 0.114326i \(-0.963529\pi\)
0.595731 + 0.803184i \(0.296862\pi\)
\(234\) 0 0
\(235\) 904.500 + 1566.64i 0.251077 + 0.434878i
\(236\) 438.000 758.638i 0.120811 0.209251i
\(237\) 0 0
\(238\) −1428.00 1236.68i −0.388922 0.336817i
\(239\) 3540.00 0.958090 0.479045 0.877790i \(-0.340983\pi\)
0.479045 + 0.877790i \(0.340983\pi\)
\(240\) 0 0
\(241\) −2615.50 4530.18i −0.699084 1.21085i −0.968785 0.247904i \(-0.920258\pi\)
0.269701 0.962944i \(-0.413075\pi\)
\(242\) 1918.00 + 3322.07i 0.509478 + 0.882442i
\(243\) 0 0
\(244\) −2836.00 −0.744083
\(245\) −2866.50 1145.75i −0.747486 0.298773i
\(246\) 0 0
\(247\) 175.000 303.109i 0.0450809 0.0780824i
\(248\) 92.0000 + 159.349i 0.0235565 + 0.0408010i
\(249\) 0 0
\(250\) −1521.00 + 2634.45i −0.384786 + 0.666469i
\(251\) −5040.00 −1.26742 −0.633709 0.773571i \(-0.718468\pi\)
−0.633709 + 0.773571i \(0.718468\pi\)
\(252\) 0 0
\(253\) −3933.00 −0.977334
\(254\) −2056.00 + 3561.10i −0.507893 + 0.879697i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −718.500 + 1244.48i −0.174392 + 0.302056i −0.939951 0.341310i \(-0.889129\pi\)
0.765559 + 0.643366i \(0.222463\pi\)
\(258\) 0 0
\(259\) −4427.50 + 1533.73i −1.06221 + 0.367959i
\(260\) −2520.00 −0.601091
\(261\) 0 0
\(262\) −2049.00 3548.97i −0.483159 0.836856i
\(263\) −1162.50 2013.51i −0.272558 0.472085i 0.696958 0.717112i \(-0.254536\pi\)
−0.969516 + 0.245027i \(0.921203\pi\)
\(264\) 0 0
\(265\) 3537.00 0.819910
\(266\) 35.0000 181.865i 0.00806762 0.0419206i
\(267\) 0 0
\(268\) −838.000 + 1451.46i −0.191004 + 0.330828i
\(269\) −1192.50 2065.47i −0.270290 0.468156i 0.698646 0.715467i \(-0.253786\pi\)
−0.968936 + 0.247311i \(0.920453\pi\)
\(270\) 0 0
\(271\) 165.500 286.654i 0.0370975 0.0642547i −0.846881 0.531783i \(-0.821522\pi\)
0.883978 + 0.467528i \(0.154855\pi\)
\(272\) −816.000 −0.181902
\(273\) 0 0
\(274\) −282.000 −0.0621761
\(275\) 1254.00 2171.99i 0.274978 0.476276i
\(276\) 0 0
\(277\) −2435.50 4218.41i −0.528285 0.915017i −0.999456 0.0329750i \(-0.989502\pi\)
0.471171 0.882042i \(-0.343831\pi\)
\(278\) 1484.00 2570.36i 0.320160 0.554533i
\(279\) 0 0
\(280\) −1260.00 + 436.477i −0.268926 + 0.0931589i
\(281\) 7026.00 1.49159 0.745794 0.666177i \(-0.232070\pi\)
0.745794 + 0.666177i \(0.232070\pi\)
\(282\) 0 0
\(283\) 2676.50 + 4635.83i 0.562196 + 0.973752i 0.997305 + 0.0733738i \(0.0233766\pi\)
−0.435109 + 0.900378i \(0.643290\pi\)
\(284\) −192.000 332.554i −0.0401166 0.0694839i
\(285\) 0 0
\(286\) 7980.00 1.64989
\(287\) −588.000 509.223i −0.120936 0.104733i
\(288\) 0 0
\(289\) 1156.00 2002.25i 0.235294 0.407541i
\(290\) −1026.00 1777.08i −0.207754 0.359841i
\(291\) 0 0
\(292\) 626.000 1084.26i 0.125458 0.217300i
\(293\) −4158.00 −0.829054 −0.414527 0.910037i \(-0.636053\pi\)
−0.414527 + 0.910037i \(0.636053\pi\)
\(294\) 0 0
\(295\) −1971.00 −0.389004
\(296\) −1012.00 + 1752.84i −0.198721 + 0.344194i
\(297\) 0 0
\(298\) 57.0000 + 98.7269i 0.0110803 + 0.0191916i
\(299\) −2415.00 + 4182.90i −0.467101 + 0.809042i
\(300\) 0 0
\(301\) 1736.00 + 1503.42i 0.332430 + 0.287893i
\(302\) −1678.00 −0.319729
\(303\) 0 0
\(304\) −40.0000 69.2820i −0.00754657 0.0130710i
\(305\) 3190.50 + 5526.11i 0.598975 + 1.03746i
\(306\) 0 0
\(307\) −9604.00 −1.78544 −0.892719 0.450615i \(-0.851205\pi\)
−0.892719 + 0.450615i \(0.851205\pi\)
\(308\) 3990.00 1382.18i 0.738154 0.255704i
\(309\) 0 0
\(310\) 207.000 358.535i 0.0379252 0.0656884i
\(311\) 5065.50 + 8773.70i 0.923595 + 1.59971i 0.793805 + 0.608173i \(0.208097\pi\)
0.129791 + 0.991541i \(0.458570\pi\)
\(312\) 0 0
\(313\) −5399.50 + 9352.21i −0.975073 + 1.68888i −0.295378 + 0.955380i \(0.595446\pi\)
−0.679695 + 0.733495i \(0.737888\pi\)
\(314\) 5666.00 1.01831
\(315\) 0 0
\(316\) 1844.00 0.328269
\(317\) 265.500 459.859i 0.0470409 0.0814772i −0.841546 0.540185i \(-0.818354\pi\)
0.888587 + 0.458708i \(0.151688\pi\)
\(318\) 0 0
\(319\) 3249.00 + 5627.43i 0.570248 + 0.987698i
\(320\) −288.000 + 498.831i −0.0503115 + 0.0871421i
\(321\) 0 0
\(322\) −483.000 + 2509.74i −0.0835917 + 0.434355i
\(323\) −255.000 −0.0439275
\(324\) 0 0
\(325\) −1540.00 2667.36i −0.262843 0.455257i
\(326\) −2311.00 4002.77i −0.392621 0.680040i
\(327\) 0 0
\(328\) −336.000 −0.0565625
\(329\) −3517.50 + 1218.50i −0.589441 + 0.204188i
\(330\) 0 0
\(331\) 3507.50 6075.17i 0.582446 1.00883i −0.412743 0.910848i \(-0.635429\pi\)
0.995189 0.0979784i \(-0.0312376\pi\)
