gp: [N,k,chi] = [126,5,Mod(19,126)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(126, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 5, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("126.19");
S:= CuspForms(chi, 5);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,-16,66]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 2 x 2 + 4 x^{4} + 2x^{2} + 4 x 4 + 2 x 2 + 4
x^4 + 2*x^2 + 4
:
β 1 \beta_{1} β 1 = = =
2 ν 2\nu 2 ν
2*v
β 2 \beta_{2} β 2 = = =
( ν 2 ) / 2 ( \nu^{2} ) / 2 ( ν 2 ) / 2
(v^2) / 2
β 3 \beta_{3} β 3 = = =
ν 3 \nu^{3} ν 3
v^3
ν \nu ν = = =
( β 1 ) / 2 ( \beta_1 ) / 2 ( β 1 ) / 2
(b1) / 2
ν 2 \nu^{2} ν 2 = = =
2 β 2 2\beta_{2} 2 β 2
2*b2
ν 3 \nu^{3} ν 3 = = =
β 3 \beta_{3} β 3
b3
Character values
We give the values of χ \chi χ on generators for ( Z / 126 Z ) × \left(\mathbb{Z}/126\mathbb{Z}\right)^\times ( Z / 1 2 6 Z ) × .
n n n
29 29 2 9
73 73 7 3
χ ( n ) \chi(n) χ ( n )
1 1 1
1 + β 2 1 + \beta_{2} 1 + β 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 4 − 66 T 5 3 + 1791 T 5 2 − 22374 T 5 + 114921 T_{5}^{4} - 66T_{5}^{3} + 1791T_{5}^{2} - 22374T_{5} + 114921 T 5 4 − 6 6 T 5 3 + 1 7 9 1 T 5 2 − 2 2 3 7 4 T 5 + 1 1 4 9 2 1
T5^4 - 66*T5^3 + 1791*T5^2 - 22374*T5 + 114921
acting on S 5 n e w ( 126 , [ χ ] ) S_{5}^{\mathrm{new}}(126, [\chi]) S 5 n e w ( 1 2 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 8 T 2 + 64 T^{4} + 8T^{2} + 64 T 4 + 8 T 2 + 6 4
T^4 + 8*T^2 + 64
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 − 66 T 3 + ⋯ + 114921 T^{4} - 66 T^{3} + \cdots + 114921 T 4 − 6 6 T 3 + ⋯ + 1 1 4 9 2 1
T^4 - 66*T^3 + 1791*T^2 - 22374*T + 114921
7 7 7
T 4 + 70 T 3 + ⋯ + 5764801 T^{4} + 70 T^{3} + \cdots + 5764801 T 4 + 7 0 T 3 + ⋯ + 5 7 6 4 8 0 1
T^4 + 70*T^3 + 2499*T^2 + 168070*T + 5764801
11 11 1 1
T 4 − 162 T 3 + ⋯ + 39350529 T^{4} - 162 T^{3} + \cdots + 39350529 T 4 − 1 6 2 T 3 + ⋯ + 3 9 3 5 0 5 2 9
T^4 - 162*T^3 + 19971*T^2 - 1016226*T + 39350529
13 13 1 3
T 4 + 63264 T 2 + 569108736 T^{4} + 63264 T^{2} + 569108736 T 4 + 6 3 2 6 4 T 2 + 5 6 9 1 0 8 7 3 6
T^4 + 63264*T^2 + 569108736
17 17 1 7
T 4 − 204 T 3 + ⋯ + 589324176 T^{4} - 204 T^{3} + \cdots + 589324176 T 4 − 2 0 4 T 3 + ⋯ + 5 8 9 3 2 4 1 7 6
T^4 - 204*T^3 - 10404*T^2 + 4952304*T + 589324176
19 19 1 9
T 4 + 444 T 3 + ⋯ + 128051856 T^{4} + 444 T^{3} + \cdots + 128051856 T 4 + 4 4 4 T 3 + ⋯ + 1 2 8 0 5 1 8 5 6
T^4 + 444*T^3 + 54396*T^2 - 5024304*T + 128051856
23 23 2 3
T 4 + ⋯ + 525265461504 T^{4} + \cdots + 525265461504 T 4 + ⋯ + 5 2 5 2 6 5 4 6 1 5 0 4
