Properties

Label 882.4.a.f.1.1
Level $882$
Weight $4$
Character 882.1
Self dual yes
Analytic conductor $52.040$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,4,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.0396846251\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +9.00000 q^{5} -8.00000 q^{8} -18.0000 q^{10} +57.0000 q^{11} -70.0000 q^{13} +16.0000 q^{16} -51.0000 q^{17} +5.00000 q^{19} +36.0000 q^{20} -114.000 q^{22} -69.0000 q^{23} -44.0000 q^{25} +140.000 q^{26} -114.000 q^{29} +23.0000 q^{31} -32.0000 q^{32} +102.000 q^{34} -253.000 q^{37} -10.0000 q^{38} -72.0000 q^{40} +42.0000 q^{41} -124.000 q^{43} +228.000 q^{44} +138.000 q^{46} -201.000 q^{47} +88.0000 q^{50} -280.000 q^{52} +393.000 q^{53} +513.000 q^{55} +228.000 q^{58} -219.000 q^{59} -709.000 q^{61} -46.0000 q^{62} +64.0000 q^{64} -630.000 q^{65} +419.000 q^{67} -204.000 q^{68} +96.0000 q^{71} -313.000 q^{73} +506.000 q^{74} +20.0000 q^{76} +461.000 q^{79} +144.000 q^{80} -84.0000 q^{82} +588.000 q^{83} -459.000 q^{85} +248.000 q^{86} -456.000 q^{88} +1017.00 q^{89} -276.000 q^{92} +402.000 q^{94} +45.0000 q^{95} -1834.00 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 9.00000 0.804984 0.402492 0.915423i \(-0.368144\pi\)
0.402492 + 0.915423i \(0.368144\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −18.0000 −0.569210
\(11\) 57.0000 1.56238 0.781188 0.624295i \(-0.214614\pi\)
0.781188 + 0.624295i \(0.214614\pi\)
\(12\) 0 0
\(13\) −70.0000 −1.49342 −0.746712 0.665148i \(-0.768369\pi\)
−0.746712 + 0.665148i \(0.768369\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −51.0000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 5.00000 0.0603726 0.0301863 0.999544i \(-0.490390\pi\)
0.0301863 + 0.999544i \(0.490390\pi\)
\(20\) 36.0000 0.402492
\(21\) 0 0
\(22\) −114.000 −1.10477
\(23\) −69.0000 −0.625543 −0.312772 0.949828i \(-0.601257\pi\)
−0.312772 + 0.949828i \(0.601257\pi\)
\(24\) 0 0
\(25\) −44.0000 −0.352000
\(26\) 140.000 1.05601
\(27\) 0 0
\(28\) 0 0
\(29\) −114.000 −0.729975 −0.364987 0.931012i \(-0.618927\pi\)
−0.364987 + 0.931012i \(0.618927\pi\)
\(30\) 0 0
\(31\) 23.0000 0.133256 0.0666278 0.997778i \(-0.478776\pi\)
0.0666278 + 0.997778i \(0.478776\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 102.000 0.514496
\(35\) 0 0
\(36\) 0 0
\(37\) −253.000 −1.12413 −0.562067 0.827092i \(-0.689994\pi\)
−0.562067 + 0.827092i \(0.689994\pi\)
\(38\) −10.0000 −0.0426898
\(39\) 0 0
\(40\) −72.0000 −0.284605
\(41\) 42.0000 0.159983 0.0799914 0.996796i \(-0.474511\pi\)
0.0799914 + 0.996796i \(0.474511\pi\)
\(42\) 0 0
\(43\) −124.000 −0.439763 −0.219882 0.975527i \(-0.570567\pi\)
−0.219882 + 0.975527i \(0.570567\pi\)
\(44\) 228.000 0.781188
\(45\) 0 0
\(46\) 138.000 0.442326
\(47\) −201.000 −0.623806 −0.311903 0.950114i \(-0.600966\pi\)
−0.311903 + 0.950114i \(0.600966\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 88.0000 0.248902
\(51\) 0 0
\(52\) −280.000 −0.746712
\(53\) 393.000 1.01854 0.509271 0.860606i \(-0.329915\pi\)
0.509271 + 0.860606i \(0.329915\pi\)
\(54\) 0 0
\(55\) 513.000 1.25769
\(56\) 0 0
\(57\) 0 0
\(58\) 228.000 0.516170
\(59\) −219.000 −0.483244 −0.241622 0.970371i \(-0.577679\pi\)
−0.241622 + 0.970371i \(0.577679\pi\)
\(60\) 0 0
\(61\) −709.000 −1.48817 −0.744083 0.668087i \(-0.767113\pi\)
−0.744083 + 0.668087i \(0.767113\pi\)
\(62\) −46.0000 −0.0942259
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −630.000 −1.20218
\(66\) 0 0
\(67\) 419.000 0.764015 0.382007 0.924159i \(-0.375233\pi\)
0.382007 + 0.924159i \(0.375233\pi\)
\(68\) −204.000 −0.363803
\(69\) 0 0
\(70\) 0 0
\(71\) 96.0000 0.160466 0.0802331 0.996776i \(-0.474434\pi\)
0.0802331 + 0.996776i \(0.474434\pi\)
\(72\) 0 0
\(73\) −313.000 −0.501834 −0.250917 0.968009i \(-0.580732\pi\)
−0.250917 + 0.968009i \(0.580732\pi\)
\(74\) 506.000 0.794883
\(75\) 0 0
\(76\) 20.0000 0.0301863
\(77\) 0 0
\(78\) 0 0
\(79\) 461.000 0.656539 0.328269 0.944584i \(-0.393535\pi\)
0.328269 + 0.944584i \(0.393535\pi\)
\(80\) 144.000 0.201246
\(81\) 0 0
\(82\) −84.0000 −0.113125
\(83\) 588.000 0.777607 0.388804 0.921321i \(-0.372888\pi\)
0.388804 + 0.921321i \(0.372888\pi\)
\(84\) 0 0
\(85\) −459.000 −0.585712
\(86\) 248.000 0.310960
\(87\) 0 0
\(88\) −456.000 −0.552384
\(89\) 1017.00 1.21126 0.605628 0.795748i \(-0.292922\pi\)
0.605628 + 0.795748i \(0.292922\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −276.000 −0.312772
\(93\) 0 0
\(94\) 402.000 0.441097