\(332\) −1176.00 2036.89i −0.194402 0.336714i
\(333\) 0 0
\(334\) −1260.00 + 2182.38i −0.206420 + 0.357529i
\(335\) 3771.00 0.615020
\(336\) 0 0
\(337\) 8990.00 1.45316 0.726582 0.687079i \(-0.241108\pi\)
0.726582 + 0.687079i \(0.241108\pi\)
\(338\) 2703.00 4681.73i 0.434982 0.753410i
\(339\) 0 0
\(340\) 918.000 + 1590.02i 0.146428 + 0.253621i
\(341\) −655.500 + 1135.36i −0.104098 + 0.180303i
\(342\) 0 0
\(343\) 3430.00 5346.84i 0.539949 0.841698i
\(344\) 992.000 0.155480
\(345\) 0 0
\(346\) −3267.00 5658.61i −0.507616 0.879216i
\(347\) −4354.50 7542.22i −0.673665 1.16682i −0.976857 0.213893i \(-0.931386\pi\)
0.303192 0.952929i \(-0.401948\pi\)
\(348\) 0 0
\(349\) 6482.00 0.994193 0.497097 0.867695i \(-0.334399\pi\)
0.497097 + 0.867695i \(0.334399\pi\)
\(350\) −1232.00 1066.94i −0.188152 0.162944i
\(351\) 0 0
\(352\) 912.000 1579.63i 0.138096 0.239189i
\(353\) −1066.50 1847.23i −0.160805 0.278522i 0.774353 0.632754i \(-0.218076\pi\)
−0.935158 + 0.354232i \(0.884742\pi\)
\(354\) 0 0
\(355\) −432.000 + 748.246i −0.0645864 + 0.111867i
\(356\) 4068.00 0.605628
\(357\) 0 0
\(358\) 2574.00 0.380000
\(359\) 1924.50 3333.33i 0.282928 0.490046i −0.689176 0.724594i \(-0.742028\pi\)
0.972105 + 0.234548i \(0.0753608\pi\)
\(360\) 0 0
\(361\) 3417.00 + 5918.42i 0.498178 + 0.862869i
\(362\) −2674.00 + 4631.50i −0.388238 + 0.672449i
\(363\) 0 0
\(364\) 980.000 5092.23i 0.141115 0.733256i
\(365\) −2817.00 −0.403969
\(366\) 0 0
\(367\) −3245.50 5621.37i −0.461618 0.799545i 0.537424 0.843312i \(-0.319397\pi\)
−0.999042 + 0.0437668i \(0.986064\pi\)
\(368\) 552.000 + 956.092i 0.0781929 + 0.135434i
\(369\) 0 0
\(370\) 4554.00 0.639868
\(371\) −1375.50 + 7147.31i −0.192486 + 1.00019i
\(372\) 0 0
\(373\) −461.500 + 799.341i −0.0640632 + 0.110961i −0.896278 0.443493i \(-0.853739\pi\)
0.832215 + 0.554453i \(0.187073\pi\)
\(374\) −2907.00 5035.07i −0.401918 0.696143i
\(375\) 0 0
\(376\) −804.000 + 1392.57i −0.110274 + 0.191001i
\(377\) 7980.00 1.09016
\(378\) 0 0
\(379\) 6344.00 0.859814 0.429907 0.902873i \(-0.358546\pi\)
0.429907 + 0.902873i \(0.358546\pi\)
\(380\) −90.0000 + 155.885i −0.0121497 + 0.0210440i
\(381\) 0 0
\(382\) −4185.00 7248.63i −0.560532 0.970870i
\(383\) −2503.50 + 4336.19i −0.334002 + 0.578509i −0.983293 0.182032i \(-0.941733\pi\)
0.649290 + 0.760541i \(0.275066\pi\)
\(384\) 0 0
\(385\) −7182.00 6219.79i −0.950724 0.823351i
\(386\) 170.000 0.0224165
\(387\) 0 0
\(388\) 3668.00 + 6353.16i 0.479934 + 0.831270i
\(389\) 6145.50 + 10644.3i 0.801001 + 1.38737i 0.918958 + 0.394355i \(0.129032\pi\)
−0.117958 + 0.993019i \(0.537635\pi\)
\(390\) 0 0
\(391\) 3519.00 0.455150
\(392\) −392.000 2715.86i −0.0505076 0.349927i
\(393\) 0 0
\(394\) 390.000 675.500i 0.0498678 0.0863736i
\(395\) −2074.50 3593.14i −0.264252 0.457697i
\(396\) 0 0
\(397\) −443.500 + 768.165i −0.0560671 + 0.0971110i −0.892697 0.450658i \(-0.851189\pi\)
0.836630 + 0.547769i \(0.184523\pi\)
\(398\) 5666.00 0.713595
\(399\) 0 0
\(400\) −704.000 −0.0880000
\(401\) 5977.50 10353.3i 0.744394 1.28933i −0.206083 0.978535i \(-0.566072\pi\)
0.950477 0.310794i \(-0.100595\pi\)
\(402\) 0 0
\(403\) 805.000 + 1394.30i 0.0995035 + 0.172345i
\(404\) −570.000 + 987.269i −0.0701945 + 0.121580i
\(405\) 0 0
\(406\) 3990.00 1382.18i 0.487735 0.168956i
\(407\) −14421.0 −1.75632
\(408\) 0 0
\(409\) 1710.50 + 2962.67i 0.206794 + 0.358178i 0.950703 0.310103i \(-0.100364\pi\)
−0.743909 + 0.668281i \(0.767030\pi\)
\(410\) 378.000 + 654.715i 0.0455319 + 0.0788636i
\(411\) 0 0
\(412\) −1996.00 −0.238679
\(413\) 766.500 3982.85i 0.0913245 0.474536i
\(414\) 0 0
\(415\) −2646.00 + 4583.01i −0.312981 + 0.542099i
\(416\) −1120.00 1939.90i −0.132001 0.228633i
\(417\) 0 0
\(418\) 285.000 493.634i 0.0333488 0.0577618i
\(419\) 5460.00 0.636607 0.318304 0.947989i \(-0.396887\pi\)
0.318304 + 0.947989i \(0.396887\pi\)
\(420\) 0 0
\(421\) 7730.00 0.894863 0.447431 0.894318i \(-0.352339\pi\)
0.447431 + 0.894318i \(0.352339\pi\)
\(422\) −124.000 + 214.774i −0.0143039 + 0.0247750i
\(423\) 0 0
\(424\) 1572.00 + 2722.78i 0.180054 + 0.311863i
\(425\) −1122.00 + 1943.36i −0.128059 + 0.221804i
\(426\) 0 0
\(427\) −12407.5 + 4298.08i −1.40619 + 0.487117i
\(428\) 4428.00 0.500083
\(429\) 0 0
\(430\) −1116.00 1932.97i −0.125159 0.216781i
\(431\) −5656.50 9797.35i −0.632167 1.09495i −0.987108 0.160057i \(-0.948832\pi\)
