Properties

Label 126.5.n.b
Level 126126
Weight 55
Character orbit 126.n
Analytic conductor 13.02513.025
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,5,Mod(19,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.19");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 126=2327 126 = 2 \cdot 3^{2} \cdot 7
Weight: k k == 5 5
Character orbit: [χ][\chi] == 126.n (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.024615348613.0246153486
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+8β2q4+(2β311β2++11)q5+(7β3+35β2+7β1)q7+8β3q8+(11β38β2+16)q10++(49β33920β2+7840)q98+O(q100) q + \beta_1 q^{2} + 8 \beta_{2} q^{4} + (2 \beta_{3} - 11 \beta_{2} + \cdots + 11) q^{5} + ( - 7 \beta_{3} + 35 \beta_{2} + 7 \beta_1) q^{7} + 8 \beta_{3} q^{8} + ( - 11 \beta_{3} - 8 \beta_{2} + \cdots - 16) q^{10}+ \cdots + ( - 49 \beta_{3} - 3920 \beta_{2} + \cdots - 7840) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q16q4+66q570q748q10+162q11128q16+204q17444q19192q22312q23476q251632q26560q282724q293786q31672q35+23520q98+O(q100) 4 q - 16 q^{4} + 66 q^{5} - 70 q^{7} - 48 q^{10} + 162 q^{11} - 128 q^{16} + 204 q^{17} - 444 q^{19} - 192 q^{22} - 312 q^{23} - 476 q^{25} - 1632 q^{26} - 560 q^{28} - 2724 q^{29} - 3786 q^{31} - 672 q^{35}+ \cdots - 23520 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== 2ν 2\nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== ν3 \nu^{3} Copy content Toggle raw display
ν\nu== (β1)/2 ( \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β3 \beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/126Z)×\left(\mathbb{Z}/126\mathbb{Z}\right)^\times.

nn 2929 7373
χ(n)\chi(n) 11 1+β21 + \beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−1.41421 + 2.44949i 0 −4.00000 6.92820i 20.7426 + 11.9758i 0 −47.1985 13.1645i 22.6274 0 −58.6690 + 33.8726i
19.2 1.41421 2.44949i 0 −4.00000 6.92820i 12.2574 + 7.07679i 0 12.1985 47.4573i −22.6274 0 34.6690 20.0162i
73.1 −1.41421 2.44949i 0 −4.00000 + 6.92820i 20.7426 11.9758i 0 −47.1985 + 13.1645i 22.6274 0 −58.6690 33.8726i
73.2 1.41421 + 2.44949i 0 −4.00000 + 6.92820i 12.2574 7.07679i 0 12.1985 + 47.4573i −22.6274 0 34.6690 + 20.0162i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.5.n.b 4
3.b odd 2 1 42.5.g.a 4
7.c even 3 1 882.5.c.a 4
7.d odd 6 1 inner 126.5.n.b 4
7.d odd 6 1 882.5.c.a 4
12.b even 2 1 336.5.bh.d 4
21.c even 2 1 294.5.g.c 4
21.g even 6 1 42.5.g.a 4
21.g even 6 1 294.5.c.a 4
21.h odd 6 1 294.5.c.a 4
21.h odd 6 1 294.5.g.c 4
84.j odd 6 1 336.5.bh.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.5.g.a 4 3.b odd 2 1
42.5.g.a 4 21.g even 6 1
126.5.n.b 4 1.a even 1 1 trivial
126.5.n.b 4 7.d odd 6 1 inner
294.5.c.a 4 21.g even 6 1
294.5.c.a 4 21.h odd 6 1
294.5.g.c 4 21.c even 2 1
294.5.g.c 4 21.h odd 6 1
336.5.bh.d 4 12.b even 2 1
336.5.bh.d 4 84.j odd 6 1
882.5.c.a 4 7.c even 3 1
882.5.c.a 4 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5466T53+1791T5222374T5+114921 T_{5}^{4} - 66T_{5}^{3} + 1791T_{5}^{2} - 22374T_{5} + 114921 acting on S5new(126,[χ])S_{5}^{\mathrm{new}}(126, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+8T2+64 T^{4} + 8T^{2} + 64 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T466T3++114921 T^{4} - 66 T^{3} + \cdots + 114921 Copy content Toggle raw display
77 T4+70T3++5764801 T^{4} + 70 T^{3} + \cdots + 5764801 Copy content Toggle raw display
1111 T4162T3++39350529 T^{4} - 162 T^{3} + \cdots + 39350529 Copy content Toggle raw display
1313 T4+63264T2+569108736 T^{4} + 63264 T^{2} + 569108736 Copy content Toggle raw display
1717 T4204T3++589324176 T^{4} - 204 T^{3} + \cdots + 589324176 Copy content Toggle raw display
1919 T4+444T3++128051856 T^{4} + 444 T^{3} + \cdots + 128051856 Copy content Toggle raw display
2323 T4++525265461504 T^{4} + \cdots + 525265461504 Copy content Toggle raw display
2929 (T2+1362T+460233)2 (T^{2} + 1362 T + 460233)^{2} Copy content Toggle raw display
3131 T4++1025818531929 T^{4} + \cdots + 1025818531929 Copy content Toggle raw display
3737 T4++219747187984 T^{4} + \cdots + 219747187984 Copy content Toggle raw display
4141 T4++8311481425296 T^{4} + \cdots + 8311481425296 Copy content Toggle raw display
4343 (T2+316T10371836)2 (T^{2} + 316 T - 10371836)^{2} Copy content Toggle raw display
4747 T4++5862054484224 T^{4} + \cdots + 5862054484224 Copy content Toggle raw display
5353 T4++6375054362769 T^{4} + \cdots + 6375054362769 Copy content Toggle raw display
5959 T4++105068670590601 T^{4} + \cdots + 105068670590601 Copy content Toggle raw display
6161 T4++2285563428864 T^{4} + \cdots + 2285563428864 Copy content Toggle raw display
6767 T4++26 ⁣ ⁣24 T^{4} + \cdots + 26\!\cdots\!24 Copy content Toggle raw display
7171 (T24848T+1589184)2 (T^{2} - 4848 T + 1589184)^{2} Copy content Toggle raw display
7373 T4++13 ⁣ ⁣44 T^{4} + \cdots + 13\!\cdots\!44 Copy content Toggle raw display
7979 T4++45 ⁣ ⁣41 T^{4} + \cdots + 45\!\cdots\!41 Copy content Toggle raw display
8383 T4++109011202550649 T^{4} + \cdots + 109011202550649 Copy content Toggle raw display
8989 T4++31 ⁣ ⁣04 T^{4} + \cdots + 31\!\cdots\!04 Copy content Toggle raw display
9797 T4++9242250571449 T^{4} + \cdots + 9242250571449 Copy content Toggle raw display
show more
show less