\(95\) 45.0000 0.0485990
\(96\) 0 0
\(97\) −1834.00 −1.91974 −0.959868 0.280451i \(-0.909516\pi\)
−0.959868 + 0.280451i \(0.909516\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −176.000 −0.176000
\(101\) 285.000 0.280778 0.140389 0.990096i \(-0.455165\pi\)
0.140389 + 0.990096i \(0.455165\pi\)
\(102\) 0 0
\(103\) −499.000 −0.477359 −0.238679 0.971098i \(-0.576714\pi\)
−0.238679 + 0.971098i \(0.576714\pi\)
\(104\) 560.000 0.528005
\(105\) 0 0
\(106\) −786.000 −0.720218
\(107\) 1107.00 1.00017 0.500083 0.865978i \(-0.333303\pi\)
0.500083 + 0.865978i \(0.333303\pi\)
\(108\) 0 0
\(109\) 923.000 0.811077 0.405538 0.914078i \(-0.367084\pi\)
0.405538 + 0.914078i \(0.367084\pi\)
\(110\) −1026.00 −0.889321
\(111\) 0 0
\(112\) 0 0
\(113\) −1542.00 −1.28371 −0.641855 0.766826i \(-0.721835\pi\)
−0.641855 + 0.766826i \(0.721835\pi\)
\(114\) 0 0
\(115\) −621.000 −0.503553
\(116\) −456.000 −0.364987
\(117\) 0 0
\(118\) 438.000 0.341705
\(119\) 0 0
\(120\) 0 0
\(121\) 1918.00 1.44102
\(122\) 1418.00 1.05229
\(123\) 0 0
\(124\) 92.0000 0.0666278
\(125\) −1521.00 −1.08834
\(126\) 0 0
\(127\) −2056.00 −1.43654 −0.718270 0.695765i \(-0.755066\pi\)
−0.718270 + 0.695765i \(0.755066\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 1260.00 0.850072
\(131\) −2049.00 −1.36658 −0.683290 0.730147i \(-0.739451\pi\)
−0.683290 + 0.730147i \(0.739451\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −838.000 −0.540240
\(135\) 0 0
\(136\) 408.000 0.257248
\(137\) 141.000 0.0879302 0.0439651 0.999033i \(-0.486001\pi\)
0.0439651 + 0.999033i \(0.486001\pi\)
\(138\) 0 0
\(139\) 1484.00 0.905548 0.452774 0.891625i \(-0.350434\pi\)
0.452774 + 0.891625i \(0.350434\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −192.000 −0.113467
\(143\) −3990.00 −2.33329
\(144\) 0 0
\(145\) −1026.00 −0.587618
\(146\) 626.000 0.354850
\(147\) 0 0
\(148\) −1012.00 −0.562067
\(149\) 57.0000 0.0313397 0.0156699 0.999877i \(-0.495012\pi\)
0.0156699 + 0.999877i \(0.495012\pi\)
\(150\) 0 0
\(151\) 839.000 0.452165 0.226082 0.974108i \(-0.427408\pi\)
0.226082 + 0.974108i \(0.427408\pi\)
\(152\) −40.0000 −0.0213449
\(153\) 0 0
\(154\) 0 0
\(155\) 207.000 0.107269
\(156\) 0 0
\(157\) −2833.00 −1.44011 −0.720057 0.693915i \(-0.755885\pi\)
−0.720057 + 0.693915i \(0.755885\pi\)
\(158\) −922.000 −0.464243
\(159\) 0 0
\(160\) −288.000 −0.142302
\(161\) 0 0
\(162\) 0 0
\(163\) −2311.00 −1.11050 −0.555250 0.831684i \(-0.687377\pi\)
−0.555250 + 0.831684i \(0.687377\pi\)
\(164\) 168.000 0.0799914
\(165\) 0 0
\(166\) −1176.00 −0.549851
\(167\) −1260.00 −0.583843 −0.291921 0.956442i \(-0.594295\pi\)
−0.291921 + 0.956442i \(0.594295\pi\)
\(168\) 0 0
\(169\) 2703.00 1.23031
\(170\) 918.000 0.414161
\(171\) 0 0
\(172\) −496.000 −0.219882
\(173\) −3267.00 −1.43575 −0.717877 0.696170i \(-0.754886\pi\)
−0.717877 + 0.696170i \(0.754886\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 912.000 0.390594
\(177\) 0 0
\(178\) −2034.00 −0.856487
\(179\) −1287.00 −0.537402 −0.268701 0.963224i \(-0.586594\pi\)
−0.268701 + 0.963224i \(0.586594\pi\)
\(180\) 0 0
\(181\) −2674.00 −1.09810 −0.549052 0.835788i \(-0.685011\pi\)
−0.549052 + 0.835788i \(0.685011\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 552.000 0.221163
\(185\) −2277.00 −0.904910
\(186\) 0 0
\(187\) −2907.00 −1.13680
\(188\) −804.000 −0.311903
\(189\) 0 0
\(190\) −90.0000 −0.0343647
\(191\) −4185.00 −1.58542 −0.792712 0.609596i \(-0.791332\pi\)
−0.792712 + 0.609596i \(0.791332\pi\)
\(192\) 0 0
\(193\) −85.0000 −0.0317017 −0.0158509 0.999874i \(-0.505046\pi\)
−0.0158509 + 0.999874i \(0.505046\pi\)
\(194\) 3668.00 1.35746
\(195\) 0 0
\(196\) 0 0
\(197\) 390.000 0.141047 0.0705237 0.997510i \(-0.477533\pi\)
0.0705237 + 0.997510i \(0.477533\pi\)
\(198\) 0 0
\(199\) −2833.00 −1.00918 −0.504588 0.863360i \(-0.668356\pi\)
−0.504588 + 0.863360i \(0.668356\pi\)
\(200\) 352.000 0.124451
\(201\) 0 0
\(202\) −570.000 −0.198540
\(203\) 0 0
\(204\) 0 0
\(205\) 378.000 0.128784
\(206\) 998.000 0.337543
\(207\) 0 0
\(208\) −1120.00 −0.373356
\(209\) 285.000 0.0943247
\(210\) 0 0
\(211\) −124.000 −0.0404574 −0.0202287 0.999795i \(-0.506439\pi\)
−0.0202287 + 0.999795i \(0.506439\pi\)
\(212\) 1572.00 0.509271
\(213\) 0 0
\(214\) −2214.00 −0.707224
\(215\) −1116.00 −0.354003
\(216\) 0 0
\(217\) 0 0
\(218\) −1846.00 −0.573518
\(219\) 0 0
\(220\) 2052.00 0.628845
\(221\) 3570.00 1.08663
\(222\) 0 0
\(223\) 56.0000 0.0168163 0.00840816 0.999965i \(-0.497324\pi\)