0.354941 0.934889i \(-0.384501\pi\)
\(432\) 0 0
\(433\) 4214.00 0.467695 0.233847 0.972273i \(-0.424868\pi\)
0.233847 + 0.972273i \(0.424868\pi\)
\(434\) 644.000 + 557.720i 0.0712281 + 0.0616853i
\(435\) 0 0
\(436\) −1846.00 + 3197.37i −0.202769 + 0.351207i
\(437\) 172.500 + 298.779i 0.0188828 + 0.0327060i
\(438\) 0 0
\(439\) −8276.50 + 14335.3i −0.899808 + 1.55851i −0.0720696 + 0.997400i \(0.522960\pi\)
−0.827739 + 0.561114i \(0.810373\pi\)
\(440\) −4104.00 −0.444660
\(441\) 0 0
\(442\) −7140.00 −0.768360
\(443\) −8197.50 + 14198.5i −0.879176 + 1.52278i −0.0269294 + 0.999637i \(0.508573\pi\)
−0.852247 + 0.523140i \(0.824760\pi\)
\(444\) 0 0
\(445\) −4576.50 7926.73i −0.487521 0.844411i
\(446\) 56.0000 96.9948i 0.00594546 0.0102978i
\(447\) 0 0
\(448\) −896.000 775.959i −0.0944911 0.0818317i
\(449\) 15090.0 1.58606 0.793030 0.609182i \(-0.208502\pi\)
0.793030 + 0.609182i \(0.208502\pi\)
\(450\) 0 0
\(451\) −1197.00 2073.26i −0.124977 0.216466i
\(452\) 3084.00 + 5341.64i 0.320927 + 0.555862i
\(453\) 0 0
\(454\) −6114.00 −0.632036
\(455\) −11025.0 + 3819.17i −1.13596 + 0.393507i
\(456\) 0 0
\(457\) 7392.50 12804.2i 0.756688 1.31062i −0.187842 0.982199i \(-0.560149\pi\)
0.944531 0.328423i \(-0.106517\pi\)
\(458\) −961.000 1664.50i −0.0980449 0.169819i
\(459\) 0 0
\(460\) 1242.00 2151.21i 0.125888 0.218045i
\(461\) −2898.00 −0.292784 −0.146392 0.989227i \(-0.546766\pi\)
−0.146392 + 0.989227i \(0.546766\pi\)
\(462\) 0 0
\(463\) 464.000 0.0465743 0.0232872 0.999729i \(-0.492587\pi\)
0.0232872 + 0.999729i \(0.492587\pi\)
\(464\) 912.000 1579.63i 0.0912468 0.158044i
\(465\) 0 0
\(466\) 2829.00 + 4899.97i 0.281225 + 0.487096i
\(467\) 2116.50 3665.89i 0.209721 0.363248i −0.741905 0.670505i \(-0.766078\pi\)
0.951627 + 0.307256i \(0.0994109\pi\)
\(468\) 0 0
\(469\) −1466.50 + 7620.16i −0.144385 + 0.750248i
\(470\) 3618.00 0.355076
\(471\) 0 0
\(472\) −876.000 1517.28i −0.0854262 0.147963i
\(473\) 3534.00 + 6121.07i 0.343538 + 0.595025i
\(474\) 0 0
\(475\) −220.000 −0.0212511
\(476\) −3570.00 + 1236.68i −0.343762 + 0.119083i
\(477\) 0 0
\(478\) 3540.00 6131.46i 0.338736 0.586708i
\(479\) 1369.50 + 2372.04i 0.130635 + 0.226266i 0.923921 0.382582i \(-0.124965\pi\)
−0.793287 + 0.608848i \(0.791632\pi\)
\(480\) 0 0
\(481\) −8855.00 + 15337.3i −0.839404 + 1.45389i
\(482\) −10462.0 −0.988654
\(483\) 0 0
\(484\) 7672.00 0.720511
\(485\) 8253.00 14294.6i 0.772679 1.33832i
\(486\) 0 0
\(487\) −8525.50 14766.6i −0.793280 1.37400i −0.923926 0.382572i \(-0.875038\pi\)
0.130646 0.991429i \(-0.458295\pi\)
\(488\) −2836.00 + 4912.10i −0.263073 + 0.455656i
\(489\) 0 0
\(490\) −4851.00 + 3819.17i −0.447236 + 0.352107i
\(491\) 4296.00 0.394859 0.197429 0.980317i \(-0.436741\pi\)
0.197429 + 0.980317i \(0.436741\pi\)
\(492\) 0 0
\(493\) −2907.00 5035.07i −0.265567 0.459976i
\(494\) −350.000 606.218i −0.0318770 0.0552126i
\(495\) 0 0
\(496\) 368.000 0.0333139
\(497\) −1344.00 1163.94i −0.121301 0.105050i
\(498\) 0 0
\(499\) −1700.50 + 2945.35i −0.152555 + 0.264233i −0.932166 0.362031i \(-0.882083\pi\)
0.779611 + 0.626264i \(0.215417\pi\)
\(500\) 3042.00 + 5268.90i 0.272085 + 0.471265i
\(501\) 0 0
\(502\) −5040.00 + 8729.54i −0.448100 + 0.776132i
\(503\) −16800.0 −1.48921 −0.744607 0.667503i \(-0.767363\pi\)
−0.744607 + 0.667503i \(0.767363\pi\)
\(504\) 0 0
\(505\) 2565.00 0.226022
\(506\) −3933.00 + 6812.16i −0.345540 + 0.598493i
\(507\) 0 0
\(508\) 4112.00 + 7122.19i 0.359135 + 0.622040i
\(509\) 919.500 1592.62i 0.0800710 0.138687i −0.823209 0.567738i \(-0.807819\pi\)
0.903280 + 0.429051i \(0.141152\pi\)
\(510\) 0 0
\(511\) 1095.50 5692.38i 0.0948377 0.492791i
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 1437.00 + 2488.96i 0.123314 + 0.213586i
\(515\) 2245.50 + 3889.32i 0.192133 + 0.332784i
\(516\) 0 0
\(517\) −11457.0 −0.974620
\(518\) −1771.00 + 9202.39i −0.150219 + 0.780559i
\(519\) 0 0
\(520\) −2520.00 + 4364.77i −0.212518 + 0.368092i
\(521\) 151.500 + 262.406i 0.0127396 + 0.0220656i 0.872325 0.488927i \(-0.162611\pi\)
−0.859585 + 0.510992i \(0.829278\pi\)
\(522\) 0 0
\(523\) 10833.5 18764.2i 0.905767 1.56883i 0.0858815 0.996305i \(-0.472629\pi\)
0.819885 0.572528i \(-0.194037\pi\)
\(524\) −8196.00 −0.683290
\(525\) 0 0
\(526\) −4650.00 −0.385456
\(527\) 586.500 1015.85i 0.0484788 0.0839678i
\(528\) 0 0
\(529\) 3703.00 + 6413.78i 0.304348 + 0.527146i
\(530\) 3537.00 6126.26i 0.289882 0.502090i
