Properties

Label 126.5.n.b
Level $126$
Weight $5$
Character orbit 126.n
Analytic conductor $13.025$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,5,Mod(19,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.19");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 126.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0246153486\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + 8 \beta_{2} q^{4} + (2 \beta_{3} - 11 \beta_{2} + \cdots + 11) q^{5} + ( - 7 \beta_{3} + 35 \beta_{2} + 7 \beta_1) q^{7} + 8 \beta_{3} q^{8} + ( - 11 \beta_{3} - 8 \beta_{2} + \cdots - 16) q^{10}+ \cdots + ( - 49 \beta_{3} - 3920 \beta_{2} + \cdots - 7840) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} + 66 q^{5} - 70 q^{7} - 48 q^{10} + 162 q^{11} - 128 q^{16} + 204 q^{17} - 444 q^{19} - 192 q^{22} - 312 q^{23} - 476 q^{25} - 1632 q^{26} - 560 q^{28} - 2724 q^{29} - 3786 q^{31} - 672 q^{35}+ \cdots - 23520 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−1.41421 + 2.44949i 0 −4.00000 6.92820i 20.7426 + 11.9758i 0 −47.1985 13.1645i 22.6274 0 −58.6690 + 33.8726i
19.2 1.41421 2.44949i 0 −4.00000 6.92820i 12.2574 + 7.07679i 0 12.1985 47.4573i −22.6274 0 34.6690 20.0162i
73.1 −1.41421 2.44949i 0 −4.00000 + 6.92820i 20.7426 11.9758i 0 −47.1985 + 13.1645i 22.6274 0 −58.6690 33.8726i
73.2 1.41421 + 2.44949i 0 −4.00000 + 6.92820i 12.2574 7.07679i 0 12.1985 + 47.4573i −22.6274 0 34.6690 + 20.0162i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.5.n.b 4
3.b odd 2 1 42.5.g.a 4
7.c even 3 1 882.5.c.a 4
7.d odd 6 1 inner 126.5.n.b 4
7.d odd 6 1 882.5.c.a 4
12.b even 2 1 336.5.bh.d 4
21.c even 2 1 294.5.g.c 4
21.g even 6 1 42.5.g.a 4
21.g even 6 1 294.5.c.a 4
21.h odd 6 1 294.5.c.a 4
21.h odd 6 1 294.5.g.c 4
84.j odd 6 1 336.5.bh.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.5.g.a 4 3.b odd 2 1
42.5.g.a 4 21.g even 6 1
126.5.n.b 4 1.a even 1 1 trivial
126.5.n.b 4 7.d odd 6 1 inner
294.5.c.a 4 21.g even 6 1
294.5.c.a 4 21.h odd 6 1
294.5.g.c 4 21.c even 2 1
294.5.g.c 4 21.h odd 6 1
336.5.bh.d 4 12.b even 2 1
336.5.bh.d 4 84.j odd 6 1
882.5.c.a 4 7.c even 3 1
882.5.c.a 4 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 66T_{5}^{3} + 1791T_{5}^{2} - 22374T_{5} + 114921 \) acting on \(S_{5}^{\mathrm{new}}(126, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 8T^{2} + 64 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 66 T^{3} + \cdots + 114921 \) Copy content Toggle raw display
$7$ \( T^{4} + 70 T^{3} + \cdots + 5764801 \) Copy content Toggle raw display
$11$ \( T^{4} - 162 T^{3} + \cdots + 39350529 \) Copy content Toggle raw display
$13$ \( T^{4} + 63264 T^{2} + 569108736 \) Copy content Toggle raw display
$17$ \( T^{4} - 204 T^{3} + \cdots + 589324176 \) Copy content Toggle raw display
$19$ \( T^{4} + 444 T^{3} + \cdots + 128051856 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 525265461504 \) Copy content Toggle raw display
$29$ \( (T^{2} + 1362 T + 460233)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 1025818531929 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 219747187984 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 8311481425296 \) Copy content Toggle raw display
$43$ \( (T^{2} + 316 T - 10371836)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 5862054484224 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 6375054362769 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 105068670590601 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 2285563428864 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 26\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( (T^{2} - 4848 T + 1589184)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 13\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 45\!\cdots\!41 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 109011202550649 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 31\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 9242250571449 \) Copy content Toggle raw display
show more
show less