0.00840816 + 0.999965i \(0.497324\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3084.00 0.907720
\(227\) 3057.00 0.893834 0.446917 0.894576i \(-0.352522\pi\)
0.446917 + 0.894576i \(0.352522\pi\)
\(228\) 0 0
\(229\) −961.000 −0.277313 −0.138656 0.990341i \(-0.544278\pi\)
−0.138656 + 0.990341i \(0.544278\pi\)
\(230\) 1242.00 0.356065
\(231\) 0 0
\(232\) 912.000 0.258085
\(233\) 2829.00 0.795425 0.397712 0.917510i \(-0.369804\pi\)
0.397712 + 0.917510i \(0.369804\pi\)
\(234\) 0 0
\(235\) −1809.00 −0.502154
\(236\) −876.000 −0.241622
\(237\) 0 0
\(238\) 0 0
\(239\) 3540.00 0.958090 0.479045 0.877790i \(-0.340983\pi\)
0.479045 + 0.877790i \(0.340983\pi\)
\(240\) 0 0
\(241\) 5231.00 1.39817 0.699084 0.715040i \(-0.253591\pi\)
0.699084 + 0.715040i \(0.253591\pi\)
\(242\) −3836.00 −1.01896
\(243\) 0 0
\(244\) −2836.00 −0.744083
\(245\) 0 0
\(246\) 0 0
\(247\) −350.000 −0.0901618
\(248\) −184.000 −0.0471130
\(249\) 0 0
\(250\) 3042.00 0.769572
\(251\) −5040.00 −1.26742 −0.633709 0.773571i \(-0.718468\pi\)
−0.633709 + 0.773571i \(0.718468\pi\)
\(252\) 0 0
\(253\) −3933.00 −0.977334
\(254\) 4112.00 1.01579
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1437.00 0.348784 0.174392 0.984676i \(-0.444204\pi\)
0.174392 + 0.984676i \(0.444204\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2520.00 −0.601091
\(261\) 0 0
\(262\) 4098.00 0.966318
\(263\) 2325.00 0.545117 0.272558 0.962139i \(-0.412130\pi\)
0.272558 + 0.962139i \(0.412130\pi\)
\(264\) 0 0
\(265\) 3537.00 0.819910
\(266\) 0 0
\(267\) 0 0
\(268\) 1676.00 0.382007
\(269\) 2385.00 0.540580 0.270290 0.962779i \(-0.412880\pi\)
0.270290 + 0.962779i \(0.412880\pi\)
\(270\) 0 0
\(271\) −331.000 −0.0741949 −0.0370975 0.999312i \(-0.511811\pi\)
−0.0370975 + 0.999312i \(0.511811\pi\)
\(272\) −816.000 −0.181902
\(273\) 0 0
\(274\) −282.000 −0.0621761
\(275\) −2508.00 −0.549957
\(276\) 0 0
\(277\) 4871.00 1.05657 0.528285 0.849067i \(-0.322835\pi\)
0.528285 + 0.849067i \(0.322835\pi\)
\(278\) −2968.00 −0.640319
\(279\) 0 0
\(280\) 0 0
\(281\) 7026.00 1.49159 0.745794 0.666177i \(-0.232070\pi\)
0.745794 + 0.666177i \(0.232070\pi\)
\(282\) 0 0
\(283\) −5353.00 −1.12439 −0.562196 0.827004i \(-0.690043\pi\)
−0.562196 + 0.827004i \(0.690043\pi\)
\(284\) 384.000 0.0802331
\(285\) 0 0
\(286\) 7980.00 1.64989
\(287\) 0 0
\(288\) 0 0
\(289\) −2312.00 −0.470588
\(290\) 2052.00 0.415509
\(291\) 0 0
\(292\) −1252.00 −0.250917
\(293\) −4158.00 −0.829054 −0.414527 0.910037i \(-0.636053\pi\)
−0.414527 + 0.910037i \(0.636053\pi\)
\(294\) 0 0
\(295\) −1971.00 −0.389004
\(296\) 2024.00 0.397441
\(297\) 0 0
\(298\) −114.000 −0.0221605
\(299\) 4830.00 0.934201
\(300\) 0 0
\(301\) 0 0
\(302\) −1678.00 −0.319729
\(303\) 0 0
\(304\) 80.0000 0.0150931
\(305\) −6381.00 −1.19795
\(306\) 0 0
\(307\) −9604.00 −1.78544 −0.892719 0.450615i \(-0.851205\pi\)
−0.892719 + 0.450615i \(0.851205\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −414.000 −0.0758504
\(311\) −10131.0 −1.84719 −0.923595 0.383369i \(-0.874764\pi\)
−0.923595 + 0.383369i \(0.874764\pi\)
\(312\) 0 0
\(313\) 10799.0 1.95015 0.975073 0.221885i \(-0.0712210\pi\)
0.975073 + 0.221885i \(0.0712210\pi\)
\(314\) 5666.00 1.01831
\(315\) 0 0
\(316\) 1844.00 0.328269
\(317\) −531.000 −0.0940818 −0.0470409 0.998893i \(-0.514979\pi\)
−0.0470409 + 0.998893i \(0.514979\pi\)
\(318\) 0 0
\(319\) −6498.00 −1.14050
\(320\) 576.000 0.100623
\(321\) 0 0
\(322\) 0 0
\(323\) −255.000 −0.0439275
\(324\) 0 0
\(325\) 3080.00 0.525685
\(326\) 4622.00 0.785242
\(327\) 0 0
\(328\) −336.000 −0.0565625
\(329\) 0 0
\(330\) 0 0
\(331\) −7015.00 −1.16489 −0.582446 0.812869i \(-0.697904\pi\)
−0.582446 + 0.812869i \(0.697904\pi\)
\(332\) 2352.00 0.388804
\(333\) 0 0
\(334\) 2520.00 0.412839
\(335\) 3771.00 0.615020
\(336\) 0 0
\(337\) 8990.00 1.45316 0.726582 0.687079i \(-0.241108\pi\)
0.726582 + 0.687079i \(0.241108\pi\)
\(338\) −5406.00 −0.869963
\(339\) 0 0
\(340\) −1836.00 −0.292856
\(341\) 1311.00 0.208195
\(342\) 0 0
\(343\) 0 0
\(344\) 992.000 0.155480
\(345\) 0 0
\(346\) 6534.00 1.01523
\(347\) 8709.00 1.34733 0.673665 0.739037i \(-0.264719\pi\)
0.673665 + 0.739037i \(0.264719\pi\)
\(348\) 0 0
\(349\) 6482.00 0.994193 0.497097 0.867695i \(-0.334399\pi\)
0.497097 + 0.867695i \(0.334399\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1824.00 −0.276192
\(353\) 2133.00 0.321609 0.160805 0.986986i \(-0.448591\pi\)
0.160805 + 0.986986i \(0.448591\pi\)
\(354\) 0 0