\(531\) 0 0
\(532\) −280.000 242.487i −0.0228187 0.0197616i
\(533\) −2940.00 −0.238922
\(534\) 0 0
\(535\) −4981.50 8628.21i −0.402559 0.697253i
\(536\) 1676.00 + 2902.92i 0.135060 + 0.233931i
\(537\) 0 0
\(538\) −4770.00 −0.382248
\(539\) 15361.5 12094.0i 1.22758 0.966470i
\(540\) 0 0
\(541\) −2519.50 + 4363.90i −0.200225 + 0.346800i −0.948601 0.316475i \(-0.897501\pi\)
0.748376 + 0.663275i \(0.230834\pi\)
\(542\) −331.000 573.309i −0.0262319 0.0454349i
\(543\) 0 0
\(544\) −816.000 + 1413.35i −0.0643120 + 0.111392i
\(545\) 8307.00 0.652904
\(546\) 0 0
\(547\) −2392.00 −0.186974 −0.0934868 0.995621i \(-0.529801\pi\)
−0.0934868 + 0.995621i \(0.529801\pi\)
\(548\) −282.000 + 488.438i −0.0219826 + 0.0380749i
\(549\) 0 0
\(550\) −2508.00 4343.98i −0.194439 0.336778i
\(551\) 285.000 493.634i 0.0220352 0.0381661i
\(552\) 0 0
\(553\) 8067.50 2794.66i 0.620371 0.214903i
\(554\) −9742.00 −0.747108
\(555\) 0 0
\(556\) −2968.00 5140.73i −0.226387 0.392114i
\(557\) −11074.5 19181.6i −0.842445 1.45916i −0.887822 0.460187i \(-0.847782\pi\)
0.0453775 0.998970i \(-0.485551\pi\)
\(558\) 0 0
\(559\) 8680.00 0.656753
\(560\) −504.000 + 2618.86i −0.0380319 + 0.197620i
\(561\) 0 0
\(562\) 7026.00 12169.4i 0.527356 0.913407i
\(563\) −4174.50 7230.45i −0.312494 0.541256i 0.666408 0.745588i \(-0.267831\pi\)
−0.978902 + 0.204332i \(0.934498\pi\)
\(564\) 0 0
\(565\) 6939.00 12018.7i 0.516683 0.894921i
\(566\) 10706.0 0.795065
\(567\) 0 0
\(568\) −768.000 −0.0567334
\(569\) −7672.50 + 13289.2i −0.565286 + 0.979105i 0.431737 + 0.902000i \(0.357901\pi\)
−0.997023 + 0.0771050i \(0.975432\pi\)
\(570\) 0 0
\(571\) 5796.50 + 10039.8i 0.424827 + 0.735821i 0.996404 0.0847268i \(-0.0270017\pi\)
−0.571578 + 0.820548i \(0.693668\pi\)
\(572\) 7980.00 13821.8i 0.583323 1.01034i
\(573\) 0 0
\(574\) −1470.00 + 509.223i −0.106893 + 0.0370288i
\(575\) 3036.00 0.220191
\(576\) 0 0
\(577\) 7296.50 + 12637.9i 0.526442 + 0.911825i 0.999525 + 0.0308071i \(0.00980776\pi\)
−0.473083 + 0.881018i \(0.656859\pi\)
\(578\) −2312.00 4004.50i −0.166378 0.288175i
\(579\) 0 0
\(580\) −4104.00 −0.293809
\(581\) −8232.00 7129.12i −0.587816 0.509063i
\(582\) 0 0
\(583\) −11200.5 + 19399.8i −0.795673 + 1.37815i
\(584\) −1252.00 2168.53i −0.0887125 0.153655i
\(585\) 0 0
\(586\) −4158.00 + 7201.87i −0.293115 + 0.507690i
\(587\) 15372.0 1.08087 0.540435 0.841386i \(-0.318260\pi\)
0.540435 + 0.841386i \(0.318260\pi\)
\(588\) 0 0
\(589\) 115.000 0.00804498
\(590\) −1971.00 + 3413.87i −0.137534 + 0.238215i
\(591\) 0 0
\(592\) 2024.00 + 3505.67i 0.140517 + 0.243382i
\(593\) −7186.50 + 12447.4i −0.497663 + 0.861978i −0.999996 0.00269639i \(-0.999142\pi\)
0.502333 + 0.864674i \(0.332475\pi\)
\(594\) 0 0
\(595\) 6426.00 + 5565.08i 0.442757 + 0.383439i
\(596\) 228.000 0.0156699
\(597\) 0 0
\(598\) 4830.00 + 8365.81i 0.330290 + 0.572079i
\(599\) 1273.50 + 2205.77i 0.0868678 + 0.150459i 0.906186 0.422880i \(-0.138981\pi\)
−0.819318 + 0.573340i \(0.805648\pi\)
\(600\) 0 0
\(601\) −7042.00 −0.477952 −0.238976 0.971025i \(-0.576812\pi\)
−0.238976 + 0.971025i \(0.576812\pi\)
\(602\) 4340.00 1503.42i 0.293829 0.101785i
\(603\) 0 0
\(604\) −1678.00 + 2906.38i −0.113041 + 0.195793i
\(605\) −8631.00 14949.3i −0.580000 1.00459i
\(606\) 0 0
\(607\) 11295.5 19564.4i 0.755305 1.30823i −0.189917 0.981800i \(-0.560822\pi\)
0.945223 0.326427i \(-0.105845\pi\)
\(608\) −160.000 −0.0106725
\(609\) 0 0
\(610\) 12762.0 0.847079
\(611\) −7035.00 + 12185.0i −0.465803 + 0.806794i
\(612\) 0 0
\(613\) 4242.50 + 7348.23i 0.279532 + 0.484163i 0.971268 0.237987i \(-0.0764874\pi\)
−0.691737 + 0.722150i \(0.743154\pi\)
\(614\) −9604.00 + 16634.6i −0.631247 + 1.09335i
\(615\) 0 0
\(616\) 1596.00 8293.06i 0.104391 0.542430i
\(617\) 18282.0 1.19288 0.596439 0.802658i \(-0.296582\pi\)
0.596439 + 0.802658i \(0.296582\pi\)
\(618\) 0 0
\(619\) −1145.50 1984.06i −0.0743805 0.128831i 0.826436 0.563030i \(-0.190365\pi\)
−0.900817 + 0.434200i \(0.857031\pi\)
\(620\) −414.000 717.069i −0.0268172 0.0464487i
\(621\) 0 0
\(622\) 20262.0 1.30616
\(623\) 17797.5 6165.23i 1.14453 0.396477i
\(624\) 0 0
\(625\) 4094.50 7091.88i 0.262048 0.453880i
\(626\) 10799.0 + 18704.4i 0.689481 + 1.19422i
\(627\) 0 0
\(628\) 5666.00 9813.80i 0.360029 0.623588i
\(629\) 12903.0 0.817927
\(630\) 0 0
\(631\) −6928.00 −0.437083 −0.218541 0.975828i \(-0.570130\pi\)