T^4 + 312*T^3 + 822096*T^2 - 226122624*T + 525265461504
29 29 2 9
( T 2 + 1362 T + 460233 ) 2 (T^{2} + 1362 T + 460233)^{2} ( T 2 + 1 3 6 2 T + 4 6 0 2 3 3 ) 2
(T^2 + 1362*T + 460233)^2
31 31 3 1
T 4 + ⋯ + 1025818531929 T^{4} + \cdots + 1025818531929 T 4 + ⋯ + 1 0 2 5 8 1 8 5 3 1 9 2 9
T^4 + 3786*T^3 + 5790759*T^2 + 3834563022*T + 1025818531929
37 37 3 7
T 4 + ⋯ + 219747187984 T^{4} + \cdots + 219747187984 T 4 + ⋯ + 2 1 9 7 4 7 1 8 7 9 8 4
T^4 - 1396*T^3 + 1480044*T^2 - 654405712*T + 219747187984
41 41 4 1
T 4 + ⋯ + 8311481425296 T^{4} + \cdots + 8311481425296 T 4 + ⋯ + 8 3 1 1 4 8 1 4 2 5 2 9 6
T^4 + 8985816*T^2 + 8311481425296
43 43 4 3
( T 2 + 316 T − 10371836 ) 2 (T^{2} + 316 T - 10371836)^{2} ( T 2 + 3 1 6 T − 1 0 3 7 1 8 3 6 ) 2
(T^2 + 316*T - 10371836)^2
47 47 4 7
T 4 + ⋯ + 5862054484224 T^{4} + \cdots + 5862054484224 T 4 + ⋯ + 5 8 6 2 0 5 4 4 8 4 2 2 4
T^4 - 7896*T^3 + 23203440*T^2 - 19117542528*T + 5862054484224
53 53 5 3
T 4 + ⋯ + 6375054362769 T^{4} + \cdots + 6375054362769 T 4 + ⋯ + 6 3 7 5 0 5 4 3 6 2 7 6 9
T^4 - 1038*T^3 + 3602331*T^2 + 2620832706*T + 6375054362769
59 59 5 9
T 4 + ⋯ + 105068670590601 T^{4} + \cdots + 105068670590601 T 4 + ⋯ + 1 0 5 0 6 8 6 7 0 5 9 0 6 0 1
T^4 - 966*T^3 - 9939249*T^2 + 9901790766*T + 105068670590601
61 61 6 1
T 4 + ⋯ + 2285563428864 T^{4} + \cdots + 2285563428864 T 4 + ⋯ + 2 2 8 5 5 6 3 4 2 8 8 6 4
T^4 - 5088*T^3 + 10141056*T^2 - 7692079104*T + 2285563428864
67 67 6 7
T 4 + ⋯ + 26 ⋯ 24 T^{4} + \cdots + 26\!\cdots\!24 T 4 + ⋯ + 2 6 ⋯ 2 4
T^4 - 14600*T^3 + 161759568*T^2 - 750446307200*T + 2642004409786624
71 71 7 1
( T 2 − 4848 T + 1589184 ) 2 (T^{2} - 4848 T + 1589184)^{2} ( T 2 − 4 8 4 8 T + 1 5 8 9 1 8 4 ) 2
(T^2 - 4848*T + 1589184)^2
73 73 7 3
T 4 + ⋯ + 13 ⋯ 44 T^{4} + \cdots + 13\!\cdots\!44 T 4 + ⋯ + 1 3 ⋯ 4 4
T^4 - 22584*T^3 + 206515440*T^2 - 824385739392*T + 1332475433535744
79 79 7 9
T 4 + ⋯ + 45 ⋯ 41 T^{4} + \cdots + 45\!\cdots\!41 T 4 + ⋯ + 4 5 ⋯ 4 1
T^4 - 3974*T^3 + 83413155*T^2 + 268723783546*T + 4572529180189441
83 83 8 3
T 4 + ⋯ + 109011202550649 T^{4} + \cdots + 109011202550649 T 4 + ⋯ + 1 0 9 0 1 1 2 0 2 5 5 0 6 4 9
T^4 + 69275286*T^2 + 109011202550649
89 89 8 9
T 4 + ⋯ + 31 ⋯ 04 T^{4} + \cdots + 31\!\cdots\!04 T 4 + ⋯ + 3 1 ⋯ 0 4
T^4 - 33156*T^3 + 422445564*T^2 - 1856916766512*T + 3136610653724304
97 97 9 7
T 4 + ⋯ + 9242250571449 T^{4} + \cdots + 9242250571449 T 4 + ⋯ + 9 2 4 2 2 5 0 5 7 1 4 4 9
T^4 + 6233814*T^2 + 9242250571449
show more
show less