\(355\) 864.000 0.129173
\(356\) 4068.00 0.605628
\(357\) 0 0
\(358\) 2574.00 0.380000
\(359\) −3849.00 −0.565856 −0.282928 0.959141i \(-0.591306\pi\)
−0.282928 + 0.959141i \(0.591306\pi\)
\(360\) 0 0
\(361\) −6834.00 −0.996355
\(362\) 5348.00 0.776477
\(363\) 0 0
\(364\) 0 0
\(365\) −2817.00 −0.403969
\(366\) 0 0
\(367\) 6491.00 0.923236 0.461618 0.887079i \(-0.347269\pi\)
0.461618 + 0.887079i \(0.347269\pi\)
\(368\) −1104.00 −0.156386
\(369\) 0 0
\(370\) 4554.00 0.639868
\(371\) 0 0
\(372\) 0 0
\(373\) 923.000 0.128126 0.0640632 0.997946i \(-0.479594\pi\)
0.0640632 + 0.997946i \(0.479594\pi\)
\(374\) 5814.00 0.803836
\(375\) 0 0
\(376\) 1608.00 0.220549
\(377\) 7980.00 1.09016
\(378\) 0 0
\(379\) 6344.00 0.859814 0.429907 0.902873i \(-0.358546\pi\)
0.429907 + 0.902873i \(0.358546\pi\)
\(380\) 180.000 0.0242995
\(381\) 0 0
\(382\) 8370.00 1.12106
\(383\) 5007.00 0.668005 0.334002 0.942572i \(-0.391601\pi\)
0.334002 + 0.942572i \(0.391601\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 170.000 0.0224165
\(387\) 0 0
\(388\) −7336.00 −0.959868
\(389\) −12291.0 −1.60200 −0.801001 0.598664i \(-0.795699\pi\)
−0.801001 + 0.598664i \(0.795699\pi\)
\(390\) 0 0
\(391\) 3519.00 0.455150
\(392\) 0 0
\(393\) 0 0
\(394\) −780.000 −0.0997356
\(395\) 4149.00 0.528503
\(396\) 0 0
\(397\) 887.000 0.112134 0.0560671 0.998427i \(-0.482144\pi\)
0.0560671 + 0.998427i \(0.482144\pi\)
\(398\) 5666.00 0.713595
\(399\) 0 0
\(400\) −704.000 −0.0880000
\(401\) −11955.0 −1.48879 −0.744394 0.667740i \(-0.767262\pi\)
−0.744394 + 0.667740i \(0.767262\pi\)
\(402\) 0 0
\(403\) −1610.00 −0.199007
\(404\) 1140.00 0.140389
\(405\) 0 0
\(406\) 0 0
\(407\) −14421.0 −1.75632
\(408\) 0 0
\(409\) −3421.00 −0.413588 −0.206794 0.978384i \(-0.566303\pi\)
−0.206794 + 0.978384i \(0.566303\pi\)
\(410\) −756.000 −0.0910639
\(411\) 0 0
\(412\) −1996.00 −0.238679
\(413\) 0 0
\(414\) 0 0
\(415\) 5292.00 0.625962
\(416\) 2240.00 0.264002
\(417\) 0 0
\(418\) −570.000 −0.0666976
\(419\) 5460.00 0.636607 0.318304 0.947989i \(-0.396887\pi\)
0.318304 + 0.947989i \(0.396887\pi\)
\(420\) 0 0
\(421\) 7730.00 0.894863 0.447431 0.894318i \(-0.352339\pi\)
0.447431 + 0.894318i \(0.352339\pi\)
\(422\) 248.000 0.0286077
\(423\) 0 0
\(424\) −3144.00 −0.360109
\(425\) 2244.00 0.256118
\(426\) 0 0
\(427\) 0 0
\(428\) 4428.00 0.500083
\(429\) 0 0
\(430\) 2232.00 0.250318
\(431\) 11313.0 1.26433 0.632167 0.774832i \(-0.282166\pi\)
0.632167 + 0.774832i \(0.282166\pi\)
\(432\) 0 0
\(433\) 4214.00 0.467695 0.233847 0.972273i \(-0.424868\pi\)
0.233847 + 0.972273i \(0.424868\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 3692.00 0.405538
\(437\) −345.000 −0.0377656
\(438\) 0 0
\(439\) 16553.0 1.79962 0.899808 0.436286i \(-0.143706\pi\)
0.899808 + 0.436286i \(0.143706\pi\)
\(440\) −4104.00 −0.444660
\(441\) 0 0
\(442\) −7140.00 −0.768360
\(443\) 16395.0 1.75835 0.879176 0.476497i \(-0.158094\pi\)
0.879176 + 0.476497i \(0.158094\pi\)
\(444\) 0 0
\(445\) 9153.00 0.975042
\(446\) −112.000 −0.0118909
\(447\) 0 0
\(448\) 0 0
\(449\) 15090.0 1.58606 0.793030 0.609182i \(-0.208502\pi\)
0.793030 + 0.609182i \(0.208502\pi\)
\(450\) 0 0
\(451\) 2394.00 0.249954
\(452\) −6168.00 −0.641855
\(453\) 0 0
\(454\) −6114.00 −0.632036
\(455\) 0 0
\(456\) 0 0
\(457\) −14785.0 −1.51338 −0.756688 0.653776i \(-0.773184\pi\)
−0.756688 + 0.653776i \(0.773184\pi\)
\(458\) 1922.00 0.196090
\(459\) 0 0
\(460\) −2484.00 −0.251776
\(461\) −2898.00 −0.292784 −0.146392 0.989227i \(-0.546766\pi\)
−0.146392 + 0.989227i \(0.546766\pi\)
\(462\) 0 0
\(463\) 464.000 0.0465743 0.0232872 0.999729i \(-0.492587\pi\)
0.0232872 + 0.999729i \(0.492587\pi\)
\(464\) −1824.00 −0.182494
\(465\) 0 0
\(466\) −5658.00 −0.562450
\(467\) −4233.00 −0.419443 −0.209721 0.977761i \(-0.567256\pi\)
−0.209721 + 0.977761i \(0.567256\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 3618.00 0.355076
\(471\) 0 0
\(472\) 1752.00 0.170852
\(473\) −7068.00 −0.687076
\(474\) 0 0
\(475\) −220.000 −0.0212511
\(476\) 0 0
\(477\) 0 0
\(478\) −7080.00 −0.677472
\(479\) −2739.00 −0.261270 −0.130635 0.991431i \(-0.541702\pi\)
−0.130635 + 0.991431i \(0.541702\pi\)
\(480\) 0 0
\(481\) 17710.0 1.67881
\(482\) −10462.0 −0.988654
\(483\) 0 0
\(484\) 7672.00 0.720511
\(485\) −16506.0 −1.54536
\(486\) 0 0
\(487\) 17051.0 1.58656 0.793280 0.608857i \(-0.208372\pi\)
0.793280 + 0.608857i \(0.208372\pi\)
\(488\) 5672.00 0.526146
\(489\) 0 0
\(490\) 0 0
\(491\) 4296.00 0.394859 0.197429 0.980317i \(-0.436741\pi\)