−0.218541 + 0.975828i \(0.570130\pi\)
\(632\) 1844.00 3193.90i 0.116061 0.201023i
\(633\) 0 0
\(634\) −531.000 919.719i −0.0332629 0.0576131i
\(635\) 9252.00 16024.9i 0.578196 1.00146i
\(636\) 0 0
\(637\) −3430.00 23763.7i −0.213346 1.47811i
\(638\) 12996.0 0.806452
\(639\) 0 0
\(640\) 576.000 + 997.661i 0.0355756 + 0.0616188i
\(641\) 12487.5 + 21629.0i 0.769464 + 1.33275i 0.937854 + 0.347031i \(0.112810\pi\)
−0.168390 + 0.985721i \(0.553857\pi\)
\(642\) 0 0
\(643\) 9548.00 0.585593 0.292797 0.956175i \(-0.405414\pi\)
0.292797 + 0.956175i \(0.405414\pi\)
\(644\) 3864.00 + 3346.32i 0.236433 + 0.204757i
\(645\) 0 0
\(646\) −255.000 + 441.673i −0.0155307 + 0.0269000i
\(647\) 5065.50 + 8773.70i 0.307798 + 0.533122i 0.977880 0.209165i \(-0.0670745\pi\)
−0.670082 + 0.742287i \(0.733741\pi\)
\(648\) 0 0
\(649\) 6241.50 10810.6i 0.377504 0.653857i
\(650\) −6160.00 −0.371716
\(651\) 0 0
\(652\) −9244.00 −0.555250
\(653\) 8329.50 14427.1i 0.499171 0.864589i −0.500829 0.865546i \(-0.666971\pi\)
1.00000 0.000957229i \(0.000304695\pi\)
\(654\) 0 0
\(655\) 9220.50 + 15970.4i 0.550038 + 0.952693i
\(656\) −336.000 + 581.969i −0.0199979 + 0.0346373i
\(657\) 0 0
\(658\) −1407.00 + 7310.99i −0.0833595 + 0.433149i
\(659\) −29556.0 −1.74710 −0.873550 0.486735i \(-0.838188\pi\)
−0.873550 + 0.486735i \(0.838188\pi\)
\(660\) 0 0
\(661\) −95.5000 165.411i −0.00561955 0.00973334i 0.863202 0.504859i \(-0.168455\pi\)
−0.868822 + 0.495125i \(0.835122\pi\)
\(662\) −7015.00 12150.3i −0.411852 0.713348i
\(663\) 0 0
\(664\) −4704.00 −0.274926
\(665\) −157.500 + 818.394i −0.00918434 + 0.0477232i
\(666\) 0 0
\(667\) −3933.00 + 6812.16i −0.228315 + 0.395454i
\(668\) 2520.00 + 4364.77i 0.145961 + 0.252811i
\(669\) 0 0
\(670\) 3771.00 6531.56i 0.217442 0.376621i
\(671\) −40413.0 −2.32508
\(672\) 0 0
\(673\) 2606.00 0.149263 0.0746314 0.997211i \(-0.476222\pi\)
0.0746314 + 0.997211i \(0.476222\pi\)
\(674\) 8990.00 15571.1i 0.513771 0.889878i
\(675\) 0 0
\(676\) −5406.00 9363.47i −0.307579 0.532742i
\(677\) −2104.50 + 3645.10i −0.119472 + 0.206931i −0.919559 0.392953i \(-0.871453\pi\)
0.800087 + 0.599885i \(0.204787\pi\)
\(678\) 0 0
\(679\) 25676.0 + 22236.1i 1.45118 + 1.25676i
\(680\) 3672.00 0.207081
\(681\) 0 0
\(682\) 1311.00 + 2270.72i 0.0736082 + 0.127493i
\(683\) 12151.5 + 21047.0i 0.680768 + 1.17912i 0.974747 + 0.223312i \(0.0716869\pi\)
−0.293979 + 0.955812i \(0.594980\pi\)
\(684\) 0 0
\(685\) 1269.00 0.0707825
\(686\) −5831.00 11287.8i −0.324532 0.628235i
\(687\) 0 0
\(688\) 992.000 1718.19i 0.0549704 0.0952116i
\(689\) 13755.0 + 23824.4i 0.760557 + 1.31732i
\(690\) 0 0
\(691\) −7520.50 + 13025.9i −0.414028 + 0.717117i −0.995326 0.0965734i \(-0.969212\pi\)
0.581298 + 0.813691i \(0.302545\pi\)
\(692\) −13068.0 −0.717877
\(693\) 0 0
\(694\) −17418.0 −0.952706
\(695\) −6678.00 + 11566.6i −0.364476 + 0.631291i
\(696\) 0 0
\(697\) 1071.00 + 1855.03i 0.0582023 + 0.100809i
\(698\) 6482.00 11227.2i 0.351500 0.608817i
\(699\) 0 0
\(700\) −3080.00 + 1066.94i −0.166304 + 0.0576095i
\(701\) −24726.0 −1.33222 −0.666111 0.745852i \(-0.732042\pi\)
−0.666111 + 0.745852i \(0.732042\pi\)
\(702\) 0 0
\(703\) 632.500 + 1095.52i 0.0339334 + 0.0587744i
\(704\) −1824.00 3159.26i −0.0976486 0.169132i
\(705\) 0 0
\(706\) −4266.00 −0.227412
\(707\) −997.500 + 5183.16i −0.0530620 + 0.275718i
\(708\) 0 0
\(709\) 2478.50 4292.89i 0.131286 0.227395i −0.792886 0.609370i \(-0.791423\pi\)
0.924173 + 0.381975i \(0.124756\pi\)
\(710\) 864.000 + 1496.49i 0.0456695 + 0.0791019i
\(711\) 0 0
\(712\) 4068.00 7045.98i 0.214122 0.370870i
\(713\) −1587.00 −0.0833571
\(714\) 0 0
\(715\) −35910.0 −1.87826
\(716\) 2574.00 4458.30i 0.134350 0.232702i
\(717\) 0 0
\(718\) −3849.00 6666.66i −0.200060 0.346515i
\(719\) 13834.5 23962.1i 0.717580 1.24288i −0.244376 0.969680i \(-0.578583\pi\)
0.961956 0.273204i \(-0.0880834\pi\)
\(720\) 0 0
\(721\) −8732.50 + 3025.03i −0.451061 + 0.156252i
\(722\) 13668.0 0.704529
\(723\) 0 0
\(724\) 5348.00 + 9263.01i 0.274526 + 0.475493i
\(725\) −2508.00 4343.98i −0.128476 0.222526i
\(726\) 0 0
\(727\) −13888.0 −0.708497 −0.354249 0.935151i \(-0.615263\pi\)
−0.354249 + 0.935151i \(0.615263\pi\)
\(728\) −7840.00 6789.64i −0.399134 0.345660i
\(729\) 0 0
\(730\) −2817.00 + 4879.19i −0.142824 + 0.247379i
\(731\) −3162.00 5476.74i −0.159987 0.277106i
\(732\) 0 0
\(733\) −7121.50 + 12334.8i −0.358852 + 0.621550i −0.987769 0.155922i \(-0.950165\pi\)