0.197429 + 0.980317i \(0.436741\pi\)
\(492\) 0 0
\(493\) 5814.00 0.531135
\(494\) 700.000 0.0637540
\(495\) 0 0
\(496\) 368.000 0.0333139
\(497\) 0 0
\(498\) 0 0
\(499\) 3401.00 0.305110 0.152555 0.988295i \(-0.451250\pi\)
0.152555 + 0.988295i \(0.451250\pi\)
\(500\) −6084.00 −0.544170
\(501\) 0 0
\(502\) 10080.0 0.896200
\(503\) −16800.0 −1.48921 −0.744607 0.667503i \(-0.767363\pi\)
−0.744607 + 0.667503i \(0.767363\pi\)
\(504\) 0 0
\(505\) 2565.00 0.226022
\(506\) 7866.00 0.691080
\(507\) 0 0
\(508\) −8224.00 −0.718270
\(509\) −1839.00 −0.160142 −0.0800710 0.996789i \(-0.525515\pi\)
−0.0800710 + 0.996789i \(0.525515\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −2874.00 −0.246628
\(515\) −4491.00 −0.384266
\(516\) 0 0
\(517\) −11457.0 −0.974620
\(518\) 0 0
\(519\) 0 0
\(520\) 5040.00 0.425036
\(521\) −303.000 −0.0254792 −0.0127396 0.999919i \(-0.504055\pi\)
−0.0127396 + 0.999919i \(0.504055\pi\)
\(522\) 0 0
\(523\) −21667.0 −1.81153 −0.905767 0.423777i \(-0.860704\pi\)
−0.905767 + 0.423777i \(0.860704\pi\)
\(524\) −8196.00 −0.683290
\(525\) 0 0
\(526\) −4650.00 −0.385456
\(527\) −1173.00 −0.0969577
\(528\) 0 0
\(529\) −7406.00 −0.608696
\(530\) −7074.00 −0.579764
\(531\) 0 0
\(532\) 0 0
\(533\) −2940.00 −0.238922
\(534\) 0 0
\(535\) 9963.00 0.805118
\(536\) −3352.00 −0.270120
\(537\) 0 0
\(538\) −4770.00 −0.382248
\(539\) 0 0
\(540\) 0 0
\(541\) 5039.00 0.400450 0.200225 0.979750i \(-0.435833\pi\)
0.200225 + 0.979750i \(0.435833\pi\)
\(542\) 662.000 0.0524637
\(543\) 0 0
\(544\) 1632.00 0.128624
\(545\) 8307.00 0.652904
\(546\) 0 0
\(547\) −2392.00 −0.186974 −0.0934868 0.995621i \(-0.529801\pi\)
−0.0934868 + 0.995621i \(0.529801\pi\)
\(548\) 564.000 0.0439651
\(549\) 0 0
\(550\) 5016.00 0.388878
\(551\) −570.000 −0.0440704
\(552\) 0 0
\(553\) 0 0
\(554\) −9742.00 −0.747108
\(555\) 0 0
\(556\) 5936.00 0.452774
\(557\) 22149.0 1.68489 0.842445 0.538783i \(-0.181116\pi\)
0.842445 + 0.538783i \(0.181116\pi\)
\(558\) 0 0
\(559\) 8680.00 0.656753
\(560\) 0 0
\(561\) 0 0
\(562\) −14052.0 −1.05471
\(563\) 8349.00 0.624988 0.312494 0.949920i \(-0.398836\pi\)
0.312494 + 0.949920i \(0.398836\pi\)
\(564\) 0 0
\(565\) −13878.0 −1.03337
\(566\) 10706.0 0.795065
\(567\) 0 0
\(568\) −768.000 −0.0567334
\(569\) 15345.0 1.13057 0.565286 0.824895i \(-0.308766\pi\)
0.565286 + 0.824895i \(0.308766\pi\)
\(570\) 0 0
\(571\) −11593.0 −0.849653 −0.424827 0.905275i \(-0.639665\pi\)
−0.424827 + 0.905275i \(0.639665\pi\)
\(572\) −15960.0 −1.16665
\(573\) 0 0
\(574\) 0 0
\(575\) 3036.00 0.220191
\(576\) 0 0
\(577\) −14593.0 −1.05288 −0.526442 0.850211i \(-0.676474\pi\)
−0.526442 + 0.850211i \(0.676474\pi\)
\(578\) 4624.00 0.332756
\(579\) 0 0
\(580\) −4104.00 −0.293809
\(581\) 0 0
\(582\) 0 0
\(583\) 22401.0 1.59135
\(584\) 2504.00 0.177425
\(585\) 0 0
\(586\) 8316.00 0.586230
\(587\) 15372.0 1.08087 0.540435 0.841386i \(-0.318260\pi\)
0.540435 + 0.841386i \(0.318260\pi\)
\(588\) 0 0
\(589\) 115.000 0.00804498
\(590\) 3942.00 0.275067
\(591\) 0 0
\(592\) −4048.00 −0.281033
\(593\) 14373.0 0.995326 0.497663 0.867370i \(-0.334192\pi\)
0.497663 + 0.867370i \(0.334192\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 228.000 0.0156699
\(597\) 0 0
\(598\) −9660.00 −0.660580
\(599\) −2547.00 −0.173736 −0.0868678 0.996220i \(-0.527686\pi\)
−0.0868678 + 0.996220i \(0.527686\pi\)
\(600\) 0 0
\(601\) −7042.00 −0.477952 −0.238976 0.971025i \(-0.576812\pi\)
−0.238976 + 0.971025i \(0.576812\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 3356.00 0.226082
\(605\) 17262.0 1.16000
\(606\) 0 0
\(607\) −22591.0 −1.51061 −0.755305 0.655373i \(-0.772511\pi\)
−0.755305 + 0.655373i \(0.772511\pi\)
\(608\) −160.000 −0.0106725
\(609\) 0 0
\(610\) 12762.0 0.847079
\(611\) 14070.0 0.931606
\(612\) 0 0
\(613\) −8485.00 −0.559063 −0.279532 0.960136i \(-0.590179\pi\)
−0.279532 + 0.960136i \(0.590179\pi\)
\(614\) 19208.0 1.26249
\(615\) 0 0
\(616\) 0 0
\(617\) 18282.0 1.19288 0.596439 0.802658i \(-0.296582\pi\)
0.596439 + 0.802658i \(0.296582\pi\)
\(618\) 0 0
\(619\) 2291.00 0.148761 0.0743805 0.997230i \(-0.476302\pi\)
0.0743805 + 0.997230i \(0.476302\pi\)
\(620\) 828.000 0.0536343
\(621\) 0 0
\(622\) 20262.0 1.30616
\(623\) 0 0
\(624\) 0 0
\(625\) −8189.00 −0.524096
\(626\) −21598.0 −1.37896
\(627\) 0 0
\(628\) −11332.0 −0.720057
\(629\) 12903.0 0.817927
\(630\) 0 0
\(631\) −6928.00 −0.437083 −0.218541 0.975828i \(-0.570130\pi\)
−0.218541 + 0.975828i \(0.570130\pi\)