0.628917 + 0.777472i \(0.283498\pi\)
\(734\) −12982.0 −0.652826
\(735\) 0 0
\(736\) 2208.00 0.110581
\(737\) −11941.5 + 20683.3i −0.596840 + 1.03376i
\(738\) 0 0
\(739\) −18479.5 32007.4i −0.919864 1.59325i −0.799620 0.600507i \(-0.794966\pi\)
−0.120244 0.992744i \(-0.538368\pi\)
\(740\) 4554.00 7887.76i 0.226228 0.391838i
\(741\) 0 0
\(742\) 11004.0 + 9529.74i 0.544433 + 0.471493i
\(743\) 12528.0 0.618584 0.309292 0.950967i \(-0.399908\pi\)
0.309292 + 0.950967i \(0.399908\pi\)
\(744\) 0 0
\(745\) −256.500 444.271i −0.0126140 0.0218481i
\(746\) 923.000 + 1598.68i 0.0452995 + 0.0784610i
\(747\) 0 0
\(748\) −11628.0 −0.568398
\(749\) 19372.5 6710.83i 0.945068 0.327381i
\(750\) 0 0
\(751\) 8883.50 15386.7i 0.431643 0.747627i −0.565372 0.824836i \(-0.691268\pi\)
0.997015 + 0.0772090i \(0.0246009\pi\)
\(752\) 1608.00 + 2785.14i 0.0779757 + 0.135058i
\(753\) 0 0
\(754\) 7980.00 13821.8i 0.385430 0.667585i
\(755\) 7551.00 0.363985
\(756\) 0 0
\(757\) −28726.0 −1.37921 −0.689606 0.724184i \(-0.742216\pi\)
−0.689606 + 0.724184i \(0.742216\pi\)
\(758\) 6344.00 10988.1i 0.303990 0.526526i
\(759\) 0 0
\(760\) 180.000 + 311.769i 0.00859117 + 0.0148803i
\(761\) −13234.5 + 22922.8i −0.630421 + 1.09192i 0.357045 + 0.934087i \(0.383784\pi\)
−0.987466 + 0.157834i \(0.949549\pi\)
\(762\) 0 0
\(763\) −3230.50 + 16786.2i −0.153279 + 0.796462i
\(764\) −16740.0 −0.792712
\(765\) 0 0
\(766\) 5007.00 + 8672.38i 0.236175 + 0.409068i
\(767\) −7665.00 13276.2i −0.360844 0.625000i
\(768\) 0 0
\(769\) 5054.00 0.236999 0.118499 0.992954i \(-0.462192\pi\)
0.118499 + 0.992954i \(0.462192\pi\)
\(770\) −17955.0 + 6219.79i −0.840329 + 0.291098i
\(771\) 0 0
\(772\) 170.000 294.449i 0.00792543 0.0137273i
\(773\) −17782.5 30800.2i −0.827415 1.43313i −0.900059 0.435767i \(-0.856477\pi\)
0.0726439 0.997358i \(-0.476856\pi\)
\(774\) 0 0
\(775\) 506.000 876.418i 0.0234530 0.0406217i
\(776\) 14672.0 0.678730
\(777\) 0 0
\(778\) 24582.0 1.13279
\(779\) −105.000 + 181.865i −0.00482929 + 0.00836457i
\(780\) 0 0
\(781\) −2736.00 4738.89i −0.125354 0.217120i
\(782\) 3519.00 6095.09i 0.160920 0.278721i
\(783\) 0 0
\(784\) −5096.00 2036.89i −0.232143 0.0927884i
\(785\) −25497.0 −1.15927
\(786\) 0 0
\(787\) 4314.50 + 7472.93i 0.195420 + 0.338477i 0.947038 0.321121i \(-0.104060\pi\)
−0.751618 + 0.659598i \(0.770726\pi\)
\(788\) −780.000 1351.00i −0.0352619 0.0610753i
\(789\) 0 0
\(790\) −8298.00 −0.373708
\(791\) 21588.0 + 18695.8i 0.970393 + 0.840385i
\(792\) 0 0
\(793\) −24815.0 + 42980.8i −1.11123 + 1.92471i
\(794\) 887.000 + 1536.33i 0.0396454 + 0.0686679i
\(795\) 0 0
\(796\) 5666.00 9813.80i 0.252294 0.436986i
\(797\) −20706.0 −0.920256 −0.460128 0.887853i \(-0.652197\pi\)
−0.460128 + 0.887853i \(0.652197\pi\)
\(798\) 0 0
\(799\) 10251.0 0.453885
\(800\) −704.000 + 1219.36i −0.0311127 + 0.0538888i
\(801\) 0 0
\(802\) −11955.0 20706.7i −0.526366 0.911693i
\(803\) 8920.50 15450.8i 0.392027 0.679011i
\(804\) 0 0
\(805\) 2173.50 11293.8i 0.0951625 0.494479i
\(806\) 3220.00 0.140719
\(807\) 0 0
\(808\) 1140.00 + 1974.54i 0.0496350 + 0.0859703i
\(809\) −8092.50 14016.6i −0.351690 0.609145i 0.634856 0.772631i \(-0.281060\pi\)
−0.986546 + 0.163486i \(0.947726\pi\)
\(810\) 0 0
\(811\) −11788.0 −0.510398 −0.255199 0.966889i \(-0.582141\pi\)
−0.255199 + 0.966889i \(0.582141\pi\)
\(812\) 1596.00 8293.06i 0.0689761 0.358411i
\(813\) 0 0
\(814\) −14421.0 + 24977.9i −0.620953 + 1.07552i
\(815\) 10399.5 + 18012.5i 0.446968 + 0.774171i
\(816\) 0 0
\(817\) 310.000 536.936i 0.0132748 0.0229927i
\(818\) 6842.00 0.292451
\(819\) 0 0
\(820\) 1512.00 0.0643919
\(821\) −14896.5 + 25801.5i −0.633242 + 1.09681i 0.353643 + 0.935380i \(0.384943\pi\)
−0.986885 + 0.161426i \(0.948391\pi\)
\(822\) 0 0
\(823\) −15161.5 26260.5i −0.642159 1.11225i −0.984950 0.172840i \(-0.944706\pi\)
0.342791 0.939412i \(-0.388628\pi\)
\(824\) −1996.00 + 3457.17i −0.0843859 + 0.146161i
\(825\) 0 0
\(826\) −6132.00 5310.47i −0.258305 0.223698i
\(827\) −21156.0 −0.889560 −0.444780 0.895640i \(-0.646718\pi\)
−0.444780 + 0.895640i \(0.646718\pi\)
\(828\) 0 0
\(829\) 2634.50 + 4563.09i 0.110374 + 0.191173i 0.915921 0.401358i \(-0.131462\pi\)
−0.805547 + 0.592532i \(0.798129\pi\)
\(830\) 5292.00 + 9166.01i 0.221311 + 0.383322i
\(831\) 0 0
\(832\) −4480.00 −0.186678
\(833\) −13744.5 + 10821.0i −0.571691 + 0.450090i