\(632\) −3688.00 −0.232121
\(633\) 0 0
\(634\) 1062.00 0.0665259
\(635\) −18504.0 −1.15639
\(636\) 0 0
\(637\) 0 0
\(638\) 12996.0 0.806452
\(639\) 0 0
\(640\) −1152.00 −0.0711512
\(641\) −24975.0 −1.53893 −0.769464 0.638690i \(-0.779477\pi\)
−0.769464 + 0.638690i \(0.779477\pi\)
\(642\) 0 0
\(643\) 9548.00 0.585593 0.292797 0.956175i \(-0.405414\pi\)
0.292797 + 0.956175i \(0.405414\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 510.000 0.0310614
\(647\) −10131.0 −0.615596 −0.307798 0.951452i \(-0.599592\pi\)
−0.307798 + 0.951452i \(0.599592\pi\)
\(648\) 0 0
\(649\) −12483.0 −0.755009
\(650\) −6160.00 −0.371716
\(651\) 0 0
\(652\) −9244.00 −0.555250
\(653\) −16659.0 −0.998342 −0.499171 0.866504i \(-0.666362\pi\)
−0.499171 + 0.866504i \(0.666362\pi\)
\(654\) 0 0
\(655\) −18441.0 −1.10008
\(656\) 672.000 0.0399957
\(657\) 0 0
\(658\) 0 0
\(659\) −29556.0 −1.74710 −0.873550 0.486735i \(-0.838188\pi\)
−0.873550 + 0.486735i \(0.838188\pi\)
\(660\) 0 0
\(661\) 191.000 0.0112391 0.00561955 0.999984i \(-0.498211\pi\)
0.00561955 + 0.999984i \(0.498211\pi\)
\(662\) 14030.0 0.823703
\(663\) 0 0
\(664\) −4704.00 −0.274926
\(665\) 0 0
\(666\) 0 0
\(667\) 7866.00 0.456631
\(668\) −5040.00 −0.291921
\(669\) 0 0
\(670\) −7542.00 −0.434885
\(671\) −40413.0 −2.32508
\(672\) 0 0
\(673\) 2606.00 0.149263 0.0746314 0.997211i \(-0.476222\pi\)
0.0746314 + 0.997211i \(0.476222\pi\)
\(674\) −17980.0 −1.02754
\(675\) 0 0
\(676\) 10812.0 0.615157
\(677\) 4209.00 0.238944 0.119472 0.992838i \(-0.461880\pi\)
0.119472 + 0.992838i \(0.461880\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 3672.00 0.207081
\(681\) 0 0
\(682\) −2622.00 −0.147216
\(683\) −24303.0 −1.36154 −0.680768 0.732500i \(-0.738354\pi\)
−0.680768 + 0.732500i \(0.738354\pi\)
\(684\) 0 0
\(685\) 1269.00 0.0707825
\(686\) 0 0
\(687\) 0 0
\(688\) −1984.00 −0.109941
\(689\) −27510.0 −1.52111
\(690\) 0 0
\(691\) 15041.0 0.828056 0.414028 0.910264i \(-0.364122\pi\)
0.414028 + 0.910264i \(0.364122\pi\)
\(692\) −13068.0 −0.717877
\(693\) 0 0
\(694\) −17418.0 −0.952706
\(695\) 13356.0 0.728952
\(696\) 0 0
\(697\) −2142.00 −0.116405
\(698\) −12964.0 −0.703001
\(699\) 0 0
\(700\) 0 0
\(701\) −24726.0 −1.33222 −0.666111 0.745852i \(-0.732042\pi\)
−0.666111 + 0.745852i \(0.732042\pi\)
\(702\) 0 0
\(703\) −1265.00 −0.0678668
\(704\) 3648.00 0.195297
\(705\) 0 0
\(706\) −4266.00 −0.227412
\(707\) 0 0
\(708\) 0 0
\(709\) −4957.00 −0.262573 −0.131286 0.991344i \(-0.541911\pi\)
−0.131286 + 0.991344i \(0.541911\pi\)
\(710\) −1728.00 −0.0913390
\(711\) 0 0
\(712\) −8136.00 −0.428244
\(713\) −1587.00 −0.0833571
\(714\) 0 0
\(715\) −35910.0 −1.87826
\(716\) −5148.00 −0.268701
\(717\) 0 0
\(718\) 7698.00 0.400121
\(719\) −27669.0 −1.43516 −0.717580 0.696476i \(-0.754750\pi\)
−0.717580 + 0.696476i \(0.754750\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 13668.0 0.704529
\(723\) 0 0
\(724\) −10696.0 −0.549052
\(725\) 5016.00 0.256951
\(726\) 0 0
\(727\) −13888.0 −0.708497 −0.354249 0.935151i \(-0.615263\pi\)
−0.354249 + 0.935151i \(0.615263\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 5634.00 0.285649
\(731\) 6324.00 0.319975
\(732\) 0 0
\(733\) 14243.0 0.717704 0.358852 0.933394i \(-0.383168\pi\)
0.358852 + 0.933394i \(0.383168\pi\)
\(734\) −12982.0 −0.652826
\(735\) 0 0
\(736\) 2208.00 0.110581
\(737\) 23883.0 1.19368
\(738\) 0 0
\(739\) 36959.0 1.83973 0.919864 0.392238i \(-0.128299\pi\)
0.919864 + 0.392238i \(0.128299\pi\)
\(740\) −9108.00 −0.452455
\(741\) 0 0
\(742\) 0 0
\(743\) 12528.0 0.618584 0.309292 0.950967i \(-0.399908\pi\)
0.309292 + 0.950967i \(0.399908\pi\)
\(744\) 0 0
\(745\) 513.000 0.0252280
\(746\) −1846.00 −0.0905990
\(747\) 0 0
\(748\) −11628.0 −0.568398
\(749\) 0 0
\(750\) 0 0
\(751\) −17767.0 −0.863285 −0.431643 0.902045i \(-0.642066\pi\)
−0.431643 + 0.902045i \(0.642066\pi\)
\(752\) −3216.00 −0.155951
\(753\) 0 0
\(754\) −15960.0 −0.770861
\(755\) 7551.00 0.363985
\(756\) 0 0
\(757\) −28726.0 −1.37921 −0.689606 0.724184i \(-0.742216\pi\)
−0.689606 + 0.724184i \(0.742216\pi\)
\(758\) −12688.0 −0.607980
\(759\) 0 0
\(760\) −360.000 −0.0171823
\(761\) 26469.0 1.26084 0.630421 0.776254i \(-0.282882\pi\)
0.630421 + 0.776254i \(0.282882\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −16740.0 −0.792712
\(765\) 0 0
\(766\) −10014.0 −0.472351
\(767\) 15330.0 0.721687
\(768\) 0 0
\(769\) 5054.00 0.236999 0.118499 0.992954i \(-0.462192\pi\)