\(834\) 0 0
\(835\) 5670.00 9820.73i 0.234992 0.407018i
\(836\) −570.000 987.269i −0.0235812 0.0408438i
\(837\) 0 0
\(838\) 5460.00 9457.00i 0.225075 0.389841i
\(839\) 39816.0 1.63838 0.819190 0.573522i \(-0.194423\pi\)
0.819190 + 0.573522i \(0.194423\pi\)
\(840\) 0 0
\(841\) −11393.0 −0.467137
\(842\) 7730.00 13388.8i 0.316382 0.547989i
\(843\) 0 0
\(844\) 248.000 + 429.549i 0.0101144 + 0.0175186i
\(845\) −12163.5 + 21067.8i −0.495192 + 0.857697i
\(846\) 0 0
\(847\) 33565.0 11627.3i 1.36164 0.471685i
\(848\) 6288.00 0.254635
\(849\) 0 0
\(850\) 2244.00 + 3886.72i 0.0905513 + 0.156839i
\(851\) −8728.50 15118.2i −0.351597 0.608984i
\(852\) 0 0
\(853\) 14546.0 0.583875 0.291938 0.956437i \(-0.405700\pi\)
0.291938 + 0.956437i \(0.405700\pi\)
\(854\) −4963.00 + 25788.5i −0.198865 + 1.03333i
\(855\) 0 0
\(856\) 4428.00 7669.52i 0.176806 0.306237i
\(857\) −15724.5 27235.6i −0.626766 1.08559i −0.988196 0.153192i \(-0.951045\pi\)
0.361430 0.932399i \(-0.382289\pi\)
\(858\) 0 0
\(859\) 12261.5 21237.5i 0.487028 0.843557i −0.512861 0.858472i \(-0.671414\pi\)
0.999889 + 0.0149147i \(0.00474766\pi\)
\(860\) −4464.00 −0.177001
\(861\) 0 0
\(862\) −22626.0 −0.894019
\(863\) −4081.50 + 7069.37i −0.160992 + 0.278846i −0.935225 0.354055i \(-0.884803\pi\)
0.774233 + 0.632901i \(0.218136\pi\)
\(864\) 0 0
\(865\) 14701.5 + 25463.7i 0.577880 + 1.00092i
\(866\) 4214.00 7298.86i 0.165355 0.286403i
\(867\) 0 0
\(868\) 1610.00 557.720i 0.0629573 0.0218091i
\(869\) 26277.0 1.02576
\(870\) 0 0
\(871\) 14665.0 + 25400.5i 0.570499 + 0.988133i
\(872\) 3692.00 + 6394.73i 0.143379 + 0.248341i
\(873\) 0 0
\(874\) 690.000 0.0267043
\(875\) 21294.0 + 18441.1i 0.822707 + 0.712485i
\(876\) 0 0
\(877\) −2183.50 + 3781.93i −0.0840725 + 0.145618i −0.904996 0.425421i \(-0.860126\pi\)
0.820923 + 0.571039i \(0.193459\pi\)
\(878\) 16553.0 + 28670.6i 0.636260 + 1.10204i
\(879\) 0 0
\(880\) −4104.00 + 7108.34i −0.157211 + 0.272298i
\(881\) 50190.0 1.91935 0.959673 0.281118i \(-0.0907053\pi\)
0.959673 + 0.281118i \(0.0907053\pi\)
\(882\) 0 0
\(883\) 12308.0 0.469079 0.234540 0.972107i \(-0.424642\pi\)
0.234540 + 0.972107i \(0.424642\pi\)
\(884\) −7140.00 + 12366.8i −0.271656 + 0.470523i
\(885\) 0 0
\(886\) 16395.0 + 28397.0i 0.621671 + 1.07677i
\(887\) 15808.5 27381.1i 0.598419 1.03649i −0.394636 0.918838i \(-0.629129\pi\)
0.993055 0.117654i \(-0.0375374\pi\)
\(888\) 0 0
\(889\) 28784.0 + 24927.7i 1.08592 + 0.940436i
\(890\) −18306.0 −0.689459
\(891\) 0 0
\(892\) −112.000 193.990i −0.00420408 0.00728168i
\(893\) 502.500 + 870.356i 0.0188304 + 0.0326152i
\(894\) 0 0
\(895\) −11583.0 −0.432600
\(896\) −2240.00 + 775.959i −0.0835191 + 0.0289319i
\(897\) 0 0
\(898\) 15090.0 26136.6i 0.560757 0.971260i
\(899\) 1311.00 + 2270.72i 0.0486366 + 0.0842411i
\(900\) 0 0
\(901\) 10021.5 17357.7i 0.370549 0.641810i
\(902\) −4788.00 −0.176744
\(903\) 0 0
\(904\) 12336.0 0.453860
\(905\) 12033.0 20841.8i 0.441978 0.765529i
\(906\) 0 0
\(907\) 6762.50 + 11713.0i 0.247569 + 0.428802i 0.962851 0.270034i \(-0.0870350\pi\)
−0.715282 + 0.698836i \(0.753702\pi\)
\(908\) −6114.00 + 10589.8i −0.223458 + 0.387041i
\(909\) 0 0
\(910\) −4410.00 + 22915.0i −0.160648 + 0.834754i
\(911\) 19248.0 0.700016 0.350008 0.936747i \(-0.386179\pi\)
0.350008 + 0.936747i \(0.386179\pi\)
\(912\) 0 0
\(913\) −16758.0 29025.7i −0.607458 1.05215i
\(914\) −14785.0 25608.4i −0.535059 0.926750i
\(915\) 0 0
\(916\) −3844.00 −0.138656
\(917\) −35857.5 + 12421.4i −1.29130 + 0.447318i
\(918\) 0 0
\(919\) 4347.50 7530.09i 0.156051 0.270288i −0.777390 0.629019i \(-0.783457\pi\)
0.933441 + 0.358730i \(0.116790\pi\)
\(920\) −2484.00 4302.41i −0.0890164 0.154181i
\(921\) 0 0
\(922\) −2898.00 + 5019.48i −0.103515 + 0.179293i
\(923\) −6720.00 −0.239644
\(924\) 0 0
\(925\) 11132.0 0.395695
\(926\) 464.000 803.672i 0.0164665 0.0285208i
\(927\) 0 0
\(928\) −1824.00 3159.26i −0.0645213 0.111754i
\(929\) 9739.50 16869.3i 0.343964 0.595763i −0.641201 0.767373i \(-0.721563\pi\)
0.985165 + 0.171610i \(0.0548968\pi\)
\(930\) 0 0
\(931\) −1592.50 636.529i −0.0560602 0.0224075i
\(932\) 11316.0 0.397712
\(933\) 0 0
\(934\) −4233.00 7331.77i −0.148295 0.256855i
\(935\) 13081.5 + 22657.8i 0.457552 + 0.792503i
\(936\) 0 0
\(937\) −12502.0 −0.435883 −0.217942 0.975962i \(-0.569934\pi\)
−0.217942 + 0.975962i \(0.569934\pi\)
\(938\) 11732.0 + 10160.2i 0.408383 + 0.353670i