0.118499 + 0.992954i \(0.462192\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −340.000 −0.0158509
\(773\) 35565.0 1.65483 0.827415 0.561590i \(-0.189810\pi\)
0.827415 + 0.561590i \(0.189810\pi\)
\(774\) 0 0
\(775\) −1012.00 −0.0469060
\(776\) 14672.0 0.678730
\(777\) 0 0
\(778\) 24582.0 1.13279
\(779\) 210.000 0.00965858
\(780\) 0 0
\(781\) 5472.00 0.250709
\(782\) −7038.00 −0.321839
\(783\) 0 0
\(784\) 0 0
\(785\) −25497.0 −1.15927
\(786\) 0 0
\(787\) −8629.00 −0.390839 −0.195420 0.980720i \(-0.562607\pi\)
−0.195420 + 0.980720i \(0.562607\pi\)
\(788\) 1560.00 0.0705237
\(789\) 0 0
\(790\) −8298.00 −0.373708
\(791\) 0 0
\(792\) 0 0
\(793\) 49630.0 2.22246
\(794\) −1774.00 −0.0792908
\(795\) 0 0
\(796\) −11332.0 −0.504588
\(797\) −20706.0 −0.920256 −0.460128 0.887853i \(-0.652197\pi\)
−0.460128 + 0.887853i \(0.652197\pi\)
\(798\) 0 0
\(799\) 10251.0 0.453885
\(800\) 1408.00 0.0622254
\(801\) 0 0
\(802\) 23910.0 1.05273
\(803\) −17841.0 −0.784054
\(804\) 0 0
\(805\) 0 0
\(806\) 3220.00 0.140719
\(807\) 0 0
\(808\) −2280.00 −0.0992700
\(809\) 16185.0 0.703380 0.351690 0.936117i \(-0.385607\pi\)
0.351690 + 0.936117i \(0.385607\pi\)
\(810\) 0 0
\(811\) −11788.0 −0.510398 −0.255199 0.966889i \(-0.582141\pi\)
−0.255199 + 0.966889i \(0.582141\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 28842.0 1.24191
\(815\) −20799.0 −0.893935
\(816\) 0 0
\(817\) −620.000 −0.0265496
\(818\) 6842.00 0.292451
\(819\) 0 0
\(820\) 1512.00 0.0643919
\(821\) 29793.0 1.26648 0.633242 0.773954i \(-0.281724\pi\)
0.633242 + 0.773954i \(0.281724\pi\)
\(822\) 0 0
\(823\) 30323.0 1.28432 0.642159 0.766572i \(-0.278039\pi\)
0.642159 + 0.766572i \(0.278039\pi\)
\(824\) 3992.00 0.168772
\(825\) 0 0
\(826\) 0 0
\(827\) −21156.0 −0.889560 −0.444780 0.895640i \(-0.646718\pi\)
−0.444780 + 0.895640i \(0.646718\pi\)
\(828\) 0 0
\(829\) −5269.00 −0.220748 −0.110374 0.993890i \(-0.535205\pi\)
−0.110374 + 0.993890i \(0.535205\pi\)
\(830\) −10584.0 −0.442622
\(831\) 0 0
\(832\) −4480.00 −0.186678
\(833\) 0 0
\(834\) 0 0
\(835\) −11340.0 −0.469984
\(836\) 1140.00 0.0471623
\(837\) 0 0
\(838\) −10920.0 −0.450149
\(839\) 39816.0 1.63838 0.819190 0.573522i \(-0.194423\pi\)
0.819190 + 0.573522i \(0.194423\pi\)
\(840\) 0 0
\(841\) −11393.0 −0.467137
\(842\) −15460.0 −0.632763
\(843\) 0 0
\(844\) −496.000 −0.0202287
\(845\) 24327.0 0.990384
\(846\) 0 0
\(847\) 0 0
\(848\) 6288.00 0.254635
\(849\) 0 0
\(850\) −4488.00 −0.181103
\(851\) 17457.0 0.703194
\(852\) 0 0
\(853\) 14546.0 0.583875 0.291938 0.956437i \(-0.405700\pi\)
0.291938 + 0.956437i \(0.405700\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −8856.00 −0.353612
\(857\) 31449.0 1.25353 0.626766 0.779207i \(-0.284378\pi\)
0.626766 + 0.779207i \(0.284378\pi\)
\(858\) 0 0
\(859\) −24523.0 −0.974056 −0.487028 0.873386i \(-0.661919\pi\)
−0.487028 + 0.873386i \(0.661919\pi\)
\(860\) −4464.00 −0.177001
\(861\) 0 0
\(862\) −22626.0 −0.894019
\(863\) 8163.00 0.321983 0.160992 0.986956i \(-0.448531\pi\)
0.160992 + 0.986956i \(0.448531\pi\)
\(864\) 0 0
\(865\) −29403.0 −1.15576
\(866\) −8428.00 −0.330710
\(867\) 0 0
\(868\) 0 0
\(869\) 26277.0 1.02576
\(870\) 0 0
\(871\) −29330.0 −1.14100
\(872\) −7384.00 −0.286759
\(873\) 0 0
\(874\) 690.000 0.0267043
\(875\) 0 0
\(876\) 0 0
\(877\) 4367.00 0.168145 0.0840725 0.996460i \(-0.473207\pi\)
0.0840725 + 0.996460i \(0.473207\pi\)
\(878\) −33106.0 −1.27252
\(879\) 0 0
\(880\) 8208.00 0.314422
\(881\) 50190.0 1.91935 0.959673 0.281118i \(-0.0907053\pi\)
0.959673 + 0.281118i \(0.0907053\pi\)
\(882\) 0 0
\(883\) 12308.0 0.469079 0.234540 0.972107i \(-0.424642\pi\)
0.234540 + 0.972107i \(0.424642\pi\)
\(884\) 14280.0 0.543313
\(885\) 0 0
\(886\) −32790.0 −1.24334
\(887\) −31617.0 −1.19684 −0.598419 0.801183i \(-0.704204\pi\)
−0.598419 + 0.801183i \(0.704204\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −18306.0 −0.689459
\(891\) 0 0
\(892\) 224.000 0.00840816
\(893\) −1005.00 −0.0376607
\(894\) 0 0
\(895\) −11583.0 −0.432600
\(896\) 0 0
\(897\) 0 0
\(898\) −30180.0 −1.12151
\(899\) −2622.00 −0.0972732
\(900\) 0 0
\(901\) −20043.0 −0.741098
\(902\) −4788.00 −0.176744
\(903\) 0 0
\(904\) 12336.0 0.453860
\(905\) −24066.0 −0.883957
\(906\) 0 0
\(907\) −13525.0 −0.495138 −0.247569 0.968870i \(-0.579632\pi\)
−0.247569 + 0.968870i \(0.579632\pi\)
\(908\) 12228.0 0.446917
\(909\) 0 0
\(910\) 0 0
\(911\) 19248.0 0.700016 0.350008 0.936747i \(-0.386179\pi\)
0.350008 + 0.936747i \(0.386179\pi\)
\(912\) 0 0