\(939\) 0 0
\(940\) 3618.00 6266.56i 0.125538 0.217439i
\(941\) −7996.50 13850.3i −0.277023 0.479818i 0.693621 0.720340i \(-0.256014\pi\)
−0.970643 + 0.240523i \(0.922681\pi\)
\(942\) 0 0
\(943\) 1449.00 2509.74i 0.0500381 0.0866685i
\(944\) −3504.00 −0.120811
\(945\) 0 0
\(946\) 14136.0 0.485836
\(947\) 22000.5 38106.0i 0.754932 1.30758i −0.190477 0.981692i \(-0.561003\pi\)
0.945408 0.325888i \(-0.105663\pi\)
\(948\) 0 0
\(949\) −10955.0 18974.6i −0.374725 0.649043i
\(950\) −220.000 + 381.051i −0.00751341 + 0.0130136i
\(951\) 0 0
\(952\) −1428.00 + 7420.11i −0.0486153 + 0.252612i
\(953\) 4002.00 0.136031 0.0680155 0.997684i \(-0.478333\pi\)
0.0680155 + 0.997684i \(0.478333\pi\)
\(954\) 0 0
\(955\) 18832.5 + 32618.8i 0.638121 + 1.10526i
\(956\) −7080.00 12262.9i −0.239523 0.414865i
\(957\) 0 0
\(958\) 5478.00 0.184745
\(959\) −493.500 + 2564.30i −0.0166173 + 0.0863458i
\(960\) 0 0
\(961\) 14631.0 25341.6i 0.491121 0.850647i
\(962\) 17710.0 + 30674.6i 0.593548 + 1.02806i
\(963\) 0 0
\(964\) −10462.0 + 18120.7i −0.349542 + 0.605424i
\(965\) −765.000 −0.0255194
\(966\) 0 0
\(967\) 10544.0 0.350643 0.175322 0.984511i \(-0.443903\pi\)
0.175322 + 0.984511i \(0.443903\pi\)
\(968\) 7672.00 13288.3i 0.254739 0.441221i
\(969\) 0 0
\(970\) −16506.0 28589.2i −0.546367 0.946335i
\(971\) −3091.50 + 5354.64i −0.102174 + 0.176971i −0.912580 0.408898i \(-0.865913\pi\)
0.810406 + 0.585869i \(0.199247\pi\)
\(972\) 0 0
\(973\) −20776.0 17992.5i −0.684530 0.592821i
\(974\) −34102.0 −1.12187
\(975\) 0 0
\(976\) 5672.00 + 9824.19i 0.186021 + 0.322197i
\(977\) 1861.50 + 3224.21i 0.0609567 + 0.105580i 0.894893 0.446280i \(-0.147252\pi\)
−0.833937 + 0.551860i \(0.813918\pi\)
\(978\) 0 0
\(979\) 57969.0 1.89244
\(980\) 1764.00 + 12221.4i 0.0574989 + 0.398364i
\(981\) 0 0
\(982\) 4296.00 7440.89i 0.139604 0.241801i
\(983\) −22948.5 39748.0i −0.744602 1.28969i −0.950381 0.311089i \(-0.899306\pi\)
0.205779 0.978599i \(-0.434027\pi\)
\(984\) 0 0
\(985\) −1755.00 + 3039.75i −0.0567705 + 0.0983294i
\(986\) −11628.0 −0.375569
\(987\) 0 0
\(988\) −1400.00 −0.0450809
\(989\) −4278.00 + 7409.71i −0.137545 + 0.238236i
\(990\) 0 0
\(991\) −3233.50 5600.59i −0.103648 0.179524i 0.809537 0.587069i \(-0.199718\pi\)
−0.913185 + 0.407545i \(0.866385\pi\)
\(992\) 368.000 637.395i 0.0117782 0.0204005i
\(993\) 0 0
\(994\) −3360.00 + 1163.94i −0.107216 + 0.0371407i
\(995\) −25497.0 −0.812371
\(996\) 0 0
\(997\) −11519.5 19952.4i −0.365924 0.633799i 0.623000 0.782222i \(-0.285914\pi\)
−0.988924 + 0.148423i \(0.952580\pi\)
\(998\) 3401.00 + 5890.70i 0.107873 + 0.186841i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.4.g.d.37.1 2
3.2 odd 2 14.4.c.a.9.1 2
7.2 even 3 882.4.a.f.1.1 1
7.3 odd 6 882.4.g.u.361.1 2
7.4 even 3 inner 126.4.g.d.109.1 2
7.5 odd 6 882.4.a.c.1.1 1
7.6 odd 2 882.4.g.u.667.1 2
12.11 even 2 112.4.i.a.65.1 2
15.2 even 4 350.4.j.b.149.1 4
15.8 even 4 350.4.j.b.149.2 4
15.14 odd 2 350.4.e.e.51.1 2
21.2 odd 6 98.4.a.d.1.1 1
21.5 even 6 98.4.a.f.1.1 1
21.11 odd 6 14.4.c.a.11.1 yes 2
21.17 even 6 98.4.c.a.67.1 2
21.20 even 2 98.4.c.a.79.1 2
24.5 odd 2 448.4.i.b.65.1 2
24.11 even 2 448.4.i.e.65.1 2
84.11 even 6 112.4.i.a.81.1 2
84.23 even 6 784.4.a.p.1.1 1
84.47 odd 6 784.4.a.c.1.1 1
105.32 even 12 350.4.j.b.249.2 4
105.44 odd 6 2450.4.a.q.1.1 1
105.53 even 12 350.4.j.b.249.1 4
105.74 odd 6 350.4.e.e.151.1 2
105.89 even 6 2450.4.a.d.1.1 1
168.11 even 6 448.4.i.e.193.1 2
168.53 odd 6 448.4.i.b.193.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.4.c.a.9.1 2 3.2 odd 2
14.4.c.a.11.1 yes 2 21.11 odd 6
98.4.a.d.1.1 1 21.2 odd 6
98.4.a.f.1.1 1 21.5 even 6
98.4.c.a.67.1 2 21.17 even 6
98.4.c.a.79.1 2 21.20 even 2
112.4.i.a.65.1 2 12.11 even 2
112.4.i.a.81.1 2 84.11 even 6
126.4.g.d.37.1 2 1.1 even 1 trivial
126.4.g.d.109.1 2 7.4 even 3 inner
350.4.e.e.51.1 2 15.14 odd 2
350.4.e.e.151.1 2 105.74 odd 6
350.4.j.b.149.1 4 15.2 even 4
350.4.j.b.149.2 4 15.8 even 4
350.4.j.b.249.1 4 105.53 even 12
350.4.j.b.249.2 4 105.32 even 12
448.4.i.b.65.1 2 24.5 odd 2
448.4.i.b.193.1 2 168.53 odd 6
448.4.i.e.65.1 2 24.11 even 2
448.4.i.e.193.1 2 168.11 even 6
784.4.a.c.1.1 1 84.47 odd 6
784.4.a.p.1.1 1 84.23 even 6
882.4.a.c.1.1 1 7.5 odd 6
882.4.a.f.1.1 1 7.2 even 3
882.4.g.u.361.1 2 7.3 odd 6
882.4.g.u.667.1 2 7.6 odd 2
2450.4.a.d.1.1 1 105.89 even 6
2450.4.a.q.1.1 1 105.44 odd 6