\(913\) 33516.0 1.21492
\(914\) 29570.0 1.07012
\(915\) 0 0
\(916\) −3844.00 −0.138656
\(917\) 0 0
\(918\) 0 0
\(919\) −8695.00 −0.312102 −0.156051 0.987749i \(-0.549876\pi\)
−0.156051 + 0.987749i \(0.549876\pi\)
\(920\) 4968.00 0.178033
\(921\) 0 0
\(922\) 5796.00 0.207029
\(923\) −6720.00 −0.239644
\(924\) 0 0
\(925\) 11132.0 0.395695
\(926\) −928.000 −0.0329330
\(927\) 0 0
\(928\) 3648.00 0.129043
\(929\) −19479.0 −0.687928 −0.343964 0.938983i \(-0.611770\pi\)
−0.343964 + 0.938983i \(0.611770\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 11316.0 0.397712
\(933\) 0 0
\(934\) 8466.00 0.296591
\(935\) −26163.0 −0.915103
\(936\) 0 0
\(937\) −12502.0 −0.435883 −0.217942 0.975962i \(-0.569934\pi\)
−0.217942 + 0.975962i \(0.569934\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −7236.00 −0.251077
\(941\) 15993.0 0.554046 0.277023 0.960863i \(-0.410652\pi\)
0.277023 + 0.960863i \(0.410652\pi\)
\(942\) 0 0
\(943\) −2898.00 −0.100076
\(944\) −3504.00 −0.120811
\(945\) 0 0
\(946\) 14136.0 0.485836
\(947\) −44001.0 −1.50986 −0.754932 0.655804i \(-0.772330\pi\)
−0.754932 + 0.655804i \(0.772330\pi\)
\(948\) 0 0
\(949\) 21910.0 0.749451
\(950\) 440.000 0.0150268
\(951\) 0 0
\(952\) 0 0
\(953\) 4002.00 0.136031 0.0680155 0.997684i \(-0.478333\pi\)
0.0680155 + 0.997684i \(0.478333\pi\)
\(954\) 0 0
\(955\) −37665.0 −1.27624
\(956\) 14160.0 0.479045
\(957\) 0 0
\(958\) 5478.00 0.184745
\(959\) 0 0
\(960\) 0 0
\(961\) −29262.0 −0.982243
\(962\) −35420.0 −1.18710
\(963\) 0 0
\(964\) 20924.0 0.699084
\(965\) −765.000 −0.0255194
\(966\) 0 0
\(967\) 10544.0 0.350643 0.175322 0.984511i \(-0.443903\pi\)
0.175322 + 0.984511i \(0.443903\pi\)
\(968\) −15344.0 −0.509478
\(969\) 0 0
\(970\) 33012.0 1.09273
\(971\) 6183.00 0.204348 0.102174 0.994767i \(-0.467420\pi\)
0.102174 + 0.994767i \(0.467420\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −34102.0 −1.12187
\(975\) 0 0
\(976\) −11344.0 −0.372042
\(977\) −3723.00 −0.121913 −0.0609567 0.998140i \(-0.519415\pi\)
−0.0609567 + 0.998140i \(0.519415\pi\)
\(978\) 0 0
\(979\) 57969.0 1.89244
\(980\) 0 0
\(981\) 0 0
\(982\) −8592.00 −0.279207
\(983\) 45897.0 1.48920 0.744602 0.667509i \(-0.232639\pi\)
0.744602 + 0.667509i \(0.232639\pi\)
\(984\) 0 0
\(985\) 3510.00 0.113541
\(986\) −11628.0 −0.375569
\(987\) 0 0
\(988\) −1400.00 −0.0450809
\(989\) 8556.00 0.275091
\(990\) 0 0
\(991\) 6467.00 0.207297 0.103648 0.994614i \(-0.466948\pi\)
0.103648 + 0.994614i \(0.466948\pi\)
\(992\) −736.000 −0.0235565
\(993\) 0 0
\(994\) 0 0
\(995\) −25497.0 −0.812371
\(996\) 0 0
\(997\) 23039.0 0.731848 0.365924 0.930645i \(-0.380753\pi\)
0.365924 + 0.930645i \(0.380753\pi\)
\(998\) −6802.00 −0.215745
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.4.a.f.1.1 1
3.2 odd 2 98.4.a.d.1.1 1
7.2 even 3 126.4.g.d.109.1 2
7.3 odd 6 882.4.g.u.667.1 2
7.4 even 3 126.4.g.d.37.1 2
7.5 odd 6 882.4.g.u.361.1 2
7.6 odd 2 882.4.a.c.1.1 1
12.11 even 2 784.4.a.p.1.1 1
15.14 odd 2 2450.4.a.q.1.1 1
21.2 odd 6 14.4.c.a.11.1 yes 2
21.5 even 6 98.4.c.a.67.1 2
21.11 odd 6 14.4.c.a.9.1 2
21.17 even 6 98.4.c.a.79.1 2
21.20 even 2 98.4.a.f.1.1 1
84.11 even 6 112.4.i.a.65.1 2
84.23 even 6 112.4.i.a.81.1 2
84.83 odd 2 784.4.a.c.1.1 1
105.2 even 12 350.4.j.b.249.2 4
105.23 even 12 350.4.j.b.249.1 4
105.32 even 12 350.4.j.b.149.1 4
105.44 odd 6 350.4.e.e.151.1 2
105.53 even 12 350.4.j.b.149.2 4
105.74 odd 6 350.4.e.e.51.1 2
105.104 even 2 2450.4.a.d.1.1 1
168.11 even 6 448.4.i.e.65.1 2
168.53 odd 6 448.4.i.b.65.1 2
168.107 even 6 448.4.i.e.193.1 2
168.149 odd 6 448.4.i.b.193.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.4.c.a.9.1 2 21.11 odd 6
14.4.c.a.11.1 yes 2 21.2 odd 6
98.4.a.d.1.1 1 3.2 odd 2
98.4.a.f.1.1 1 21.20 even 2
98.4.c.a.67.1 2 21.5 even 6
98.4.c.a.79.1 2 21.17 even 6
112.4.i.a.65.1 2 84.11 even 6
112.4.i.a.81.1 2 84.23 even 6
126.4.g.d.37.1 2 7.4 even 3
126.4.g.d.109.1 2 7.2 even 3
350.4.e.e.51.1 2 105.74 odd 6
350.4.e.e.151.1 2 105.44 odd 6
350.4.j.b.149.1 4 105.32 even 12
350.4.j.b.149.2 4 105.53 even 12
350.4.j.b.249.1 4 105.23 even 12
350.4.j.b.249.2 4 105.2 even 12
448.4.i.b.65.1 2 168.53 odd 6
448.4.i.b.193.1 2 168.149 odd 6
448.4.i.e.65.1 2 168.11 even 6
448.4.i.e.193.1 2 168.107 even 6
784.4.a.c.1.1 1 84.83 odd 2
784.4.a.p.1.1 1 12.11 even 2
882.4.a.c.1.1 1 7.6 odd 2
882.4.a.f.1.1 1 1.1 even 1 trivial
882.4.g.u.361.1 2 7.5 odd 6
882.4.g.u.667.1 2 7.3 odd 6
2450.4.a.d.1.1 1 105.104 even 2
2450.4.a.q.1.1 1 15.14 odd 2